Cogrgvimiied haterial

'I MANNING

Cograrighied Material

Vue.js in Action

Erik Hanchett with Benjamin Listwon

[vanniNG PuBLICATIONS

Copyright

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in

quantity. For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road

PO Box 761

Shelter Island, NY 11964

Email: orders@manning.com

©2018 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by means electronic, mechanical, photocopying, or

otherwise, without prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in the book, and
Manning Publications was aware of a trademark claim, the designations have been

printed in initial caps or all caps.

& Recognizing the importance of preserving what has been written, it is Manning’s
policy to have the books we publish printed on acid-free paper, and we exert our best
efforts to that end. Recognizing also our responsibility to conserve the resources of our
planet, Manning books are printed on paper that is at least 15 percent recycled and

processed without the use of elemental chlorine.

M Manning Publications Co.
20

PO Box 761
Shelter Island, NY 11964

Development editor: Toni Arritola
Technical development editor: Doug Warren
Review editor: Ivan Martinovié

Project manager: Lori Weidert

Copy editor: Katie Petito

Proofreader: Elizabeth Martin

Technical proofreader: Jay Kelkar

Typesetter and cover designer: Marija Tudor

ISBN 9781617294624

Printed in the United States of America

12345678910—-SP-232221201918

About this book

Before you dive into learning how to make Vue.js applications, let’s talk about a few

things you should know first.

In this book we’ll look at everything you need to know to become proficient in Vue.js.
The goal of the book is to get you the knowledge you need so you can jump into any

Vue.js application without hesitation.

While doing research for this book, I heard repeatedly that the official Vue.js guides
were the best resource for learning Vue.js. While the official guides are great, and I
highly recommend you check them out as additional references while you learn Vue.js,
they don’t cover everything, and they’re not perfect. As I wrote the book, I took it upon
myself to go beyond what the official guides covered. I made the examples more
understandable and relatable, so you could more easily adapt the concepts to your own
projects. Where I thought a topic was beyond the scope of the book, or not important
enough, I added a reference where you can learn more about it inside the official

guides.

This book can be used in a couple of different ways. You can read it from front to back.
In that instance, you’ll get the full breadth of what Vue.js has to offer. Or you can use
this book as a reference manual to look up whatever concept you need more

information on. Either way is acceptable and fine.

Later in the book we’ll transition to creating Vue.js apps using a build system. Don’t
worry, I've included instructions on how to get started with a Vue.js build tool called
Vue-CLI in appendix A. One of the most important benefits of Vue-CLI is that it helps us
create more complex Vue.js applications without having to worry about building or

transpiling our code.

Throughout the book we’ll create a Vue.js pet store application. Certain chapters use
the pet store example more than others. I did this on purpose, so you could easily learn
a concept without having to learn how it works with the pet store app. But people who

prefer to learn with a real application still have that option.

AUDIENCE

This book is for anyone who’s interested in learning Vue.js and has JavaScript, HTML,
and CSS experience. I don’t expect you to have much knowledge on this but knowing
the basics, such as arrays, variables, loops, and HTML tags will help. As for CSS, we’ll
use Bootstrap 3, a CSS library. However, you don’t need to know anything about

Bootstrap to follow along with the examples. It’s only there to help with styling.

Early in the book, I introduce the example code using ECMAScript 2015, otherwise
known as ES6. It would be a good idea to look it over before you start this book. For the
most part, I use only a few ES6 features, such as arrow functions and ES6 imports. I'll

warn you in the book when we make this transition.

ROADMAP
The book is broken into three parts, each building upon the previous one. Part 1 is keyed

toward getting to know Vue.js. In chapters 1 and 2 we’ll create our first Vue.js

application. We'll look at what a Vue.js instance is and how it relates to our application.

In part 2, chapters 3— 9 , we’ll look more closely at the View and ViewModel. In this

section we dive into several of the meatiest parts of Vue.js. Part 1 is more of an appetizer
to Vue.js, while part 2 is the main course. You'll learn the intricacies of how to create a
Vue.js application. We’ll begin by learning the reactive model, and we’ll create a pet

store application that we’ll use throughout the rest of the book.

We’ll add in forms and inputs and how to bind information using Vue.js’s powerful

directives, then look at conditionals, looping, and forms.

Chapters 6 and 7 are extremely important. We’ll learn how to break a Vue.js app into

several logical parts using components, and we’ll have a first look at the build tools

you’ll need to create Vue.js apps.

Chapter 7 also covers routing. In earlier chapters, we use simple conditionals to navigate
our application. With the addition of routing, we can properly move around our

application and pass information between routes.

Chapter 8 introduces you to the powerful animations and transitions you can perform
using Vue.js. These features are baked into the language and are nice features you
should check out.

In chapter 9 we’ll learn how to use mixins and custom directives to easily extend Vue

without repeating ourselves.

Part 3 is all about modeling data, consuming APIs, and testing. In chapters 10 and 11, we
begin with a deep dive into Vue’s state management system called Vuex. We’ll then look
at how we can start communicating to a backend server, and we’ll learn more about

Nuxt.js, a server-side rendered framework.

Chapter 12 is dedicated to testing. In any professional environment, you’ll need to know

testing, and we’ll look at the essentials you must know.

BOOK FORUM

Purchase of Vue,js in Action includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the forum,
go to https://forums.manning.com/forums/vue-js-in-action. You can also learn more about

Manning’s forums and the rules of conduct at https:/forums.manning.com/forums/about.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of the
author, whose contribution to the forum remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions lest his interest stray! The forum
and the archives of previous discussions will be accessible from the publisher’s website

as long as the book is in print.

SOURCE CODE

This book contains many examples of source code, both in numbered listings and inline
with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes boldface is used to
highlight code that has changed from previous steps in the chapter, such as when a new

feature is added to an existing line of code.

In many cases, the original source code has been reformatted; we’ve added line breaks
and reworked indentation to accommodate the available page space in the book. In rare
cases, even this was not enough, and listings include line-continuation markers (=).
Additionally, comments in the source code have often been removed from the listings
when the code is described in the text. Code annotations accompany many of the

listings, highlighting important concepts.

The source code for this book is available to download from the publisher’s website
(www.manning.com/books/vue-js-in-action) and from my personal GitHub repository
(https://github.com/ErikCH/VuejsInActionCode). You can also find more instructions on

downloading the code and setting up your programming environment in appendix A.

While going through the book, you’ll notice I often split the source code into separate
files. I've included both the completed file and the separated files in each chapter with
the source code, so you can follow along. If you find a bug in the code, feel free to send
over a pull request to my GitHub. I'll maintain the repo, and I'll leave a comment in the

readme with any updates.

SOFTWARE REQUIREMENTS

To make things easy, all the code in this book will work on any modern browser. I've
tested it personally on Firefox 58, Chrome 65, and Microsoft Edge 15. I wouldn’t
recommend trying to run any of my apps on older browsers, because you’ll certainly
run into problems. Vue.js itself doesn’t support IE8 and below. It must have a

ECMAScript 5 compliant browser.

In several of the earlier chapters, I use a few ES6 features. You'll need to have a modern

web browser to run those examples.

The pet store app we'll create throughout the book will work on a mobile browser.
However, the pet store application isn’t optimized for mobile, so I recommend you run

the examples on a desktop computer.

You don’t have to worry about your operating system. If the web browser runs, you

should be fine. There are really no other requirements.

ONLINE RESOURCES

As I mentioned earlier, the Vue.js official guides are great to use as references while
you're working the examples in the book. You can find the guides at

https://vuejs.org/v2/guide/. They're continually being updated.

There’s a curated list of awesome things related to Vue.js on the GitHub page
https://github.com/vuejs/awesome-vue. Here, you can find links to Vue.js podcasts,
additional Vue.js resources, third-party libraries, and even companies that use Vue.js. I

highly recommend checking it out.

The Vue.js community is huge and is continuously growing. One of the best places to

talk to other Vue.js developers is the official Vue.js forum at https://forum.vuejs.org/. Here

you can discuss or get help on anything Vue.

If you're looking for more video tutorials, my channel, http:/erik.video on YouTube,

covers a ton of information on Vue.js and JavaScript in general. Check it out!

MORE INFO?

In this 300-page book I cover a large amount of material. Please, don’t hesitate to reach
out to me, the author, if you're getting stuck, or you need help. If I can’t help you, I'll at
least point you in the right direction. Don’t be shy. You’ll find those of us in the Vue.js

community are approachable to beginners.

Also, as you go through the book, try to take several of the concepts you learn and
implement them yourself. One of the best ways of learning is doing. For example,
instead of following along with the pet store app, try to create your own ecommerce

site. Use the book as guide rails to make sure you don’t get stuck.

One last thing: have fun. Be creative and make something cool. Make sure to hit me up
on twitter @ErikCH if you do!

Part 1. Getting to know Vue.js

Before we can learn all the cool things Vue has to offer, we need to get to know it first.
In these first two chapters, we’ll look at the philosophy behind Vue.js, the MVVM

pattern, and how it relates to other frameworks.

Once we understand where Vue is coming from, we’ll look deeper at the Vue instance.
The root Vue instance is the heart of the application, and we’ll explore how it’s

structured. Later, we’ll look at how we can bind data in our application to Vue.

These chapters will give you a great start in Vue.js. You’ll learn how to create a simple

app and how Vue works.

Chapter 1. Introducing Vue.js

This chapter covers

Exploring the MVC and MVVM design patterns

Defining a reactive application

Describing the Vue lifecycle

Evaluating the design of Vue.js

Interactive websites have been around for a long time. During the beginning of the Web
2.0 days in the mid-2000s, a much larger focus was put on interactivity and engaging
users. Companies such as Twitter, Facebook, and YouTube were all created during this
time. The rise of social media and user-generated content was changing the web for the
better.

Developers had to keep up with these changes to allow more interactivity for the end
user and early on, libraries and frameworks started making interactive websites easier
to build. In 2006, jQuery was released by John Resig, greatly simplifying the client-side
scripting of HTML. As time progressed, client-side frameworks and libraries were

created.

At first these frameworks and libraries were big, monolithic, and opinionated. Now,
we’ve seen a shift to smaller, lighter-weight libraries that can be easily added to any

project. This is where Vue.js comes in.

Vue.js is a library that enables us to add that interactive behavior and functionality to
any context where JavaScript can run. Vue can be used on individual webpages for

simple tasks or it can provide the foundation for an entire enterprise application.

Tip

The terms Vue and Vue.js are used somewhat interchangeably around the web.

Throughout the book, I use the more colloquial Vue for the most part, reserving Vue.js

for when I'm referring specifically to the code or the library.

From the interface that visitors interact with to the database that provides our
application with its data, we’ll explore how Vue and its supporting libraries enable us to

build complete, sophisticated web applications.

Along the way, we’ll examine how each chapter’s code fits into the bigger picture, what
industry best practices are applicable, and how you can incorporate what we’re working

on into your own projects, both existing and new.

This book is primarily written for web developers who have a moderate degree of
JavaScript familiarity and a healthy understanding of HTML and CSS. That said, owing
much to the versatility of its application programming interface (API), Vue is a library
that grows with you as a developer as it grows with your project. Anyone who wants to
build a prototype or an app for a personal side project should find this book a reliable

guide on that journey.

1.1. ON THE SHOULDERS OF GIANTS

Before we write any code for our first application, or even dig into Vue at a high level,
it’s important to understand a little bit of software history. It’s difficult to truly
appreciate what Vue does for us without knowledge of the problems and challenges that

web applications have faced in the past and what advantages Vue brings to the table.

1.1.1. The Model-View-Controller pattern

A testament to its utility, the client-side Model—View—Controller (MVC) pattern
provides the architectural blueprint used by many modern web application

development frameworks. (If you're familiar with MVC, feel free to skip ahead.)

It’s worth mentioning before we continue that the original MVC design pattern has
changed throughout the years. Sometimes known as Classic MVC, it involved a separate
set of rules on how the view, controller, and model interacted. For the sake of
simplicity, we’ll discuss a simplified version of the client-side MVC pattern. This

pattern is a more modern interpretation for the web.

As you can see in figure 1.1, the pattern is used to separate the application’s concerns.
The view is responsible for displaying information to the user. This represents the
graphical user interface (GUI). The controller is in the middle. It helps transform

events from the view to the model and data from the model to the view. Finally, the

model holds business logic and could contain a kind of datastore.

Figure 1.1. The roles of the model, view, and controller as described by the MVC
pattern.

A view is responsible for displaying |

formation ko o user, i View
'y User ackicks balen in the
J view send, informakion bo bthe
et comtroller, After o request is
The conbroller acks as o medioktor, It | | cnmpiv_f:v_, the controller
helps gather and bramsform data from | Y | responds with o new view.
the model to propagate to the view,] Comnkroller
amd bramsform amd roube appropriake yy
evenks ko the model from bthe view. , i Bl Savibratien s
rocessed bthe hcoming daka,
ik semds ik bo Hhe model fnr
In o bypical MVC application, the model | . persistence. The database signals
is represented by business and domain | Madsl the controller to proceed
logic. It may contain o database. | | when Ehok query finishes,
Info

If you're interested in learning more about the MVC pattern, start with Martin Fowler’s

page on the evolution of MVC at https://martinfowler.com/eaaDev/uiArchs.html.

Many web framework authors have used a variation of this MVC pattern because of its
solid, time-tested architecture. If you want to know more about how modern web
frameworks are designed and architected, check out SPA Design and Architecture by
Emmitt A. Scott Jr. (Manning, 2015).

In modern software development, the MVC pattern is often used as a part of a single
application and provides a great mechanism for separating the roles of application
code. For websites using the MVC pattern, every request initiates a flow of information
from the client to the server, then the database, and all the way back again. That
process is time-consuming, resource-intensive, and doesn’t provide a responsive user

experience.

Over the years, developers have increased the interactivity of web-based applications by
using asynchronous web requests and client-side MVC so that requests sent to the
server are non-blocking and execution continues without a reply. But as web
applications begin to function more like their desktop counterparts, waiting for any
client/server interaction can make an application feel sluggish or broken. That’s where

our next pattern comes to the rescue.

A word about business logic

You'll find a good degree of flexibility in the client-side MVC pattern when considering
where business logic should be implemented. In figure 1.1 we consolidated the business
logic in the model for simplicity’s sake, but it may also exist in other tiers of the
application, including the controller. The MVC pattern has changed since it was

introduced by Trygve Reenskaug in 1979 for Smalltalk-76.
Consider the validation of a ZIP Code provided by a user:
e The view might contain JavaScript that validates a ZIP Code as it’s entered or prior

to submission.

e The model might validate the ZIP Code when it creates an address object to hold the

incoming data.

e Database constraints on the ZIP Code field may mean that the model is also

enforcing business logic, although this could be considered bad practice.

It can be difficult to define what constitutes actual business logic, and in many cases, all

the previous constraints may come into play within a single request.

As we build our application in this book, we’ll examine how and where we’re organizing
our business logic, as well as how Vue and its supporting libraries can help keep

functionality from bleeding across boundaries.

1.1.2. The Model-View-ViewModel pattern

When JavaScript frameworks began to support asynchronous programming
techniques, web applications were no longer required to make requests for complete
web pages. Websites and applications could respond faster with partial updates to the
view, but doing so required a degree of duplicated effort. Presentation logic often

mirrored business logic.

A refinement of MVC, the primary difference in the Model—-View—ViewModel (MVVM)
pattern is the introduction of the view-model, and its data bindings (collectively, the
binder). MVVM provides a blueprint for us to build client-side applications with more
responsive user interaction and feedback, while avoiding costly duplication of code and
effort across the overall architecture. It’s also easier to unit test. With that said, MVVM

may be overkill for simple Uls, so take that into consideration.

For web applications, the design of MVVM allows us to write software that responds
immediately to user interaction and allows users to move freely from one task to the
next. As you can see from figure 1.2, the view-model also wears different hats. This
consolidation of responsibility has a single, profound implication for our application’s
views: when data changes in the view-model, any view bound to it is automatically
updated. The data binder exposes data and helps guarantee that when data changes, it’s

reflected in the view.

Info

You can find more information on the MVVM pattern on Martin Fowler’s page on the

Presentation model at https://martinfowler.com/eaaDev/PresentationModel.html.

Figure 1.2. The components of the Model-View-ViewModel pattern.

The model rermains bhe

The view is shll concerned The view-model rebains persistent repository for our
wikh whob o user sees, bub a representation of application application's data. In some
any decision-making logic doka in am object bypically emd=bo=gd Jm-u.'sf:'ripl:

rmoves nbo Hhe view-model, o o5 o skore, The skore archibeckures, Fhe model acks
Inskead, views remder conbenk comtaing all the data required strictly as o store without any
based on the presence and by the application ab any given logical restrictions imposed
quamnkity of doba in bhe bire, known collectively oh incoming data, bastead
currenk application stake, as the state of the application, shifting any business logic

K_/_\ K_/_\ chmhs ko bhe view-rodel,
Vie

w | e Rinding Wawvﬁlumlllli—b Model |
e

The bivnder exposes daoke ko bhe The view-model, similar bo o combreller,
wviess 08 FrlDPtT‘EEES. Views inberack wilkh rebaing the Jﬂb af Ftl‘ﬁi.sf:'m.g dake ko Ehe
this daba by calling methods-alse rodel, However, such bransackions need
exposed. by the binder-that act upon ol be synchronous, allowing users to
diate in bhe view-medels store, combinue interacting with the application.

1.1.3. What’s a reactive application?

The reactive programming paradigm isn’t necessarily a new idea. Its adoption by web
applications is relatively new and owes much to the availability of JavaScript

frameworks such as Vue, React, and Angular.

Many great resources on reactive theory are available on the web, but our needs are
perhaps a bit more focused. For a web application to be thought of as reactive, it should

do the following:

e Observe changes in application state

e Propagate change notification throughout the application
e Render views automatically in response to changes in state

e Provide timely feedback for user interactions

Reactive web applications accomplish these goals by employing MVVM design
principles using asynchronous techniques to avoid blocking continued interaction and

using functional programming idioms where possible.

While the MVVM pattern doesn’t imply a reactive application and vice versa, they share
a common intention: to provide a more responsive, reliable experience to the users of
an application. Superman and Clark Kent may present themselves differently, but they
both want to do right by humanity. (No, I won’t say which of MVVM and Reactive I

think wears the cape and which the glasses.)

Info

If you’d like to learn more about Vue’s reactive programming paradigm, check out the

Reactivity in Depth guide at https://vuejs.org/v2/guide/reactivity.html.

1.1.4. A JavaScript calculator

To better understand the notions of data binding and reactivity, we’ll start by

implementing a calculator in plain, vanilla JavaScript, as shown in this listing.

Listing 1.1. The JavaScript calculator: chapter-01/calculator.html

<!DOCTYPE>

<html>
<head>
<title>A JavaScript Calculator</title>
<style>
p, input { font-family: monospace; }

p, { white-space: pre; }

</style>
</head>
<!-- Bind to the init function -->
<body>
<div id="myCalc"> 1

<p>x <input class="calc-x-input" value="0"></p>
<p>y <input class="calc-y-input" value="0"></p>

<p>= </p> 2

</div>
<script type="text/javascript">

(function () {

function Calc (xInput, yInput, output) ({
this.xInput = xInput;
this.yInput = yInput;

this.output = output;
}
Calc.xName = 'xInput';
Calc.yName = 'yInput';

Calc.prototype = {
render: function (result) {

this.output.innerText = String(result);

}s

function CalcValue(calc, x, y) {
this.calc = calc;
this.x = x;
this.y = y;
this.result = x + y;

CalcValue.prototype = {
copyWith: function (name, value) {

var number = parseFloat (value);

if (isNaN (number) || !isFinite (number))

return this;

if (name === Calc.xName)

return new CalcValue(this.calc, number, this.y);

if (name === Calc.yName)

return new CalcValue (this.calc, this.x, number);

return this;
b
render: function () {

this.calc.render (this.result);

I 8

function initCalc (elem) {

var calc =
new Calc(
elem.querySelector ('input.calc-x-input'),
elem.querySelector ('input.calc-y-input'),
elem.querySelector ('span.calc-result')

) :

var lastValues
new CalcValue (

calc,
parseFloat (calc.xInput.value),

parseFloat (calc.yInput.value)

) :

var handleCalcEvent

function handleCalcEvent (e) {
= lastValues,

var newValues

elem = e.target;

switch (elem) {
case calc.xInput:

newValues
lastValues.copyWith (
Calc.xName,
elem.value
)i
break;
case calc.yInput:

newValues
lastValues.copyWith (

Calc.yName,
elem.value
) ;
break;

lastValues) {

| ==

= newValues;

if (newValues

lastValues
lastValues.rendexr () ;

}i
elem.addEventListener ('keyup', handleCalcEvent, false);
return lastValues;

}
window.addEventListener (
'load’',
function () {
var cv = initCalc (document.getElementById('myCalc'));

cv.render () ;
b o
false

) ;

PO ;
</script>
</body>
</html>

e 1 Forms input to collect x and y that bind to the runCalc function
e 2Shows results of x and y

¢ 3 Shows constructor to create calc instance

* 4 Shows constructor to create values for a calc instance

e 5 Initializes calc component

¢ 6 Shows the event handler

e 7 Sets the event listener on keyup

This is a calculator using ES5 JavaScript (we’ll use the more modern version of
JavaScript ES6/2015 later in the book). We’re using an immediately invoked function
expression that kicks off our JavaScript. A constructor is used to hold values and the

handleCalcEvent event handler fires on any keyup.

1.1.5. AVue calculator

Don’t worry too much about the syntax of the Vue example because our goal here isn’t
to understand everything going on in the code, but to compare the two
implementations. That said, if you have a good sense of how the JavaScript example
works (as shown in the following listing), much of the Vue code should make sense at

least on a theoretical level.

Listing 1.2, The Vue calculator: chapter-01/calculatorvue.html

<!DOCTYPE html>

<html>
<head>
<title>A Vue.js Calculator</title>
<style>
p, input { font-family: monospace; }

p { white-space: pre; }
</style>
</head>
<body>
<div id="app"> 1
<p>x <input v-model="x"></p>

<p>y <input v-model="y"></p>

S e e e e L </p>

<p>= </p> 3
</div>
<script src="https://unpkg.com/vue/dist/vue.]js"></script> 4

<script type="text/javascript">
function isNotNumericValue (value) {

return isNaN (value) || !isFinite(value):;

var calc = new Vue ({ 5
el: '#app', 6
data: { x: 0, y: 0, lastResult: 0 1}, 7
computed: { 8

result: function() {

let x = parseFloat(this.x);
if (isNotNumericValue (x))

return this.lastResult;

let y = parseFloat(this.y);
if (isNotNumericValue (y))

return this.lastResult;
this.lastResult = x + y;
return this.lastResult;

}

1)
</script>

</body>

</html>

* 1 Shows the DOM anchor for our app

e 2 Shows the form inputs for the application

e 3 Results will show up in this span.

e 4 Lists the script tag that adds the Vue.js library
e 5 Initializes the application

e 6 Connects to the DOM

e 7Shows the variables added to the app

e 8 Calculation is done here using a computed property.

1.1.6. Comparison of JavaScript and Vue

The code for both calculator implementations is, for the most part, different. Each
sample shown in figure 1.3 is available in the repository that accompanies this chapter,

so you can run each one and compare how they operate.

Figure 1.3. Side-by-side comparison of a reactive calculator written using vanilla
JavaScript (on the left) and Vue (on the right).

dseript typesTtext/{avazcript™s CREFiPY Erce"hitpd S funphp . don vue/dl it viee. {3704/ Eeripts
crip fiaw

{ Funeniaal cxcript fype="text/javascripi™s

function iiNatMusericvalue(value) {
return 1sNai{valus) |1 1isFindtelvalee);
}
var calc = new Vel {

el: "Ragn',

function Cale{xInput, ylnput, sutput) |
this.xInput = xlmput;
this. yIngut & ylaput:
this.output = owtput;

} datar { =i @, yu 8, lastResult: &),

computed:

Cale.uNase & "Elnpat’: result: fenctionf) {

¥ . . parse tlthis.x)
Calc.yNine = "ylnput'; lat x = parseFloat{this.x};
A it el evalwe (1))
- mlg Bo<s "
Cale.prototype = | ratwrn this. lastResult;
render: functlon (result) {
¥] r E{this.y)
thii.cutput. lnserText = String{result); lat ¥ = parsefleat{this.y);

A i shiotNumericvalue (y})
ratarn this. lastResult;

ki

functlicn CaleValue(cale, =, w) { this. laskResult » x + y;
this.calc = calc;

this.x m ®: ratmrn this. lastResult;
this.y ® ¥,
this.result = x & ¥; ¥
I A }H

ST

The key difference between the two applications is how an update to the final
calculation is triggered and how the result finds its way back to the page. In our Vue
example, a single binding v-mode1 takes care of all the updates and calculations on the
page. When we instantiate our application with new Vue ({ ... }), Vue examines
our JavaScript code and HTML markup, then creates all the data and event bindings

needed for our application to run.

1.1.7. How does Vue facilitate MVVM and reactivity?

Vue is sometimes referred to as a progressive framework, which broadly means that it
can be incorporated into an existing web page for simple tasks or that it can be used

entirely as the basis for a large-scale web application.

Regardless of how you choose to incorporate Vue into your project, every Vue
application has at least one Vue instance. The most basic application will have a single
instance that provides bindings between designated markup and data stored in a view-
model (see figure 1.4).

Figure 1.4. A typical Vue instance binds HTML markup to data in a view-model by
creating a data binding between them.

Every Vue nstance, no mablter how
simple or complex, is built using
familior standords and languages.

Yue Instance

HTML + C5S JavaScript
1 L
| P F |
Data Binding
(_/ | View ” (Bl I | View-Model I‘
Views can be built using We use JavaScript to describe the
stamdard HTML and C55 or data represented bﬂ view-model, as
ottached to existing markup, well as the properties amd methods

exFased. b-J the data binding.

Being built entirely out of web technologies, a single Vue instance exists entirely in the
web browser. Crucially, this means that we don’t depend on server-based page reloads
for updated views, executing business logic, or any other task that falls under the
domain of the view or view-model. Let’s revisit our form submission example with that

in mind.

Perhaps the most striking change relative to the client-side MVC architecture is that the
browser page needs to rarely, if ever, reload during the user’s entire session. Because
the view, view-model, and data bindings are all implemented in HTML and JavaScript,
our application can delegate tasks to the model asynchronously, leaving users free to
continue with other tasks. When new data is returned from the model, the bindings

established by Vue will trigger whatever updates need to happen in the view.

Arguably, it’s Vue’s primary role to facilitate user interaction by creating and
maintaining the binding between the views we create and the data in our view-model.
In this capacity, as we’ll see in our first application, Vue provides a solid bedrock for

any reactive web application.

1.2. WHY VUE.JS?

When starting a new project, there are many decisions to make. One of the most
important is the framework or library that should be used. If you're an agency or even a
solo developer, picking the correct tool for the job is extremely important. Luckily,

Vue.js is versatile and can handle many different situations.

What follows are several of the most commonly voiced concerns that you might have

when starting a new project as a solo developer or agency, plus a description of how
Vue helps to address them, either directly or as part of a larger movement toward

reactive web applications.

e Our team isn’t strong at working with web frameworks. One of the
greatest advantages of using Vue for a project is that it doesn’t require any specialist
knowledge. Every Vue application is built with HTML, CSS, and JavaScript—
familiar tools that allow you to be productive right from the get-go. Even teams that
have little experience developing any sort of frontend find a comfortable foothold in
the MVVM pattern because of their familiarity with MVC in other contexts.

* We've got existing work we’d like to continue using. Don’t worry, there’s
no need to scrap your carefully crafted CSS or that cool carousel you built. Whether
you're dropping Vue into an existing project with many dependencies, or you're
starting a new project and want to leverage other libraries you are already familiar
with, Vue won’t get in the way. You can continue using tools such as Bootstrap or
Bulma as a CSS framework, keep jQuery or Backbone components around, or
incorporate your preferred library for making HTTP requests, handling Promises or

other extended functionality.

* We need to prototype quickly and gauge users’ reactions. As we saw in
our first Vue application, all we need to do to start building with Vue is include
Vue.js in any standalone webpage. No complicated build tools required! Getting a
prototype in front of users can happen within a week or two of starting

development, allowing you to gather feedback early and iterate often.

e Our product is used almost exclusively on mobile devices. The minified
and gzipped Vue.js file weighs in at around 24 KB, which is quite compact for a
frontend framework. The library is easily delivered over cellular connections. New
to Vue 2 is server-side rendering (SSR). Such a strategy means that an application’s
initial load can be minimal, allowing you to pull in new views and resources only as
required. Combining SSR with efficient caching of components reduces bandwidth

consumption even further.

* Our product has unique and custom functionality. Architected from the
ground up with modularity and extensibility in mind, Vue applications use reusable
components. Vue also supports extending components through inheritance,
incorporating functionality with mix-ins, and extending Vue’s functionality with

plugins and custom directives.

* We have a large user base and performance is a concern. Recently

rewritten for reliability, performance, and speed, Vue now uses a virtual DOM.

What that means is that Vue first performs operations on a DOM representation
that isn’t attached to the browser then “copies” those changes to the view we see. As
a result, Vue routinely outperforms other frontend libraries. Because generalized
tests are often too abstract, I always encourage clients to select several of their
typical use cases and a few extreme ones, develop a testing scenario, and measure
the results for themselves. You can learn more about the virtual DOM and how it

compares to its competitors at https://vuejs.org/v2/guide/comparison.html.

* We have an existing build, test, and/or deployment process. In the latter
chapters of the book we’ll explore these topics in depth, but the takeaway is that Vue
is easily integrated into many of the most popular build (Webpack, Browserify, and
others) and test (Karma, Jasmine, and so on) frameworks. In many instances, unit
tests are directly portable if you’ve already written them for an existing framework.
And if you’re starting out but want to use these tools, Vue provides project
templates that integrate these tools for you. In the simplest of terms, it’s easy to add

and adapt Vue to existing projects.

* What do we do if we need help during or after our engagement? Two of
the immeasurable benefits of Vue are its community and support ecosystem. Vue is
well-documented, both in online docs and within the code itself, and the core team
is active and responsive. Perhaps even more crucial, the community of developers
working with Vue is equally as strong. Resources such as Gitter and the Vue forums
are full of helpful folks, and there’s a growing list of plugins, integrations, and

library extensions that bring popular code to the platform nearly every day.

After asking many of these questions on my own projects, I now recommend Vue on
almost all my projects. As you become confident in your mastery of Vue throughout this

book, my hope is that you’ll feel comfortable advocating for Vue in your next project.

1.3. FUTURE THOUGHTS

We’ve covered much ground in this introductory chapter alone. If you're new to web
application development, this may be your first contact with the MVVM architecture or
reactive programming, but we’ve seen that building a reactive application isn’t as

intimidating as the jargon can make it feel.

Perhaps the biggest takeaway from this chapter isn’t about Vue itself, but how reactive
applications are easier to work with and easier to write with. It’s also nice that we have
less boilerplate interface code to write. Not having to script all our user’s interactions
frees us up to focus on how to model our data and design our interface. Wiring them up

is something Vue makes effortless.

