MOBILISIS-Calculator/main/aes128.cpp
2024-06-13 17:23:47 +02:00

626 lines
17 KiB
C++
Executable File
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* aes128.c
*
* Created: 27.11.2017 13:33:29
* Author: Matthias
*/
#include <aes128.h>
/* the expanded keySize */
#define EXPANDED_KEY_SIZE 176
//int expandedKeySize;
/* the expanded key */
//unsigned char expandedKey[EXPANDED_KEY_SIZE];
/* the cipher key */
//unsigned char key[16];
/* the cipher key size */
enum keySize{
SIZE_16 = 16,
SIZE_24 = 24,
SIZE_32 = 32
};
//enum keySize size;
unsigned char sbox[256] = {
//0 1 2 3 4 5 6 7 8 9 A B C D E F
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, //0
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, //1
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, //2
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, //3
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, //4
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, //5
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, //6
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, //7
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, //8
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, //9
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, //A
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, //B
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, //C
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, //D
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, //E
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; //F
unsigned char rsbox[256] =
{ 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb
, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb
, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e
, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25
, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92
, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84
, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06
, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b
, 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73
, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e
, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b
, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4
, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f
, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef
, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61
, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };
unsigned char Rcon[256] = {
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,
0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f,
0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d,
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab,
0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d,
0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25,
0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01,
0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d,
0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa,
0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a,
0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02,
0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef,
0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94,
0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f,
0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5,
0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33,
0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d};
void aes_init() {
//UINT uitemp = 0;
/* the expanded keySize */
//expandedKeySize = EXPANDED_KEY_SIZE;
/* the cipher key */
//for (uitemp = 0; uitemp < 16; ++uitemp)
//key[uitemp] = 0x00;
/* the cipher key size */
//size = SIZE_16;
}
unsigned char getSBoxValue(unsigned char num)
{
return sbox[num];
}
unsigned char getSBoxInvert(unsigned char num)
{
return rsbox[num];
}
//Key generation
/* Rijndael's key schedule rotate operation
* rotate the word eight bits to the left
*
* rotate(1d2c3a4f) = 2c3a4f1d
*
* word is an char array of size 4 (32 bit)
*/
void rotate(unsigned char *word)
{
unsigned char c;
int i;
c = word[0];
for (i = 0; i < 3; i++)
word[i] = word[i+1];
word[3] = c;
}
unsigned char getRconValue(unsigned char num)
{
return Rcon[num];
}
void core(unsigned char *word, int iteration)
{
int i;
/* rotate the 32-bit word 8 bits to the left */
rotate(word);
/* apply S-Box substitution on all 4 parts of the 32-bit word */
for (i = 0; i < 4; ++i)
{
word[i] = getSBoxValue(word[i]);
}
/* XOR the output of the rcon operation with i to the first part (leftmost) only */
word[0] = word[0]^getRconValue(((unsigned char) iteration));
}
/* Rijndael's key expansion
* expands an 128,192,256 key into an 176,208,240 bytes key
*
* expandedKey is a pointer to an char array of large enough size
* key is a pointer to a non-expanded key
*/
void expandKey(unsigned char *expandedKey,
unsigned char *key,
enum keySize size,
/*size_t*/ unsigned int expandedKeySize)
{
/* current expanded keySize, in bytes */
int currentSize = 0;
int rconIteration = 1;
int i;
unsigned char t[4] = {0,0,0,0}; // temporary 4-byte variable
/* set the 16,24,32 bytes of the expanded key to the input key */
for (i = 0; i < size; i++)
expandedKey[i] = key[i];
currentSize += size;
while (currentSize < expandedKeySize)
{
/* assign the previous 4 bytes to the temporary value t */
for (i = 0; i < 4; i++)
{
t[i] = expandedKey[(currentSize - 4) + i];
}
/* every 16,24,32 bytes we apply the core schedule to t
* and increment rconIteration afterwards
*/
if(currentSize % size == 0)
{
core(t, rconIteration++);
}
/* For 256-bit keys, we add an extra sbox to the calculation */
if(size == SIZE_32 && ((currentSize % size) == 16)) {
for(i = 0; i < 4; i++)
t[i] = getSBoxValue(t[i]);
}
/* We XOR t with the four-byte block 16,24,32 bytes before the new expanded key.
