626 lines
17 KiB
C++
Executable File
626 lines
17 KiB
C++
Executable File
/*
|
||
* aes128.c
|
||
*
|
||
* Created: 27.11.2017 13:33:29
|
||
* Author: Matthias
|
||
*/
|
||
|
||
#include <aes128.h>
|
||
|
||
/* the expanded keySize */
|
||
#define EXPANDED_KEY_SIZE 176
|
||
//int expandedKeySize;
|
||
|
||
/* the expanded key */
|
||
//unsigned char expandedKey[EXPANDED_KEY_SIZE];
|
||
|
||
/* the cipher key */
|
||
//unsigned char key[16];
|
||
|
||
/* the cipher key size */
|
||
|
||
enum keySize{
|
||
SIZE_16 = 16,
|
||
SIZE_24 = 24,
|
||
SIZE_32 = 32
|
||
};
|
||
|
||
//enum keySize size;
|
||
|
||
unsigned char sbox[256] = {
|
||
//0 1 2 3 4 5 6 7 8 9 A B C D E F
|
||
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, //0
|
||
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, //1
|
||
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, //2
|
||
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, //3
|
||
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, //4
|
||
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, //5
|
||
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, //6
|
||
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, //7
|
||
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, //8
|
||
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, //9
|
||
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, //A
|
||
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, //B
|
||
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, //C
|
||
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, //D
|
||
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, //E
|
||
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; //F
|
||
|
||
unsigned char rsbox[256] =
|
||
{ 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb
|
||
, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb
|
||
, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e
|
||
, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25
|
||
, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92
|
||
, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84
|
||
, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06
|
||
, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b
|
||
, 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73
|
||
, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e
|
||
, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b
|
||
, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4
|
||
, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f
|
||
, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef
|
||
, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61
|
||
, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };
|
||
|
||
unsigned char Rcon[256] = {
|
||
|
||
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,
|
||
0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
|
||
0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f,
|
||
0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d,
|
||
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab,
|
||
0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d,
|
||
0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25,
|
||
0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01,
|
||
0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d,
|
||
0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa,
|
||
0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a,
|
||
0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02,
|
||