If you're like me, then you're already thinking of the gazillion ways you can make our
modest application better. This is a good thing, and you should absolutely experiment
and play with the code. Here are a few things I think about when I look at the app:

e How would we eliminate the need to repeat text strings in so many places?

e Can we clear the default input when a user focuses on an input? What about

restoring it if they leave the field blank?

e Isthere a way to avoid hand-coding each input?

In part 2, we’ll find answers to all these questions and many more. Vue was designed to
grow with us as developers, as much as with our code, so we’ll always make sure to look
at different strategies, compare their strengths and weaknesses, and learn how to

decide which is the best practice for a given situation.

All right, let’s see how we can improve on some of what we wrote!

SUMMARY

e A brief history of how models, views, and controllers work, and how they’re tied into

Vue.js.
e How Vue.js can save you time when creating an application.

e Why you should consider Vue.js for your next project.

Chapter 2. The Vue instance

This chapter covers
https://avxhm.se/blogs/hill0

Creating a Vue instance

Observing the Vue lifecycle

Adding data to a Vue instance

Binding data to markup

Formatting our output

Over the course of this book we’re going to build a complete web application: a
webstore with product listings, a checkout process, an administrative interface, and
more. The completed webstore may seem like it’s a long way off, especially if you're new
to web application development, but Vue allows you to start small, build on what you

learn, and ship a sophisticated product in one smooth progression.

The key to Vue’s consistency at every stage of an application’s growth is the Vue
instance. A Vue application is a Vue instance, Vue components are all Vue instances,

and you can even extend Vue by creating instances with your own custom properties.

It’s impossible to touch on all the facets of the Vue instance in a single chapter, so we’ll
build on the foundation we establish as our application evolves. As we explore new
features in chapters to come, we’ll often refer to what we learn about the Vue instance

and the Vue lifecycle in this chapter.

2.1. OUR FIRST APPLICATION

To begin our journey, we're going to create the foundation of our webstore application,
display its name, and create a single product listing. Our focus is on how we create a
Vue application and the relationship of the data in our view-model to how it’s displayed
in the view. Figure 2.1 shows what our application should look like by the end of this
chapter.

Figure 2.1. A preview of our humble webstore’s beginnings.

mounir
Typewriter
https://avxhm.se/blogs/hill0

[Woejs Pet Depot =

O | @ fibecfiFfprogramminguebookwebstone 205 20nonciiimetstone himi LA

Vue.js Pet Depot

Cat Food, 25Ib bag

A 25 pound bag of irresistible, organic goodness
for your cat.

$20.00

BTW

If you tried the simple calculator sample in listing 1.2, technically this will be your

second Vue application. You're a seasoned veteran already!

Before we begin, download the vue-devtools plugin for your browser. You can find more

information on how to download this plugin in appendix A.

2.1.1. The root Vue instance

At the heart of every Vue application, no matter how big or small, is the root Vue
instance, Vue instance for short. Creating a root Vue instance is done by invoking the
Vue constructor, new Vue (). The constructor bootstraps our application by compiling
an HTML template for our app, initializing any instance data, and creating the data and

event bindings that make our application interactive.

The Vue constructor accepts a single JavaScript object, known as the options object,
new Vue ({ /* options go here */ }). It’sourjob to populate that object with
everything the Vue constructor needs to bootstrap our application, but to start off we're

focusing on a single option, the e1 option.

The e1 option is used by Vue to specify a DOM element (hence e1) where Vue will
mount our application. Vue will locate the corresponding DOM element in our HTML

and use it as the mount point for our application.

This code is the beginning of our webstore application. To make things easier to follow,
I've included each code listing in its own file that you can download for this chapter.
But to run the application, you’ll need to combine each snippet of code from each file
into a single index.html file. Yes, the index.html file will get rather large as we progress
through the book, and that’s normal. In future chapters, we’ll discuss ways of splitting

our application into separate files.

If you’d like to see the completed application from this chapter, look for the index.html
file that’s included with the code in the chapter-o2 folder. (If you haven’t downloaded
the code that accompanies this chapter, learn how and where to get it in appendix A.)

Let’s create our first Vue application.

Listing 2.1. Our first Vue application: chapter-02/first-vue.html

<html>

<head>
<title>Vue.js Pet Depot</title>
<script src="https://unpkg.com/vue"></script> 1
<link rel="stylesheet" type="text/css" href="assets/css/app.css"/>
<link rel="stylesheet"

href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/
bootstrap.min.css" crossorigin="anonymous">

</head>

<body>
<div id="app"></div> 3

<script type="text/javascript">
var webstore = new Vue ({ 4

el: '"#app'
1)
</script>
</body>
</html>

* 1 Lists the CDN version of Vue.js

e 2 Our internal app.css stylesheet as well as the Bootstrap stylesheet
¢ 3 The element where Vue will mount our application

e 4 The Vue constructor

* 5 Lists a CSS selector used to locate the DOM mounting point

The markup contains a single div element with a CSS ID selector, #app. Vue uses that

value to locate our div and mount the application to it. This selector matches the same

syntax used by CSS (such as #id, .class).

Note

Throughout this book we’ll use Bootstrap 3 for all layout and design. This works great
and helps keep the focus on Vue.js. As of the time of writing, Bootstrap 4 was recently
released, but because the focus of this book isn’t on design, I decided to leave Bootstrap
3 in. These examples will work on Bootstrap 4; but you may need to swap out several of

the classes to the newer Bootstrap 4 classes if you do switch over. Keep that in mind.

If the CSS selector we provide resolves to more than one DOM element, Vue will mount
the application to the first element that matches the selector. If we had an HTML
document with three div elements, and we invoked the Vue constructor as new Vue ({

el: 'div' }), Vue would mount the application at the first div element of the three.

If you need to run multiple Vue instances on a single page, you could mount them to
different DOM elements by using unique selectors. This may seem like an odd practice,
but if you use Vue to build small components, such as an image carousel or a webform,

it’s easy to see how you could have several root Vue instances all running on a single

page.

2.1.2. Making sure our application is running

Let’s head over to Chrome and open the file you created for your first Vue application
from listing 2.1, though it won’t yet render anything you can see in the main browser
window. (After all, there’s no visible HTML!)

Once the page loads, open the JavaScript console if it isn’t already open, and hopefully
you'll see . .. <drum roll> . .. absolutely nothing (or perhaps a note about downloading
vue-devtools if you haven’t already done so, or a note that you're running Vue in

development mode). Figure 2.2 shows what your console might look like.

Figure 2.2. The JavaScript console with no errors or warnings.

Be sure the Console If you havent installed the vue-deviools
bab is selected., e:r.l:ensmh L Llearn how L a.FFEh:im A,

(IS s very hahd.j'}

[] ©Ewements Console Scwrces Network Timeline Profles Application rity Audits P X
S W wp ¥ Praserve log
[Riegex Hide network messages ;L_j Errors 3 info Logs Debug Handled

Downlload the Vue Devitools for a better developsent experience: vue=¢, 1.8, f5: 5821
https:Ffgithub. comfvues rue=-deviools

¥

Vue debugging 101

Even as simple as our application is so far, we can still run into trouble when we load
our file in Chrome. Here are two common issues to look out for when things don’t go as

planned:

* Uncaught SyntaxError: Unexpected identifier almost always indicates
a typo in the JavaScript code and can usually be traced to a missing comma or curly

brace. You can click the filename and line number displayed on the right of the error

to jump to the corresponding code. Keep in mind that you may have to hunt a few

lines up or down to find the offending typo.

e [Vue warn]: Property or method "propertyname" is not defined
. lets you know something wasn’t defined in the options object when the
instance was created. Check to see whether the property or method exists in your
options object, and if it does, check for typos in its name. Also check to be sure the

name is spelled correctly in the binding in your markup.

Tracking down errors the first few times can be frustrating, but after you’ve resolved a

few errors the process will become more natural.

If you run into something you can’t figure out, or you find a particularly nasty error,
you can check out the Help section of the Vue forum at https://forum.vuejs.org/c/help or

ask for help in the Vue Gitter chat at https://gitter.im/vuejs/vue.

After Vue finishes initializing and mounting the application, it returns a reference to
the root Vue instance, which we stored in the webstore variable. We can use that
variable to inspect our application in the JavaScript console. Let’s use it now to make

sure that our application is alive and well before continuing.

With the console open, enter webstore at the prompt. The result is a Vue object that
we can inspect further in the console. For now, click the disclosure triangles (») to
expand the object and look at the properties of our root Vue instance as seen in figure
2.3.

Figure 2.3. Using the webstore variable to display a representation of the Vue
instance and explore its properties.

@ eEwter webstore
ok the prempt.

Regex Hide network me

* Schildren: Arrayil@)

& Exrmud\hf\g the disclosure triomgle of b ScreateElements function boundFn(a)
Sdatad Laaald

the Vue ob_je::l: will allow you ko see
i _ E Sely divitapp
the properties of our Vue instance. ol SShrear: Covsd
rhoptions: Object
fparent: undefined
*Srefa: mj-ﬂ!l
E jroot: Vuesd
$scopedSlats: null
ksslotsr Object
tvmode: undef ined
»_data: OBject

9 There’ our el property, bound bo
bhe div we ﬁpecifiad i Listing 2.1,

You may have to scroll around a bit, but you should be able to locate the e1 property we
specified as part of our application’s options object. In future chapters, we’ll use the
console to access our instance for debugging, manipulating data, and triggering
behaviors in our application while it’s running, so we can validate that it behaves as
expected. We can also use vue-devtools to peek inside our application while it’s
running. (Again, if you don’t yet have vue-devtools installed, visit appendix A to learn
how to install it.) Let’s see how it compares with using the JavaScript console. Figure 2.4

shows the different parts of the vue-devtools.

Figure 2.4. The vue-devtools window with nothing selected.

o 5w itch o the vue-deviools extension
by click ing the Vue tab.

Eﬂ Elements OConsole Sources Network Timeline Profles Application Secwity Audits Woee

x
v Ready. Detected Vue 2.1.0 J. Components £0) Voex £ 3 Refresh
Root \

9 ERnnon; w8 iave: 4u ty . aingis 0 The Com ponents tab lists all
SEMRANARE DOOk FN0. Topresenie. the com ponent instances in
the single instance from listing 2.4. the currently running app

The vue-devtools extension provides big functionality for inspecting a Vue application,

its data, and the relationship of its components. As an application grows in complexity,
the searchable tree view in vue-devtools shows the relationship of components in a way
the JavaScript console cannot. We’ll discuss more about Vue components and how they

relate to the Vue instance in a later chapter.

We'll frequently use both tools to zero in on problems with our application as we build
it. In fact, we can use vue-devtools to discover another way to access our application

instance in the JavaScript console as seen in figure 2.5.

Figure 2.5. The root instance selected in vue-devtools with a variable dynamically
assigned to the instance.

@ ciick the

root elem ent (% (] ©ements Conscle Souces Network Timeline
to select it.

v Instance selected: Hoot

Q Filter componenis

<Ro0ts> == Sved
variable we can use to access
our instance in the console.

When you select an instance in the tree view, as in figure 2.5, vue-devtools assigns a

e vue-deviools shows us another

reference to the instance to the $vm0 variable. We can use $vm0 the same way we used
our webstore variable. Try using $vmoO in the JavaScript console to see if you can

inspect the root Vue instance

Why do we need more than one reference?

Having multiple ways to access the same instance may appear redundant, but it’s
helpful to have both.

When we assigned our root Vue instance to the global variable webstore, we gave
ourselves a way to refer to the application in other JavaScript code on the page. Doing
so allows us to integrate with other libraries, frameworks, or our own code that may

require a reference back to our application.

The Vue instance assigned to the $vm0 variable reflects the current selection made in
vue-devtools. When an application is made up of hundreds, or even thousands of
instances, it isn’t practical to declaratively assign each instance, so having a way to
access specific instances that are created programmatically becomes indispensable

when inspecting and debugging such a complex application.

2.1.3. Displaying something inside our view

Until now, our application has been a real snoozefest. Let’s liven it up by displaying
data from our application instance in our application’s template. Remember, our Vue

instance uses the DOM element we provide as the basis for its template.

We're going to start by adding the name of our webstore. This will show us how to pass
data into the Vue constructor, and how to bind that data to a view. In this listing let’s

update the application code from listing 2.1.

Listing 2.2. Adding data and a data binding: chapter-02/data-binding.html

<html>
<head>
<title>Vue.js Pet Depot</title>
<script src="https://unpkg.com/vue"></script> </head>

<body>
<div id="app">
<header> 1
<hl v-text="sitename"></hl>
</header> 1
</div>

<script type="text/javascript">

var webstore = new Vue ({
el: '"#app', // <=== Don't forget this comma!
data: { 3

sitename: 'Vue.]js Pet Depot' 4

} 3
1)
</script>
</body>
</html>

* 1 A header element is added to the div.
e 2 Shows data binding for the sitename property
e 3 Adds a data object to the Vue options

¢ 4 Shows the sitename property we bind to in the header

We've added a data object to the options we pass into our Vue constructor. That data

object contains a single property, sitename, which contains the name of our webstore.

Our site’s name needs a home, so we've also added a header element to the markup
inside of the application’s root div element. On the heading element <h1>, we use a

data binding element directive, v-text="sitename".

A v-text directive prints a string representation of the property it references. In this
case, once our application is up and running we should see a header with the text

“Vue.js Pet Depot” displayed inside it.

If you need to display a property value in the middle of a larger string, you can use
Mustache syntax— { { property-name }}—to bind to a property. To include the
name of our webstore in a sentence, you might write <p>Welcome to {{ sitename

}</p>.

Tip

Vue only borrows the {{ . . . }} syntax from Mustache for text interpolations, not from
the entire Mustache specification. But if you're curious where it comes from, visit the

online manual at https://mustache.github.io/mustache.5.html.

With our data binding in place, let’s go see how our new header looks in the browser.

2.1.4. Inspecting properties in Vue

When you reload the application in Chrome, you should see the header proudly

displaying the value of our sitename property as seen in figure 2.6. The visual
appearance of our header is provided by the stylesheet in chapter-
02/assets/css/app.css. We'll use our stylesheet and Bootstrap to design our application.
If you’d like to tinker with the appearance of the header, open that file and find the
styles defined by header hl.

Figure 2.6. Our sitename property displayed in the header of our webstore.

[Viwjs Pet Depet a

| D ey P/ Usersfehanchett/vueli-in-action/code/chaper-02 fimde himi | ¥

Vue.js Pet Depot

Vue automatically creates getter and setter functions for each property of the data
object when it initializes our application. That gives us the ability to retrieve the current
value of, or set a new value for, any of our instance’s properties without writing any
additional code. To see these functions in action, let’s start by using the getter to print

the value of the sitename property.

As you can see in figure 2.7, the getter and setter functions for our sitename property
are exposed at the root level of our application instance. That lets us access the property
from the JavaScript console, or from any other JavaScript that interacts with our

application.

Figure 2.7. Using the console and vue-devtools, we can check on our sitename
property.

0 In the JavasScript console, we can print
the value of webhstore.sitename by
using dot notation to access the property.

Eﬂ Elements Conscle Sources Tirr Profiles Application Security Audits Yue i M

® ¥ wop ¥ BIEIVE
Regex Hidle ne MeSsa:

A Components 1) Vuex ¢ Refresh

» webstore.sitename
"Wue. js Pet Depot™
» webstore

¥ Vuesd S Root & Inspect DOM
* Schildren: Array[@]

F ScreateElement: function boundFafa)
sitename: "WVue.js Pet Depot"
kget sitename: function proxyGetter()

Fset sitename: function proxySetter({val)
k= \orote__: Object

e We can alsc see the getter and setter that o If you toggle to vue-deviools and
Vue autom atically exposss by exam ining the gelact the reot instance, you can
webstore instance. (You m ay have to scroll.) aee the sitename property as well,

You can also see the property listed in vue-devtools when we select the <root>
instance. Now let’s see what happens in figure 2.8 when we use the setter to set the value
of sitename in the JavaScript console.

Figure 2.8. Using Vue’s property getter and setter to print and update the
sitename property, respectively.

[Vuejs Pet Depot *
@ when you update the value € C 0D Melfusersiblistwonfvusis-in-actio
of sitename, he data binding
in our view will reflsct that

change autom atically.

Ye Olde Reactive Shoppe

[1] Eements Conscle Sowces Network Timelne
& ¥ wo v Presen kog

Ropex e networkmessoges ()
» webstore. sitenane
“Wue.js Pet Depot™
» webstore.sitename = “Ye Olde Reactive Shoppe™
*¥e Olde Reactive Shoppe™

@ vou can use the getter to print
the value of sitename, and the
setter to set it o a new value.

Once we provide a new value for sitename and hit Enter, the output in our header
element is automatically updated. This is Vue’s event loop in action. Let’s look at the

Vue lifecycle to see how and when changes to our data trigger updates to the view.

2.2. THE VUE LIFECYCLE

When a Vue application is first instantiated, it begins its journey through a sequence of
events known collectively as the Vue lifecycle. Although a long-running Vue application
will likely spend most of its time cycling within the event loop, much of the heavy lifting
of the library itself occurs when an application is first created. Let’s take a high-level

look at the lifecycle in figure 2.9.

Figure 2.9. Diagram of the Vue lifecycle, divided into four phases.

During instance creation,Vue creates observers
for the data in its view-m odel and initializes
cereate events used by its internal event system .

W In this phase, Vue locates our tem plate
T-EIIIFP]..EEE & vhmal or render function and com piles the
DOM creation '

tem plate. A virtual DOM copy ismade, and
the result is m cunted intos the HTML DOM .

W hile in the event loop, the observers m onitor the
data in the view-m odel.When it changes, the virtual
DOM is re-rendered and patched intc the HTML DOM.

W hen the app enters the destruction phase, all the
observers, event listeners, and child com ponents
are torn down, before the app is destroyed .

Each phase builds upon the previous phase to create the Vue lifecycle. You may wonder
what the virtual DOM is and how the render function works. The virtual DOM is a
lightweight abstraction that represents the DOM. It mimics the DOM tree that’s
normally accessed by the browser. Vue can make updates to the virtual DOM much
quicker than the browser-specific DOM. The render function is the way Vue can display
information to the user. For more information on the Vue instance and lifecycle hooks,

please check out the official guides at https://vuejs.org/v2/guide/instance.html.

2.2.1. Adding lifecycle hooks

To see when our application instance passes through the different phases of the
lifecycle, we can write callback functions for Vue’s lifecycle hooks. Let’s update the code

in our main application file (index.html) in listing 2.3.

Info

A hook is a function that gets “hooked” onto a part of the Vue library’s code. Whenever
Vue reaches that part of the code during execution, it calls the function you define or

continues along if there’s nothing to do.

Listing 2.3. Adding lifecycle hooks to our instance: chapter-02/life-cycle-hooks.js

var APP_LOG_LIFECYCLE EVENTS = true; 1

var webstore = new Vue ({
el: "#app",
data: {
sitename: "Vue.js Pet Depot",
bo
beforeCreate: function() {
if (APP_LOG LIFECYCLE EVENTS) {

console.log("beforeCreate");

b
created: function() {
if (APP_LOG LIFECYCLE EVENTS) {

console.log("created") ;

b
beforeMount: function () {
if (APP_LOG_LIFECYCLE_EVENTS) {

console.log("beforeMount") ;

b
mounted: function () {
if (APP_LOG_LIFECYCLE_EVENTS) {

console.log ("mounted") ;

bo
beforeUpdate: function () {
if (APP_LOG LIFECYCLE EVENTS) {
console.log("beforeUpdate") ;

Yo
updated: function () {
if (APP _LOG LIFECYCLE EVENTS) ({
console.log ("updated”) ;

bo
beforeDestroy: function() {
if (APP_LOG LIFECYCLE EVENTS) {

console.log("beforeDestroy ");

bo
destroyed: function() {
if (APP_LOG LIFECYCLE EVENTS) {

console.log("destroyed") ;

W V V VW V ® ® ® ® ® N N N N NOH SN GG G GG AR RN WL W WwwwdhdMDMDNMNNN

1 Shows a variable used to enable or disable our callbacks
e 2 Logs the beforeCreate event

* 3 Logs the created event

* 4 Logs the beforeMount event

e 5 Logs the mounted event

e 6 Logs the beforeUpdate event

* 7 Logs the updated event

* 8 Logs the beforeDestroy event

e 9 Logs the destroyed event

The first thing you’ll notice in listing 2.3 is that we’ve defined a variable,

APP LOG LIFECYCLE EVENTS, that we can use to enable or disable logging of
lifecycle events. We define our variable outside the Vue instance, so it can be used
globally by the root instance or any child components we write later. Also, if we defined
it inside our application instance, it wouldn’t be available in the beforeCreate

callback because it hasn’t yet been created!

Note

APP LOG LIFECYCLE EVENTS uses the uppercase syntax typically reserved for
constant definition because, when we start using ECMAScript 6 later in the book, we’ll
use the const feature to create constants. Planning ahead means we won’t have to do

any find-and-replace to change the name in the rest of our code.

The remainder of the code defines functions that log each lifecycle event as it’s
encountered. Let’s revisit our console exploration of the sitename property to see

what happens in the Vue lifecycle.

2.2.2. Exploring the lifecycle code

If you open the console in Chrome and reload the app, you should immediately see the

output from several of our callbacks as seen in figure 2.10.

Figure 2.10. Output from some of our lifecycle functions can be seen in the
console.

The JavaScript consocle shows the
cutput of the lifecycle hooks.

Regex Mmm@imﬁmmwmw

beforeCreate chapter-92 . htal:9%
created hanter-)
befareMount chapter-02.himl:97
sounted hapter htal:
[vue-devtoals] Ready. Detected Vuee v2.1.0 backend. 15:1

As you might expect, the first four lifecycle hooks get triggered as Vue creates and
mounts our application. To test the other hooks, we’ll need to interact with the console
a bit. First, let’s trigger the update callbacks by setting a new name for our site. Figure

2.11 displays how this can be done.

Figure 2.11. Setting the sitename property triggers the update lifecycle
callbacks.

0 Change the sitename property.

Regex | Hide network messages [

» webstore.sitename = “Ye Olde Reactive Shoppe"
beforelUpdate
updated
"Ye Olde Reactive Shoppe"

@ upda te kicks off, and
application header is
updated with new wvalue.

When you change the sitename property, the update cycle kicks off as the data
binding in the application’s header is updated with the new value. Now let’s destroy our
application! (Don’t worry, it'll come right back with a reload.) To trigger the last two

lifecycle hooks, we use our instance’s $destroy method.

Tip

Special methods that Vue creates on our instance are available using the $ prefix. For
more information on Vue’s lifecycle instance methods, you can visit the API

documentation at https://vuejs.org/v2/api/#Instance-Methods-Lifecycle.

These last two hooks are typically used for cleanup activities in an application or
component. If our application created an instance of a third-party library, we should
call that library’s teardown code, or de-allocate any references to it manually, so that we
avoid leaking memory allocated to our application. Figure 2.12 shows how calling the

$destroy () instance method will trigger the destroy hooks.

Figure 2.12. Calling the destroy instance method triggers the final pair of lifecycle
callbacks.

o Calling the destroy
instance m ethod.

Regex Hide netv
» webstore, Sdestroy()

beforeDestroy

destroyed

undef ined

9 Destroy hooks
are called .

2.2.3. Keeping the lifecycle code, or not

The lifecycle hooks provide a great way to see what’s going on as an application runs,
but I'm the first to admit that there’s repetitive, verbose code required to log messages
to the console. Because they're fairly bulky, I won’t include these debugging functions
in code listings from here on, but we’ll occasionally use lifecycle hooks to explore new

behavior or for functional reasons in the application itself.

If you do keep these hooks around, and the console gets too noisy with output, you can
disable the logging by setting APP LOG LIFECYCLE EVENTS to false. Bear in mind
that you can disable them completely by changing the value in the index.html, or you
can temporarily toggle logging on and off by setting the value at runtime using the

JavaScript console.

2.3. DISPLAYING A PRODUCT

Displaying the name of our webstore is a good start, but there are a few more aspects of
displaying data in our markup that we should cover before moving on. Our webstore
will display products in one of several ways: in a list, in a grid, as a featured product,
and on its own individual product page. As we design and mark up each view, we’ll

continue to use the same data, but we’ll use Vue’s functionality to manipulate it

differently for each display without altering the underlying values or structure.

2.3.1. Defining product data

For now, we're only going to display a single product, so let’s add a sample product to
our data object.

Listing 2.4. Adding product data to our Vue instance: chapter-02/product-data.js

data: {
sitename: "Vue.js Pet Depot",
product: {
id: 1001,
title: "Cat Food, 251b bag",
description: "A 25 pound bag of irresistible, "+
"organic goodness for your cat.",

price: 2000,

N NN DNMNDNMDNR

image: "assets/images/product-fullsize.png"

bo

* 1 An object for our product data

e 2 The product’s attributes are properties of our product object.

Adding a product object to our data option is relatively straightforward:

The id property is used to uniquely identify a product. This property will

increment if we add more products.

e Although the title and description properties are both strings, the
description contains HTML markup. We'll look at what that means when we

get around to displaying each of those values in our product markup.

e The price property represents the cost of our product as an integer.
This simplifies calculations we’ll do later, and this format avoids potentially
destructive type casting that occurs when values are stored as floats or strings in a

database.

e The image property provides a path to our product’s primary image
Jfile. We're going to iterate on this one quite a bit, so if seeing a hardcoded path here

makes you nervous, breathe easy, because we’ll explore better options.

With our data in place, let’s get our view up to speed.

2.3.2. Marking up the product view

Now we can focus on adding the product markup to our HTML. Beneath the header
element, we’ll add a main element that acts as the primary container for the content of
our application. The main element, <main>, is a new addition to HTML5 and is meant

to contain the primary content of a webpage or application.

Info

For more information about the main element (and others), start by visiting

www.quackit.com/html 5/tags/html main_tag.cfm.

The product layout uses two columns so that the product image is displayed to the side
of the product information (figure 2.13). Our stylesheet (chapter-02/assets/css/app.css)
already has all the column styles defined, so we only need to include the appropriate

class names in our markup.

Listing 2.5. Adding product markup: chapter-02/product-markup.html

<main>
<div class="row product">
<div class="col">
<figure>
 1
</figure>
</div>

<div class="col col-expand">

<hl v-text="product.title"></hl> 2
<p v-text="product.description"></p> 2
<p v-text="product.price" class="price"></p> 2
</div>
</div>
</main>

e 1 The product’s image path is bound to the src of the img tag using a v-

bind directive.

e 2 Other product properties are displayed using the v-text directive.

One thing you’ll notice right away is the use of JavaScript dot notation in the data
bindings. Because product is an object, we must provide each binding with the entire
path to a property. Most of the properties of our product data—title, description and
price—are bound using the v-text directives, the same way we bound the sitename

property in the header.

The product’s image path introduces an attribute binding. We use the v-bind directive
because element attributes cannot be bound using simple text interpolations. Any valid
element attribute can be bound using the v-bind directive, but it’s important to note
that there are special cases for styles, class names, and other scenarios that we’ll come

to in future chapters.

Note

You can use a shorthand for the v-bind directive. Instead of typing out v-bind every
time you need to use it, you can remove the v-bind and type :, so instead of using v-

bind:src=" ... ",youcantype :src=" ... ".

Using expressions in bindings

We don’t need to restrict our data bindings to properties of our data. Vue allows us to
use any valid JavaScript expression inside any of our bindings. A few examples using

the code from listing 2.5 might be:

{{ product.title.toUpperCase() }} -> CAT FOOD, 25LB BAG

{{ product.title.substr(4,4) }} -> Food

{{ product.price - (product.price * 0.25) }} => 1500

 -> <img src=" //assets/

images/product-fullsize.png">

Though using expressions in this way is convenient, it introduces logic into the view
that’s almost always better off inside the JavaScript code of the application or
component responsible for the view’s data. Additionally, expressions like this make it
difficult to reason about where an application’s data gets manipulated, especially as an

application’s complexity increases.

In general, using an inline expression is a great way to test something before

formalizing that functionality within an application.

The next section and upcoming chapters introduce the best practices for manipulating,
filtering, and deriving data from existing values without compromising the integrity of
our views or application data. For details on what’s considered an expression, please

visit https://vuejs.org/v2/guide/syntax.html#Using-JavaScript-Expressions.

Let’s flip over to Chrome, reload the page, and confirm that the product information is

displayed as designed.

Figure 2.13. Our product is displayed but has a few issues we need to clean up.

0 Product description is not
being interpreted as HTML.

W x

i R A s £ R TL eulfe 1me 00, O SpLasa L L inden Biml

Pet Depot

Cat Food, 25Ib bag
A 25 pound bag of imesistible</em=>, organic
goodness for your cat.

2000

e Price is not form atted .

Uh oh, we’ve got a couple of things to work on:

1. The product description is being output as a string and isn’t interpreting the HTML
embedded in the description’s value.
2. The product’s price is displayed as a string representation of the integer 2000, and

not as a well-formatted dollar figure.

Let’s solve that first issue first. What we need is an HTML directive, so let’s update the
product markup using the v-html binding to output the product’s description as

intended.

Listing 2.6. Adding product markup: chapter-02/product-markup-cont.html

<main>
<div class="row product">
<div class="col">
<figure>

</figure>

</div>

<div class="col col-expand">
<hl v-text="product.title"></hl>
<p v-html="product.description"></p> 1
<p v-text="product.price" class="price"></p>

</div>

</div>

</main>
e 1 Uses an HTML directive to output the product description as HTML,
not plain text

Reloading the app in Chrome should now render the value of our product description as
HTML and the emphasis tag should italicize the word “irresistible,” as shown in figure
2.14.

Figure 2.14. Using the v-htm1l binding allows us to display the description as raw
HTML.

Cat Food, 25Ib bag

A 25 pound bag of irresistible, organic goodness

for your cat.

2000

The v-html binding will render the bound property as raw HTML. This can be handy
but should be used sparingly and only when the value is one you can trust. Now we

need to fix the display of that pesky price value.

Cross-site scripting attacks

When we write code that inserts HTML directly into a view, we open our applications

up to cross-site scripting (XSS) attacks.

At a high level, if a bad actor visits our site and saves malicious JavaScript in our
database by using a form we haven’t sanitized, we’re vulnerable when we output that
code to our HTML.

In general, best practice dictates that we should, at a minimum, follow basic principles

regarding HTML and content:

e Only output trusted content when using HTML interpolations.

e Never output user-sourced content when using HTML interpolations, no matter

how well-scrutinized the content is.

e If absolutely required, try to implement the feature using a component with its own

template, rather than allow HTML elements in text inputs.

For a comprehensive, clear overview of XSS, start with this article at https://excess-
xss.com/, and for a deeper understanding of attacks and sample code for each exploit,

consult this OWASP wiki at www.owasp.org/index.php/Cross-site_Scripting_(XSS).

2.4. APPLYING OUTPUT FILTERS

The last thing left to do is to display our product’s price in a familiar format, not as a
raw integer. Output filters let us apply formatting to a value before it’s displayed in our
markup. The general format of an output filteris { { property | filter }}.In

our case, we want to format the product’s price to look like $20.00, rather than 2000.