* This becomes the next four bytes in the expanded key.
*/
for(i = 0; i < 4; i++) {
expandedKey[currentSize] = expandedKey[currentSize - size] ^ t[i];
currentSize++;
}
}
}
//Encrypt
void subBytes(unsigned char *state)
{
int i;
/* substitute all the values from the state with the value in the SBox
* using the state value as index for the SBox
*/
for (i = 0; i < 16; i++)
state[i] = getSBoxValue(state[i]);
}
void shiftRow(unsigned char *state, unsigned char nbr)
{
int i, j;
unsigned char tmp;
/* each iteration shifts the row to the left by 1 */
for (i = 0; i < nbr; i++)
{
tmp = state[0];
for (j = 0; j < 3; j++)
state[j] = state[j+1];
state[3] = tmp;
}
}
void shiftRows(unsigned char *state)
{
int i;
/* iterate over the 4 rows and call shiftRow() with that row */
for (i = 0; i < 4; i++)
shiftRow(state+i*4, i);
}
void addRoundKey(unsigned char *state, unsigned char *roundKey)
{
int i;
for (i = 0; i < 16; i++)
state[i] = state[i] ^ roundKey[i] ;
}
unsigned char galois_multiplication(unsigned char a, unsigned char b)
{
unsigned char p = 0;
unsigned char counter;
unsigned char hi_bit_set;
for(counter = 0; counter < 8; counter++) {
if((b & 1) == 1)
p ^= a;
hi_bit_set = (a & 0x80);
a <<= 1;
if(hi_bit_set == 0x80)
a ^= 0x1b;
b >>= 1;
}
return p;
}
void mixColumn(unsigned char *column)
{
unsigned char cpy[4];
int i;
for(i = 0; i < 4; i++)
{
cpy[i] = column[i];
}
column[0] = galois_multiplication(cpy[0],2) ^
galois_multiplication(cpy[3],1) ^
galois_multiplication(cpy[2],1) ^
galois_multiplication(cpy[1],3);
column[1] = galois_multiplication(cpy[1],2) ^
galois_multiplication(cpy[0],1) ^
galois_multiplication(cpy[3],1) ^
galois_multiplication(cpy[2],3);
column[2] = galois_multiplication(cpy[2],2) ^
galois_multiplication(cpy[1],1) ^
galois_multiplication(cpy[0],1) ^
galois_multiplication(cpy[3],3);
column[3] = galois_multiplication(cpy[3],2) ^
galois_multiplication(cpy[2],1) ^
galois_multiplication(cpy[1],1) ^
galois_multiplication(cpy[0],3);
}
void mixColumns(unsigned char *state)
{
int i, j;
unsigned char column[4];
/* iterate over the 4 columns */
for (i = 0; i < 4; i++)
{
/* construct one column by iterating over the 4 rows */
for (j = 0; j < 4; j++)
{
column[j] = state[(j*4)+i];
}
/* apply the mixColumn on one column */
mixColumn(column);
/* put the values back into the state */
for (j = 0; j < 4; j++)
{
state[(j*4)+i] = column[j];
}
}
}
void aes_round(unsigned char *state, unsigned char *roundKey)
{
subBytes(state);
shiftRows(state);
mixColumns(state);
addRoundKey(state, roundKey);
}
void createRoundKey(unsigned char *expandedKey, unsigned char *roundKey)
{
int i,j;
/* iterate over the columns */
for (i = 0; i < 4; i++)
{
/* iterate over the rows */
for (j = 0; j < 4; j++)
roundKey[(i+(j*4))] = expandedKey[(i*4)+j];
}
}
void aes_main(unsigned char *state, unsigned char *expandedKey, int nbrRounds)
{
int i = 0;