0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
|
||
0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef,
|
||
0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94,
|
||
0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
|
||
0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f,
|
||
0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5,
|
||
0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33,
|
||
0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d};
|
||
|
||
void aes_init() {
|
||
//UINT uitemp = 0;
|
||
/* the expanded keySize */
|
||
//expandedKeySize = EXPANDED_KEY_SIZE;
|
||
|
||
/* the cipher key */
|
||
//for (uitemp = 0; uitemp < 16; ++uitemp)
|
||
//key[uitemp] = 0x00;
|
||
|
||
/* the cipher key size */
|
||
//size = SIZE_16;
|
||
}
|
||
|
||
unsigned char getSBoxValue(unsigned char num)
|
||
{
|
||
return sbox[num];
|
||
}
|
||
|
||
unsigned char getSBoxInvert(unsigned char num)
|
||
{
|
||
return rsbox[num];
|
||
}
|
||
|
||
//Key generation
|
||
|
||
/* Rijndael's key schedule rotate operation
|
||
* rotate the word eight bits to the left
|
||
*
|
||
* rotate(1d2c3a4f) = 2c3a4f1d
|
||
*
|
||
* word is an char array of size 4 (32 bit)
|
||
*/
|
||
void rotate(unsigned char *word)
|
||
{
|
||
unsigned char c;
|
||
int i;
|
||
|
||
c = word[0];
|
||
for (i = 0; i < 3; i++)
|
||
word[i] = word[i+1];
|
||
word[3] = c;
|
||
}
|
||
|
||
unsigned char getRconValue(unsigned char num)
|
||
{
|
||
return Rcon[num];
|
||
}
|
||
|
||
void core(unsigned char *word, int iteration)
|
||
{
|
||
int i;
|
||
|
||
/* rotate the 32-bit word 8 bits to the left */
|
||
rotate(word);
|
||
|
||
/* apply S-Box substitution on all 4 parts of the 32-bit word */
|
||
for (i = 0; i < 4; ++i)
|
||
{
|
||
word[i] = getSBoxValue(word[i]);
|
||
}
|
||
|
||
/* XOR the output of the rcon operation with i to the first part (leftmost) only */
|
||
word[0] = word[0]^getRconValue(((unsigned char) iteration));
|
||
}
|
||
|
||
/* Rijndael's key expansion
|
||
* expands an 128,192,256 key into an 176,208,240 bytes key
|
||
*
|
||
* expandedKey is a pointer to an char array of large enough size
|
||
* key is a pointer to a non-expanded key
|
||
*/
|
||
|
||
void expandKey(unsigned char *expandedKey,
|
||
unsigned char *key,
|
||
enum keySize size,
|
||
/*size_t*/ unsigned int expandedKeySize)
|
||
{
|
||
/* current expanded keySize, in bytes */
|
||
int currentSize = 0;
|
||
int rconIteration = 1;
|
||
int i;
|
||
unsigned char t[4] = {0,0,0,0}; // temporary 4-byte variable
|
||
|
||
/* set the 16,24,32 bytes of the expanded key to the input key */
|
||
for (i = 0; i < size; i++)
|
||
expandedKey[i] = key[i];
|
||
currentSize += size;
|
||
|
||
while (currentSize < expandedKeySize)
|
||
{
|
||
/* assign the previous 4 bytes to the temporary value t */
|
||
for (i = 0; i < 4; i++)
|
||
{
|
||
t[i] = expandedKey[(currentSize - 4) + i];
|
||
}
|
||
|
||
/* every 16,24,32 bytes we apply the core schedule to t
|
||
* and increment rconIteration afterwards
|
||
*/
|
||
if(currentSize % size == 0)
|
||
{
|
||
core(t, rconIteration++);
|
||
}
|
||
|
||
/* For 256-bit keys, we add an extra sbox to the calculation */
|
||
if(size == SIZE_32 && ((currentSize % size) == 16)) {
|
||
for(i = 0; i < 4; i++)
|
||
t[i] = getSBoxValue(t[i]);
|
||
}
|
||
|
||
/* We XOR t with the four-byte block 16,24,32 bytes before the new expanded key.
|
||
* This becomes the next four bytes in the expanded key.
|
||
*/
|
||
for(i = 0; i < 4; i++) {
|
||