2.4.1. Write the filter function

Output filters are functions that receive a value, perform a formatting task, and return
the formatted value for output. When used as part of a text interpolation, the value

passed to the filter is the property we’re binding to.

All our output filters reside in the fi1ters object of the options we pass to our Vue

instance, so that’s where we’ll add our price formatter in the following listing.

Listing 2.7. Adding the formatPrice filter: chapter-02/format-price.js

var webstore = new Vue ({

el: '#app',

data: { ... },
filters: { 1
formatPrice: function(price) { 2
if (!parselnt (price)) { return ""; } 3
if (price > 99999) { 4
var priceString = (price / 100).toFixed(2); 5
var priceArray = priceString.split("").reverse(); 6
var index = 3; 6
while (priceArray.length > index + 3) { 6
priceArray.splice (index+3, 0, ","); 6
index += 4; 6
} 6
return "$" + priceArray.reverse().join(""); 7

} else {

return "$" + (price / 100).toFixed(2); 8

e 1 The filters option contains output filters.

e 2 formatPrice takes an integer and formats a price value.
e 3 If we can’t get an integer, return immediately.

* 4 Formats values $1,000 and up

e 5 Converts the value to a decimal

* 6 Adds commas every three places

e 7 Returns the formatted value

e 8Ifless than $1,000, returns a formatted decimal value

The formatPrice function takes an integer and returns a string formatted to look like
a U.S. dollar value. Generically, it will return a value similar to $12,345.67. Depending

on the size of the integer provided, the function branches as follows:

1. If the input is greater than 99,999 (the equivalent of $999.99), the output will
require commas every three digits to the left of the decimal, so we need to process it
accordingly.

2. Otherwise, the input can be converted using . toFixed, and returned because no

commas are required.

Note

You can find probably a gazillion ways to format a dollar figure that are more efficient,
terse, or whatever quality you're searching for. Here, I've tried to favor clarity over
expediency. For an idea of how complex the issue is, and how many solutions there are,

dive into this post at http://mng.bz/qusZ.

2.4.2. Adding the filter to our markup and testing different values

To use our shiny new filter function, we need to add it to the binding for our product’s
price. We also need to update our price binding to use the Mustache-style binding to

apply the filter, as shown next. Filters cannot be used with the v-text binding syntax.

Listing 2.8. Adding product markup: chapter-02/v-text-binding.html

<main>
<div class="row product">

<div class="col">

<figure>

</figure>

</div>

<div class="col col-expand">
<h1>{{ product.title }}</hl>
<p v-html="product.description"></p>

<p class="price">

{{ product.price | formatPrice }} 1
</p> 1
</div>
</div>

</main>

e 1 Uses our new output filter to format the value of a product’s price

Remember, bindings with filters have the generic form {{ property | filter }},
so we’ve updated our price binding accordingly, { { product.price |

formatPrice }}.Flip back over to Chrome, refresh, and voila, we've got a formatted

price as seen in figure 2.15.

Figure 2.15. Our price formatter adds a dollar sign and the appropriate
punctuation to the display of our price property’s value.

Cat Food, 25Ib bag

A 25 pound bag of irresistible, organic goodness
for your cat.

$20.00

We can see how our filter is applied to different product price values in real time if we
tinker with our data in the console. To try different values, open the console and set the

value of product . price with a statement such as webstore.product.price =

150000000.

Figure 2.16 shows what will occur after the product price is updated. Be sure to try out
small (< 100) and large (> 10000000) values to be sure each is formatted correctly.

Figure 2.16. Updating the product price triggers our lifecycle events (if you still
have them enabled), as well as an update to the price, which is now run through
our filter function.

3 wumis Frt Dept X
C | 1 e Pl veraemean onoodedchap e =D A bl ¥

Vue.js Pet Depot

Cat Food, 25lb bag

A 25 pound bag of imesistible, organic goodness
fior your cat.

$1.500.000.00

= E gy Hemorts Sewrols Coessfn Notaort Ppdewern Apploter Tenety Asdtn T Vi

5 | us w | e Wi . o
s ot M R L
seforaocs wibazorg readi 13
s sabiicre puad 114

o Upd ate the webstore product price.

a Lifecycle hooks are triggered,
price iz updated and form atted .

EXERCISE

Use your knowledge from this chapter to answer this question:

SUMMARY

* Vue gives you the ability to add interactivity to your applications.

e At any time, we can hook into the Vue lifecycle to help perform certain functions.

e Vue.js offers powerful filters to help display information in a certain way.

Part 2. The View and ViewModel

The meat of this book lies in the View and ViewModel section. These chapters look
deeper into Vue and all the elements and pieces that make up a Vue application. We’ll
start out simple and add interactivity to our application. We’ll then move onto forms

and inputs, conditionals, and looping.

Several of the most important concepts are in chapters 6 and 7 , where we look at
components in depth. These are truly the building blocks of our application. This is the
first chapter where we’ll see single-file components—a powerful tool in your Vue.js

toolbelt.

The last two chapters will look at transitions, animations, and how to extend Vue. This

will make our applications more efficient and look a little prettier.

Chapter 3. Adding interactivity

This chapter covers

e Deriving new output from data with computed properties

Adding event bindings to the DOM

Observing data during the update portion of the Vue lifecycle

Responding to user interaction

Conditionally rendering markup

Believe it or not, now that we’ve got our first product all wired up, we’re ready to add

interaction to our webstore.

Adding interactivity to an application means binding to DOM events, responding to
them in application code, and providing feedback to users about what happened
because of their actions. Vue creates and manages all the event and data bindings for
us, but there are decisions we need to make about how to manipulate data within our

application, as well as how to meet user expectations in our interface.

We'll begin exploring user interaction by letting customers add our single product to a
shopping cart, but along the way we’ll also look at how our work fits into the overall

picture of a Vue application.

To get a feel for where we're headed in this chapter, figure 3.1 shows how the

application will look when all our work is done.

Figure 3.1. Our product listing with new elements: a shopping cart and an Add to
cart button.

https://avxhm.se/blogs/hill0

mounir
Typewriter
https://avxhm.se/blogs/hill0

[n W js Pet Depon b
i (D e hers/ehanchety fvueps-in-dction/oode chaper-03 findex htmd v
Vue.js Pet Depot 1% Checkout

Cat Food, 25Ib bag

A 25 pound bag of irmesistible, organic goodness
for your cat.

$20.00

Add to cart

3.1. SHOPPING CART DATA STARTS WITH ADDING AN ARRAY

Before we can build any of our super-cool shopping cart functionality, we’ll need a
container to hold all those items in our application instance. Fortunately, all we need at

this stage is a simple array, onto which we’ll push our products.

I've broken up the code into small snippets, similar to the way we did it in the last
chapter. You'll need to add these to your index.html file that you created last chapter to

continue the application. You can always download the code for this chapter if needed.

Listing 3.1. All we need is an array: chapter-03/add-array.js

data: {
sitename: "Vue.]js Pet Depot",
product: { 1
id: 1001, 1
title: "Cat Food, 251b bag", 1
description: "A 25 pound bag of irresistible, 1
organic goodness for your cat.", 1
price: 2000, 1
image: "assets/images/product-fullsize.png", 1
bo
cart: [] 2

b

* 1 Shows our existing product data, for reference

e 2 Shows an array for holding cart items

That gives us our shopping cart . . . done. In all seriousness, though, we’ll get good
mileage out of this simple array, but eventually we’ll create a cart component that will

manage its contents internally.

Remember

You need to add a comma after product in listing 3.1 before you add the cart array.
Forgetting to add one will throw an error in the console and is a common gotcha. (An

error I'm well acquainted with!)

3.2. BINDING TO DOM EVENTS

To add interaction to our application, we need to bind elements of the DOM to
functions we define in our Vue instance. We can bind an element to any standard DOM
event—click, mouseup, keyup, and so on—by using an event binding. Vue takes care of
all the wiring under the hood, so we can stay focused on how our application reacts to

an event when it occurs.

3.2.1. Event binding basics

Event bindings use the v-on directive to bind a snippet of JavaScript, or a function, to
a DOM element, as shown in figure 3.2. The bound code or function gets executed when

the specified DOM event is triggered.

Figure 3.2. The syntax of an event binding.

<p Vv-on:eventname="some javascript ></p>
1 J L J A

The v-on Al SienGand O A JavaScript expression
event name.

directive. or function name.

Here are two common patterns for an event binding’s JavaScript:

1. Using a function name, we can bind an event to a function we define in
our instance. If we had a binding such as v-on:click="clickHappened", a
click on our element would call the function c1ickHappened.

2. We can write inline JavaScript that acts on an exposed property. In this

case, the binding might look like v-on: keyup="charactersRemaining -= 1",

which would decrease the charactersRemaining property by one.

Each strategy has its place in an application, but first we're going to look at using a

function to handle an event.

Note

An easier shorthand way to write the v-on directive exists. Instead of using v-on, you
can replace it with the @ symbol. For example, if you want to use v-on:click="..."
you could replace that with @c1ick="..." instead. We'll use this shorthand later in
the book.

3.2.2. Bind an event to the Add to cart button

For a customer to add products to their shopping cart, they need a button. We’ll
instruct Vue to bind that button’s click event to a function that handles pushing a

product onto the cart array.

Before we add the button to our markup, we should write our function. To do so, we
need to add a methods object to our application’s options. After the £i1lters object,

add this code. (Don’t forget a comma after the fi1ters object!)

Listing 3.2. The addToCart method: chapter-03/add-to-cart.js

methods: {
addToCart: function() {
this.cart.push(this.product.id);

R N NN R

e 1 The methods object contains our new function.
e 2 Defines the addToCart function
For now, adding a product to the cart means pushing the product’s id property from

the product data onto the cart array. Keep in mind, you’ll need to add the this
keyword to access all data properties.

Pushing the id, not the object

It may seem simpler to push the entire product object onto our cart array in the code
from listing 3.2—this.cart.push(this.product) ;—but if we did, things would
get a bit awkward. JavaScript is neither a pure pass-by-reference language, nor a pure
pass-by-copy language, so it takes a bit of practice to know when one or the other will

occur.

Pushing the product onto the cart array would push a reference to the product object
defined in our data, not a copy. If the product definition in our data changes, perhaps
when we retrieve new product data from the server, it might be replaced in the cart or

the reference may become unde fined.

By pushing the product id onto the cart array instead, we push a copy of the value of
our product’s id, not a reference. If the product definition changes, the value(s) in the

cart array remain unaltered.

Technically speaking, JavaScript is a call-by-sharing language. You can find a brief
explanation of call-by-sharing, and how it compares to other strategies, on Wikipedia at

https://en.wikipedia.org/wiki/Evaluation strategy#Call by sharing.

Now we’ve got a function that will add products to our cart so we can go ahead and add
button markup. Right after the price markup in our product div, add the button from

this listing.

Listing 3.3. A button to add products to the cart: chapter-03/button-product.js

<button class="default" 1
v-on:click="addToCart"> 2
Add to cart

</button> 1

¢ 1 Shows our Add to cart button
¢ 2 Binds the button’s click event to the addToCart function

Now, when a visitor clicks this button, the addToCart function is called. Time to give it

a whirl.

Head over to Chrome, ensure that the console is open, and switch to the Vue tab
because we’ll want to peek at the data that’s added to our shopping cart. The cart

array should be empty, so if you don’t see Array [0] as shown in figure 3.3, go ahead

and reload the page.

Figure 3.3. An empty array is what we should see before any products are added. If
it’s not empty, go ahead and reload the page.
Eﬂwm—tmmmmwm» EH-F

v Instance selecied: Root A COmponents £ Vuex 5 Redresh
U‘\ FEtn components

<Root> = fve ')
e - i When the page is

first loaded, our

w cart: Arrayl@)

v pradect Slack f cart array should
description: “A 25 pound bag of semxi have nothing i ik,
1d: 1801
imsage: “assetssissges/product-fullsi

price: 2004

Now, click the Add to cart button a few times. Open the vue-devtools pane and click
<Root>. You should see the product’s id getting pushed onto the array with each click

Figure 3.4. The array fills up as you add items to the cart.

[Vuegs Pet Depot %
C | O fibe//F/Users/ehanchettvueji-in-acion/code chapter-03.indechirl T ¥

Vue.js Pet Depot

Cat Food, 25Ib bag

A 25 pound bag of irresistible, organic goodness

for your cat.
$20.00
Add 1o can
.ﬁf'l Memory Dements Souster Corsole Nedwork e Bppleaion Seoaity Audty Dmber Vs A
v Ready, Detoctod Voo 2.2.0 A Componants) W & Everds Ly Rafroch
Q, Filler componants Roon © lmpect DOM O Fiber dlta
B FRLSE -
» ENPE: Arrayil])

]
Ll
4
-4
Ml

Y R T

@ click the Add to cart button. @ Array is updated.

Seeing how many items are in the shopping cart using vue-devtools or the console may
be okay for developers, but customers will need feedback in the view itself. Time to add

an item counter.

3.3. ADDING A CART ITEM BUTTON AND COUNT

To display the number of items a customer has in the shopping cart, we’ll use a
computed property. Computed properties can be bound to the DOM like any other
property defined by our instance, but they typically provide functionality to derive new
information from the current state of an application. In addition, we’ll add a cart item

button that will display our checkout cart.

Before we add an item count to our shopping cart, let’s take a more general look at

computed properties and how they work.

3.3.1. When to use a computed property

It might help to think of the properties in the data object as representing data we’d
store in a database and computed properties as dynamic values that are used primarily
within the context of our view. This may be an overly broad characterization, but it

serves as a good first rule of thumb.

Let’s consider a common example of a computed property that displays a user’s full
name, as shown in listing 3.4. It makes sense to store someone’s first and last names as
separate entities in a database, but it would be redundant and error prone to also store
their full name. If the need to display a user’s full name arose, combining the first and

last name from existing data is a perfect use case for a computed property.

Listing 3.4. Computing a user’s full name: chapter-03/computed.js

computed: {

fullName: function () { 1
return [this.firstName, this.lastName].join (' "); 1
} 1

e 1 fullName returns the value of a user’s first and last name, joined by a

single space.

The result returned by the ful 1Name function is conceptually equivalent to having a
fullName property in our data object, which means we can easily bind to it in our

markup (see figure 3.5).

Figure 3.5. Combining the user’s first and last name from a dataset into a full
name for display.

Database Vue Instance HTML Markup
{mo del) {(view-mo del) (view)
firstName = Summer data: {
lastName = Winters firstName: 'Summer'’,
prefix = Ms > lastWame: '"Winters',
email = swavue.js prefix: "Ms',
password = sicrit email: 'swivue.js®

}
computed: {
fullMame: function()|

return | <div id="app"=
this.firstName, <p={{ fullMame }}=/p=
this.lastNamea cfdive
].join{* ')
|
}
9 - \

One additional benefit of using computed properties is that we can change the internals
of our function to use different or additional data from our application. In figure 3.5, for

example, we could use the prefix property to add more formality to a user’s full name.

Using computed properties in this way, we can combine, or otherwise manipulate, any

instance data without requiring changes to the backend or the database.

3.3.2. Examining update events with computed properties

Because computed properties are typically calculated using instance data, their return
value is updated automatically when the underlying data changes. Any view markup

bound to the computed property will therefore update to reflect the new value as well.

This behavior is at the heart of the update cycle within the greater Vue instance
lifecycle. To get a feel for how the update cycle behaves, let’s work through another
example of when a computed property is a perfect fit for the job. Consider the task of

computing the area of a rectangle, based on its length and width.

Listing 3.5. Computing the area of a rectangle: chapter-03/computed-rect.js

new Vue ({
data: {
length: 5,
width: 3
b
computed: {
area: function() { 2
return this.length * this.width;

N

e 1 Shows a data object that contains length and width properties

e 2 Shows a computed property that exposes area the same as a data
property

The computed property area will have an initial value of 15. Any subsequent change to

length or width reactively triggers a series of updates to the application:

1. When the value of 1ength or width is changed. ..
2. ...the computed property area is recalculated . . .

3. ...then any markup bound to these properties is updated.
Figure 3.6 shows the update cycle of the application.

Figure 3.6. Changes in an instance’s data trigger a cascade of activity within the
update cycle of an application.

The updated event fires
when all the virtual DOM
updates are patched to

Instance
the HTML DOM . data
A8
Brow ser
DOM Data
patched changes
—— 3
Virtual Com puted
DOM properties
updated a2

recalculated

The beforeUpdate event fires
after instance data has
changed and just before any
virtual DOM updates are m ade.

We can see the lifecycle in action by using watch functions to observe when the data in
an instance changes, and the be foreUpdate lifecycle hook, which should be executed

only after the data changes.

Info

A watch function works the same way as a lifecycle hook but is triggered when the data

it’s “watching” is updated. We can even create a watch function to observe a computed

property.

Listing 3.6 puts our area calculation in the context of a complete application. The
application also contains three watch functions that log messages to the console
whenever length, width, or area change, and one function to log when the update
cycle begins. These functions must be specified in the watch option of the Vue instance

for them to work.

Tip

You can find the code for this listing in the samples that accompany this chapter in the
file chapter-03/area.html. It’s entirely self-contained, so you can open it directly in

Chrome.

Listing 3.6. Computed properties and update event logging: chapter-03/area.html

<html>
<head>
<title>Calculating Area - Vue.Jjs in Action</title>
<script src="https://unpkg.com/vue/dist/vue.]js"
type="text/javascript"></script>

</head>
<body>
<div id="app">
<p>
Area is equal to: {{ area }} 1
</p>
<p>
<button v-on:click="length += 1">Add length</button> 2
<button v-on:click="width += 1">Add width</button> 2
</p>

</div>

<script type="text/javascript">

var app = new Vue ({
el: '#app',
data: {
length: 5, 3
width: 3 3
bo
computed: {

area: function() {

return this.width * this.length; 4
} 4
by
watch: {
length: function(newVal, oldval) { 5
console.log('The old value of length was: ' 5
+ oldval + O]
'\nThe new value of length is: ' 5
+ newVal) ; 5
Hy
width: function (newVal, oldval) { 6
console.log('The old value of width was: ' 6
+ oldval + 6
'\nThe new value of width is: ' 6
+ newVal) ; 6
b
area: function(newVal, oldval) { 7
console.log('The old value of area was: ' 7
+ oldval + 7
'\nThe new value of area is: ' 7
+ newVal) ; 7
}
by
beforeUpdate: function () { 8
console.log('All those data changes happened ' 8
+ 'before the output gets updated.'); 8

1

1) ;
</script>

</body>

</html>

1 Lists the data binding that displays the value of area

2 Shows the buttons that increase the value of length or width by 1,

respectively

3 Shows the original values for length and width

4 Gives the area computed property

5 Shows the function that logs when length changes

6 Shows the function that logs when width changes

e 7Shows the function that logs when area changes

e 8 Lists the beforeUpdate lifecycle hook function
When you load this file in Chrome, you’ll see an initial value for area is 15 as seen in
figure 3.7. Be sure the JavaScript console is open, then try clicking the buttons to trigger

the update cycle. The console should log messages about the application’s data when
the Add length button and Add width button are clicked (see figure 3.8).

Figure 3.7. The initial state of our area calculating application.

[Calculating Area - Vue.jsin Ao x

e
L

{_
Area is equal to: 15

Add length Add width

Benjamin

(@ file:ffjusersfblistwon/vuejs-in-action/code/chapter-03/area.html ¢ ©

When you first load this
application, the area
displaved should egual 15.

Figure 3.8. Observing our properties changing in response to clicking buttons.

After the data is m od ified , the area

[Caleulating Area - Vuejs in Ac x

isrecalculated , the virtual DOM is

updated and the HTML DOM is patched. | €

] @ fileyifUsers/blistwon/vuejs-in-a

Area is equal to: 24

Click ing on either button I

Add HﬂﬂlhTm width

executes the function bound to it |

& d
IG'{F!m v

The
The

The
The

All

The
The

The
The

ALl

The values of length and width are
changed by the functions bound

to our buttons. A change i either
value triggers the update cycle.

Elements Console Sources Metwork Timedir
Prasenve log

Regex Hide network massages
Logs Debug Handled
old value of length was: 5

new value of length is: 6

old value of area was: 15
new value of area is: 18

those data changes happened before the output

old value of width was: 3
new value of width is: 4

old value of area was: 18
new value of area is: 24

those data changes happened before the output

Now that we’ve seen how the application behaves, we can map the data and functions

from listing 3.6 onto our diagram of the update cycle in figure 3.9.

Figure 3.9. Changes in an instance’s data trigger a cascade of activity within the
update cycle of an application.

The updated event firves
when all the virtual DOM
updates are patched to
the HTML DOM.

Instance
data
{;::-Area is equal to: 20-:!;:1
/A /
Browser
DOoM Data
patched changes

[-:p:-hrea is egual to: 20 </

VAN

Virtual
DOoM
upd ated

Com puted

properties
recalculated

| area: 20

The beforeUpdate event fires
after instance data has

changed and just before any
vimual DOM updates are m ade.

One last thing to note, if you remove the { { area }} binding from the sample code,

and reload the page in your browser, you’ll see a difference in the console output when

you click either button (see figure 3.10).

Figure 3.10. No update message displays if nothing gets updated.

[Calculating Area - Vue.js in A0 X
- v (@ file;jjjUsers/blistwon/vuejs-in-a
Area is equal to:
Add length Add width

If you rem ove the area |
binding from the m arkup .. |

@ =

(] Elements Console Sources Network Timel
Y top v Preserve log
Regex Hide network messages

The old value of length was: 5
The new value of length is: &

The old value of area was: 15
.. you wont see any ocutput from The new value of area is: 18

beforeUpdate in the log, because
there iz nothing to update!

With no outlet for the computed property, there’s nothing to update, and therefore no
reason to enter the update cycle. The be foreUpdate function won’t be executed and

the corresponding message won'’t be logged to the console.

3.3.3. Displaying a cart item count and testing

Now that we have a good understanding of computed properties, let’s look at our
shopping cart example again. Let’s add a computed property to our Vue instance that
will display the number of items in the shopping cart, as shown in the following listing.
Don’t forget to add a computed object to the options object, so our function will have

a place to live.

Listing 3.7. The cartItemCount’s computed property: chapter-03/cart-item-
count.js

computed: {
cartItemCount: function() {

return this.cart.length || '';

N NN R

bo

e 1 Adds a computed object

e 2 Returns a count of items in the cart array

This is a straightforward use of a computed property. We use an existing JavaScript

property—length—of an array to retrieve our count, because it’s really not necessary

to add our own counting mechanism for the shopping cart.

This is also a good example of why it’s inappropriate to store this kind of data as a
property of the data object. Because the value of cartItemCount is the result of user
interaction, and not something that came from a database, we wouldn’t expect to see it

in our data object.

It’s worth noting that there are times when such an item count might be in the data
object. For example, if a user was looking at a “previous orders” page, there might be an
item count associated with each order. This is consistent with our thinking so far,
because that data would come from the database after an order had been processed and

persisted.

Function in place, we’re ready to add a little bit of HTML to our application’s header so
that we have a shopping cart and a place to display the item count. Update the markup

in the header as shown here.

Listing 3.8. Adding the cart indicator: chapter-03/cart-indicator.html

<header>
<div class="navbar navbar-default">
<hl>{{ sitename }}</hl>
</div>
<div class="nav navbar-nav navbar-right cart"> 1

{{ cartItemCount }} 2
</div>
</header>

e 1 Aligns our cart to the right

e 2 Shows the data binding that displays the computed property

We add a new div element to the header so we have a place for our cart, and we use the
cartItemCount binding to display the value of our computed property. The binding is
surrounded by a span element, which is used as a style hook to add a cart icon next to

our counter. It’s time to test things out.

After reloading the webstore application in Chrome, clicking Add to cart should cause
the indicator to increase with each click. You can double-check that the count is correct

by examining the cart array in the console once again (see figure 3.11).

Figure 3.11. Observing change in our application’s header and inspecting the cart

in the console.
[2 | o =
I Vs Pt Dwpct X
S D T e L o1 BEBE S0 a0 3 e bl -2
Vue.js Pet Depot 2W Checkout

Cat Food, 25Ib bag

A 25 pourd bag of imasistible, organic goodness
for your cat

520.00

@ ciick the nraa
to cart button.

0 webstore cart is updated .

3.4. ADDING USER AFFORDANCE TO OUR BUTTON

People bring a wide variety of experience and expectation with them when they arrive
at a website or use a web application. One of the most fundamental, and deeply
ingrained, is that when an interactive element behaves differently than expected, a
product can feel broken or disorienting. The idea behind user affordance is to provide
visual (or other) cues and feedback to a user that keeps our application consistent with

their expectations.

Info

For more information on user affordance and its importance in the experience of digital

products, start at the Interaction Design Foundation at http://mng.bz/Xv96.

We now have a button that lets a customer endlessly add a product to their shopping
cart. There may be many reasons to limit the number of items a customer can purchase:
limited available product, restrictions on per-customer purchases, quantity discounts,

and so on. If there’s a limited quantity, then the Add to cart button should become

unavailable at some point or otherwise indicate that the action is no longer possible.

To accomplish this task, we need to track our available inventory, compare it against
how many instances of a product are in the shopping cart, and act to keep customers
from adding more products than there are available. Let’s start with tracking the

inventory.

3.4.1. Keeping an eye on inventory

To keep a customer from buying too many of a given product, we'll need to add a new
property to our product object, as shown in the following listing. The
availableInventory property will represent how many individual units of a

product our store has available.

Listing 3.9. Adding availableInventory to our product: chapter-03/available-
inventory.js

data: {
Sitename: "Vue.Jjs Pet Depot",
product: {
id: 1001
title: "Cat Food, 251b bag",
description: "A 25 pound bag of irresistible,
organic goodness for your cat.",

price: 2000,

image: "assets/images/product-fullsize.png",
availableInventory: 5 1
}
cart: []

e 1 Adds the availableInventory property after our other product data

It’s still necessary to double-check product availability when a purchase is being
finalized—in case another customer has purchased one or more of the same product in
the middle of a transaction—but we can implement a simple solution in our application
to greatly reduce the chance a user will be disappointed later by hiding, or disabling, the
Add to cart button.

Warning

Never rely on values from the client when it comes to transactions, financial or
otherwise. The backend of your application should always interpret the incoming data

as expressing the user’s intent, not reality.

3.4.2. Working with computed properties and inventory

We don’t want to mutate the availableInventory value, because that represents a
fixed value that should be updated only by a process that manages actual inventory
(something we’ll come back to much later in the book). But we do want to restrict the
amount of product a customer can add to their shopping cart based on the value of

availableInventory.

To do this, we need a way to keep track of the number of items in a customer’s shopping
cart relative to the fixed amount of product available. We’ll use a computed property to

perform this calculation in real-time, as a customer adds items to their shopping cart.

Listing 3.10. A computed property for remaining inventory: chapter-03/computed-
remaining.js

computed: {
cartItemCount: function() {
return this.cart.length || "';

by
canAddToCart: function () { 1

return this.product.availableInventory > this.cartItemCount; 2

e 1 Uses the canAddToCart computed property

* 2 Compares availableInventory to the number of items already in the
cart

Because our code can consume computed properties in the same way as properties of
our instance data, we get a chance to leverage one computed property,
cartItemCount, within another. Our new computed property checks to see whether
the available inventory is greater than the number of items already in the shopping cart.
If not, that means the customer has added the maximum number of products to their

cart, and we’ll have to act to keep them from adding more.

“Truthiness” in JavaScript

As you may already be aware, evaluating the truth value of an expression in JavaScript

can be a bit tricky. Here’s a quick example you can try in a console for yourself.

When using the non-strict equality operator ==, the integer value 1 compared to the
string value " 1" evaluates to true. This occurs because JavaScript, attempting to be
“helpful,” does a type conversion before the comparison is evaluated. Using the strict

equality operator === produces the expected false result.

In our canAddToCart function, we use the greater than operator > to compare two
integer values. If we had any doubt about where those values came from, or if they were
in fact integers, we could force the conversion using the parseInt method or

otherwise ensuring the values are integers.

Much has been written about JavaScript’s type conversions and equality operators, but
perhaps the most illuminating reference is this series of diagrams on the topic at
https://dorey.github.io/JavaScript-Equality-Table/. Be sure to compare (hah!) the == and
=== tabs.

3.4.3. v-show directive basics

Now that we have a mechanism to determine whether a customer can take the Add to
cart action, let’s make the interface respond accordingly. The v-show directive renders
markup if, and only if, the specified condition evaluates to t rue. Adding it to our
existing button results in the button being hidden from the DOM if our canAddToCart

property returns false, shown here.

Listing 3.11. Button with v-show directive: chapter-03/button-v-show.html

<button class="default"
v-on:click="addToCart"
v-show="canAddToCart" 1
>Add to cart</button>

e 1 The v-show directive is bound to our canAddToCart computed

property.

If you reload the application in Chrome and try adding six products to your shopping
cart, the button should disappear on the fifth click, because that’s the value of

availableInventory as seen in figure 3.12.

Figure 3.12. The Add to cart button is hidden when we exhaust the available
inventory.

o Five item s in
shopping cart.

Vue.js Pet Depot 5 Checkout

Cat Food, 25Ib bag

A 25 pound bag of irresistible, organic goodness
for your cat.

$20.00

N\

@® raa to cart
button is hidden.

The v-show directive works a bit differently than other directives we’ve encountered so
far. When the expression evaluates to false, Vue sets the element’s display CSS
property to none as an inline style. This effectively hides the element (and its contents)
from view, though it’s still present in the DOM. If the result of the expression later
changes to t rue, the inline style is removed and the element is once again shown to the

user.

Note

One side effect of this behavior is that any inline declaration of display you had will be
overwritten. But have no fear, Vue will restore the original value when it removes its
own display:none. Still, it’s best to avoid inline styles wherever possible in favor of

class definitions in your stylesheet.

One other thing to keep in mind is that the v-show directive is most effective when

bound to a single element, rather than several adjacent elements. Here’s an example.

Listing 3.12. Wrapping content for v-show: chapter-03/wrap-content.html

// Avoid this

<p v-show="showMe">Some text</p>

<p v-show="showMe">Some more text</p> 1
<p v-show="showMe">Even more text</p> 1

// Prefer this
<div v-show="showMe"> 2
<p>Some text</p>
<p>Some more text</p>
<p>Even more text</p>
</div>

N NdNNN

* 1 Avoid using the v-show directive on adjacent elements.

e 2 Instead, wrap adjacent elements, and use a single v-show directive.

To be clear, it’s okay to use v-show throughout your application wherever you need to.
Whenever possible it’s best to aggregate multiple elements that will respond reactively
to data, both for better performance and to reduce the chance of forgetting to keep all

your elements up-to-date if you make a change. Removing the Add to cart button when

inventory is exhausted certainly works, but it’s a bit drastic. Let’s try another way.

3.4.4. Using v-if and v-else to display a disabled button

Removing the Add to cart button certainly keeps a customer from adding too many
product instances to the cart, but it’s a bit heavy-handed. It might be more informative
to the user to render the button disabled, because that doesn’t disrupt the continuity of

the interface as much and it preserves the layout flow.