unsigned char roundKey[16];
createRoundKey(expandedKey, roundKey);
addRoundKey(state, roundKey);
for (i = 1; i < nbrRounds; i++) {
createRoundKey(expandedKey + 16*i, roundKey);
aes_round(state, roundKey);
}
createRoundKey(expandedKey + 16*nbrRounds, roundKey);
subBytes(state);
shiftRows(state);
addRoundKey(state, roundKey);
}
char aes_encrypt(unsigned char *input,
unsigned char *output,
unsigned char *key
/*, enum keySize size*/)
{
enum keySize size = SIZE_16;
/* the expanded keySize */
int expandedKeySize;
/* the number of rounds */
int nbrRounds = 10; //NOTE: modded
/* the expanded key */
//NOTE: modded: unsigned char *expandedKey = 0x00;
//unsigned char expandedKey[(16*(nbrRounds+1))];
unsigned char expandedKey[176];
/* the 128 bit block to encode */
unsigned char block[16];
int i,j;
/* set the number of rounds */
/*switch (size)
{
case SIZE_16:
nbrRounds = 10;
break;
case SIZE_24:
nbrRounds = 12;
break;
case SIZE_32:
nbrRounds = 14;
break;
default:
return 1; //UNKNOWN_KEYSIZE;
break;
}*/ //NOTE: modded
expandedKeySize = (16*(nbrRounds+1));
/*if ((expandedKey = malloc(expandedKeySize * sizeof(char))) == NULL)
{
return MEMORY_ALLOCATION_PROBLEM;
}*/
/* Set the block values, for the block:
* a0,0 a0,1 a0,2 a0,3
* a1,0 a1,1 a1,2 a1,3
* a2,0 a2,1 a2,2 a2,3
* a3,0 a3,1 a3,2 a3,3
* the mapping order is a0,0 a1,0 a2,0 a3,0 a0,1 a1,1 ... a2,3 a3,3
*/
/* iterate over the columns */
for (i = 0; i < 4; i++)
{
/* iterate over the rows */
for (j = 0; j < 4; j++)
block[(i+(j*4))] = input[(i*4)+j];
}
/* expand the key into an 176, 208, 240 bytes key */
expandKey(expandedKey, key, size, expandedKeySize);
/* encrypt the block using the expandedKey */
aes_main(block, expandedKey, nbrRounds);
/* unmap the block again into the output */
for (i = 0; i < 4; i++)
{
/* iterate over the rows */
for (j = 0; j < 4; j++)
output[(i*4)+j] = block[(i+(j*4))];
}
return 0;
}
//Decrypt
void invSubBytes(unsigned char *state)
{
int i;
/* substitute all the values from the state with the value in the SBox
* using the state value as index for the SBox
*/
for (i = 0; i < 16; i++)
state[i] = getSBoxInvert(state[i]);
}
void invShiftRow(unsigned char *state, unsigned char nbr)
{
int i, j;
unsigned char tmp;
/* each iteration shifts the row to the right by 1 */
for (i = 0; i < nbr; i++)
{
tmp = state[3];
for (j = 3; j > 0; j--)
state[j] = state[j-1];
state[0] = tmp;
}
}
void invShiftRows(unsigned char *state)
{
int i;
/* iterate over the 4 rows and call invShiftRow() with that row */
for (i = 0; i < 4; i++)
invShiftRow(state+i*4, i);
}
void invMixColumn(unsigned char *column)
{
unsigned char cpy[4];
int i;
for(i = 0; i < 4; i++)
{
cpy[i] = column[i];
}
column[0] = galois_multiplication(cpy[0],14) ^
galois_multiplication(cpy[3],9) ^
galois_multiplication(cpy[2],13) ^
galois_multiplication(cpy[1],11);
column[1] = galois_multiplication(cpy[1],14) ^