expandedKey[currentSize] = expandedKey[currentSize - size] ^ t[i];
|
||
currentSize++;
|
||
}
|
||
}
|
||
}
|
||
|
||
//Encrypt
|
||
|
||
void subBytes(unsigned char *state)
|
||
{
|
||
int i;
|
||
/* substitute all the values from the state with the value in the SBox
|
||
* using the state value as index for the SBox
|
||
*/
|
||
for (i = 0; i < 16; i++)
|
||
state[i] = getSBoxValue(state[i]);
|
||
}
|
||
|
||
void shiftRow(unsigned char *state, unsigned char nbr)
|
||
{
|
||
int i, j;
|
||
unsigned char tmp;
|
||
/* each iteration shifts the row to the left by 1 */
|
||
for (i = 0; i < nbr; i++)
|
||
{
|
||
tmp = state[0];
|
||
for (j = 0; j < 3; j++)
|
||
state[j] = state[j+1];
|
||
state[3] = tmp;
|
||
}
|
||
}
|
||
|
||
void shiftRows(unsigned char *state)
|
||
{
|
||
int i;
|
||
/* iterate over the 4 rows and call shiftRow() with that row */
|
||
for (i = 0; i < 4; i++)
|
||
shiftRow(state+i*4, i);
|
||
}
|
||
|
||
void addRoundKey(unsigned char *state, unsigned char *roundKey)
|
||
{
|
||
int i;
|
||
for (i = 0; i < 16; i++)
|
||
state[i] = state[i] ^ roundKey[i] ;
|
||
}
|
||
|
||
unsigned char galois_multiplication(unsigned char a, unsigned char b)
|
||
{
|
||
unsigned char p = 0;
|
||
unsigned char counter;
|
||
unsigned char hi_bit_set;
|
||
for(counter = 0; counter < 8; counter++) {
|
||
if((b & 1) == 1)
|
||
p ^= a;
|
||
hi_bit_set = (a & 0x80);
|
||
a <<= 1;
|
||
if(hi_bit_set == 0x80)
|
||
a ^= 0x1b;
|
||
b >>= 1;
|
||
}
|
||
return p;
|
||
}
|
||
|
||
void mixColumn(unsigned char *column)
|
||
{
|
||
unsigned char cpy[4];
|
||
int i;
|
||
for(i = 0; i < 4; i++)
|
||
{
|
||
cpy[i] = column[i];
|
||
}
|
||
column[0] = galois_multiplication(cpy[0],2) ^
|
||
galois_multiplication(cpy[3],1) ^
|
||
galois_multiplication(cpy[2],1) ^
|
||
galois_multiplication(cpy[1],3);
|
||
|
||
column[1] = galois_multiplication(cpy[1],2) ^
|
||
galois_multiplication(cpy[0],1) ^
|
||
galois_multiplication(cpy[3],1) ^
|
||
galois_multiplication(cpy[2],3);
|
||
|
||
column[2] = galois_multiplication(cpy[2],2) ^
|
||
galois_multiplication(cpy[1],1) ^
|
||
galois_multiplication(cpy[0],1) ^
|
||
galois_multiplication(cpy[3],3);
|
||
|
||
column[3] = galois_multiplication(cpy[3],2) ^
|
||
galois_multiplication(cpy[2],1) ^
|
||
galois_multiplication(cpy[1],1) ^
|
||
galois_multiplication(cpy[0],3);
|
||
}
|
||
|
||
void mixColumns(unsigned char *state)
|
||
{
|
||
int i, j;
|
||
unsigned char column[4];
|
||
|
||
/* iterate over the 4 columns */
|
||
for (i = 0; i < 4; i++)
|
||
{
|
||
/* construct one column by iterating over the 4 rows */
|
||
for (j = 0; j < 4; j++)
|
||
{
|
||
column[j] = state[(j*4)+i];
|
||
}
|
||
|
||
/* apply the mixColumn on one column */
|
||
mixColumn(column);
|
||
|
||
/* put the values back into the state */
|
||
for (j = 0; j < 4; j++)
|
||
{
|
||
state[(j*4)+i] = column[j];
|
||
}
|
||
}
|
||
}
|
||
|
||
void aes_round(unsigned char *state, unsigned char *roundKey)
|
||
{
|
||
subBytes(state);
|
||
shiftRows(state);
|
||
mixColumns(state);
|
||
addRoundKey(state, roundKey);
|
||
}
|
||
|
||
void createRoundKey(unsigned char *expandedKey, unsigned char *roundKey)
|
||
{
|
||
int i,j;
|
||
/* iterate over the columns */
|
||
for (i = 0; i < 4; i++)
|
||
{
|
||
/* iterate over the rows */
|
||
for (j = 0; j < 4; j++)
|
||
roundKey[(i+(j*4))] = expandedKey[(i*4)+j];
|
||
}
|
||
}
|
||
|
||
void aes_main(unsigned char *state, unsigned char *expandedKey, int nbrRounds)
|
||
{
|
||
int i = 0;
|
||
|
||
unsigned char roundKey[16];
|
||
|
||
createRoundKey(expandedKey, roundKey);