The v-1if and v-else directives are used to display one of two choices based on the
truth value of the provided expression. We’'ll use canAddToCart as a condition to

evaluate, the way we did in the previous example.

In figure 3.13 you can see how the v-1i f directive works. If the canAddToCart is true

the button appears, if not, the button doesn’t appear.

Figure 3.13. Diagram explaining how the v-i £ directive conditional works.

v-if directive Name of button

<button v—if=:¢anﬁddToCar;J}Add to cart</button>
Tag name ‘ Closing tag
Element is inserted or

removed based on
truthiness of this property

In this listing we can see how this works with our v-if and v-else directives.

Listing 3.13. Buttons with v-if and v-else directives: chapter-03/v-if-and-v-
else.html

<button class="default" 1
v-on:click="addToCart" 1
v-if="canAddToCart" 1
>Add to cart</button> 1

<button class="disabled" 2
v-else 2
>Add to cart</button> 2

e 1The button is displayed when canAddToCart returns true.

e 2 The button to displayed when canAddToCart is false.

When using v-if and v-else together, we need two elements in our markup, one for
when the condition is t rue and one for when it’s false. Additionally, the two
elements need to be listed one directly after the other in the markup for Vue to bind to

them correctly.
In listing 3.13 we use two different button elements:

e If canAddToCart returns true, we render our familiar button, with the

addToCart event binding, and the default CSS class.

e If canAddToCart returns false, we render a button with no event binding so that
it becomes unclickable and with a disabled CSS class so that its appearance

changes accordingly.

This time, when you try out the application in Chrome, the button should switch the
active button (figure 3.14) to the disabled button once you've added five products to the
shopping cart.

Figure 3.14. Using v-if and v-else means we can render a disabled button,
rather than making it disappear entirely when the inventory is exhausted.

Vue.js Pet Depot 5W Checkout

Cat Food, 25Ib bag

A 25 pound bag of irresistible, crganic goodness
for ycur cat.

$20.C0

Add to cant

@ Button is disabled.

With the v-if and v-else directives, Vue.js removes the element from the DOM (the
false condition) and removes it from the other (the t rue condition). All of this is
accomplished as part of a single, simultaneous update to the DOM. Try it out by
fiddling with the value of availableInventory in the console and keeping an eye on

the display property of these elements.

As with the v-show directive, it’s important to have a single containing element to
attach v-if and v-else to, especially with the added criterion that the v-else

markup must remain adjacent to the v-i f markup, as shown here.

Listing 3.14. Single container elements for v-if and v-else chapter-03/single-
container.html

// This won't work
<p v-if="showMe">The if text</p> 1
<p>Some text related to the if text</p> 1

(XY

<p v-else>The else text</p>

// Nor will this
<div>

<p v-if="showMe">The if text</p>
</div>
<div>

<p v-else>The else text</p>
</div>

N NN DNDNN

// Instead, consider grouping
<div v-if="showMe">
<p>The if text</p>
<p>Some text related to the if text</p>
</div>
<div v-else>
<p>The else text</p>
</div>

W wwwwwow

e 1 This won’t work; v-if and v-else are broken up by the second paragraph

element.
e 2 This won’t work; v-if and v-else are not adjacent in the markup.

e 3 This will work; wrap related content in an element, then bind v-if and

v-else to that element.

Keeping all the DOM elements for a given condition within an outer element—used as a
grouping container—is the goal here. Later, we’ll explore different strategies that use
templates or components to isolate the markup for conditionals, greatly simplifying the

amount of markup needed in the main application itself.

3.4.5. Adding the cart item button as a toggle

Let’s add a button for the checkout page. We'll begin by adding a new method and

property to our application.

Listing 3.15. Adding the cart button: chapter-03/cart-button.js

data: |

showProduct: true, 1
b
methods: {

showCheckout () { 2

this.showProduct = this.showProduct ? false : true; 3

by

* 1 This property tracks whether to show product page.
¢ 2 The showCheckout method is triggered after clicking the cart button.

* 3 Shows the ternary operation that toggles between true and false

The new showProduct property will toggle the display of the checkout page. Let’s look
at that in more detail. The showCheckout method toggles the showProduct property
by using something called a ternary operation in JavaScript. The ternary operator is a
shortcut for the i f statement and takes three parameters. The first parameter is the
condition, in this case, this.showProduct. If it resolves to true, it then returns the
first expression, false. Otherwise it returns the last expression, t rue. The ternary

conditional operator is a useful tool to have in your back pocket when you need to

create a quick conditional statement.

You may have noticed that the method definition was missing the function ()
declaration after showCheckout (). ES6, also known as ES2015, allows for a shorter
syntax for method definitions. We’ll use this syntax for our method definitions
throughout the rest of the book.

We now need to add the button to our view and bind it to a click event.

Listing 3.16. Adding the cart button: chapter-03/add-cart-button.html

<div class="nav navbar-nav navbar-right cart">
<button type="button"
class="btn btn-default btn-1g"
v-on:click="showCheckout"> 1

{{ cartItemCount}}

Checkout
</button>
</div>

* 1A click event added to button triggers the showCheckout method.

When the button is clicked, the showCheckout method will fire, causing the
showProduct method to toggle, or flip, between states. The checkout button is

important because we need somewhere to put our checkout information. We’ll look at

this more in the next section.

3.4.6. Using v-if to display a checkout page

Our application is limited. It only shows one product on one page. To make it more
complete we need another page that displays checkout information. We can do this
many different ways. In chapter 7, we'll learn about components which give us a way to
easily break down our application into smaller reusable pieces. This could be one way of

adding a checkout page.

Another way is to wrap our view in a v-1i f directive and bind it to the showProduct
property we created earlier. We’ll need to add the v-1i £ directive to the top of index file
after the main and div elements, as shown in this listing.

Listing 3.17. Using v-if to display a checkout page: chapter-03/v-if-
checkout.html

<main>
<div class="row product">

<div v-if="showProduct"> 1

</div>

<div v-else>

</div>
</div> <!—end of row-->

</main> <!—end of main-->

e 1 v-if directive that will display if showProduct is true.

e 2 Shows the product listing for the view, including the picture of the

product and description

e 3 This is where the checkout page will go.

Earlier in the chapter, we created a checkout button. When this button is pressed, the
showProduct property will toggle, from true to false, or false to true. This will
trigger the v-i f directive in listing 3.17. Either the product information that we’ve been
creating in this chapter will show, or a blank screen will display with only the top
navigation at the top (figure 3.15).

Figure 3.15. View of webstore after checkout button is pressed. Pressing the
checkout button again shows the product page.

- [a] e
N Voo Per Depot]
O | (D Sl P Usersfehanchettivuess-n-action/ code,/chapter-08 index htmi T Y
W Checkout

Vue.js Pet Depot

For now, don’t worry about the blank page that we see in figure 3.15. This will be taken

care of in the next chapter when we look into different types of input bindings.

3.4.7. Comparing v-show with v-if/v-else

Both techniques—v-show and v-1if /v-else—have advantages and disadvantages, for
a user and for us as developers. As we know, the v-show directive hides or shows an
element using CSS, while the v-if/v-else directive removes the content from the
DOM. With that said, understanding when to use one or the other depends mostly on
what we’re trying to achieve, so perhaps the best way to compare them is to think about

a few use cases for each.

The v-show directive is best suited to scenarios where there’s no “else” case. That is,
when you have markup to show if a condition is t rue and no alternative content to
show when it’s false. Here are several possible use cases where v-show is the right

choice:

e A message banner for things that are temporal, such as an announcement of a sale

or a change in the Terms & Conditions.
e A signup advertisement, or other inducement, when a visitor isn’t logged in.

e Paging elements for lists that run across multiple pages, which would be

superfluous if there were only one page.

The v-if and v-else directives are the right choice when one of two chunks of
markup should be rendered, but at least one of them should always be showing. If
there’s no fallback (else) case, then v-show is more appropriate. Here are several

scenarios where v-1if and v-else should be used:

e Showing a Log in link for logged out users, versus a Log out link for those who are

logged in.

e Rendering conditional sections of a form, such as country-specific address fields
based on a selection made by a user. For example, a U.S. address form shows a

“state” field, where a Canadian address form shows it as a “province.”

e Search results listings versus placeholder content when no search has been
conducted. (We’ll explore an example that adds a third state, using v-else-if,ina

later chapter.)

Endless scenarios exist where you’ll need to use one conditional or the other. Perhaps
the best way to think about which one fits your needs is to consider whether there’s a
fallback, or default, chunk of content you want to display. Next up, we'’re going to make
our webstore a little more useful to potential customers by offering more than a single

bag of cat food.

EXERCISE

Use your knowledge from this chapter to answer this question:

e EKarlier in the chapter we looked at computed properties and methods. What are the

differences between them?

See the solution in appendix B.

SUMMARY

* Presenting data that isn’t inside the data object using a computed property.

e Conditionally showing parts of our application with a v-if and v-else directive.

e Adding more functionality to our application with methods.

Chapter 4. Forms and inputs

This chapter covers

e Binding values to the DOM
e Using text binding

e Modifiers

Our application has evolved substantially since chapter 1. We've created items and
allowed users to add items to a cart. We now need a way for our customers to check out
and enter their information. Let’s add input forms to our application so the customer
can enter their address and billing information into the app. Then we need to save this

information in our app for later use.

To accomplish our goal, we must bind the form data to our model in our application.

The v-model directive was made for this use case.

Definition

The v-model directive creates a two-way data binding between form or text area
inputs and the template. This assures data in our application model will always be in

sync with our UI.

Two-way data binding vs. one-way data binding

In practice, two-way data binding (figure 4.1) may, or may not, be the best solution. In
certain instances, data will never need to change after it’s captured from user input.
Other frameworks and libraries such as React and Angular 2 have chosen one-way data
bindings by default. Angular 1 started with two-way binding and dropped it for

performance management reasons when building Angular 2. One-way data binding

occurs when data captured isn’t synced from the model to the view when the input
changes. Additional logic needs to be added for the values to change in the model or
view. Ember.js decided to stick with two-way data binding by default. With the v-
mode] directive, the data is bound two ways. Regardless, we can specify a property as

one-way bound in Vue using the v-once directive.

Figure 4.1. The model updates the view while the view updates the model.

Two-way data binding

View] [Model

Changes in the view
update the model

| I
Changes in the model
update the view

L J L -I A

The v-once directive renders an element or component once only. On any additional

re-renders, the element or component will be treated as static content and skipped. To
learn more about the v-once directive, check out the official API documentation at

https://vuejs.org/v2/api/#v-once.

Later in the book we’ll discuss component properties and how they can be passed to
other components. These properties form a one-way-down binding between the parent

property and the child one. This will become useful in the future.

The v-model directive was made to work with all sorts of form inputs, including text
boxes, text areas, check boxes, radio buttons, and select drop-down controls. We’ll need
all these elements to build our new checkout form. Let’s look at using the v-model

directive and how it works with binding inputs.

4.1. USING V-MODEL BINDING

Model binding in our applications will help us update data on our user inputs with our
template. In our application, we've worked primarily with the Vue data object to display
static information. Interaction with the application has been limited to a few button-
click events. We need to add a way for users to fill in their shipping information at
checkout. To keep track of the form inputs, we’ll use the v-mode1 directive and basic

input bindings to add more reactivity to the application.

Before we begin, you might be wondering what the differences are between the v-
mode] directive and the v-bind directive that we used in chapter 2. Keep in mind that
the v-mode1 directive is used mainly for input and form binding. We'll use the v-
mode] directive in this chapter to bind our text inputs for our checkout page. The v-
bind directive is mostly used to bind HTML attributes. We could use v-bind on an
src attribute on an tag or bind it to the class attribute on a <div> tag for
example. Both are useful, yet they’re used in different situations. We’ll look at the v-

bind directive in more detail later in the chapter.

It’s worth mentioning that the v-mode1 directive uses the v-bind directive behind the
scenes. Let’s say you had <input v-model="something">.The v-model directive
is syntactic sugar for <input v-bind:"something" v-on:
input="something=S$Sevent.target.value">. Regardless, using the v-model

directive is much easier to type and understand.

In figure 4.2 we see how the v-mode1 directive is broken down. It is added to the input
and creates a two-way data bound object.

Figure 4.2. Up close with the v-mode1l directive

v-model directive

<input v—model::?rder.1astNam%;f}

/

tag name two-way data
bound object

To begin, we’ll need to add new HTML to our application. Open the index.html page
that you created in the last two chapters and look for the v-e1se directive (or you can
download the supplied index.html file for chapter 3). Inside this <div> tag we’ll add the
HTML code in this chapter. In chapter 7 we’ll discuss a better way of breaking up our
application into components. For now, we’ll use the simple v-1i f directive as a toggle to

display our checkout page.

As with the previous chapters, each code snippet is split into its own file. Please

combine this with the index.html to create a completed application.

Listing 4.1. Av-model directive with first and last name inputs: chapter-04/first-
last.html

<div class="col-md-6">

First Name:

<input v-model="order.firstName" 1
class="form-control"/>
</div>
<div class="col-md-6">
Last Name:
<input v-model="order.lastName"
class="form-control"/> //#A
</div>

<div class="col-md-12 verify">

<pre>
First Name: {{order.firstName}} 2
Last Name: {{order.lastName}} 2
</pre>
</div>

e 1 The firstName and lastName are bound using v-model.

e 2 The firstName and lastName properties are displayed in real time as

values change in input.

The code creates two text boxes for the first and last name and each text box is bound to
a property that’s synced in real time. These properties are created in the data object. To
make this easier, we’ll use an order property to keep these values saved in our Vue
instance data object. This will be added to the index.html file.

In the data object, we'll need to add our new order property. We need this order
property so we can keep track of the first and last names. Add the following code to the

existing index.html data object that we used from the previous chapter.

Listing 4.2. The Vue instance data object order property: chapter-04/data-

property.js
data: {
sitename: 'Vue.js Pet Depot',

showProduct: true,

order: {
firstName: '',
lastName: "'

}y

The order object in this listing is in the data object inside the Vue constructor. We can
reference this object throughout our code using the double curly brace Mustache syntax
{{}} that we learned about in chapter 2. For example, { {order.firstName} } will be
replaced by the firstName from the order object. Keeping our order information in

an object makes it easier to understand where the data is in the future.

It’s worth mentioning that we could use an empty order object here and not define the
properties firstName and 1astName explicitly inside it. Vue.js can implicitly add the
properties to the object. For the sake of simplicity, and to keep the code base a little

cleaner, we’ll add the properties so we can see how everything works.

After typing data into our checkout form, notice that values appear in real time in the
box (figure 4.3). This is the beauty of two-way data binding. Values are automatically

synced to each other without any other logic needed.

Figure 4.3. Text is updated in real time into the box at the bottom.

o Enter values into inputs.

el Depol Checkout

Enter Your Information

First Name: Last Name:

Enk Hanchen

Firct Hams: Erik

Last Hame: Hanchell

9 Values are synched
because of data bind ing.

We now have the start of our checkout page. Let’s add more form inputs to our
index.html file so our customer can add in their address information, as shown next.
We can add this HTML after the HTML code that we added in listing 4.1.

Listing 4.3. Adding in our other text inputs and select box: chapter-04/text-
input.html

<div class="form-group">
<div class="col-md-12">Address:</div>
<div class="col-md-12">
<input v-model="order.address" 1
class="form-control™ />
</div>
</div>
<div class="form-group">
<div class="col-md-12">City:</div>
<div class="col-md-12">
<input v-model="order.city" 1
class="form-control" />

</div>

</div>
<div class="form-group">
<div class="col-md-2">
State:
<select v-model="order.state" 2
class="form-control">
<option disabled value="">State</option>
<option>AL</option>
<option>AR</option>
<option>CA</option>
<option>NV</option>
</select>
</div>
</div>
<div class="form-group">
<div class="col-md-6 col-md-offset-4">

Zip / Postal Code:

<input v-model="order.zip" 1
class="form-control"/>
</div>
</div>
<div class="col-md-12 verify">
<pre> 3

First Name: {{order.firstName}}

Last Name: {{order.lastName}}
Address: {{order.address}}
City: {{order.city}}
Zip: {{order.zip}}
State: {{order.state}}
</pre>
</div>

e 1 Inputs text with v-model
e 2 Selects Input with v-model

e 3 <pre> tag displays data

We added our form fields for the address, city, state, and ZIP Code. The address, city,
and ZIP Code are all text inputs that use the v-mode1 directive to bind the input.
Choosing a state is a little different. Instead of using a text box, we’ll use a select drop-

down control. The v-mode1 has been added to the select element.

You might wonder how we can easily add more states to our select drop-down control.
For this simple example, hard-coding all four states is fine. But if we were to add all 50
states, we’d probably want to dynamically generate the select box. In the next section,

we’ll look at using value bindings to help generate dynamic options.

Before we move on, let’s not forget to add our new properties to the data object in the

Vue instance.

Listing 4.4. Updating the Vue instance data object with new properties: chapter-
04/data-new-properties.js

data: {
sitename: "Vue.js Pet Depot",

showProduct: true,

order: {
firstName: '',
lastName: '',
address: '',

city:

zip: '',

state: '!

}y

As we saw in figure 4.3, if any of these properties are changed within any of the form
elements, these values are updated in the <pre> tag at the bottom. Reload the browser

and your new form should look like figure 4.4.

Figure 4.4. Adding the address, city, state, and ZIP Code form fields into our
checkout page.

0 Form inputs

P Dol ChanCioned

Enter Your Information

A

'F_H‘I'I Hars;
Ere
Addms
123 Sieed La
city:
e
Stane:

Firgy Bpms|
Ladd Mame;
AdAreiE

City:

Lase Minfr;

AT

o Sliced elem ents
at bottom inside
a <pre>» tag.

IIP | Postal Code:

S0 10

rri

Haere; b 38

1% STreet Ln
L

Tip: #OII0

A

Our form checkout page is looking good, but we need to add in a couple more things.
Let’s allow our customer an option to ship items as a gift. To do this, we’ll add a simple
check box. If the check box is selected, we'll ship the items as a gift. If it isn’t, selected
items won’t be shipped as a gift. To keep track of the binding we’ll use the order.gift

property.

Next up, we need to allow our customer an option to ship to a home or business
address. Let’s add a radio button to our code for this purpose. In Vue, we must set the
v-model directive in both check boxes to the same value, otherwise the radio buttons

won’t update after they’re clicked.

Finally we’ll need to update the <pre> tag with order .method and order.gift, as
shown in the following listing. Add this HTML after listing 4.3 in the index.html file.

Listing 4.5. Adding check boxes and radio buttons: chapter-04/adding-
buttons.html

<div class="form-group">
<div class="col-md-6 boxes">

<input type="checkbox"

id="gift"
value="true"
v-model="order.gift"> 1
<label for="gift">Ship As Gift?</label>
</div>
</div>

<div class="form-group">
<div class="col-md-6 boxes">
<input type="radio"
id="home"
value="Home"
v-model="order.method"> 2
<label for="home">Home</label>
<input type="radio"
id="business"
value="Business"
v-model="order.method"> 2
<label for="business">Business</label>
</div>
</div>
<div class="col-md-12 verify">
<pre> 3

First Name: {{order.firstName}}

Last Name: {{order.lastName}}
Address: {{order.address}}
City: {{order.city}}
Zip: {{order.zip}}
State: {{order.state}}
Method: {{order.method}
Gift: {{order.gift}}
</pre>
</div>

¢ 1 Adds checkbox with v-model

e 2 Adds radio button v-model

e 3 Updates <pre> tag with order.method and order.gift

Let’s add our properties to our data object by adding this code.

Listing 4.6. Adding more properties to our Vue data object: chapter-04/more-

props.js
data: {
sitename: "Vue.js Pet Depot",

showProduct: true,
order: {
firstName: '',
lastName: '',
address: '',
city: '',
zip: '',
state: '',
method: 'Home',
gift: false

}y

You may have noticed that we added default values for both method and gi ft. The
reason behind this is simple. By default, the method radio button is selected, and the
check box isn’t selected. Therefore, it would be clever of us to set a default value in this

code for now.

One last thing we need to do is add a Place Order (submit) button. For now, we’ll mock
out the button so we can use it the future. You have a couple of ways to create a Place
Order button. You could attach an action to a form element that encompasses all our
inputs. (We’ll look at this more in chapter 6 on Events.) Instead, let’s use the v-on
directive that we first learned about in chapter 3. The v-on directive can bind functions
to DOM elements in the application. Add it to the click event on the Place Order button.
This HTML code can be added after listing 4.5.

Listing 4.7. Adding the v-on directive to the click event: chapter-04/adding-v-
on.html

<div class="form-group">
<div class="col-md-6">
<button type="submit"
class="btn btn-primary submit"
v-on:click="submitForm">Place Order</button> 1
</div>
</div>

¢ 1 The Place Order button is attached to the v-on directive.

In future chapters, we’ll add functionality to our Place Order button. For our purposes
now, let’s create a simple function and verify that the button works by adding an alert

popup. Add the submitForm function to the method’s object that exists in the

index.html file, as shown in this listing.

Listing 4.8. Creating the new submi tForm method: chapter-04/submit.js

methods: {
submitForm () {
alert ('Submitted') ;

bo

Inside the Vue constructor is the methods object which holds all our functions that can
be triggered in the application. The submi t Form function will display an alert popup
when triggered. In the browser, click the Place Order button and you’ll see this popup
(figure 4.5) that was triggered by the submit Form function.

Figure 4.5. This popup was triggered by the submi tForm function.

This page says:

Submitted

Prevent this page from creating additional dialogs.

Now that we have the form in place with a Place Order button, it should look like figure

4.6 when it’s all put together.

Figure 4.6. Completed checkout page with all form elements included.

[Womg Pt Dapat =
L T ke U e et v e ety ont [hages O fnc e bt v
Vue.js Pet Depot ¥ Cneckout

Pt Dol ChebCiooyn

Enter Your Information

First Karma: Last Hame
Hanchedt
AdCress
cuy.
State: IIP-‘ Foital Cooe:
Ship &3 GIR? * Home - Bosiness

Pirgt Base: Prik
Lag® Dlame Sassbeti
dddradn 13 1Teraat in
Fyn Baran

Shpr W

Sranen Wy

LD L

Gifes Yals

Place Order
button added.

Each property in the form is bound to our Vue.js model! Now let’s see if we can make

our input bindings a little better.

4.2. ALOOK AT VALUE BINDING

The v-mode1 directive has been useful in binding properties for us so far. We've used it
to bind many basic inputs. We have a problem, though. How do you bind the value for
check boxes, radio buttons, and select drop-down controls? If you remember, we hard-
coded the values for both check boxes and radio buttons. For our select box control, we
left the values blank. All the HTML elements can, and sometimes should, have a value
associated with the selected option. Instead of using hard-coded values, let’s rewrite our
select box, check box, and radio buttons to use properties from our data object. Let’s

begin by updating our check box with values by using the v-bind directive.

4.2.1. Binding values to our check box

In our first example, our check box was bound to the order.gift property. We could

set it to be either t rue or false. With that said, our customers don’t want to see true

or false. They’d rather see a message that lets them know if the order will be shipped as
a gift. We can add that.

The v-bind directive binds values to attributes in our HTML elements. In this case,
we’re binding the t rue-value attribute to a property. The t rue-value attribute is
unique to the v-bind directive, and it allows us to bind properties based on the check
box being checked or not, either t rue or false. This will change the value of the
order.gift. In listing 4.9, the t rue-value binds to the order. sendGift property.
Likewise, the false-value binds to the order.dontSendGi ft property. When the
check box is checked, the order. sendGi ft message displays. If the check box isn’t
checked, the order.dontSendGift property displays. Add this HTML after listing 4.8

in the index.html.

Listing 4.9. Binding true and £alse values to the gift check box: chapter-
04/true-false.html

<div class="form-group">
<div class="col-md-6 boxes">
<input type="checkbox"

id="gift" value="true"

v-bind:true-value="order.sendGift" 1
v-bind:false-value="order.dontSendGift" 2
v-model="order.gift"> 3
<label for="gift">Ship As Gift?</label>
</div>
</div>

* 1 Sets the order.sendGift property when the checkbox is checked
e 2 Sets the order.dontSendGift property when the checkbox isn’t checked

* 3 Binds order.gift to the input

To make this binding work as we expect, we’ll need to add in these new properties to
our order object, as shown in the next listing. Update the order object in the

index.html values with the sendGi ft and dontSendGi ft properties.

Listing 4.10. Adding the sendGift property to the order object: chapter-
04/prop-gift.js

order: {
firstName: '',
lastName: '',
address: '',
city: '',

zip: '',

state: '',

method: 'Business',

gift: 'Send As A Gift', 1
sendGift: 'Send As A Gift',

dontSendGift: 'Do Not Send As A Gift' 3

by

¢ 1 The default value of checkbox defaults to the Send As A Gift check box.

* 2The order.sendGift property is a text message that displays when the
check box is checked.

e 3 The order.dontSendGift property is a text message that displays when
the check box isn’t checked.

Our data object is getting bigger! We can now assign text values if the check box is
checked or not checked. Refresh the page and uncheck the Ship As Gift check box. Look
at our box at the bottom (figure 4.7); we’ll see the new values represented in the

{{order.gift}} property in the UL

Figure 4.7. The {{order.gift}} property is displayed.

First Mame: Erik

Last Namg: Hanthett
Addr#ss: 123 Street Ln
City: Reno

Iip: o218

STate: W

Method: Home

Gift: Do Not Send Gift w

{{oxrdergift}} property
in UI disphyed.

Toggling the check box changes the values from the Do Not Send As A Gift to the Send
As A Gift string. Note that because we set the order.gift property value to Send As A
Gift, it will default the check box to checked. If needed, we could assign it to the other

value. This would cause the check box to display as unchecked.

4.2.2. Working with value bindings and radio buttons

Like check boxes, we can assign values to radio buttons. We can do this by binding the
value directly. This could be a useful feature for our application. Let’s display to the
user the home address if the user selects the Home radio button and the business
address if the user selects the Business radio button. Add this HTML to the index.html

after the previous check box code.

Listing 4.11. Binding values to our radio buttons: chapter-04/radio-bind.html

<div class="form-group">
<div class="col-md-6 boxes">
<input type="radio"
id="home"
v-bind:value="order.home" 1
v-model="order.method">
<label for="home">Home</label>
<input type="radio"
id="business"
v-bind:value="order.business" 2
v-model="order.method">
<label for="business">Business</label>
</div>
</div>

e 1 Sets the v-bind directive to the value attribute on the input element for
the first radio button

e 2 Sets the v-bind directive to the value attribute on the input element for

the second radio button

The v-bind directive binds order . home to the first radio button and
order.business to the second radio button. This can be powerful, because we can

dynamically change these values at any time.

To finish this example, let’s add these new properties to the order object in data in the

index.html, as shown in the following listing.

Listing 4.12. Updating the order object with business and home: chapter-
04/update-order.html

order: {

T

firstName: ,

T

lastName: ,

address: '',
city: '',
zip: '',
state: '',
method: 'Home Address', 1
business: 'Business Address',

home: 'Home Address', 3
gift:'Send As A Gift',

sendGift: 'Send As A Gift',

dontSendGift: 'Do Not Send As A Gift'
by

¢ 1 Sets the default value to the ‘Home Address’ radio button

e 2 Displays the order.business property text message when the first

radio button is selected

e 3 Displays the order.home property text message when the second radio

button is selected

This new order object now has a couple of new properties—home and business—that
are bound to the radio buttons. If we select either one, the value at the bottom will

toggle between Home Address and Business Address (figure 4.8).

Figure 4.8. Method is updated from the radio button.

First Meme: Erik

Lest Noeme: Harchetlt
Addrace: 123 Strast Ln
City: Reno

Zip: S0i10

State: NV

HMethod: Business Adoress
Gife: Do Net Send As A Gife

Hom e and business are now
d isplayed under m ethod.

Our customer can see that they have a package being delivered to a business address
(Erik Hanchett at 123 Street Ln, Reno, NV) and it won’t be shipped as a gift! Binding
properties to any attribute value in our form makes things much cleaner and easier. We

now need to look at the US states select box control in the next section.

4.2.3. Learning the v-for directive

Our select box control lists US states that our customer can choose from. We need to
update the select drop-down control so the state shows in our box when we refresh the
page. Let’s look at how we can bind the state values. Replace the state drop-down in the

index.html after the city input with the markup shown in the following listing.

Listing 4.13. Binding values to our select box: chapter-04/bind-select.html

<div class="form-group">
<div class="col-md-2">
State:
<select v-model="order.state" class="form-control">
<option disabled value="">State</option>
<option v-bind:value="states.AL">AL</option> 1
<option v-bind:value="states.AR">AR</option> 2
<option v-bind:value="states.CA">CA</option> 3

<option v-bind:value="states.NV">NV</option> 4
</select>
</div>
</div>

e 1 Assigns the v-bind directive value attribute to states.AL property

e 2 The v-bind directive value attribute is assigned to the states.AR
property.

e 3 The v-bind directive value attribute is assigned to the states.CA
property.

* 4 The v-bind directive value attribute is assigned to the states.NV

property.

As we saw before, the v-bind directive is assigning our value attribute. This time we’ve
created a new data property called states. Inside that states property, I've listed US
states. The states object holds four values. We can access them inside our select box
by using the v-bind directive. Update the index.html file and add the states object to
the data object.

Listing 4.14. Adding the states property to the Vue instance data object:
chapter-04/states.html

states: {
AL: 'Alabama',
AR: 'Arizona',
CA: 'California',
NV: 'Nevada'

b

After everything is updated, we should see these values inside our text box in our
template at the bottom of the page (figure 4.9). As you can see, the state is spelled out,

making it clear what’s happening.

Figure 4.9. State text property is displaying the correct state selected.

First Name: Erik

Léat MNeas: Harcheil
Addrace: 113 Strest Ln
City: Reno
Zip: 99il0
State: RKevada
Method: Home Address
Gift: Do Mot Send As A Oift

State shows cutput
of state object.

Earlier in this chapter, I mentioned a critical problem with our drop-down. In this
example, only four states are listed. As we grow our list of states, we’ll need to create an
option> tag for each one. This could be tedious and repetitive. Luckily, Vue has

something that can help us with this. It’s called the v-for directive.

The v- for directive makes it easy to loop over values in a list or object, which is perfect
for our situation. To make this work, we’ll define all our states in the state object.
We'll then iterate over every state while using the v-bind directive so everything

matches. Let’s give it a shot!

Many things are happening here, so I'll break it down. The v-for directive requires a
special syntax in the form of state in states. states isthe source data array,

while the state is an alias for the array element that is being iterated on. In this case,
state is Alabama, Arizona, California, and so on. Replace the state drop-down in the

index.html after the city input with the HTML as shown here.

Listing 4.15. Updating the select drop down with v-for: chapter-04/select-drop-
down.html

<div class="form-group">
<div class="col-md-2">
State:
<select v-model="order.state"
class="form-control">
<option disabled value="">State</option>
<option v-for="(state, key) in states" 1
v-bind:value="state">
{{key}} 3
</option>
</select>
</div>
</div>

e 1The v-for directive iterating through the state object with each key and

value.
* 2 The v-bind directive value attribute is assigned to the state property.

e 3 The key property is displayed.