galois_multiplication(cpy[0],9) ^
galois_multiplication(cpy[3],13) ^
galois_multiplication(cpy[2],11);
column[2] = galois_multiplication(cpy[2],14) ^
galois_multiplication(cpy[1],9) ^
galois_multiplication(cpy[0],13) ^
galois_multiplication(cpy[3],11);
column[3] = galois_multiplication(cpy[3],14) ^
galois_multiplication(cpy[2],9) ^
galois_multiplication(cpy[1],13) ^
galois_multiplication(cpy[0],11);
}
void invMixColumns(unsigned char *state)
{
int i, j;
unsigned char column[4];
/* iterate over the 4 columns */
for (i = 0; i < 4; i++)
{
/* construct one column by iterating over the 4 rows */
for (j = 0; j < 4; j++)
{
column[j] = state[(j*4)+i];
}
/* apply the invMixColumn on one column */
invMixColumn(column);
/* put the values back into the state */
for (j = 0; j < 4; j++)
{
state[(j*4)+i] = column[j];
}
}
}
void aes_invRound(unsigned char *state, unsigned char *roundKey)
{
invShiftRows(state);
invSubBytes(state);
addRoundKey(state, roundKey);
invMixColumns(state);
}
void aes_invMain(unsigned char *state, unsigned char *expandedKey, int nbrRounds)
{
int i = 0;
unsigned char roundKey[16];
createRoundKey(expandedKey + 16*nbrRounds, roundKey);
addRoundKey(state, roundKey);
for (i = nbrRounds-1; i > 0; i--) {
createRoundKey(expandedKey + 16*i, roundKey);
aes_invRound(state, roundKey);
}
createRoundKey(expandedKey, roundKey);
invShiftRows(state);
invSubBytes(state);
addRoundKey(state, roundKey);
}
char aes_decrypt(unsigned char *input,
unsigned char *output,
unsigned char *key
/*´, enum keySize size*/)
{
enum keySize size = SIZE_16;
/* the expanded keySize */
int expandedKeySize;
/* the number of rounds */
int nbrRounds;
/* the expanded key */
unsigned char *expandedKey = 0x00;
/* the 128 bit block to decode */
unsigned char block[16];
int i,j;
/* set the number of rounds */
switch (size)
{
case SIZE_16:
nbrRounds = 10;
break;
case SIZE_24:
nbrRounds = 12;
break;
case SIZE_32:
nbrRounds = 14;
break;
default:
return 1; //UNKNOWN_KEYSIZE;
break;
}
expandedKeySize = (16*(nbrRounds+1));
/*if ((expandedKey = malloc(expandedKeySize * sizeof(char))) == NULL)
{
return MEMORY_ALLOCATION_PROBLEM;
}*/
/* Set the block values, for the block:
* a0,0 a0,1 a0,2 a0,3
* a1,0 a1,1 a1,2 a1,3
* a2,0 a2,1 a2,2 a2,3
* a3,0 a3,1 a3,2 a3,3
* the mapping order is a0,0 a1,0 a2,0 a3,0 a0,1 a1,1 ... a2,3 a3,3
*/
/* iterate over the columns */
for (i = 0; i < 4; i++)
{
/* iterate over the rows */
for (j = 0; j < 4; j++)
block[(i+(j*4))] = input[(i*4)+j];
}
/* expand the key into an 176, 208, 240 bytes key */
expandKey(expandedKey, key, size, expandedKeySize);
/* decrypt the block using the expandedKey */
aes_invMain(block, expandedKey, nbrRounds);
/* unmap the block again into the output */
for (i = 0; i < 4; i++)
{
/* iterate over the rows */
for (j = 0; j < 4; j++)
output[(i*4)+j] = block[(i+(j*4))];
}
return 0;
}