|
||
addRoundKey(state, roundKey);
|
||
|
||
for (i = 1; i < nbrRounds; i++) {
|
||
createRoundKey(expandedKey + 16*i, roundKey);
|
||
aes_round(state, roundKey);
|
||
}
|
||
|
||
createRoundKey(expandedKey + 16*nbrRounds, roundKey);
|
||
subBytes(state);
|
||
shiftRows(state);
|
||
addRoundKey(state, roundKey);
|
||
}
|
||
|
||
char aes_encrypt(unsigned char *input,
|
||
unsigned char *output,
|
||
unsigned char *key
|
||
/*, enum keySize size*/)
|
||
{
|
||
enum keySize size = SIZE_16;
|
||
/* the expanded keySize */
|
||
int expandedKeySize;
|
||
|
||
/* the number of rounds */
|
||
int nbrRounds = 10; //NOTE: modded
|
||
|
||
/* the expanded key */
|
||
//NOTE: modded: unsigned char *expandedKey = 0x00;
|
||
//unsigned char expandedKey[(16*(nbrRounds+1))];
|
||
unsigned char expandedKey[176];
|
||
|
||
/* the 128 bit block to encode */
|
||
unsigned char block[16];
|
||
|
||
int i,j;
|
||
|
||
/* set the number of rounds */
|
||
/*switch (size)
|
||
{
|
||
case SIZE_16:
|
||
nbrRounds = 10;
|
||
break;
|
||
case SIZE_24:
|
||
nbrRounds = 12;
|
||
break;
|
||
case SIZE_32:
|
||
nbrRounds = 14;
|
||
break;
|
||
default:
|
||
return 1; //UNKNOWN_KEYSIZE;
|
||
break;
|
||
}*/ //NOTE: modded
|
||
|
||
expandedKeySize = (16*(nbrRounds+1));
|
||
/*if ((expandedKey = malloc(expandedKeySize * sizeof(char))) == NULL)
|
||
{
|
||
return MEMORY_ALLOCATION_PROBLEM;
|
||
}*/
|
||
|
||
/* Set the block values, for the block:
|
||
* a0,0 a0,1 a0,2 a0,3
|
||
* a1,0 a1,1 a1,2 a1,3
|
||
* a2,0 a2,1 a2,2 a2,3
|
||
* a3,0 a3,1 a3,2 a3,3
|
||
* the mapping order is a0,0 a1,0 a2,0 a3,0 a0,1 a1,1 ... a2,3 a3,3
|
||
*/
|
||
|
||
/* iterate over the columns */
|
||
for (i = 0; i < 4; i++)
|
||
{
|
||
/* iterate over the rows */
|
||
for (j = 0; j < 4; j++)
|
||
block[(i+(j*4))] = input[(i*4)+j];
|
||
}
|
||
|
||
/* expand the key into an 176, 208, 240 bytes key */
|
||
expandKey(expandedKey, key, size, expandedKeySize);
|
||
|
||
/* encrypt the block using the expandedKey */
|
||
aes_main(block, expandedKey, nbrRounds);
|
||
|
||
/* unmap the block again into the output */
|
||
for (i = 0; i < 4; i++)
|
||
{
|
||
/* iterate over the rows */
|
||
for (j = 0; j < 4; j++)
|
||
output[(i*4)+j] = block[(i+(j*4))];
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
//Decrypt
|
||
void invSubBytes(unsigned char *state)
|
||
{
|
||
int i;
|
||
/* substitute all the values from the state with the value in the SBox
|
||
* using the state value as index for the SBox
|
||
*/
|
||
for (i = 0; i < 16; i++)
|
||
state[i] = getSBoxInvert(state[i]);
|
||
}
|
||
|
||
void invShiftRow(unsigned char *state, unsigned char nbr)
|
||
{
|
||
int i, j;
|
||
unsigned char tmp;
|
||
/* each iteration shifts the row to the right by 1 */
|
||
for (i = 0; i < nbr; i++)
|
||
{
|
||
tmp = state[3];
|
||
for (j = 3; j > 0; j--)
|
||
state[j] = state[j-1];
|
||
state[0] = tmp;
|
||
}
|
||
}
|
||
|
||
void invShiftRows(unsigned char *state)
|
||
{
|
||
int i;
|
||
/* iterate over the 4 rows and call invShiftRow() with that row */
|
||
for (i = 0; i < 4; i++)
|
||
invShiftRow(state+i*4, i);
|
||
}
|
||
|
||
void invMixColumn(unsigned char *column)
|
||
{
|
||
unsigned char cpy[4];
|
||
int i;
|
||
for(i = 0; i < 4; i++)
|
||
{
|
||
cpy[i] = column[i];
|
||
}
|
||
column[0] = galois_multiplication(cpy[0],14) ^
|
||
galois_multiplication(cpy[3],9) ^
|
||
galois_multiplication(cpy[2],13) ^
|
||
galois_multiplication(cpy[1],11);
|
||
column[1] = galois_multiplication(cpy[1],14) ^
|
||
galois_multiplication(cpy[0],9) ^