The key value is an optional argument that specifies the index of the current item. This
is important in our select drop-down control because our key value can be used as the

abbreviated state, while the actual value is the full state name.

The v-bind directive binds the value of state to the value on the <option> tag, as
shown in listing 4.16. After replacing this code in your application, peek at the HTML
that is generated by opening up your web browser and looking at the source of the

index.html. The <option> tag will show every state in the states property.

Listing 4.16. HTML generated by the v- for directive: chapter-04/options.html

<option value="Alabama'">

AL

</option>

<option value="Alaska">
AK

</option>

<option value="Arizona">
AR

</option>

<option value="California">
CA

</option>

<option value="Nevada">
NV

</option>

This is good news for our application. Because we can now bind the values and iterate
over them with v-for, we no longer need to hard-code every US state. Our select box

can grow dynamically based on how we create the states object.

4.2.4. The v-for directive without the optional key

I mentioned that the key value is optional, so what would a v-for directive look like
without the key value? Taking a quick detour and seeing how that works, let’s start
from an empty detour.html file and create a brand-new application. Create a Vue

constructor and add in a data object with a states array.

Listing 4.17. Updating the states object in data: chapter 04-/detour.html

<div id="app">

<li v-for="state in states"> 1
{{state}}
</1i>

</div>
<script src="https://unpkg.com/vue/dist/vue.]js"></script>
<script type="text/javascript">
var webstore = new Vue ({
el: '#app',
data: {
states: [
'Alabama’',
'Alaska’,
'Arizona’,
'California',

'Nevada'

}
})
</script>

* 1 The v-for directive using the state in states syntax.

More

The states array has five values. Let’s create an ordered list to display each item. We
don’t have any keys, so we don’t need to worry about that. To create our list, we’ll use
the <o1>and <1i> tags. Add these tags to the top of the new detour.html file.

The v-for directive iterates through the states array and displays each state in the
list. Keep in mind that state is an alias to the array element being iterated on, whereas
states is the array item. It’s easy to get this confused; remember the alias always

comes first, then the optional key, then the array or object being iterated on.
When rendered, we’ll see a list of ours states in an ordered numbered list, as follows:

Alabama
Alaska
Arizona
California
Nevada

L N

We can now grow our list by adding values to our states object without having to

change the template.

Note

You may run into a situation where you need to directly manipulate the DOM, and you
may not want to use the v-mode1 directive. In this instance Vue.js offers us Sel. You
can use Sel inside your Vue instance with this. Sel. This will be the root DOM
element that the Vue instance is managing. From there you can run any type of
Document method, like querySelector (), to retrieve any element you’d like.
Remember, if you can, try to use the built-in Vue.js directives when working with the
DOM. They are there to make your job easier! For more information on $el and other

APIs check out the official API documentation at https://vuejs.org/v2/api/.

4.3. LEARNING MODIFIERS WITH THE APPLICATION

As mentioned earlier in the chapter, the v-mode1 directive can bind to our input
values. These values update with each input event. We can use modifiers with the v-
mode] directive to change that behavior. We can, for example, typecast values to
numbers using .number and use . t rim with our inputs (for more information about
modifiers, go to https://vuejs.org/v2/guide/forms.html#Modifiers). We can also chain
modifiers by adding one after the other (for example, v-model.trim.number). Let’s

add several of these modifiers to our checkout page on the application.

4.3.1. Using the .number modifier

The . number modifier is used to automatically typecast values in the v-model
directive as a number. This will be useful in our ZIP input box (we’ll assume ZIP Codes
in our app don’t start with a zero, otherwise the . number modifier removes the leading
zero). Let’s update the ZIP Code in the index.html file to use the . number modifier and

see what effect it has in the following listing.

Listing 4.18. The . number modifier on the ZIP form element: chapter-04/number-
mod.html

<div class="form-group">
<div class="col-md-6 col-md-offset-4">
Zip / Postal Code:
<input v-model.number="order.zip" 1

class="form-control"

type="number" />
</div>
</div>

¢ 1 Shows the v-model directive with the .number modifier

HTML inputs always return as strings, even if you add in t ype="number". Adding the
.number modifier prevents this behavior and instead returns as a number. To verify
this, let’s update the index.html with the t ypeof operator while displaying the
order.zip property in the template.

Listing 4.19. Using the typeof operator on order. zip: chapter-04/type-of.html

<div class="col-md-12 verify">
<pre>

First Name: {{order.firstName}}

Last Name: {{order.lastName}}
Address: {{order.address}}
City: {{order.city}}
Zip: {{typeof (order.zip) }} 1
State: {{order.state}}
Method: {{order.method}}
Gift: {{order.gift}}
</pre>

</div>

e 1 The JavaScript typeof operator returns the type of the unevaluated

operand.

Before we added the . number modifier, it would have displayed as a string. Now it
returns as a number. Type a number into the ZIP input box and re-render the page to

see the new output< as seen in figure 4.10.

Figure 4.10. Type of value entered into the zip property.

First Name: Erik

Lact Mame: Hanckhatrt
Address: 123 Street Ln
City: Rens
=ip: number
State: Nevada
Method: Home Address
Gift: Send AT A GATE

ZIP displays the
tyvpe of num ber.

You can see the ZIP column shows number in figure 4.10. Because we wrapped the ZIP
Code in the typeof operand, it shows us the type of that property. We'll be using this
feature later; for now we’ll remove the typeof operand so it returns the ZIP Code.
Delete the typeof operand from the order. zip property so all that remains is the

property { {order.zip}}.

4.3.2. Trimming the input values

When extracting form information, we often have no use for preceding whitespace or
whitespace after the text has been entered. If a user accidentally enters a few spaces
before typing their name, we need to remove them. Vue.js gives us a nice modifier to

trim the space automatically from our inputs.

In our application, we use input-string text boxes for the first name, last name, address,
and city. In the following listing, let’s update the first name and last name in the

index.html to see how the . t rim modifier works.

Listing 4.20. The . trim modifier on first and last name: chapter-04/trim-
mod.html

<div class="form-group">
<div class="col-md-6">
First Name:
<input v-model.trim="order.firstName" 1
class="form-control" />
</div>
<div class="col-md-6">
Last Name:
<input v-model.trim="order.lastName" 2
class="form-control" />
</div>
</div>

¢ 1 The v-model directive uses the .trim modifier for the order.firstName
property.

¢ 2 The v-model directive uses the .trim modifier for the order.lastName

directive.

To add the . t rim modifier all we need to do is add . t rim to the end of the v-model
directive. This will now trim our whitespace automatically for us! Now we can add it to
the address and city inputs in the index.html.

Listing 4.21. The . trim modifier on the address and city: chapter-04/trim-mod-
add.html

<div class="form-group">
<div class="col-md-12">Address:</div>
<div class="col-md-12">
<input v-model.trim="order.address" 1
class="form-control" />
</div>
</div>
<div class="form-group">
<div class="col-md-12">City:</div>
<div class="col-md-12">
<input v-model.trim="order.city" 2
class="form-control™ />
</div>
</div>

¢ 1 The v-model directive uses the .trim modifier for the order.address
property.
e 2 The v-model directive uses the .trim modifier for the order.city

directive.

If we look at the output at the bottom of the page after browser refresh, we’ll notice that

the whitespace is removed (figure 4.11).

Figure 4.11. An example of using the . trim modifier on the v-model directive.

o Enter value
w ith white space.

First Name: Last Name:
Erik
Address:
City:
State; Zip | Postal Code:
State ¥
Ship As Gift? * Home " Business

Firzt Mame: Erlk
Latt Mame:

9 W hite space iz rem oved for
output due to using .trim .

The first name input text box has the name Erik in it with many preceding whitespaces.
With that said, the output at the bottom has the trimmed value on display. In fact, if we
click outside the box, the value in the first name box syncs to the trimmed value. This is

the power of the . t rim modifier.

4.3.3. The .lazy v-model modifier

There is one last modifier that is known as the . 1azy modifier. As I mentioned earlier,
the v-mode1 directive syncs after each input event. In practice, this occurs in a text box
after each letter is typed. The value is synced on each keystroke. The . 1azy modifier
will sync on change events instead. Change events occur in a variety of situations
depending on the form element used. A check box or radio button will trigger a change
event when it’s clicked. An input text box will trigger a change event when it loses focus.
Different browsers might not trigger change events on the same interactions, so keep

that in mind.

Typically, a . 1azy modifier will look like the following when added to a v-model

directive:

<input v-model.lazy="order.firstName" class="form-control" />

EXERCISE
Use your knowledge from this chapter to answer these questions:

e How does two-way data binding work? When should you use it in your Vue.js

application?

See the solution in appendix B.

SUMMARY

* The v-model directive can be used to bind input, select, text areas, and
components. It creates a two-way data binding on form input elements and

components.

e The v-for directive renders data multiple times based on the data that it’s given.
You can use an alias in the expression on the current element being iterated on as

well.

¢ The v-model directive has the . trim, .1lazy, and . number modifiers. The . trim
modifier eliminates whitespace while the . number modifier typecasts strings as

numbers. The . 1azy modifier changes when data is synced.

Chapter 5. Conditionals, looping, and lists

This chapter covers

e Working with the conditionals v-if and v-if-else
e Looping using v-for
e Looking at array changes

In the previous chapter, we saw the power of the v-mode1 directive and how we can
use it to bind inputs to our application. We constructed a checkout page that displayed
all the input forms we needed to gather from the user. To display this page, we used a

conditional statement.

In chapter 3, we created a checkout button bound to a click event method. This method
toggles a property called showProduct. In our template, we used the v-i f directive
and the v-else directive. If showProduct was true, the product page was displayed;
if showProduct was false, the checkout page was displayed. By clicking the checkout
button, users can easily switch between these pages. In later chapters, we’ll look at

refactoring this code to use components and routes, but for now this will work.

To expand our app, we’ll look at other types of conditionals. For example, we need to
add a new feature that displays messages to the user based on available inventory
levels. In addition, we need to add more products to our product page. We’ll look at that

more closely in section 5.2.

5.1. SHOW AN AVAILABLE INVENTORY MESSAGE

Every time an additional item is added to our shopping cart, the cartItemCount
computed property is updated. What if we want to let the user know how many are
available? Let’s display a few messages when the available inventory is almost out. We’ll

use the v-1if, v-else-if, and v-else directives to make this possible.

5.1.1. Adding how many are left with v-if

Before we begin, let’s add more inventory. This will make it easier to display a message
to the user as they put more items into their cart. To add inventory, we can update our

product property in the data object. Edit the availableInventory product property
in index.html. Let’s change it from 5 to 10, as shown in listing 5.1. That should be

enough for now.

If you've been following along from previous chapters, you should have an index.html
file. If not, you can always download the completed chapter 4 index.html file that’s
included with this book as a starting point, along with any code snippets and CSS. As
always, each listing is broken into its own file. Make sure to add each snippet into

index.html as you continue.

Listing 5.1. Updating the inventory: chapter-05/update-inventory.js

product: {
id: 1001,
title: "Cat Food, 251b bag",
description: "A 25 pound bag of irresistible, organic goodness

for your cat.",

price: 2000,

image: "assets/images/product-fullsize.png",
availableInventory: 10 1

}y

e 1 Adds inventory

Now that the inventory has been updated, let’s add a conditional to the template when
the available inventory is low. We’ll display a message showing the remaining inventory
that the user can add to their cart. In listing 5.2 we can see the new span tag with the v-
i f directive. A class called inventory-message was also added to this span. This
CSS makes the message stand out better and positions it correctly. I've added basic
formatting to make our message look a little nicer. The v-1i £ directive is flexible. You’'ll
notice that we aren’t using a specific property the way we did in chapter 3 with
showProduct. Instead, we're using an expression. This is a nice touch that Vue.js

allows us to do.

When the Add to cart button is clicked, the checkout number at the top increments.
When the inventory reaches fewer than 5 (product.availableInventory -
cartItemCount), a message appears that displays the amount of remaining
inventory. This count continues to decrement as the button is pressed until the

inventory reaches zero.
https://avxhm.se/blogs/hill0

mounir
Typewriter
https://avxhm.se/blogs/hill0

Locate the addToCart button in our template. Add a new span tag with our v-if

directive in the index.html file, as shown here.

Listing 5.2. Adding a new message based on inventory: chapter-05/add-
message.html

<button class="btn btn-primary btn-1g"

v-on:click="addToCart"

v-1if="canAddToCart">Add to cart</button>

<button disabled="true" class="btn btn-primary btn-1g"

v-else >Add to cart</button>

<span class="inventory-message" 1
v-if="product.availableInventory - cartItemCount < 5">
Only {{product.availableInventory - cartItemCount}} left!

* 1 Span class adds a message and adds an inventory-message class

e 2 The v-if directive will only display if the expression is true.

Reminder

Keep in mind the source code, including this app.css file, is available to download for
this chapter and all other chapters from Manning at www.manning.com/books/vue-js-in-

action.

We could have used a computed property in this v-1i £ directive but for the sake of
simplicity, using an expression like this will work. Keep in mind that if your expressions

are getting too long inside your template, you're probably better off using a computed

property.

A quick look at v-show

The v-show directive is a close relative of the v-i f directive. The use of both is similar:
<span v-show="product.availableInventory - cartItemCount <
5">Message. The only real difference is that the v-show directive will
always be rendered in the DOM. Vue.js uses a simple toggle in CSS to display the
element. If you're confused about which one to use, use v-1i £ if it’s followed by v-else
or v-else-1if. Use v-shouw if it’s more likely to be shown/rendered in most cases or if

it’s likely that the visibility of the element will be changed more than once during the

lifetime of the page. Otherwise, use v-1if.

Let’s look at what we have so far (figure 5.1).

Figure 5.1. Product page with only four items left, the result of using the v-if

directive.
B - o x
[Vs ju Bt Papusa w
O | O ShediiF i Userswhanchatt/musis-in-acsoncadeichapte-05 fndechtmi Y
Vue.js Pet Depot b
Cat Food, 25Ib bag
A 25 pound bag of irresistible, organic goodness
fior your cat.
£20.00

Only 4 left!

.

Wew display that shows num ber of item s
left. Created with the v-if 4 irective.

5.1.2. Adding more messaging with v-else and v-else-if

We have a slight problem. When the inventory reaches 0, the message displays “Only o
left!” Obviously, that doesn’t make sense, so let’s update the code so it outputs a better
message when the inventory reaches 0. Add a message that encourages the user to buy
now. This time we’ll introduce the v-else-if and v-else directives! Let’s break
down what we want to do and how we’ll do it. The v-1if directive will display if the
inventory count, minus the cart item count, equals zero. If we add all the items to the

cart, the product inventory is all gone.

In figure 5.2, we see the completed functionality that shows a message (All Out) when

the inventory is sold out.

Figure 5.2. Product page shows All Out! after the inventory is exhausted.

[Vs ju Pet Diepact *
C | D fhedfiF e rhancwi e - n-action code/chapter-05/mdea himl

™10 Checkout

Vue.js Pet Depot

Cat Food, 25Ib bag

A 25 pound bag of irmesistible, crganic goodness
for your cat.

£20.00

m

Message d isplayed when
inventory runs out.

If the product isn’t sold out, we continue to the v-else-1if directive. If the available

inventory is close to selling out and fewer than five are left, we’ll display a message, as

Figure 5.3. Shows the Buy Now! screen

N <\ B - o £
C | D he/Filsers/thanc /e s-n-Kuancode chaptee-03 mdenneml ¥
Vue.js Pet Depot ¥ Checkout
Cat Food, 25Ib bag
A 25 pound bag of irresistible, crganic goodness
for your cat,
$20.00

{_/

Message is displayed when inventory
is greater than or equal to 5.

The last e1se triggers only if both the v-else and v-else-if are false. The v-
else directive is a catch-all when everything else falls through. If this occurs, we want a
Buy Now message to appear next to the cart button. Update the span tag we added with
the following code in the index.html file.

Listing 5.3. Adding multiple inventory messages: chapter 05/multiple-
inventory.html

<button class="btn btn-primary btn-1g"
v-on:click="addToCart"
v-if="canAddToCart">Add to cart</button>
<button disabled="true" class="btn btn-primary btn-1g"
v-else >Add to cart</button>
<span class="inventory-message"
v-if="product.availableInventory - cartItemCount === 0">All Out! 1

<span class="inventory-message"
v-else-if="product.availableInventory - cartItemCount < 5"> 2
Only {{product.availableInventory - cartItemCount}} left!

<span class="inventory-message"
v-else>Buy Now! 3

1 Shows the v-if directive that will only display if the inventory runs out

2 This directive will only trigger if the first v-if fails.

3 The v-else will trigger if both v-if and v-if-else fail.

Working with conditionals

When working with v-if, v-else, and v-else-if, we must be aware of a few things.
Any time you use v-else, it must immediately follow a v-if or v-else-if. You
cannot create extra elements in between. Like v-else, a v-else-if must also
immediately follow a v-1if or v-else-1if element. Failure to do this causes the v-

else-if or v-else not to be recognized.

Keep in mind that the v-else-if directive can be used more than once in the same
block. For example, in our application we could have included multiple messages when
the item was close to selling out. This would have been possible with the v-else-if

directive.

With all that said, be careful with using too many conditionals and putting too much

logic in the template. Instead, use computed properties and methods when needed.

This will make your code easier to read and more understandable.

5.2. LOOPING OUR PRODUCTS

Since we introduced our pet depot store in chapter 2, we've been working with only one
product. This has worked well up to now with the examples in previous chapters, but
once we add more products, we’ll need a way to display them all in our template. In
addition, we want to show a simple star rating at the bottom of each product. The

versatile v-for directive can handle both scenarios.

5.2.1. Adding a star rating with v-for range

Vue.js has the v-for directive to loop through items, as we saw briefly in chapter 4. It’s
worth mentioning that we can use it with objects, arrays, or even components. One of
the simplest ways of using the v- for directive is by giving it an integer. When added to
an element, it will be repeated that many times, which is sometimes referred as a v-

for range.

Let’s begin by adding a five-star rating system to our product. To keep it simple, let’s
use a span tag and add the v-for directive to it. The v-for syntax is always in the
formof item in items. The items refers to the source array data being iterated on.
The itemis an alias element being iterated on. As you can see in figure 5.4, the v-for

directive uses the i tem as an alias of i tems. The items is an array.

Figure 5.4. Diagram showing how v-for alias works.

Array being
v-for directive iterated on Closing tag

/ /

<]li v-for="item in items">{{item}}</1li>

/ \ \

Tag name Alias of element Each item in array
being iterated on

When using v-for ranges, the source data is the upper inclusive limit of the range.
This signifies how many times an element will be repeated. In figure 5.5 you can see that

n is iterated on five times.

Figure 5.5. Diagram showing how v-for ranges works.

v-for directive Star

/

w

/ \ \

Tag name Set range to Closing tag
iterate by

In listing 5.4, we're going to repeat the 7+ symbol five times. We also add in a div with a
class called rating. (Remember to download the ap.css for this book; you’ll find more
information in appendix A.) Add this span as shown in the following listing inside the

index.html below the inventory messages we added in section 5.1.

Listing 5.4. Adding star symbol using v-for: chapter 05/star-symbol.html

<span class="inventory-message"

v-else>Buy Now!

<div class="rating">

i§ 1
</div>

* 1 Repeats the star symbol five times

Once we add the stars to the template, refresh your browser. It should look like figure
5.6.

Figure 5.6. With star rating

B - o x
[Vits Fer Dapet x
O D S P sarnirhanchatuvitis- in-2050n/cod thapter-05 findex v G
Vue.js Pet Depot ¥ Checkout

Cat Food, 25Ib bag

A 25 pound bag of irresistible, organic goodness
for your cat.

$20.00

Buy Now! I fr fr or 7

Star rating created
from wv-for.

As you can see, there isn’t much to show with our star rating: each star is empty. We’ll

need a way to dynamically bind a class to our CSS so we can show a filled-in star.

5.2.2. Binding an HTML class to our star rating

Vue.js gives us a way to dynamically add or remove classes to HTML elements in our
template. We can pass data objects, arrays, expressions, methods, or even computed

properties to help determine which classes appear.

Before we can get started, we need to edit the product data object property and add a
rating. This rating will determine how many stars each product should display. Open
the index.html file and find the product property under order. Add the rating to the
bottom of the product property, as shown in the following listing.

Listing 5.5. Adding to the product property: chapter 05/add-product.js

product: {

id: 1001,

title: "Cat Food, 251b bag",

description: "A 25 pound bag of irresistible, organic goodness
for your cat.",

price: 2000,

image: "assets/images/product-fullsize.png",

availableInventory:10,

rating: 3 1
by

* 1 Adds a new rating property

Next, we need to display the star rating on the screen. The easiest way of doing this is
with CSS and a little bit of JavaScript. We’ll add simple CSS that creates a black star
when the class is added to our span element. For our example, we’ll need the first three
stars to appear black. The last two remaining stars will appear as white. Figure 5.7 is an
example of what it should look like when we’re done.

Figure 5.7. With filled-in star rating for the cat food product

M Vo ju Pt Dapuct o
C | D fhediFsers shanctivues-in-sction/code/chapter-05 inde. hami Y

Vue.js Pet Depot W Checkout

Cat Food, 258Ib bag

A 25 pound bag of irresistible, organic goodness
for your cat.

$20.00
m Buy Now! e A

/\/

Rating created
from wv-for.

As I mentioned, we can use a method to help determine whether a class should appear.
Because we're using a v-for range, we’ll need to pass in the range to a method. Let’s
add a new method that reads the rating from the product and then returns true if the

class should be added or not to the span. The class will make the star black.

To make this work, we must pass in a variable n to the method. The passed-in variable
n comes from the v-for range directive %.
Although we didn’t display it in our template, n increments from 1 to 5. The first loop’s
n is 1, the next loop’s n is 2, and so on. We know that as n loops it will increment from 1,

2, 3, 4, to 5. We can use simple math to determine if the star should be filled in.

In our example the first iteration n should be 1 and this.product.rating will
always be 3. 3 — 1 = 2 is greater or equal to 0 so we return true and the class is added.
The next iteration n will be 2. 3 — 2 = 1 is greater than or equal to 0 so it evaluates to
true again. The next iteration n will be 3. 3 — 3 = 0, so the class is added again. The
next iteration n will be 4. 3 — 4 = -1 and therefore the method returns false. It’s that
simple. Add a new method called checkRating at the top of the method object in the

index.html file, as shown here.

Listing 5.6. Adding a method to check if class should be added: chapter 05/check.js

methods: {
checkRating (n) {

return this.product.rating - n >= 0; 1

bo

e 1 Returns true or false depending on rating and n

To put our new star rating all together, we need to add the v-bind:class syntax to
our span element. It will add our new class, rating-active, if the method returns
true. Otherwise it will be ignored. In this example, we’re passing an object to the v-
bind:class. The truthiness of the checkRating method will determine if the
rating-active classis added. Because this is in a loop, we must also pass in the

value n, as we discussed before, which iterates with every loop.

Update the rating span in index.html and add the new v-bind:class directive to it,
as shown in the next listing. Make sure to add the quotes around rating-active.

Otherwise, you’ll get an error in the console.

Listing 5.7. Adding class binding: chapter 05/add-class-bind.html

<span class="inventory-message"

v-else>Buy Now!

<div class="rating">

<span v-bind:class="{'rating-active': checkRating(n) }" 1
v-for="n in 5"{&>

</div>

e 1 The binding of rating-active is determined by checkRating.

These are the basics of binding HTML classes. Vue.js allows you to add multiple classes
and use arrays and components. For more information on how to bind classes, check
out the official Vue.js guides on classes and style bindings at

https://vuejs.org/v2/guide/class-and-style.html.

5.2.3. Setting up our products

Until now we’ve worked with only one product. A real pet store app would have
hundreds if not thousands of products. We won’t go that far! Let’s see what it takes to
add in five new products and what we could use to loop through those products on our

product page.

To get started, we'll look at our product object. It’s already taking up space in our

index.html file and at this point it will be easier to put it in a separate file.

We need to create a new products.json file and add it to the chapter-o5 folder. That

way, we can more easily organize our data from our main application. If you want, you

can add your own products, the way you did in the data object. But if you don’t want to
type all this, you can grab the products.json file from the code that’s included with the
book and copy it to the chapter-o05 folder. You can find instructions on how to
download the code for this book in appendix A. This listing shows the products in the

products.json file.

Listing 5.8. Products in the products.json file: chapter 05/products.json

"products": [1
{
"id": 1001, 2
"title": "Cat Food, 251b bag",
"description": "A 25 pound bag of irresistible, organic

goodness for your cat.",
"price": 2000,
"image": "assets/images/product-fullsize.png",
"availableInventory": 10,

"rating": 1

"id": 1002, 3
"title": "Yarn",
"description": "Yarn your cat can play with for a very

long time!",
"price": 299,
"image": "assets/images/yarn.jpg",
"availableInventory": 7,

"rating": 1

"id": 1003, 4
"title™: "Kitty Litter",
"description": "Premium kitty litter for your cat.",

"price": 1100,
"image": "assets/images/cat-litter.jpg",
"availableInventory": 99,

"rating": 4

"id": 1004, 5
"title": "Cat House",
"description": "A place for your cat to play!",

"price": 799,
"image": "assets/images/cat-house.jpg",
"availableInventory": 11,

"rating": 5

"id": 1005, 6

"title": "Laser Pointer",

"description": "Drive your cat crazy with this amazing

product.",
"price": 4999,
"image": "assets/images/laser-pointer.jpg",
"availableInventory": 25,

"rating": 1

1 Shows the products array in JSON
e 2 Shows the first product

* 3 Shows the second product

e 4 Shows the third product

¢ 5 Shows the fourth product

e 6 Shows the fifth product

After you’ve added or downloaded the products.json file and moved it to the chapter 5
root folder, you’ll need to do additional refactoring. If you're following along, there’s a
good chance you’re loading up everything locally from your hard drive instead of using
a web server. This is perfectly fine and works great, except for one thing. Due to security
concerns from browser creators, we can’t easily load our products.json file. To do this

right, we need to create a web server.

Looking ahead

When you run a site using a local web server, it can load JSON files from your hard
drive with no problem, and you won’t have any security concerns. In later chapters,
we’ll use the Vue CLI. This command-line tool will create a web server for us. Until we
get there, we can use an npm module called http-server. You can find instructions on
how to install npm in appendix A. This lightweight module makes it a snap to create a

simple web server for our app.

We'll use npm to create a web server. Open a terminal window and run the following

command from the command prompt to install the http-server module:

$ npm install http-server -g

After the installation completes, change directories to the chapter 5 folder. Run the

command to start a server running your index.html on port 8000:

$ http-server -p 8000

If you receive any errors after running this command, verify that you don’t have any
other programs running on port 8000. You may want to try 8001 as the port number

instead.

Once it starts, open your favorite web browser and head over to http://localhost:8000
to display your web page. If the page doesn’t display, double-check the command line
for errors. You may want to try changing the port if port 8000 is already taken.

5.2.4. Importing products from product.json

Remember in chapter 2 when we learned about Vue.js lifecycle hooks? We need to load
our JSON file as soon as the webpage loads. One of those hooks would be perfect in this
situation. Do you know which one? If you said the created lifecycle hook you are
correct! The created lifecycle hook is called after the instance is created. We can use this
hook to load the JSON file. To make this work we’ll need another library.

Axios is a promise-based HTTP client for the browser and Node.js. It has several
helpful features such as automatic transforms of JSON data that will come in handy.
Let’s add this library to our project. Inside the index.html, add a new script tag for

Axios in the head tag, as shown in the following listing.

Listing 5.9. Adding Axios script tag: chapter 05/script-tags.html

<link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.cs
" integrity="sha384-
BVYiiSIFeK1dGmJRAkycuHAHRg320mUcww/70on3RYdg4Va+PmSTsz/K68vbdEjh4u"
crossorigin="anonymous">

<script src="https://cdnjs.cloudflare.com/ajax/libs/axios/0.16.2/axios.]
</script>
</head>

e 1 Shows a CDN script tag for Axios

After this tag is added, we can use Axios in our created lifecycle hook. Insert the created
hook in the index.html file right after the filters object. We’ll need to add in code that

retrieves the products.json file from the hard drive and overwrites our existing product

data. Update the index.html and add the Axios code.

Listing 5.10. Adding Axios tag to create a lifecycle hook: chapter 05/axios-

lifecycle.js
b
created: function () {
axios.get ('./products.json') 1
.then ((response) =>{
this.products=response.data.products; 2

console.log(this.products);
})
by

* 1 Retrieves the products.json file

e 2 Adds the response data to products

The axios.get command takes in a location, in our case the local file. It then returns
a promise that has a . then method. The promise is fulfilled or rejected and returns a
response object. Per Axios documentation, this object has a data property. We copy the
response.data.products reference to this.products (this refers to the Vue

instance). To make sure everything is okay, we also console-logged the output.

If you look closely at the code in listing 5.10, you may realize that we’re assigning the
data from the JSON file to this.products, not this.product. We need to create a

new products property on our data object because it helps clean up the code.

Open the index.html file and look for the data object near the middle of the file. Add the
new products property and then replace the product property because we no longer

need it, as shown in the following listing.

Listing 5.11. product property, add products: chapter 05/product-delete.js

business: 'Business Address', 1
home: 'Home Address',
gift:'',

sendGift: 'Send As A Gift',
dontSendGift: 'Do Not Send As A Gift'

by
products: [], 2

e 1 Orders object without any changes

e 2 Shows the new products array that replaces product object

At this point, if you try to refresh your browser you’ll get an error because we removed
the product object. We'll fix that when we add the v-for directive to loop through all
the products.

5.2.5. Refactoring our app with the v-for directive

Before we can start looping through our products, we’ll need to make slight changes to
the div classes that control our CSS. Because we're using Bootstrap 3, we want each
row to be a product because we must now accommodate more than one product. When

we get done, it will look like figure 5.8.

Figure 5.8. Final update of products.

3 Wen Pt Dmpert
08 | i BN K15 |

Vue.js Pet Depot w2 Lieckou

Cat Food, 25Ib bag

A 25 pound bag of irresistible, organic goodness
for your cat,

$20.00

EAT= Buy Now! TR R

Yarn

m Yarn your cat can play with for a very long time!
:l P l'l e

Update index.html and locate the v-e1se directive that displays the checkout page.

Add another div tag for a new row, as shown in the following listing.

Listing 5.12. Fixing CSS for Bootstrap: chapter 05/bootstrap-fix.html

<div v-else>

<div class="row"> 1

e 1 Shows the new Bootstrap row

We’'ll need to move the div with the class row that’s right before the showProduct
v-if directive. Move the div class to the position below showProduct, as seen in the

following listing. Update the index.html so it matches.

Listing 5.13. Fixing CSS for bootstrap: chapter 05/bootstrap-fix-v-if.html

<div v-if="showProduct">

<div class="row product"> 1

* 1 Moves div for row below showProduct

Now that we have the minor issues with the CSS/HTML resolved, we can add our v-
for directive that loops through all the products. This will display all the products on
our page. In our example, we'll use the syntax product in products.products is
the object that we loaded earlier; it is now an alias to each individual product in
products. We'll also update the column widths using Bootstrap so that our products

are displayed a little nicer.

Inside index.html, add the v-for directive below the showProduct v-if directive.

Make sure to end the div tag at the bottom of the page, as shown here.

Listing 5.14. Adding the v-for directive for products: chapter 05/v-for-
product.html

<div v-if="showProduct">
<div v-for="product in products"> 1
<div class="row">
<div class="col-md-5 col-md-offset-0"> 2
<figure>

</figure>

</div>
<div class="col-md-6 col-md-offset-0 description"> 3
</div><!-- end of row-->
<hr /> 4
</div><!-- end of v-for--> 5
</div><!-- end of showProduct-->

* 1 Loops through all the products using the v-for directive
e 2 Changes column width to 5 without offset

¢ 3 Changes column width without offset

* 4 Adds horizontal rule tag

e 5 Shows the closing tag for v-for directive

We've added the v-for directive but we have a few small problems. The checkRating

method and the canAddToCart computed property are still referencing

this.product. We need to change this so it references the this.products array

instead.

This can be a little tricky. Let’s begin by fixing the checkRat ing method. This method
helps us determine how many stars each product has. We can fix it by passing the
product alias into the method. Inside index.html, update the checkRating method, as

shown here.

Listing 5.15. Updating checkRating with product info: chapter 05/check-
rating.js

methods: {
checkRating (n, myProduct) { 1
return myProduct.rating - n >= 0;

bo

* 1 Shows the new checkRating method that accepts a product

We now need to update the template and pass in the product to our updated method.
Update the index.html and look for the checkRat ing method below the inventory

messages. Add product to the checkRating method, as shown next.

Listing 5.16. Updating template for ratings: chapter 05/update-template.html

<span class="inventory-message"
v-else>Buy Now!

<div class="rating">
<span v-bind:class="{'rating-active': checkRating(n, product)}" 1
v-for="n in 5" >i§

</div>

* 1 Updates the checkRating method so it accepts a product

If you haven’t done so, grab the pictures from the chapter in the assets/images folder
and copy them to your local assets/images folder. Also grab the app.css file, if you

haven’t already, and copy it to your assets/css folder.

One of the last things we need to do to finish refactoring our app is to fix the
canAddToCart computed property. This property greys out the Add to Cart button

after the available inventory exceeds the amount in the cart.

You may be wondering how we can accomplish this. Before, we had only one product,

so it was easy to figure out if that product’s inventory had been exceeded. With multiple
products, we need to loop through every product in the cart and calculate whether or

not we can add another item.

This is easier than you might think. We need to move the canAddToCart computed
property and make it a method. Then we need to update the method so it can accept a

product. Finally, we’ll update the conditional so it retrieves the count.

To retrieve the count, we’ll use a new method called cartCount that accepts an ID and
returns the number of items for that ID. The cartCount method uses a simple for
loop to iterate through the cart array. For every match, it increments the count

variable. It then returns that variable at the end.

Update index.html with the new canAddToCart method. You can move it from the

computed property section to methods. Create a cartCount method as well.

Listing 5.17. Updating canAddToCart and adding cartCount method: chapter
05/update-carts.js

canAddToCart (aProduct) {

return aProduct.availableInventory > this.cartCount (aProduct.id); 1
by
cartCount (1d) { 2
let count = 0;
for(var 1 = 0; 1 < this.cart.length; 1i++) { 3
if (this.cart[i] === id) {
count++;

}

return count;

e 1 Returns whether the available inventory is greater than the count of

items in the cart

¢ 2 Shows the new cartCount method that returns the number of items in
the cart for ID

* 3 Shows the loop that checks every item in the cart

To complete our updates to canAddToCart, we must update our template and pass the
product to it. At the same time, let’s update the addToCart method and make sure it
also accepts a product. Update index.html and pass in the product alias to the
canAddToCart and addToCart methods.

Listing 5.18. Updating canAddToCart template: chapter 05/update-can-add-
cart.html

<button class="btn btn-primary btn-1g"
v-on:click="addToCart (product)" 1
v-if="canAddToCart (product) ">Add to cart</button> 2

e 1 Updates addToCart so it accepts product

e 2 Updates canAddToCart so it accepts product
This was a simple update to both methods. Because we’ve updated the template to

addToCart, we must also update the method to push the ID of the product. For this

we’ll use the push mutation method, shown in listing 5.19.

Mutation methods

Vue has many mutation methods that you can use with your arrays. Vue, by convention,
wraps arrays in observers. When any changes occur to the array, the template is
notified and updated. Mutation methods mutate the original array they’re called upon.

These mutation methods include push, pop, shift, unshift, splice, sort, and reverse.

Be careful: there are certain changes to arrays that Vue cannot detect. These include
directly setting an item, this.cart [index] = newValue and modifying the length,
this.item.length = newLength. To learn more about mutations, see the official

guide at https://vuejs.org/v2/guide/list. html#Mutation-Methods.

Listing 5.19. Updating addToCart method: chapter 05/update-add-to-cart.js

addToCart (aProduct) {
this.cart.push(aProduct.id); 1

bo

e 1 Pushes the product ID into the cart

Now we can click the Add to cart button without any problems. Every time the button is
clicked, the product ID will be pushed into the cart and the cart count will be updated

automatically at the top of the screen.

The last step of our refactor is to fix the product inventory messages that we created

earlier. The problem is that we’re still using the total cart item count to determine

which messages to display. We need to change this code so that we now calculate the

message based on the cart item count of only that item.

To fix this issue, let’s change from the cartItemCount method to our new
cartCount method, which will accept a product ID. Update the index.html and locate
the inventory messages. Update the v-1i f and v-else-1if directives with the new

expression that uses cartCount, as shown here.

Listing 5.20. Updating the inventory message: chapter 05/update-inventory.html

<span class="inventory-message"
v-if="product.availableInventory - cartCount (product.id) === 0"> 1
All Out!

<span class="inventory-message"
v-else-if="product.availableInventory - cartCount (product.id) < 5"> 2
Only {{product.availableInventory - cartCount (product.id)}} left!

<span class="inventory-message"
v-else>Buy Now!

e 1 Lists the new expression for v-if directive with cartCount

e 2 Lists the new expression for v-else-if directive with cartCount

That’s it! We can now load our page and see the results. Make sure that you have the
http-server running http-server -p 8000 and reload your web browser. You
should see the updated webpage with all the items listed that were pulled from the
products.json file. Figure 5.9 shows our completed refactored app using the v-for

directive to loop through our products object.

Figure 5.9. Showing several items that are being looped through the product.json
file

Cat Food, 25Ib bag

A 25 pound bag of irresistible, organic goodness

for your cat.
£20.00
Acdd te cart All Qut! * & ok B
|
!
Cat House

A place for your cal to play!
s 57.99

IR All Out! TR R

In your browser, make sure that everything works as you expect. Click the Add to cart
button and see the messages change. Verify that the button is disabled when the item
count reaches zero. Try to change the products.json file and reload the browser.

Everything should update accordingly.

5.3. SORTING RECORDS

Often when working with arrays, or objects in our case, you may want to sort the values
when displaying them using the v-for directive. Vue makes this easy to do. In our

case, we'll need to create a computed property that returns our sorted results.

In our app, we load the product list from the JSON file. The order displayed matches
the order in the file. Let’s update the sort order so products are listed alphabetically by
product title. To do this, we’ll create a new computed property called
sortedProducts. We first need to update the template.

Update the index.html file and find the v-for directive in the template that lists our

products. Change the v-for to use sortedProducts instead of the products object.

Listing 5.21. Adding sorting to the template: chapter 05/add-in-sort.html

<div v-if="showProduct">
<div v-for="product in sortedProducts"> 1

<div class="row">

* 1 Adds new sortedProducts computed property

Now that we've sortedProducts in place in the template, we need to create the
computed property. But we’ve a problem to solve. We’ll need to be aware that the data
for this.products may not be available right away because information from the
products.json file is loaded from a promise in the create lifecycle hook as the app loads.
To make sure this isn’t a problem, we’ll surround our code with an i f block that verifies

the products exist.

Let’s define our own compare function that will sort on the title, as shown in the
following listing. Then we’ll use JavaScript’s array sort, with our passed-in compare

function, to alphabetically sort by title.

Listing 5.22. sortedProducts computed property: chapter 05/sort-products-
comp.js

sortedProducts () {
if (this.products.length > 0) {
let productsArray = this.products.slice(0); 1
function compare(a, b) {
if(a.title.tolLowerCase() < b.title.toLowerCase())
return -1;
if(a.title.toLowerCase() > b.title.toLowerCase())
return 1;
return 0;

}

return productsArray.sort (compare) ; 3

e 1 Converts object to array using JavaScript’s slice
e 2 Compares function that will compare based on title

* 3 Returns new product array

That should do it. Refresh the browser and you should see an alphabetical list of all the
products by title. Figure 5.10 shows the output of our sorted array. If you scroll down, all
products should be listed. Double-check to verify that the functionality works as

expected.

Figure 5.10. Sorted products array

Cat Food, 25Ib bag

A 25 pound bag of iresistible, organic goodness

for your cal.
$20.00
Add locart -1 K8 T4 I R
Cat House
A place for your cal to play!
57.99

- All Out! R

EXERCISE

Use your knowledge from this chapter to answer this question.

e What’s a v-for range and how does it compare to a normal v-for?

See the solution in appendix B.

SUMMARY

e Conditionals in Vue are created using the v-if, v-else-if,and v-else

directives. Occasionally we’ll use the v-show directive but not often.

e The v-for directive is very versatile. It can be used to iterate over a range of
positive integers (that is, starting at 1), array elements, or object property values and
keys to replicate HTML markup, Vue templates, or Vue components. Any type of

expression can be used to loop through items.

e We can easily sort values with computed properties. Computed properties can be

used with the v-for directive to sort output

Chapter 6. Working with components

This chapter covers

Understanding parent and child relationships in components

Learning about local and global registration

e Using props and prop validation

Adding custom events

In the previous chapters, we learned about conditionals, looping, and lists. Instead of
repeating code, we used loops to simplify things. We used conditionals to show
different messages depending on the user action. This works, but you may have noticed
that our application has grown to more than 300 lines of code. The index.html file
we’ve been updating every chapter has computed properties, filters, methods, lifecycle

hooks, and data properties in it. With all this information, it’s not easy finding things.

To help solve this, we need to separate our code and componentize it. Each part of the

code should be reusable and allow properties and events to be passed to it.

Vue.js components can help us accomplish this. Before we begin, let’s look at several of
the fundamentals of components and a few examples of how they work. Then we’ll look
at local and global registration of components. Afterward, we’ll see a few examples on
how to pass props and how to validate them. We’ll end the chapter with defining our

templates and custom events.

You maybe be wondering what happened to our pet store application. Don’t worry, we’ll
look at this in the next chapter when we look at single-file components, build tools, and
Vue-CLI.

6.1. WHAT ARE COMPONENTS?

Components in Vue.js are a powerful construct that reduce and simplify our code base.
Most Vue.js apps consist of one or more components. With components, we can pull

out repeated parts of our code and separate them into smaller logical parts that make

more sense to us. We can reuse each component throughout our application.
Components are defined as a collection of elements that can be accessed through a
single element. In certain cases, they can appear as a native HTML element using a

special is attribute (we’ll look at that operator later in this chapter).

Figure 6.1 is a simple example of converting a few HTML tags into one component. All
of the HTML inside the opening and closing <div> tags are encapsulated in the one
component: my-component. It’s worth mentioning that you can also have a self-
closing tag, <my-component /> if your web browser supports it or you're using single-

file components that we’ll discuss later in the chapter.

Figure 6.1. Example of encapsulating code into a component

n We can group together
/—> o set of HTML elements,
<div>

 plos S S
<p>Component Example</p=> : 'fl‘ﬂ}-’—cr::-mpﬂnent}-:fmy—ccmpr:rnent}
 PR Bl
</Aiv>e s o * * °

@ HTML elements are encapsulated into
ohe component called my-component.

6.1.1. Creating components

Before we can create our first Vue component we must create a Vue.js root instance,
and then we must decide how to structure our application. Vue.js gives us the option to
register our components either locally or globally. Global components can be used
throughout the application, while local components can only be used in the Vue.js

instance that created it. Let’s create a global component first.

Global components, as we mentioned earlier, can be used in all Vue.js instances. In this
example, we’re creating a global component called my-component. Vue.js allows much
flexibility in naming our components. Keep in mind that Vue.js doesn’t enforce any

rules for component names, the way other frameworks do. It’s good practice to name all

your components lowercase with hyphens.

6.1.2. Global registration

To create a global component, we must place it before the Vue instance. As you can see
from listing 6.1, the global component (my-component) is defined right before it’s

created with new Vue.

To display information in our component, we must add a template property. The
template is where the HTML resides. Keep in mind that all templates must be
surrounded by a tag. In our example, we’ve surrounded it in a <div> tag; otherwise,

you’ll see an error in the console, and the template won’t render on the screen.

The last thing we need to do to get our component to render is to add it to the parent’s
template. To get this working, we add the <my-component></mycomponent> custom
tag inside the parent entry point of our app, <div id="app">, as shown in the
following listing. While going through this chapter, try these examples for yourself.

Make sure to save them as a .HTML file and load them in your web browser.

Listing 6.1. Creating our first global component chapter-06/global-component-
example.html

<!DOCTYPE html>
<html>
<head>
<script src="https://unpkg.com/vue"></script> 1
</head>
<body>
<div id="app">
<my-component></my-component> 2
</div>
<script>
Vue.component ('my-component', { 3
template: '<div>Hello From Global Component</div>"' 4
})

new Vue ({ 5]
el: "#app"
1)
</script>
</body>
</html>

* 1 Adds script tag to Vue.js

¢ 2 Adds component to template

* 3 Registers global Vue to component
* 4 Renders template for component

* 5 Instantiates Vue instance

It goes without saying that our application isn’t too useful. If you open this file in a web
browser, you’'ll see a message on the page, “Hello From Global Component.” This is a

trivial example on how components work so you can understand the fundamentals.

Let’s look at local registration and see how that differs.

The is special attribute

You have special restrictions when using components in our DOM. Certain HTML tags
—, , <table>, and <select>—have restrictions on the type of elements
that can appear inside them. This is due to how the DOM hoists components out as
invalid content. The workaround is to use the is attribute. Instead of putting the
component inside those HTML tags, you can add the component to the element itself—
for example, <table> <tr is="my-row"></tr></table>.The tr element will
now be associated with the my-row component. We can create our own tr component
to match whatever functionality we like. This limitation doesn’t apply to inline, x-
templates, or .vue components. For more information on this attribute, check out the
official guides at http://mng.bz/eqUY.

6.1.3. Local registration

Local registration restricts scope to only one Vue instance. We can do this by registering
it with the component’s instance option. After the component is registered locally, it

can only be accessed by the Vue instance that registered it.

In listing 6.2 we see a simple example of a local component. It looks similar to the global
component that we registered before. The biggest difference is that we have a new

instance option called components.

The components instance option declares all components needed for that Vue instance.
Each component is a key-value pair. The key is always the name of the component that
you'll reference later inside the parent template. The value is the component definition.
In listing 6.2 the name of the component is my-component. The value is Component.

Component is a const variable that defines what’s inside the component.

In the following listing, we name our component my-component and the variable
Component. You can name these whatever you like, although, as mentioned earlier, try
to name the component using hyphens and lowercase, also known as kebab case. It’s
good practice.

Listing 6.2. Registering a local component: chapter-06/local-component-
example.html

<!DOCTYPE html>
<html>
<head>
<script src="https://unpkg.com/vue"></script>
</head>
<body>
<div id="app">

<my-component></my-component>

</div>
<script>
const Component = { 1
template: '<div>Hello From Local Component</div>' 2
i
new Vue ({
el: '#app',
components: {'my-component': Component} 3
1)
</script>
</body>
</html>

e 1 Shows the const variable that has the component declaration in it
e 2 This is the template that will be displayed for this component.

e 3 Shows the components instance option that declares components

Load the web page in a browser and you’ll see “Hello From Local Component.” If not,
double-check the console for any errors. It’s easy to leave a typo in, forget to surround

the template in the <div> tag, or forget to close all your HTML tags.

Kebab case vs. camelCase

Although you can name your components whatever you like, there’s one caveat. Inside
your HTML templates you must use the kebab case (lowercase with hyphens)
equivalent to the name you chose. Let’s say you register your component
“myComponent”. When using camelCase, your HTML templates must be in kebab case.
Therefore, the component would be named <my-component>. This is also true for
PascalCase. If you name your component, MyComponent, then your HTML template
must be in kebab case, <my-component> as well. This rule also applies to props, which

we’ll learn about later.

Later, when we look at single-file components, this won’t be a problem. Until then, stick
with kebab case. You can learn more about camelCase versus kebab case in the official

documentation at http://mng.bz/5q9q.

6.2. RELATIONSHIPS IN COMPONENTS

Imagine you're designing a commenting system. The system should display a list of
comments from each user. Each comment needs to contain the username, time and
date, and the comment. Each user of our system can delete and edit each of their own

comments.

Your first thought might be to use the v-for directive. This worked well in the last
chapter when it was used to iterate through our inventory list. That could work, but let’s
say our requirements change, and now we need to add a way to show threaded
comments, or a new upvote and downvote system is needed. The code will become

complicated very quickly.

Components can help solve this problem. In such a relationship, comments will be
displayed in a comment-list component. The parent (the Vue.js root instance) is
responsible for the rest of the app. The parent also contains a method to retrieve all the
comment data from a backend. The parent passes down the data it retrieved to the child
component, comment-1ist. The comment-1ist component is responsible for

displaying all the comments passed down to it.

Keep in mind that each component has its own isolated scope, so it should never access
the parent’s data directly. That’s why we always pass that data down. In Vue.js, the data
that’s passed down is called props. This is short for properties; but inside Vue.js you
must refer to it as props. Child components must explicitly state each prop it expects
to receive using the props option. This option will reside in the Vue.js instance and will
contain an array in the form like this: props: ['comment'] . In this example,
'comment ' is a property that will be passed down into the component. If we had
multiple props, then we’d separate each with a comma. Props are one-way from the

parent component to the child component (figure 6.2).

Figure 6.2. A parent component can send data to a child component.

Parent

component
A
#’ props: [' comment ']
Child |
component
&

Props are one-way

In chapter 4, we discussed how the v-mode1 directive creates a two-way data binding on
form inputs and text area elements. Changes to v-model elements update the data
properties in the Vue.js instance and vice versa. But components form a one-way data
binding. When the parent updates properties, it flows down to the child component and
not the other way around. This is an important distinction because it prevents the child
from accidentally mutating the parent’s state. If you mutate state, you’ll see an error in

your console, like the one in figure 6.3.

Figure 6.3. Error in console warns against mutating props directly.

@ »[vue ware]: Avele sotatieg o prop alrectly since the walue will be overwritten sheneves the parent component reé-renderi. Dnstesd, wse & cata of

Error when mnubakbing stakte shown ik console.

Note that all values are passed by reference. If an object or array is mutated in the child,
it will affect the parent state. This isn’t always the desired outcome and should be
avoided. Instead you should make the changes in the parent only. Later in this chapter

we’ll see how we can use events to update data from the child to the parent.

6.3. USING PROPS TO PASS DATA

As mentioned, props are used to pass data from the parent to the child components.
Props are intended for one-way communication only. You can think of props as

variables the component has that can only be assigned from the parent.

Props also can be validated. We can make sure the values passed in follow a certain type
of validation. We'll look at this too.

6.3.1. Literal props

The easiest to use type of props are literal props. They’re plain strings that we can pass

in to the component. Inside the template, we create the component in the usual

manner, but we add our new prop within the angle brackets of our component as an
additional attribute, <my-component text="World"></my-component>. This text
will be passed down as a string to the text prop we created. The template will

interpolate it within the curly braces.

Be aware, this is a common mistake by many beginners: oftentimes, you might want to
pass in a real value into the prop, not only a string. You might accidentally pass in a
string instead of passing in a value. To pass in a value, you’ll need to make sure you use

the v-bind directive as we’ll see in the next section.

In listing 6.3 we see an example of passing in a literal prop. Copy this example into your
editor and try it out for yourself. You’'ll see that my-component has the passed-in value
of "Wor1d". You can display that value using the text prop inside the template, as

shown here.

Listing 6.3. Using literal props in our component: chapter 06/literal-props.html

<!DOCTYPE html>
<html>
<head>
<script src="https://unpkg.com/vue"></script>
</head>
<body>
<div id="app">
<my-component text="World"></my-component> 1
</div>
<script>
const MyComponent= ({
template:'<div>Hello {{text}}! </div>", 2
props: ['text']
}i
new Vue ({
el: "#app",
components: {'my-component': MyComponent}
1)
</script>
</html>

e 1 Shows the component with passed-in text literal

e 2 The template displays Hello and the passed-in prop

6.3.2. Dynamic props

Dynamic props are props that are passed in from the parent that are bound to a

property that can change (unlike literal props, that are static text). We can use the v-

bind directive to make sure it’s passed in correctly. Let’s update our example from the

previous section and pass in the message to our new prop named text.

The component <my-component v-bind:text="message"></my-component>
has a new v-bind directive attribute. This will bind the prop text to our new

message. The message is a property from our data function.

If you've been following along in previous chapters, you may have noticed that data, in
our Vue.js instance, is no longer an object data: { } asyou can see in listing 6.4. This
is an intentional choice. Components behave a little differently, and data must be

represented as a function, not an object.

If I add a data object to my-component, an error displays in the console. To stay
consistent, we'll use data as a function for both our components and the root Vue

instance for the rest of the book.

This listing is an example of using dynamic props. Copy this into an editor and try it for

yourself.

Listing 6.4. Using dynamic props: chapter 06/dynamic-props.html

<!DOCTYPE html>
<html>
<head>
<script src="https://unpkg.com/vue"></script>
</head>
<body>
<div id="app">
<my-component v-bind:text="message"></my-component> 1
</div>
<script>
const MyComponent = {
template: '<div>Hello {{text}}! </div>"', 2
props: ['text']
}i

new Vue ({

el: "#app",
components: {'my-component': MyComponent},
data () |
return {
message: 'From Parent Component!' 3
}
}
1)
</script>

</html>

e 1 Uses the v-bind directive to bind message from parent to text in child
e 2 This is the template that displays the text prop.

e 3 The data function that returns the message

Before we move on, let’s imagine that we need to update our program to add three
counters. Each counter needs to start at zero and increment independently. Each
counter is represented by a button that you can click to increment. How can we do this

with components?

Let’s take the code from listing 6.4 and update it. Add a data function to MyComponent
and a counter. Your first thought might be to add a global variable. Let’s try that and

see what happens.

As you can see from listing 6.5, we added the component three times. We created a
global const object called counter, and it’s initialized to zero. In our template, we
created a simple binding to the click event using the v-on directive. The counter

variable will increment by one on every click.

Listing 6.5. Dynamic props with global counter: chapter 06/dynamic-props-
counter.html

<!DOCTYPE html>
<html>
<head>
<script src="https://unpkg.com/vue"></script>
</head>
<body>
<div id="app">
<my-component></my-component>

<my-component></my-component>

<my-component></my-component> 1
</div>

<script>

const counter = {counter: 0}; 2

const MyComponent= ({

template: '<div><button v-on:click="counter +=

1">{{counter}}</button></div>", 3
data () {
return counter; 4
}
}i
//
</script>
</html>

e 1 Lists component three times

e 2 Shows the global variable counter
e 3 The counter increments on every click.

e 4 The data function returns the global counter.

Open your browser to the code you wrote. Click the button on the page a few times and

see what occurs (figure 6.4).

Figure 6.4. Dynamic props example in a browser.

[} dyramc-pnec-ooume ' X

C | O flelF ey shanot oS- n-actonjoadt/chap ter-08 dynamic- props-courterhaml T Y

w ALl counters tncrementk

on any button press.

ullu-lllu

You might be surprised to see that every counter increments when we click any of the
buttons. This is certainly not what we want, although it’s a good illustration on how to
share scope.

Take the listing from 6.5 and update it so we can correct this problem, as shown in
listing 6.6. Remove the const counter and update the data function. Instead of having
the data function return the global counter, have it return its own counter. This counter

is scoped locally for the component, and therefore isn’t shared with other components.

Listing 6.6. Updating counters with correct return object: chapter 06/dynamic-
props-counter-correct.html

<!DOCTYPE html>
<html>
<head>
<script src="https://unpkg.com/vue"></script>
</head>
<body>
<div id="app">
<my-component></my-component>
<my-component></my-component>
<my-component></my-component>
</div>
<script>

const MyComponent= {

template: '<div><button v-on:click="counter +=
1">{{counter}}</button></div>",
data () {

return {

counter: O 1

}i
/]

</script>
</html>

¢ 1 The data function returns a counter.

Fire up your browser and open the updated code you wrote. Click a few of the buttons

and observe the counter (figure 6.5).

Figure 6.5. Dynamic props with a local scope counter example.

1} cyramicsorapt-tourte- X

& - C @ fiellFi/Usersiehanchett/mes-n-sion/code chapter-08/dynamic-arogs -counter-comecthtmi al Y

3
2 -~ > Eoch button increments
6

iks owin counter,

This time things look correct! As we click each button, the counter increments by itself

only and doesn’t affect the other counters.

6.3.3. Prop validation

Vue.js has a nice feature called prop validation that ensures that the props that we
receive from the parent pass validation. This can be particularly useful when working

on a team, where multiple people use the same component.

Let’s begin by checking the type of our props. Vue.js provides the following native
constructors to make this possible:

e String

e Number

e Boolean

e Function

e Object

* Array

e Symbol

In listing 6.7, you can see the use of prop validation. We'll first create a component

called my-component and pass in values to it. The component will display those values

in its template.

Instead of creating a prop array, prop: ['nameofProp'], we create an object. Each
object is named after the prop. We then create another object to specify the type; we
can add either required or default. Default refers to the default value if no value is
passed in to the prop. If the type of property is an object, it must have a default value
assigned. The required property, as the name suggests, requires the property to be

added to the component during creation in the template.

The last thing you’ll notice from listing 6.7 is the even prop. This is called a custom

validator. In this case, we're checking whether or not the value is even. If it’s even, it’ll
return true. If it’s not even, then an error will be shown in the console. Keep in mind
that custom validators can perform any type of function you like. The only rule is that

they must return true or false.

Keep in mind also that a single colon (:) by itself is shorthand for v-bind. This is

similar to the way the at symbol (@) is shorthand for v-on.

Listing 6.7. Validating props: chapter 06/props-example.html

<!DOCTYPE html>
<html>
<head>

<script src="https://unpkg.com/vue"></script>

</head>
<body>
<div id="app">
<my-component :num="myNumber" :str="passedString"
:even="myNumber" :obj="passedObject"></my-component>
</div>
<script>

const MyComponent={
template: '<div>Number: {{num}}
String: {{str}} \

IsEven?: {{even}}
0Object: {{obj.message}}</div>",
props: {
num: {
type: Number,
required: true
bo
str: {
type: String,
default: "Hello World"
br

obj: {
type: Object,
default: () => {

return {message: 'Hello from object'}

}
by

even: {

validator: (value) => {
return (value $ 2 === 0)
}
}
}
i
new Vue ({
el: '#app',
components: {'my-component': MyComponent},
data () |
return {
passedString: 'Hello From Parent!',

myNumber: 43,
passedObject: {message: 'Passed Object'}

}) s
</script>
</body>
</html>

e 1 Passes in values to my-component

e 2The MyComponent template is used to display all the properties.
e 3 Number validation must be present.

e 4 String validation includes a default value.

* 5 Object validation has a default message.

¢ 6 Custom validator has to check whether or not the number is even.

Open a browser and run the code in this example. The output is shown in figure 6.6.

Figure 6.6. Validation number, string, and object using prop validation.

C | @ file:///F:/Users/ehanchett/vuejs-in-action/code/chapter-06/props-example.htm|

Number: 43

String: Hello From Parent!
[sEven?: 43

Object:Passed Object

Output from validation.,

This is what we expect! But is there a problem? If you look at the code, you’ll notice our

custom validator checks whether a number is even or odd. If it’s odd, it returns false.

Why don’t we see false where it shows IsEven?

In fact, Vue.js does show it as false! But it’s not in the template. By default, prop
validations don’t prevent passed-in values from showing up in the template. Vue.js
checks the validation and emits warnings in the console. Open the Chrome console and

look. Your console should look similar to figure 6.7.
Figure 6.7. Error showing validation failure.

= 4l Elements Memeory Sources Console Audits Metwork Performance Application Secunty
& | top ¥ | Filter Default levels ¥
O »[Vue warn]: Invalid prop: custom validator check failed for prop “even®

found in \

=== {MyComponent>
{Root>

You are running Vue in gevelopment mode.
Make sure to turn on productlion mode when deploying for production.
See more tips at hitos:/fvyeds . orgiguicde/deplovement bhtm]

[vue-deviools] Ready. Detected Vue vi.4.2

Error emitted warning to
console from prop validator.

The error shows that our custom validator failed for prop even. This is good to know,
and we should change the passed in number to an even number. Keep this type of error

in mind while using prop validations.

6.4. DEFINING A TEMPLATE COMPONENT

Until now, we’ve used local and global registration to define our components.
Templates in each of our components have been defined as a string. This can be
problematic as our components get larger and more complicated. The template strings
aren’t the easiest to work with due to different development environments that may
cause issues with syntax highlighting. In addition, multiline template strings need

escape characters, which clutter our component definition.

Vue.js has multiple ways to display templates that can help fix this. We’ll discuss this

and how we can use ES2015 literals to make our component templates easier to use.

6.4.1. Using inline template strings

One of the simplest ways of working with a template is to use it inline. To make this
work, we need to include the template information inside the component when it’s

added to the parent template.

In listing 6.8, you can see that we declare the component as <my-component :my-
info="message" inline-template> inthe template. The inline-template
tells Vue to render the contents of the component within the opening and closing of the

my-component tag.

One downside of using inline templates is that they separate the template from the rest
of the definition of the component. For smaller applications, this will work, although
it’s not recommended for use in larger applications. In larger applications, you should

look into the single-file components that we’ll discuss in the next chapter.

Listing 6.8. Using templates inline: chapter 06/inline-component-example.html

<!DOCTYPE html>

<html>

<head>

<script src="https://unpkg.com/vue"></script>

</head>
<body>
<div id="app">
<my-component :my-info="message" inline-template> 1
<diwv>
<p>
inline-template - {{myInfo}} 2
</p>
</div>

</my-component>
</div>
<script>
const MyComponent = {
props: ['myInfo']
}i

new Vue ({
el: '#app',
components: {'my-component': MyComponent},
data () {
return {

message: 'Hello World'

})

</script>
</body>
</html>

* 1 The inline template displays HTML.

e 2 Shows the passed-in property

6.4.2. Text/x-template script elements

Another way of defining a template in our component is by using text/x-template

script elements. In this case, we create a script tag with the type text/x-template.

In listing 6.9, we use the text/x-template to define the template for my-
component. The thing to remember here is that you must define the script as

type="text/x-template", otherwise it won’t work.