|
||
galois_multiplication(cpy[3],13) ^
|
||
galois_multiplication(cpy[2],11);
|
||
column[2] = galois_multiplication(cpy[2],14) ^
|
||
galois_multiplication(cpy[1],9) ^
|
||
galois_multiplication(cpy[0],13) ^
|
||
galois_multiplication(cpy[3],11);
|
||
column[3] = galois_multiplication(cpy[3],14) ^
|
||
galois_multiplication(cpy[2],9) ^
|
||
galois_multiplication(cpy[1],13) ^
|
||
galois_multiplication(cpy[0],11);
|
||
}
|
||
|
||
void invMixColumns(unsigned char *state)
|
||
{
|
||
int i, j;
|
||
unsigned char column[4];
|
||
|
||
/* iterate over the 4 columns */
|
||
for (i = 0; i < 4; i++)
|
||
{
|
||
/* construct one column by iterating over the 4 rows */
|
||
for (j = 0; j < 4; j++)
|
||
{
|
||
column[j] = state[(j*4)+i];
|
||
}
|
||
|
||
/* apply the invMixColumn on one column */
|
||
invMixColumn(column);
|
||
|
||
/* put the values back into the state */
|
||
for (j = 0; j < 4; j++)
|
||
{
|
||
state[(j*4)+i] = column[j];
|
||
}
|
||
}
|
||
}
|
||
|
||
void aes_invRound(unsigned char *state, unsigned char *roundKey)
|
||
{
|
||
|
||
invShiftRows(state);
|
||
invSubBytes(state);
|
||
addRoundKey(state, roundKey);
|
||
invMixColumns(state);
|
||
}
|
||
|
||
void aes_invMain(unsigned char *state, unsigned char *expandedKey, int nbrRounds)
|
||
{
|
||
int i = 0;
|
||
|
||
unsigned char roundKey[16];
|
||
|
||
createRoundKey(expandedKey + 16*nbrRounds, roundKey);
|
||
addRoundKey(state, roundKey);
|
||
|
||
for (i = nbrRounds-1; i > 0; i--) {
|
||
createRoundKey(expandedKey + 16*i, roundKey);
|
||
aes_invRound(state, roundKey);
|
||
}
|
||
|
||
createRoundKey(expandedKey, roundKey);
|
||
invShiftRows(state);
|
||
invSubBytes(state);
|
||
addRoundKey(state, roundKey);
|
||
}
|
||
|
||
char aes_decrypt(unsigned char *input,
|
||
unsigned char *output,
|
||
unsigned char *key
|
||
/*´, enum keySize size*/)
|
||
{
|
||
enum keySize size = SIZE_16;
|
||
/* the expanded keySize */
|
||
int expandedKeySize;
|
||
|
||
/* the number of rounds */
|
||
int nbrRounds;
|
||
|
||
/* the expanded key */
|
||
unsigned char *expandedKey = 0x00;
|
||
|
||
/* the 128 bit block to decode */
|
||
unsigned char block[16];
|
||
|
||
int i,j;
|
||
|
||
/* set the number of rounds */
|
||
switch (size)
|
||
{
|
||
case SIZE_16:
|
||
nbrRounds = 10;
|
||
break;
|
||
case SIZE_24:
|
||
nbrRounds = 12;
|
||
break;
|
||
case SIZE_32:
|
||
nbrRounds = 14;
|
||
break;
|
||
default:
|
||
return 1; //UNKNOWN_KEYSIZE;
|
||
break;
|
||
}
|
||
|
||
expandedKeySize = (16*(nbrRounds+1));
|
||
/*if ((expandedKey = malloc(expandedKeySize * sizeof(char))) == NULL)
|
||
{
|
||
return MEMORY_ALLOCATION_PROBLEM;
|
||
}*/
|
||
|
||
/* Set the block values, for the block:
|
||
* a0,0 a0,1 a0,2 a0,3
|
||
* a1,0 a1,1 a1,2 a1,3
|
||
* a2,0 a2,1 a2,2 a2,3
|
||
* a3,0 a3,1 a3,2 a3,3
|
||
* the mapping order is a0,0 a1,0 a2,0 a3,0 a0,1 a1,1 ... a2,3 a3,3
|
||
*/
|
||
|
||
/* iterate over the columns */
|
||
for (i = 0; i < 4; i++)
|
||
{
|
||
/* iterate over the rows */
|
||
for (j = 0; j < 4; j++)
|
||
block[(i+(j*4))] = input[(i*4)+j];
|
||
}
|
||
|
||
/* expand the key into an 176, 208, 240 bytes key */
|
||
expandKey(expandedKey, key, size, expandedKeySize);
|
||
|
||
/* decrypt the block using the expandedKey */
|
||
aes_invMain(block, expandedKey, nbrRounds);
|
||
|
||
/* unmap the block again into the output */
|
||
for (i = 0; i < 4; i++)
|
||
{
|
||
/* iterate over the rows */
|
||
for (j = 0; j < 4; j++)
|
||
output[(i*4)+j] = block[(i+(j*4))];
|
||
}
|
||
return 0;
|
||
}
|