Once again, we run into the same downside as with the inline templates. The biggest
problem is that we’re separating the component definition from the template. This will

work, but it’s useful only in smaller applications and not in larger ones.

Listing 6.9. Working with text/x-templates: chapter 06/x-template-example.html

<!DOCTYPE html>
<html>
<head>
<script src="https://unpkg.com/vue"></script>
</head>
<body>
<div id="app">
<my-component></my-component>
</div>
<script type="text/x-template" id="my-component"> 1
<p>
Hello from x-template
</p>
</script>
<script>
const MyComponent = {
template: '#my-component'
}i
new Vue ({
el: '#app',
components: {'my-component': MyComponent}
1)
</script>
</body>
</html>

e 1 Shows the x-template script

6.4.3. Using single-file components

Earlier in our examples, we used strings to represent our templates in our components.
With ES2015 template literals, we can help eliminate several problems we had using

strings. In ES2015, if you surround a string with a backtick ("), it becomes a template

literal. Template literals can be multiline without having to escape them. They can have

embedded expressions in them, too. This makes writing our templates much easier.

With all that said, ES2015 template literals still have several of the same drawbacks as
strings. It still looks a little cluttered in your component definition, and certain
development environments won’t have syntax highlighting. You have one more option

to help fix all these problems: single-file components.

Single-file components combine your template and definitions into one .vue file. Each
one has its own scope, and you don’t have to worry about forcing unique names for
every component. CSS is also scoped for each component, which is helpful in those
larger applications. To top it all off, you no longer have to worry about dealing with

string templates or having to work with unusual script tags.

In the following listing, you can see that the HTML is surrounded by the template tag,
unlike in our previous examples. The .vue file uses ES2015 export to return the data for

the component.

Listing 6.10. Single-file components: chapter 06/single-file-component.vue

<template> 1
<div class="hello">

{{msg}}
</div>
</template>

<script>
export default ({ 2
name: 'hello',
data () {
return {

msg: 'Welcome to Your Vue.js App'
}
</script>
<!-- Add "scoped" attribute to limit CSS to this component only -->
<style scoped>
</style>
e 1 The template displays information for the component.

e 2 Shows the ES2015 export of the data

To use single-file components, you’ll have to get familiar with several modern build

tools. You’'ll need to use a tool such as Webpack or Browserify to build the .vue code.
Vue.js has made this process easy with its own scaffolding generator called Vue-CLI. It
contains all the necessary build tools. We’ll discuss tools in the next chapter. For now,
know that there are many ways to work with templates and that single-file components

are the way to go for larger applications.

6.5. WORKING WITH CUSTOM EVENTS

Vue.js has its own event interface. Unlike normal events that we saw in chapter 3,
custom events are used when passing events from parent to child components. The
event interface can listen to events using the Son (eventname) and trigger events
using Semit (eventName) . Typically, Son (eventname) is used when sending events
between different components that aren’t parent and child. For parent and child events,
we must use the v-on directive. We can use this interface so parent components can

listen directly to child components.

6.5.1. Listening to events

Imagine you're creating a counter. You want to have a button on the screen that
increments the counter by 1 every time it’s clicked but you’d like to have that button in a
child component and the counter in a parent Vue.js instance. You don’t want the
counter to mutate inside the child component. Instead, it should notify the parent that
the counter should be updated. On every button click, the counter in the parent needs
to update. Let’s look at how to do this.

Let’s start by creating a component. When we add it to our template, we’ll need to use
the v-on directive and create a custom event. As you can see in listing 6.11, we've added
the component and created a custom event called increment-me. This custom event is
bound to the incrementCounter method that we defined in the parent Vue instance.
We'll also add a normal button that’s bound to the click event that triggers

incrementCounter, too. This button resides in the parent’s template.

Inside the definition of our component, we’ll need to add a button. We'll again use the
v-on directive bound to the click event. This triggers the childIncrementCounter

method that we defined in the child component.

The childIncrementCounter has only one responsibility, and that’s to emit the
custom event we created earlier. This is where it might get confusing. We’ll use
this.$Semit ('increment-me') to trigger the bound event, incrementCounter,
defined in the parent methods. We're triggering the parent Vue.js instance

incrementCounter method, which will increment the counter. This is powerful and

allows us to modify values in the parent while keeping the one-way data principle

intact.

Listing 6.11. Incrementing a parent counter using $emi t: chapter 06/event-
listen.html

<!DOCTYPE html>
<html>
<head>
<script src="https://unpkg.com/vue"></script>
</head>
<body>
<div id="app">
{{counter}}

<button v-on:click="incrementCounter">Increment Counter</button> 1
<my-component v-on:increment-me="incrementCounter"></my-component>
</div>
<script>

const MyComponent = {

template: “<div>
<button v-on:click="childIncrementCounter" 3
>Increment From Child</button>
</div>",
methods: {
childIncrementCounter () {
this.Semit ('increment-me') ; 4

}i
new Vue ({
el: '#app',
data () |
return {

counter: 0

b
methods: {

incrementCounter () {

this.counter++; D)
}
by
components: {'my-component': MyComponent}
}):
</script>
</body>
</html>
4 4

e 1 Shows the button to increment the counter from the parent

e 2 Indicates the component that sets the increment-me event to

incrementCounter

e 3 Indicates the component button that triggers the

childIncrementCounter method
¢ 4 Emits the increment-me event

e 5 Shows the method to increment the counter by 1

If we load the Chrome browser, you’ll see two buttons. Both will increment the counter

setup in the parent and be displayed in the component (figure 6.8).
Figure 6.8. Shows two buttons; both increment the counter from the parent.

2 | © filey//F:fUsers/eha nchett/vuejs-in-actonfcode/chapter-06/erent-isten.htmi

3
G
Increment Counter @ 1ncrem ents counter
Increment From Child from parent.
L @ 1ncrem ents counter
from child.

6.5.2. Modifying child props using .sync

In most situations, we don’t want to have the child component mutate a prop from the
parent. We'd rather have the parent do it. This is one of the fundamental rules of the
one-way data flow that we mentioned earlier in the chapter. Vue.js allows us to break
this rule, though.

The . sync modifier allows us to modify values in a parent component from inside a
child component. It was introduced in Vue 1.x and removed from Vue 2.0 but the Vue.js
core team decided to reintroduce it in 2.3.0+. With all that said, be cautious when using

it.

Let’s create an example that shows how . sync can update a value. Modify the code in
listing 6.11 by updating my-component and childIncrementCounter. To begin,
we’ll look at the . sync modifier. To use the . sync modifier you can attach it to any
prop on the component. In listing 6.12, it’s attached at <my-component :my-

counter.sync="counter">. The my-counter prop is bound to counter.

The . sync modifier is syntactic sugar for this <my-component :my-
counter="counter" @Qupdate:my-counter="val => bar = val"></my-

component>. The new event created is called update. That event will take the my-

counter prop and assign it to whatever variable is passed in.

To make this work, we still need to emit our new event that was created and pass in the
value we want the counter to be updated to. We'll use this. $emit to do this. The

this.myCounter+1 is the first argument that will be passed to the update event.

Listing 6.12. Working with . sync to modify props from child chapter 06/event-
listen-sync.html

<my-component :my-counter.sync="counter"></my-component> 1
const MyComponent = {
template: ~<div>
<button v-on:click="childIncrementCounter"
>Increment From Child</button>
</div>",
methods: {
childIncrementCounter () {
this.S$Semit ('update:myCounter', this.myCounter+1); 2

}
by

props: ['my-counter']
e 1 Shows the component setup with the .sync modifier

e 2 Emits to update event followed by a comma

If we load the browser, you'll see two buttons. If we click either one, it updates the

counter (figure 6.9).

Figure 6.9. This example uses . sync to modify the counter.

C | @ filey///F:/Users/ehanchett/vuejs-in-action/code/chapter-06/event-listen-sync.html

18

| Increment Counter m
Both button increm ents

Increment From Child

sam e counter with .Semit.

EXERCISE

Use your knowledge from this chapter to answer these questions:

* How do you pass information from a parent to a child component? What do you use

to pass information from a child component back to a parent component?

See the solution in appendix B.

SUMMARY

e Local registration for components has local scope. It can be created by using the

components option when constructing a new Vue instance.

e Global registration for components uses the Vue . components instance operator

where the component is defined.
e Components use one-way data binding between the parent and child component.
e Props are used in components to define what can be passed to them.
e Single-file components combine all template and script information into one file.

e You can use Semit to send information to the parent component.

Chapter 7. Advanced components and routing

This chapter covers

Working with slots

Using dynamic components

Implementing async components

Using single-file components with Vue-CLI

Now that we’ve looked at components and how they can be used to break applications
into smaller parts, let’s look deeper into components and explore more of their
advanced features. These features will help us create more dynamic and robust

applications.

We’ll look at slots first. Slots interweave the parent’s content with the child components
template, making it easier to dynamically update content inside components. Then we’ll
move on to dynamic components, which offer the ability to switch out components in
real time. This feature makes it easy to change out whole components based on user
action. For example, you might be creating an admin panel that displays multiple
graphs. You can easily swap out each graph with dynamic components based on user

action.

We’ll also look at async components and how to divide an application into smaller
chunks. Each chunk will load only when needed—a nice addition when our application
grows large and we need to be sensitive to how much data we load when the application

starts up.

While we’re here, we’ll look at single-file components and Vue-CLI. With Vue-CLI we
can set up and create an application within seconds without having to worry about
learning complicated tooling. We'll take everything we’ve learned from this chapter and

refactor our pet store application to take advantage of Vue-CLI!

Finally, we’ll look at routing and how we can use it to create route parameters and child

routes. Let’s begin!

7.1. WORKING WITH SLOTS

When working with components, we occasionally need to weave in parent content with
the child content, meaning that you’ll need data passed into your component. Imagine
you have a custom form component that you’d like to use on a book-publishing site.
Inside the form are two text input elements, named author and title. Preceding each
text input element is a label that describes them. Each label’s title is already defined

inside the root Vue.js instance data function.

You may have noticed when working with components that you can’t add content in
between the opening and closing tags. As you can see in figure 7.1, any content in

between the opening and closing tags will be replaced.

Figure 7.1. Information inside component tags will be discarded.

<my-component:>
Information here will not be displayed by default.
</my-component>

The easiest way to make sure content is shown is to use the slot element, as we’ll see
next. This can be accomplished with Vue’s slot element, a special tag that Vue.js uses to
represent where data that’s added in between the opening and closing tags of a
component should be shown. In other JavaScript frameworks, this process is also
known as content distribution; in Angular, it’s called transclusion and it’s similar to
React’s child components. No matter the name or framework being used, the idea is the

same. It’s a way to embed content from the parent to the child without passing it in.

At first, you may think of passing the values down from the root Vue.js instance to the
child component. This will work, but let’s see if we run into any limitations. We’'ll take

each property and pass it down to the component.

Create a new file for this example and create a local component called form-
component and a simple form inside it. The goal here is to create two simple props
that the component will accept: title and author. In the root Vue.js instance, pass in the
props to the component, as you can see in listing 7.1. This is similar to the prop passing

we learned in chapter 6.

For the next few examples we’ll create smaller standalone examples. Feel free to copy,

or type, this into your text editor and follow along.

Listing 7.1. Creating a normal parent/child component with props: chapter-

07/parent-child.html

<!DOCTYPE html>
<html>
<head>
<script src="https://unpkg.com/vue"></script>
</head>
<body>
<div id="app">
<form-component
rauthor="authorLabel"
:title="titleLabel">
</form-component>
</div>
<script>
const FormComponent ={
template:
<div>
<form>
<label for="title">{{title}}</label>
<input id="title" type="text" />

<label for="author">{{author}}</label>
<input id="author" type="text" />

<button>Submit</button>
</form>
</div>

props: ['title', 'author']
}
new Vue ({
el: '#app',
components: {'form-component': FormComponent},
data () |
return {
titleLabel: 'The Title:',
authorLabel: 'The Author:'

1)
</script>
</body>
</html>

1 Passes in author label to form component
2 Passes in title label to form component
3 Displays passed in element title

4 Displays passed in element author

As I mentioned, the code will work, but as the form scales, we’ll need to deal with
passing in several attributes. What if we added in ISBN, date, and year to the form? We
need to add more props and more attributes to the component. This can become
tedious and means many properties to keep track of, which can lead to errors in your

code.

Instead, let’s rewrite this example to use slots. To begin, add text that can be displayed
at the top of the form. Instead of passing the value in as props, we’ll use a slot to display
it. We won’t need to pass everything into the component as a property. We can display
whatever we want directly inside the opening and closing brackets of the component.
When the form is completed, it should look like figure 7.2.

Figure 7.2. Book form page example.

C | @ filey///F:/Users/ehanchett/vuejs-in-action/code/chapter-07/parent-child-slots.html

Book Author Form

The Tatle:
The Author: —_ Com pleted form elem ent

Submit using slot elem ents.

Copy and paste listing 7.1 into a file and change the data function and add a new
property called header. (Remember you can always download the code for this book at
my GitHub at https://github.com/ErikCH/VuejsInActionCode.) As you can see in figure 7.2,
we’ll add a new header property that displays the Book Author Form. Next, find the
opening and closing form-component that’s declared in the parent’s Vue.js instance.
Add the header property in between those tags. Finally, we need to update the form-
component itself. Immediately after the first <form>, add the <slot></slot>
elements. This tells Vue to add whatever is in between the opening and closing tags of
the form-component. To run this example, update the code from listing 7.1 with the new
updates in this listing.

Listing 7.2. Adding in the s1ot element: chapter-07/parent-child-slots-
extract.html

<body>
<div id="app">
<form-component
rauthor="authorLabel"
ttitle="titleLabel">
<hl>{{header}}</hl> 1

</form-component>
</div>
<script>
const FormComponent ={
template:
<div>
<form>
<slot></slot> 2
<label for="title">{{title}}</label>
<input id="title" type="text" />

<label for="author">{{author}}</label>
<input id="author" type="text" />

<button>Submit</button>
</form>
</div>

14

props: ['title', 'author']
}

new Vue ({
el: '#app',
components: {'form-component': FormComponent},

data () {
return {
titleLabel: 'The Title:',
authorLabel: 'The Author:',
header: 'Book Author Form' 3

H)
</script>
</body>
</html>

e 1 Shows header variable added inside form-component

e 2 Inserts slot element from parent

* 3 Adds new header property

7.2. ALOOK AT NAMED SLOTS

As of now, we’ve added only one slot element to our component. But, as you may have
guessed, this isn’t too flexible. What if we had multiple props we wanted to passin to a
component and each prop needed to be displayed at different locations? Once again,

passing in every single prop can be tedious, so what if we decided to use slots instead?

Is there a way to do it?

This is where named slots come in. Named slots are like normal slots except they can be

specifically placed inside a component. And unlike unnamed slots, we can have

multiple named slots in our components. We can place these named slots anywhere in
our components. Let’s add two named slots to our example app. To add them, we need
to define exactly where we want them added in our child component. In listing 7.3 we’ll

add two named slots—titleSlot and authorSlot—to the form-component.

We'll begin by replacing the form-components template with the new slot names. To
do this, we must add a new named-s1lot element into the HTML. Take the completed
code listing from 7.2 and move the label elements from the form-component to the
parent’s template as seen in listing 7.3. Make sure to change the name of the property in
the label from title to titleLabel and from author to authorLabel.

Next, add two new slot elements. Each will replace the label in the form component’s
template. It should look like this: <slot name="titleSlot"></slot>and <slot

name="authorSlot"></slot>.

Inside the parent’s template, update the label we moved over and add a new attribute
called slot to it. Each label should have a slot attribute like this: <label

for="title" slot="titleSlot">.This tells Vue.js to make sure that the contents
of this label are added to the corresponding named slot. Because we’re no longer using
the passed-in props, we can delete them from the form component. This is the

completed code listing.

Listing 7.3. Using named slots: chapter-07/named-slots.html

<!DOCTYPE html>
<html>
<head>
<script src="https://unpkg.com/vue"></script>
</head>
<body>
<div id="app">
<form-component>
<hl>{{header}}</hl>
<label for="title" slot="titleSlot">{{titlelabel}}</label> 1
<label for="author" slot="authorSlot">{{authorlLabel}}</label>
</form-component>
</div>
<script>
const FormComponent ={
template:
<div>
<form>
<slot></slot>
<slot name="titleSlot"></slot> 3

<input id="title" type="text" />

<slot name="authorSlot"></slot> 4
<input id="author" type="text" />

<button>Submit</button>
</form>
</div>

}
new Vue ({
el: '#app',
components: {'form-component': FormComponent},
data () |
return {
titleLabel: 'The Title:',
authorLabel: 'The Author:',

header: 'Book Author Form'

})
</script>
</body>
</html>

1 Displays the label using the slot titleSlot

2 Displays the label for the author linked to slot authorSlot

3 Inserts the named slot for titleSlot

4 Inserts the named slot for authorSlot

The named slots make it much easier to insert elements from the parent into the child
component in various places. As we can see, the code is a little shorter and cleaner. In
addition, there are no more props passing, and we no longer have to bind attributes

when declaring the form-component. As you design more complicated applications,

this will come in handy.

Compilation scope with slots

In listing 7.3 we added a data property from the root Vue.js instance within the opening
and closing tags of our form component. Keep in mind that the child component
doesn’t have access to this element because it was added from the parent. It’s easy to
accidentally mistake the correct scope for elements when using slots. Remember that

everything in the parent template is compiled in the parent’s scope. Everything

compiled in the child template is compiled in the child scope. This is good to memorize

because you might run into these problems in the future.

7.3. SCOPED SLOTS

Scoped slots are like named slots except they’re more like reusable templates that you
can pass data to. To do this, they use a special template element with a special attribute

called slot-scope.

The slot-scope attribute is a temporary variable that holds properties that are
passed in from the component. Instead of passing values into a child component, we

can pass values from the child component back to the parent.

To illustrate this, imagine you have a web page that lists books. Each book has an
author and title. We want to create a book component that holds the look and feel of the
page, but we want to style each book that’s listed inside the parent. In this case, we’ll
need to pass the book list from the child back to the parent. When all is said and done,
it should look like figure 7.3.

Figure 7.3. List of books and authors in the book list.

C | (@ file/ /Py Users/ehanchettvusjs-in-action/code/chapter-07/name-scoped-slots.htmi

Book List

Best Of Times by John Smith

List of books passed
in from slot using

Go West Young Man by: Jane Doe a———

The Life And Times Of Avery by: Avery Katz

This is a bit of a contrived example, but it shows the power of scoped slots and how we
can easily pass data back and forth from child components. To create this app, we’ll
create a new book component. Inside the component we’ll display a header using a
named slot, and we’ll create another named slot for each book. As you can see in listing
7.4, we’ll add a v- for directive that will loop through all the books and bind values to

each one.

The books array is created in the root Vue.js instance. It’s basically an array of objects,
each having a title and author. We can pass that books array into the book-component

using the v-bind directive : books.

Inside the parent’s template we've add the new <template> element. We must also
add the s1ot-scope attribute to the template tag for this to work. The slot-scope
attribute binds the passed-in value from the child component. In this case,

{{props.text}}isequalto { {book}} from the child component.

Inside the template tags, we can now access the { {props.text}} asif it were
{ {books}}.In other words, { {props.text.title}} isthe same as { {book
.title}}. We'll add special styling to each title and author to make it stand out.

Open your code editor and try to copy the code yourself from listing 7.4. What you’ll see
is that we took the books array and passed it into the book component. We then
displayed each book in a slot that got passed into a template that the parent displayed

to the user.

Listing 7.4. Scoped slots: chapter-07/name-scoped-slots.html

<!DOCTYPE html>
<html>
<head>

<script src="https://unpkg.com/vue"></script>

</head>
<body>
<div id="app">
<book-component :books="books"> 1
<hl slot="header">{{header}}</hl> 2
<template slot="book" slot-scope="props"> 3
<h2>
<i>{{props.text.title}}</1i> 4
<small>by: {{props.text.author}}</small>
</h2>
</template>
</book-component>
</div>
<script>

const BookComponent ={
template:
<div>
<slot name="header"></slot>
<slot name="book" 5

v-for="book in books"

ctext="book"> 6
</slot>
</div>
props: |['books']

}

new Vue ({
el: '#app',

components: {'book-component': BookComponent},

data () {

return {
header: 'Book List',
books: [{author: 'John Smith', title: 'Best Of Times' }, 7
{author: 'Jane Doe', title: 'Go West Young Man' 1},
{author: 'Avery Katz', title: 'The Life And Times Of Avery'
]
}
}
1)
</script>
</body>
</html>

e 1 Shows book component with passed-in books

e 2 Shows header text using named slot header

* 3 Inserts template element with slot-scope of props
e 4 Displays text for each individual book

¢ 5 Inserts named slot that binds the v-for directive

e 6 Passes in alias book from book in books

e 7 Sets an array of books

This might be a little confusing at first, but using scoped slots is powerful. We can take
values from our component and display them in our parent to do special styling. As
you're dealing with more complicated components with lists of data, this is a nice tool

to have.

7.4. CREATING ADYNAMIC COMPONENTS APP

Another powerful feature of Vue.js is dynamic components. This feature lets us
dynamically change between multiple components using the reserved <component>

element and the is attribute.

Inside our data function, we can create a property that will determine which component
will display. Then, inside our template, we need to add the component element with the
is attribute which points to the data property we created. Let’s look at a practical

example.

Imagine that we'’re creating an app with three different components. We need to add a

button so we can cycle through each one. One component will list our books, another

will list a form to add books, and the last will display header information. When we get
it all done, it should look like figure 7.4.

Figure 7.4. Dynamic book component cycle that displays each component after
clicking the Cycle button.

C | @ files/f/F/Users/ehanchett/vuejs-in-action/code/chapter-07/dynamic-components.htmi

\

Book Component
_w @ click the Cycle button.

o Com ponents cycle after
every button click.

Clicking the Cycle button displays the next component. The Cycle button triggers
simple JavaScript that rotates through the book component to the form component

then to the header component.

Open your text editor and create a new Vue.js application. Instead of creating one
component, we’ll create three. In each template, we’ll display text letting the user know

which component is activated. You can see an example of this in listing 7.5.

The data function will have one property called currentview. This property will point
to the BookComponent at the start of the application. Next, create a method called
cycle. This will update the currentview property on every click so it cycles through

all the components.

As a final step, in the root Vue.js instance we’ll add our button, with a click event
attached like this: <button Qclick="cycle">Cycle</button>. Under the button
we’ll add an <h1> tag with our new component element. The component element will
have one attribute, i s, which will point to currentview. This is how you can
dynamically change the component. The currentVview property will update on every
button click. To run this example, create a dynamic-components.html file. Add in this

code.

Listing 7.5. Dynamic components: chapter-07/dynamic-components.html

<!DOCTYPE html>
<html>
<head>
<script src="https://unpkg.com/vue"></script>
</head>
<body>

<div id="app">

<button @click="cycle">Cycle</button> 1

<hl>
<component :is="currentView"></component> 2
</hl>
</div>
<script>
const BookComponent ={
template:
<div>
Book Component
</div>

const FormComponent = {
template:
<div>
Form Component

</div>

const HeaderComponent = {
template:
<div>
Header Component

</div>

new Vue ({

el: '#app',

components: {'book-component': BookComponent, 3
'form-component': FormComponent,
'header-component': HeaderComponent},

data () |

return {
currentView: BookComponent 4

o
methods: {

cycle () | 5
if (this.currentView === HeaderComponent)
this.currentView = BookComponent
else
this.currentView = this.currentView === BookComponent ?
FormComponent : HeaderComponent;
}
}
})
</script>

</body>
</html>

e 1 On every button click, the cycle method is triggered that changes

currentView.

* 2 Shows the component element that’s dynamically bound to

currentView
e 3 Lists all components created
e 4 This is the property that’s assigned initially to the BookComponent.

* 5 Shows the method to cycle through all three components

You've learned how you can use one button to cycle through three different
components. It’s also possible to do this example using multiple v-if and v-else

directives but this is much easier to understand and works better.

7.5. SETTING UP ASYNC COMPONENTS

When working with larger applications, there might be times when we need to divide
the app into smaller components and load only parts of the app when needed. Vue
makes this easy with asynchronous components. Each component can be defined as a
function that asynchronously resolves the component. Furthermore, Vue.js will cache

the results for future re-renders.

Let’s set up a simple example and simulate a server load. Going back to our book
example, let’s say we're loading a book list from a backend, and that backend takes a
second to respond. Let’s resolve this using Vue.js. Figure 7.5 is how it will look when

we’re all done.

Figure 7.5. Async component rendered after 1 second onscreen.

C | @ filey///F:/Users/ehanchett/vuejs-in-action/code/chapter-07/async-components.html

Async Component ﬁ

Page sim ulates asynchronous
request to a server.

The function has a resolve and reject callback and we must set up our component to

handle the situations. Create an app and new book component, as seen in listing 7.6.

This simple component displays text on the screen after it resolves. We'll create a

timeout so it will take 1 second. The timeout is used to simulate network latency.

The most important thing to do when creating an async component is to define it as a
function with a resolve and reject callback. You can trigger different actions to occur,

depending on whether the callback is resolved or rejected.

To run this example, create a file called async-componets.html. Copy the code in the
following listing to see it in action. You should see a simple asynchronous component.
We're simulating a server that takes 1 second to respond. We could have also created a

reject as well that would have resolved if the call failed.

Listing 7.6. Async components; chapter-07/async-components.html

<!DOCTYPE html>
<html>
<head>
<script src="https://unpkg.com/vue"></script>
</head>
<body>
<div id="app">
<book-component></book-component> 1
</div>

<script>

const BookComponent = function (resolve, reject) { 2
setTimeout (function () { 3
resolve ({
template:
<div>
<hl>
Async Component
</h1>
</div>

new Vue ({
el: '#app',

components: {'book-component': BookComponent }

})
</script>
</body>
</html>

e 1 Displays book component in template
e 2 Shows an asynchronous book component that must resolve or reject

e 3 Shows a timeout that simulates a server and resolves after 1000 ms

Advanced async components

Since Vue 2.3.0, you can now create more advanced async components. In these
components, you can set up loading components that will display when the component
is loaded. You can set error components and set timeouts. If you'd like to learn more

about these components, check out the official guides at http://mng.bz/thlA.

7.6. CONVERTING THE PET STORE APP USING VUE-CLI

Until now, we’ve built our applications using one file. This has proved challenging
because our pet store application has grown. One thing that would make our code base

cleaner is to break the application into separate components.

As we saw in chapter 6, there are many ways to break up our application. One of the
most powerful ways is using single-file components, which have many advantages over
the other ways of creating components. The most important advantages are

component-scoped CSS, syntax highlighting, ease of reuse, and ES6 modules.

Component-scoped CSS lets us scope CSS per component. This can help us easily make
specific styles for each component. Syntax highlighting is improved because we no
longer have to worry about our IDE not recognizing our component’s template text
since it no longer has to be assigned to a variable or property. ES6 modules make it
easier to pull in our favorite third-party libraries. Each has advantages that make

writing Vue.js applications a little easier.

To take full advantage of single-file components, we’ll need to use a build tool such as
Webpack that helps bundle all our modules and dependencies. In addition, we can use
tools such as Babel to transpile our JavaScript so we can ensure that it’s compatible
with every browser. We could try to do this all ourselves, but Vue.js has given us Vue-

CLI to make this process much easier.

Vue-CLI is a scaffolding tool to help jumpstart your Vue.js applications. It comes with
all the glue needed to get started. The CLI has a number of official templates, so you can

start your application with the tools you prefer. (You can learn more about Vue-CLI

from the official GitHub page at https://vuejs.org/v2/guide/installation.html.) The following

is a list of the most common templates:
e webpack— A full-featured Webpack build with Vue loader, hot reload, linting
testing, and CSS extraction.
e webpack-simple— A simple Webpack + Vue loader for quick prototyping.

e browserify— A full-featured Browserify + Vuetify setup with hot reload, linting,

and unit testing.
e browserify-simple— A simple Browserify + Vuetify setup for quick prototyping.
e pwa— A PWA (Progressive Web Application) template based on Webpack.

e Simple— The simplest possible Vue setup in a single HTML file.

To create an application, you’ll need to install Node and Git, and then install Vue-CLI.

(If you haven’t done this yet, please refer to appendix A for more information.)

Note

As of this writing Vue-CLI 3.0 is still in beta. This chapter was written with the latest
version of Vue-CLI, 2.9.2. If you're using Vue-CLI 3.0, several of these options will be
different. Instead of creating the application with vue init, you’ll use vue create
<project name>. It will then ask you a new set of questions. You can either select a
set of default presets or the features you want from a list. These include TypeScript,
Router, Vuex, and CSS pre-processors, to name a few. If you’re following along, make
sure to select the same options as you see in listing 7.7. You can then skip ahead to
section 7.6.2. For more information on Vue-CLI 3.0, check out the official readme at
https://github.com/vuejs/vue-cli/blob/dev/docs/README.md.

7.6.1. Creating a new application with Vue-CLI

Let’s create an application using Vue-CLI for our pet store. Open your terminal and
typein vue init webpack petstore. This command tells Vue-CLI to create an

application using the Webpack template.

As of this writing the latest Vue-CLI version is 2.9.2. If you're using a later version don’t
worry, the questions should be similar and self-explanatory. If you run into any issues,

follow the official guides on the installation and use of Vue-CLI at

https://vuejs.org/v2/guide/installation.html - CLI.

After you run the command, you’re prompted with a few questions. The first asks for a
name, then a description and author. Type in the name as petstore and put in any
description and author you like. The next few questions prompt you whether to run
Vue.js with a runtime only or runtime and compiler. I recommend running with the
runtime and compiler together. This makes it easier when we’re creating our templates;

otherwise all templates are allowed in only .vue files.

The next question asks about installing the vue-router. Type yes. After this, it asks if
you want to use ESLint. This is a linting library that will check your code on every save.
For our purposes, we’'ll say no here because this isn’t important to our project. The last
two questions are about testing. In later chapters, I'll show you how to create test cases
using the vue-test-utils library, but for now you can answer yes to both. Follow along

with the this listing and create a new Vue-CLI application for our pet store app.

Listing 7.7. Terminal commands

$ vue init webpack petstore 1
? Project name petstore

? Project description Petstore application for book

? Author Erik Hanchett <erikhanchettblog@gmail.com>

? Vue build standalone

? Install vue-router? Yes

? Use ESLint to lint your code? No

? Setup unit tests with Karma + Mocha? Yes

? Setup e2e tests with Nightwatch? Yes

vue-cli - Generated "petstore". 2
To get started:
cd petstore
npm install
npm run dev
Documentation can be found at https://vuejs-templates.github.io/webpack

14

e 1 Shows the init command that creates a new application

e 2 Lists setup questions and answers
After the application is created and the template is downloaded, you need to install all

the dependencies. Change directories to petstore and run npm install, or YARN, to

install all the dependencies by running the following commands at the prompt:

$ cd petstore
$ npm install

This will install all the dependencies for your application. This could take several
minutes. After all the dependencies are installed, you should now be able to run the

server with the following command:

$ npm run dev

Open your web browser and navigate to localhost:8080, where you should see the
Welcome to Your Vue.js App window as seen in figure 7.6. (While the server is running,
any changes will be hot reloaded in your browser.) If the server doesn’t start, make sure

another application isn’t running on the default 8080 port.

Figure 7.6. Default welcome screen for Vue-CLI

O 0 kaleat 40400 &

Welcome to Your Vue.js App

Essential Links

Ecosystem

We’re now ready to move to our pet store application.

7.6.2. Setting up our routes

Vue-CLI comes with an advanced routing library called vue-router, the official router
for Vue.js. It supports all sorts of features, including route parameters, query
parameters, and wildcards. In addition, it has HTML5 history mode and hash mode
with auto-fallback for Internet Explorer 9. You should have the ability to create any

route you need with it and not have to worry about browser compatibility.

For our pet store app, we’ll create two routes called Main and Form. The Main route

will display the list of products from our products.json file. The Form route will be our

checkout page.

Inside the app we created, open the src/router/index.js file and look for the routes
array. You may see the default He11o route in it; feel free to delete this. Update the
routes array so it matches listing 7.8. Every object in the array has at a minimum a path
and a component. The path is the URL that you’ll need to navigate to inside the browser

to visit the route. The component is the name of the component we’ll use for that route.

Optionally we can also add a name property. This name represents the route. We’'ll use
the route name later. Props is another optional property. This tells Vue.js if the

component should expect props being sent to it.

After updating the array make sure to import the Form and Main components into the
router. Any time we refer to a component, you must import it. By default, Vue-CLI uses
the ES6 import style. If the components aren’t imported, you’ll see an error in the

console.

Finally, by default the vue-router uses hashes when routing. When navigating to form
in the browser, Vue will construct the URL as #/ form instead of / form. We can turn

this off by adding mode: 'history' to the router.

Listing 7.8. Adding routes: chapter-07/petstore/src/router/index.js

import Vue from 'vue

import Router from

'vue-router'

import Form from

import Main from

Vue.use (Router)

'@/components/Form'

'Q@/components/Main’

export default new Router ({

mode: 'history',
routes: [
{
path: '/"',
name: 'iMain',
component: Main,
props: true
by
{
path: '/form',
name: 'Form',
component: Form,

props:

true

1 Imports the components Form and Main

2 Shows history mode with routes without hashes

3 Shows iMain route at /

4 Shows Form route at /form

It’s a good idea to start any new application with your routes first. It gives you a good

indication on how you want to construct the app.

7.6.3. Adding CSS, Bootstrap, and Axios to our application

Our pet store app uses a handful of different libraries that we need to add to our CLI

project. We can handle this in different ways.

One way is to use a Vue.js-specific library. As Vue has grown, so has the ecosystem.
New Vue.js-specific libraries are popping up all the time. For example, BootstrapVue, is
a Vue.js-specific library to add Bootstrap to our project. Vuetify is a popular material-
design library. We'll be looking at several of these libraries in the future, but not right

now.

Another common way of adding libraries is to include them in the index file. This is

useful when there isn’t a Vue.js-specific library available.

To get started, open the index.html file in the root folder of our pet store application. To
stay consistent with our original application from chapter 5, we’ll add a link to Bootstrap
3 and Axios CDN in this file, as shown in the following listing. By adding these libraries

in this file, we now have access to it throughout the application.

Listing 7.9. Adding Axios and Bootstrap: chapter-07/petstore/index.html

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<script

src="https://cdnjs.cloudflare.com/ajax/libs/axios/0.16.2/axios.js"> 1
</script>
<title>Vue.js Pet Depot</title>

<link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap

.min.css" crossorigin="anonymous"> 2
Y

</head>
<body>
<div id="app"></div>
<!-- built files will be auto injected -->
</body>
</html>

e 1 Denotes Axios library CDN

e 2 Shows Bootstrap 3 library CDN

We have a few ways we can add in the CSS. As we’ll see later, one way to add CSS is to
scope it to each component. This is a helpful feature if we have specific CSS we want to

use for a component.

We can also specify CSS that will be used throughout the site. To keep things simple,
let’s add our CSS to our pet store app so it can be accessed by all components inside it.

(Later, we’ll look at using scoped CSS.)

Open the src/main.js file. This is where the root Vue.js instance lives. From here we can
import the CSS we’d like to use for our application. Because we're using Webpack we’ll

need to use the require keyword with the relative path to the asset.

FYI

For more information on how Webpack and assets work, check out the documentation

at https://vuejs-templates.github.io/webpack/static.html.

Copy the app.css file into the src/assets folder, as shown in the next listing. You can

find a copy of the app.css with the included code for the book in the appendix A.

Listing 7.10. Adding CSS: chapter-07/petstore/src/main.js

import Vue from 'vue'
import App from './App'
import router from './router'

require('./assets/app.css') 1

Vue.config.productionTip = false

/* eslint-disable no-new */
new Vue ({
el: '#app',
router,
template: '<App/>',
components: { App }

e 1 Adds the app.css to the application

After the CSS is added to the application, every component will use it.

7.6.4. Setting up our components

As we discussed previously, components make it easy to break our application into
smaller reusable parts. Let’s break our pet store app into a few smaller pieces so we can
more easily work with our application. For the pet store we’ll have a Main, Form, and
Header. The Header component will display our site name and navigation, Main will

list all our products, and Form will display the checkout form.

Before we begin, delete the HelloWorld.vue file in the src/components folder. We won’t
use this. Create a file called Header.vue in this folder instead. This file is where we’ll put

in our header information.

Most .vue files follow a simple pattern. The top of the file is usually where the template
resides. The template is surrounded by an opening and closing template tag. As we've
seen before, you must also include a root element after the template tag. I usually put a
<div>tagin but a <header> tag will work too. Keep in mind a template can only have

one root element.

After the template is a <script> tag. This is where we’ll create our Vue instance. After
the <script> tagis a <style> tag, which is where we can optionally put in our CSS

code and scope it to the component. (You'll see this in listing 7.12.)

Go ahead and copy the code from listing 7.11 for the template. This code is similar to the
code in chapter 5 for the header. You'll notice that we have a new element in the
template called router-11ink, which is a part of the vue-router library. The router-
1ink element creates internal links in our Vue.js application between routes. The
<router-1ink> tag has an attribute called to. We can bind that attribute to one of

our named routes. Let’s bind it to the Main route.

Listing 7.11. Header template: chapter-07/petstore/src/components/Header.vue

<template>
<header>
<div class="navbar navbar-default">
<div class="navbar-header">
<hl><router-link :to="{name: 'iMain'}"> 1
{{ sitename }}
</router-1link>
</hl>
</div>
<div class="nav navbar-nav navbar-right cart">
<button type="button"
class="btn btn-default btn-1g"
v-on:click="showCheckout">

{{cartItemCount}} Checkout
</button>
</div>
</div>
</header>
</template>

e 1 This links to the iMain route.

Next, we need to create the logic for this component. We’ll copy and paste from our
previous pet store application into the Header.vue file. We'll need to make a few
changes though. When we last updated the pet store application in chapter 5, we used a
v-1if directive to determine whether or not to display the checkout page. We created a

method that toggled showProduct when the Checkout button was clicked.

Let’s replace that logic so that instead of toggling showProduct we switch to the Form
route we created earlier. As you can see in listing 7.14, this is done with
this.Srouter.push. Similar to the router-1ink, we need to provide the router
with the name of the route we want to navigate to. For this reason, we’ll have the

Checkout button navigate to the Form route.

Because we changed the sitename variable to a link using router-11ink, it now looks
a little different than it did before. We should update the CSS for our new anchor tag by
putting it in the <style> section. Because we added the keyword scoped to it, Vue.js

will make sure the CSS will be scoped for this component only.

Also, you may notice from listing 7.12 that we’re no longer using the Vue.js instance
initializer that we used in previous chapters. The CLI doesn’t require it. Instead we use
a simpler syntax, the ES6 module default export (export default { }).Putall

your Vue.js code in here.

In our CSS, we’ll turn off text decorations and set the color to black. Combine listings

7.11 and 7.12 into one file.

Listing 7.12. Adding the script and CSS: chapter-
07/petstore/src/components/Header.vue

<script>
export default {
name: 'my-header',
data () {
return {
sitename: "Vue.]js Pet Depot",
}
Yo

props: ['cartItemCount'],
methods: {
showCheckout () {
this.$Srouter.push ({name: 'Form'}); 1

}
</script>

<!-- Add "scoped" attribute to limit CSS to this component only -->
<style scoped>
a {

text-decoration: none;

color: black;

}
</style>

* 1 Navigates Vue.js app to the Form route

e 2 Shows scoped CSS

From there you should be all set with this component. You may have also noticed that

our header accepts a prop called cartItemCount. Our main component will pass this

information in, as we’ll see when we create the Main component. The cartItemCount

will keep track of how many items we’ve added to our cart.

7.6.5. Creating the Form component

The Form component is where the checkout page resides. It will remain close to what
we created in chapter 5. The biggest difference is that we’re now referencing the new
my-header component at the top of the template. We'll also pass in the

cartItemCount into the header.

Create a component in the src/components folder and call it Form.vue. As you can see
in listing 7.13, the HTML code in the template is almost exactly what we saw in chapter 5.
The only change is that we’ve added a new component at the top for the header. I won’t
copy it all here, so I suggest that you download the code for chapter 07 (download

instructions are in appendix A).

Listing 7.13. Creating the form component: chapter-
07/petstore/src/components/Form.vue

<template>
<div>
<my-header :cartItemCount="cartItemCount"></my-header> 1
<div class="row">
<div class="col-md-10 col-md-offset-1">

</div><!--end of col-md-10 col-md-offset-1-->
</div><!--end of row-->
</div>
</template>

e 1 The header component shows a passed-in value of cartltemCount.

The script code for this component resembles that from chapter 5. One difference is that
now it accepts a prop called cartItemCount. In addition, we must define the Header

component so it can be used in the template, as shown in this listing.

Listing 7.14. Adding the script tag: chapter-07/petstore/src/components/Form.vue

<script>
import MyHeader from './Header.vue'; 1
export default ({
name: 'Form',
props: ['cartItemCount'], 2
data () {
return {

states: {

}y

order: {

b
components: { MyHeader 1},
methods: {

submitForm () {

alert ('Submitted') ;

}
</script>

e 1 Imports Header component

e 2 Passes-in the prop cartlitemCount

Combine listings 7.13 and 7.14 and you should be all set. In later chapters we’ll add more

logic for inputs, but for now this will work.

7.6.6. Adding the Main component

The Main component of the pet store application will display all our products. It’s

where we’ll add products to our cart and see the star ratings. We’ve already written all

the logic for this, so the only thing we really need to do is get it into one .vue file.

As with the Form component, we'll add the my-header component to the top of the file

and pass in the cartItemCount to it. Create a file called Main.vue in the

src/components folder. Add the following code into it.

Listing 7.15. Creating the main template: chapter-
07/petstore/src/components/Main.vue

<template>
<div>
<my-header :cartItemCount="cartItemCount"></my-header>
<main>
<div v-for="product in sortedProducts">
<div class="row">
<div class="col-md-5 col-md-offset-0">
<figure>

</figure>
</div>
<div class="col-md-6 col-md-offset-0 description">
<hl v-text="product.title"></hl>
<p v-html="product.description"></p>
<p class="price">
{{product.price | formatPrice}}
</p>
<button class=" btn btn-primary btn-1g"

v-on:click="addToCart (product)"

v-if="canAddToCart (product) ">Add to cart</button>

<button disabled="true" class=" btn btn-primary btn-1g"
v-else >Add to cart</button>

<span class="inventory-message"

v-if="product.availableInventory - cartCount (product.id)
=== 0"> All Out!

<span class="inventory-message"

v-else-if="product.availableInventory - cartCount (product.id) < 5"
Only {{product.availableInventory - cartCount (product.id)}} left

<span class="inventory-message"
v-else>Buy Now!

<div class="rating">

<span v-bind:class="{'rating-active' :checkRating(n, product)}"
v-for="n in 5" >i§

</div>
</div><!-- end of col-md-6-->
</div><!-- end of row-->
<hr />
</div><!-- end of v-for-->
</main>
</div>
</template>

e 1 The my-header component is added to the code.

After you add the template, we’ll need to add the Vue.js code. Add a new MyHeader
import statement at the top of the file, as seen in listing 7.16. You’ll also need to declare

the component by referencing components: { MyHeader } after the data function.

Before we add the rest of the code, make sure to copy the image folder and the
products.json files into the petstore/static folder. You can find these files and the code
for chapter 7 at https://github.com/ErikCH/VuejsInActionCode.

When using the CLI, we can store files in two places—either the assets folder or the
static folder. Asset files are processed by Webpack’s url-loader and file-loader. The
assets are inlined/copied/renamed during the build, so they're essentially the same as
the source code. Whenever you reference files in the assets folder, you do so by using
relative paths. The ./assets/logo.png file could be the location of the logo in the assets
folder.

Static files aren’t processed by Webpack at all; they’re directly copied to their final
destination as is. When referencing these files, you must do so using absolute paths.
Because we're loading all our files using a products.json file, it’s easier to copy the files

to a static folder and reference them from there.

Go ahead and update the Main.vue file in the src/components folder. (Filters and
methods are excluded in listing 7.16.) Grab the Vue.js instance data, methods, filters,
and lifecycle hooks from the pet store application and add it to the Main.vue file below

the template.

Listing 7.16. Creating the script for Main.vue: chapter-
07/petstore/src/components/Main.vue

<script>
import MyHeader from './Header.vue' 1

export default ({

name: 'imain',
data () {
return {

products: {},
cart: []
}
bo
components: { MyHeader },
methods: {

|
filters: {

by
created: function() {
axios.get ('/static/products.json') 2
.then ((response) =>{
this.products=response.data.products;

console.log(this.products);

}) s

}
</script>

e 1 Imports MyHeader into project

e 2 JSON products file is located in the static folder with the absolute
path.

After copying the file, delete the styles and logo.png tag in the App.vue file. If
you like, you can also delete the logo.png file in the assets folder. Make sure to restart
the Vue-CLI server by running npm run dev, if you haven’t already. You should see
the pet store application launch, where you can navigate to the checkout page by
clicking the Checkout button (figure 7.7). If you receive any errors, double-check the

console. For example, if you forgot to import the Axios library inside index.html as we

did in listing 7.9, you’ll get an error.

Figure 7.7. Pet store application opened with Vue-CLI.

= O D ocaihost

Vue.js Pet Depot ' Checkout

Cat Food, 25Ib bag

A 25 pound bag of irresistible, organic goodness
for your cal,

$20.00

LTt Buy Now! * TR

7.7. ROUTING

Now that we have our app using Vue-CLI, let’s take a deeper look at routing. Earlier in

the chapter, we set up a couple of routes. In this section, we’ll add a couple more.

In any single-page application such as Vue.js, routing helps with the navigation of the
app. In the pet store, we have a Form route. When you load the application and go to
/form, the route is loaded. Unlike traditional web apps, data doesn’t have to be sent
from the server for the route to load. When the URL changes, the Vue router intercepts
the request and displays the appropriate route. This is an important concept because it
allows us to create all the routing on the client side instead of having to rely on the

Server.

Inside this section, we’ll look at how to create child routes, use parameters to pass
information between routes, and how to set up redirection and wildcards. We aren’t
going to cover everything, so if you need more information, please check out the official

Vue router documentation at https://router.vuejs.org/en/.

7.7.1. Adding a product route with parameters

In our application, we have only two routes, Main and Form. Let’s add another route
for our product. Let’s imagine we’ve been given a new requirement for our pet store
app. We've been told to add a product description page This can be achieved with
dynamic route matching, using route parameters. Parameters are dynamic values sent

inside the URL. After we add the new product description route, you’ll look up a

product page using the URL, as shown in figure 7.8. Notice how the URL at the top is
product/1001? This is the dynamic route.

Figure 7.8. Dynamic segment for product 1001.

Dynam iz route segm ent.

€ > C | O reamoneost/soducy 1001
s —

Vue.js Pet Depot ™ Checkout

This is the id 1001

Cat Food, 25Ib bag

A 25 pound bag cf irresistibla, organic goodness
for your cat,

2000

We designate dynamic routes with a colon (:) inside the router file. This tells Vue.js to
match any route after /product to the Product component. In other words, both routes
/product/1001 and /product/1002 would be handled by the Product component. The

1001 and 1002 will be passed into the component as a parameter with the name 1id.

Inside the pet store app, look for the src/router folder. The index.js file has our existing
routes. Copy the snippet of code from the following listing and add it to the routes array
in the src/router/index.js file. Make sure to import the Product component at the top.
We’ll create that next.

Listing 7.17. Editing the router file: chapter-07/route-product.js

import Product from '@/components/Product'

by

{
path: '/product/:id"', 1
name: 'Id',
component: Product,

props: true

e 1 Shows the dynamic route segment called id

We have a dynamic segment with a parameter named id. We set the name of the route
to Id so we can easily look it up later using the router-link component. As mentioned,

let’s create a Product component.

Inside the Product component is a single product that we’ll retrieve from the route

params. Our purpose is to display that product information inside the component.

Inside the product template, we’ll have access to the Sroute.params. id. This will
display the id passed into the parameter. We'll display the id at the top of the

component to verify that it was passed in correctly.

Copy the following code into a new file at src/components/Product.vue. This is the top

of the file for the component.

Listing 7.18. Adding the product template: chapter-07/product-template.vue

<template>
<div>
<my-header></my-header>
<h1l> This is the id {{ S$Sroute.params.id}}</hl> 1
<div class="row">
<div class="col-md-5 col-md-offset-0">
<figure>

</figure>
</div>
<div class="col-md-6 col-md-offset-0 description">
<hl>{{product.title}}</hl>
<p v-html="product.description"></p>
<p class="price">
{{product.price }}
</p>
</div>
</div>
</div>
</template>

e 1The $route.params.id shows the passed-in id.

The template was straightforward but the bottom of the component, where the logic
and script live, is a little more complex. To load the correct product for the template, we

need to find the correct product using the id that was passed in.

Luckily, with simple JavaScript we can do exactly that. We’ll use the Axios library again
to access the products.json flat file. This time we’ll use the JavaScript filter function to
return only the products whose ID matches this.Sroute.params. id. The filter
should return only one value because all the IDs are unique. If for any reason this

doesn’t occur, double-check the products.json flat file and make sure each ID is unique.

Last, we’ll need to add a fo/’ character in front of the this.product. image that’s
returned from our flat file (listing 7.19). This needs to be done because we’re using

dynamic route matching and relative paths to files can cause problems.

Copy the code in this listing and add it to the bottom of the
src/components/Product.vue file. Make sure that the code from both listings 7.18 and

7.19 are present in the file.

Listing 7.19. Product script: chapter-07/product-script.js

<script>
import MyHeader from './Header.vue' 1
export default {
components: { MyHeader },
data () {
return {
product: "'
}
bo

created: function() {

axios.get ('/static/products.json') 2
.then ((response) =>{
this.product = response.data.products.filter (3
data => data.id == this.Sroute.params.id) [0] 4
this.product.image = '/' + this.product.image; 5
1)
}
}
</script>

e 1 Imports Header component into file

* 2 Retrieves the static file with the Axios library

e 3 Filters the response data

e 4 Adds only data that matches the route params to this.product

e 5 Adds a ‘/’ to the front of product.image to help with the relative path

With the product component in place, we can now save the file and open our web

browser. We don’t have a way to access the route directly yet, but we can type the URL
inside the browser at http://localhost:8080/product/1001. This will display the first
product.

Troubleshooting

If the route doesn’t load, open the console and look for any errors. Make sure you saved
the data inside the router file; otherwise, the route won’t load. It’s also easy to forget to

add the ‘/’in front of this.product.image.

7.7.2. Setting up a router-link with tags

Routes can be useless unless we add links to them inside our app. Otherwise, our users
would have to memorize each URL. With Vue router, we can make routing to a path
easy. One of the easiest ways, which we saw earlier in the chapter, is using the router-
1ink component. You can define the route you want to navigate to by using the : to
property. This can be bound to a specific path or object that defines the name of the
route to navigate to. For example, <router-link :to="{ name: 'Id'
}">Product</router-1ink> will route to the named route 1d. In our app, it’s the

Product component.

The router-1ink component has a few other tricks up its sleeve. This component has
many additional props that add more functionality. In this section, we’ll focus on the

active-class and tag props.

Let’s imagine we’ve been given another requirement for our pet store app. We want the
Checkout button to appear like it’s been clicked when the user navigates to the Form
route. When the user leaves the route, the button must return to its normal state. We
can do this by adding a class named active to the button when the route is activated
and remove the class when the user is not on the route. We also need to add a way for

the user to click the title of any product and have it route to the product description

page.

When all is done, our app will appear like figure 7.9 after the user clicks the Checkout

button. Notice the button’s appearance when the user is on the checkout page.

Figure 7.9. Checkout button updated with new style.

= C D recamost 1 =%
Vue.js Pet Depot W Checkout

et Dot Chogkad

Enter Your Information
First Name: Las: Namae

Checkout button shows
in active state.

Let’s add the link to our new product page. Open the src/Main.vue file and look for the
h1 tag that displays { {product.title}}. Deleteit and add a new router-1ink.
Inside the router-1ink, add a tag prop. The tag prop is used to convert the
router-1ink to the tag listed. In this case, the router-11ink will display as an h1 tag

in the browser.

The to prop is used to denote the target route of the link. It has an optional descriptor
object that we can pass to it. To send a param, use the params: {id: product.id}
syntax. This tells Vue router to send the product. id as the id to the dynamic
segment. For example, if the product . id was 10035, the route would be

/product/1005.

Open the src/Main.vue file and update the component with the code in the following
listing. Notice how the : to has two different props, name and params. You can

separate each prop with a comma.

Listing 7.20. Updating router-link in main: chapter-07/route-link-example.html

<div class="col-md-6 col-md-offset-0 description">
<router-link
tag="hl"
:to="{ name : 'Id', params: {id: product.id}}">
{{product.title}}
</router-link>

wn W N R

<p v-html="product.description"></p>

e 1 Starts router-link
e 2 Converts router- link to show up as an h1 tag

e 3 The target of the route is Id and the params is passed.

e 4 This will be the clickable text.

Save and open the browser after running the command, npm run dev. You can now
click the title of any product to navigate to the Product component. The id param will

be sent to the Product route and used to display the product.

Query parameters

Query parameters are another way we can send information between routes.
Parameters are appended to the end of the URL. Instead of using a dynamic route
segment, we could send the product ID using a query parameter. To add a query
parameter with Vue router, all you need to do is add a query prop to the descriptor
object like this:

<router-link tag="hl":to=" {name : 'Id', query:
{Id: '"123'"}}">{{product.title}}</router-link>

Multiple query parameters can be added, but each one must be separated by a comma;
for example, {Td: '123', info: 'erik'}. This will show up in the URL as ?
id=123&info=erik. You can access queries inside the template with
$route.query.info. If you want more information on query parameters, check out

the official documentation at https://router.vuejs.org/en/api/router-link.

7.7.3. Setting up a router-link with style

One of our requirements is to find a way to activate the Checkout button after the user
navigates to the Form route. The active-class prop makes this easy. When the route
is active, the router-1ink will automatically add whatever value we assign to
active-class to the tag. Because we're using Bootstrap, the class name active will

make the button look like it’s been activated.

Open the src/components/Header.vue file and update the button element for
{{cartItemCount} }. Delete the existing button and add the router-1ink instead,
as in this listing. You can also delete the showCheckout method because it will no
longer be needed.

Listing 7.21. Updating header links when route is active: chapter-07/header-
link.html

<div class="nav navbar-nav navbar-right cart">
<router-1link

active-class="active"

tag="button"

class="btn btn-default btn-1g"

:to="{name: 'Form'}">

G N W N R

{{ cartItemCount}}
 Checkout

e 1 Notes the router-link element that will navigate to the checkout page
2 The active-class prop will add the active class.

e 3 Converts route-link to h1 tag

* 4 Bootstraps classes for button

* 5 Navigates to the Form route

Save the changes to the header component and navigate the app. If you open the
browser console, you’ll see how the active class is added to the checkout button inside
the header after each time it’s clicked. When you navigate to the Ma in route again, the
active class is removed. The active class is added to the button only if the route is active.

When the user navigates away from the Form route, the active class is removed.

As of Vue 2.5.0+, a new CSS class was added whenever the user changes route. This is
called the router-link-exact-active class. We can use this class out of the box
and define functionality. Let’s say we wanted to change the link to the color blue

whenever the class was active.

Inside the src/components/Header.vue, add a new CSS selector at the bottom: copy the
snippet from this listing. This class will be added to only the router-1ink element

when the route is active.

Listing 7.22. Router-link-exact-active: chapter-07/route-link.css

.router-link-exact-active { 1

color: blue;

¢ 1 Sets element to blue when route is active

Save the file and try navigating around in the browser. You’ll notice that the Checkout
button text in the header changes to blue when the route is active. For the rest of this
book, we’ll change this CSS selector to black, because blue doesn’t look as nice as black.

It’s nice knowing it’s there if we need it.

7.7.4. Adding a child edit route

The new Id route displays each individual product, but let’s suppose we need to add a
way to edit each product. Let’s add another route that will display inside the Product

route that’s triggered whenever the user clicks the Edit Product button.

Note

For the sake of simplicity, we won’t implement the edit functionality. With our current
implementation, there’s no way we can save changes to our static file. Rather, we’ll
focus on how to add a child route and save the implementation of changing the product

for the future.

Child routes are nested routes. They’re perfect for situations where you need to edit or
delete information within a current route. You can access these routes by adding a

router-view component within the parent route, as we’ll see.

When we have everything wired together, the new Edit route should look like figure
7.10. Take notice of the URL, product/1001/Edit.

Figure 7.10. The child Edit route of a product.

o URL shows that we
are in edit route.
€ O | ([lecathast 2080 product 1007 feci

W Checkout

Vue.js Pet Depot
This is the id 1001 ————_ _—> @ route param eter shown.

Cat Food, 25Ib bag

A 25 pound bag of imesistible, organic geodness

for your cat.

2000

| Edit Product | © Eeaic product info
is disphyed only

Edit Product Info S BA/E: aN

Let’s begin by adding a new component. Inside the src/components folder, add a new
file and call it EditProduct.vue. Copy this listing and add it to the

src/components/EditProduct.vue file.

Listing 7.23. Adding the Edi tProduct component: chapter-07/edit-comp.vue

<template>
<div>
<hl> Edit Product Info</hl>
</div>
</template>
<script>
export default ({
//future 1

}
</script>

e 1 Gives a future implementation for editing the product

Inside the Product component, add a router-view component. This component is
internal to Vue router and is used for the endpoint for new routes. When this route is
activated, the Edi tProduct component will display inside where the router-view

component is located.

Copy the code snippet in the following listing and edit the src/components/Product.vue
file to add a new button at the bottom and the router-view component. The button will

trigger the new edit method. This pushes the Edi t route and activates it.

Listing 7.24. Adding the Edit Product button: chapter-07/edit-button.vue

</p>

<button @click="edit">Edit Product</button> 1
<router-view></router-view>
</div>

methods: {
edit () A
this.$router.push ({name: 'Edit'}) 3

b

e 1 Shows the button that triggers the edit method
e 2 The router-view component is the entry point for the route.

e 3 The $router.push activates the Edit route.

Now we have everything in place to update the router file. Add a new array called
children inside the 1d route. Inside the children array, we’ll add the Edi t route and

the component EditProduct.

Take the code from the next listing and update the src/router/index.js file. Update the
Id route and add the new children array. Make sure to also import the

EditProduct component at the top.

Listing 7.25. Updating the router with the new child route: chapter-07/child-
route.js

import EditProduct from '@/components/EditProduct'

import Product from '@/components/Product'

path: '/product/:id"',

name: 'Id',

component: Product,

props: true,

children: [1

{

path: 'edit',
name: 'Edit',
component: EditProduct,

props: true

}y

e 1 Defines a new child route that will only appear inside the Id route.

Save the index.js file and check out the new route in your browser. Click the Edit
Product button and you should see the Edit Product Info message. If the route isn’t

loading, double-check for errors in the console and verify the index.js file again.

7.7.5. Using redirection and wildcards

The last features of Vue router I want to cover are redirection and wildcard routes.
Let’s imagine we’re given one final requirement for our pet store app. We need to make
sure that if anyone accidentally enters the wrong URL, it routes them back to the main

page. This is done with wildcard routes and redirection.

When creating a route, we can use a wildcard, also known as the * symbol, to catch any
routes that aren’t already covered by the other routes. This route must be added at the

bottom of all the other routes.

The redirect option redirects the browser to another route. Go ahead and edit the

src/routes/index.js file. At the bottom of the route, add this snippet of code.

Listing 7.26. Adding wildcard for route: chapter-07/wildcard-route.js

path: '*', 1

redirect:"/"

¢ 1 Catches all

e 2 Redirects to “/”

Save the file and try to browse to /anything or /testthis. Both URLs will route you back

to the main “/” route.

Navigation guards

Navigation guards, as the name suggests, guard navigation by redirecting or canceling
routes. This might be particularly helpful if you're trying to validate a user before letting
them enter a route. One way to use navigation guards is to add a be foreEnter guard

directly in the route configuration object. It might look like this:

beforeEnter (to, from, next) => { next () }

You can also add a beforeEnter (to, from, next) hookinside any component.
This is loaded before the route loads. The next () tells the route to continue. A
next (false) will stop the route from loading. If you’d like more information, see the

official documentation at https://router.vuejs.org/guide/advanced/navigation-guards.html.

For reference, this listing shows the full src/routes/index.js file.

Listing 7.27. Full router file: chapter-07/petstore/src/router/index.js

import Vue from 'wvue'

import Router from 'vue-router'

import Form from '@/components/Form'

import Main from '@/components/Main'

import Product from '@/components/Product'

import EditProduct from '@/components/EditProduct'
Vue.use (Router)

export default new Router ({

mode: 'history',
routes: [
{
path: '/"',
name: 'iMain',

component: Main,

props: true,

path: '/product/:id', 1
name: 'Id',
component: Product,
props: true,
children: [2
{
path: 'edit',
name: 'Edit',
component: EditProduct,

props: true

path: '/form',
name: 'Form',
component: Form,

props: true

S o
{ 3
path: '*',

redirect:"/"

* 1 Notes the dynamic route segment for id
e 2 Shows the child route inside Id route

o 3 Catches all at the bottom of routes that redirect to “/”

Lazy loading

The Vue-CLI uses Webpack to bundle the JavaScript code. This bundle can become
quite big. This could affect load times in larger applications or for users with slow
internet connections. We can use vue.js async component features and code splitting
with lazy loading to help decrease the size of our bundles. This concept is beyond this
book, but I strongly suggest you look up the official documentation for more
information on it. You can find it at https://router.vuejs.org/guide/advanced/lazy-

loading.html.

Routes are fundamental to most Vue applications. Anything beyond a simple “Hello
World” app will need them. Make sure to take time and map out your routes
accordingly so they make logical sense. Use child routes to specify things such as adding
or editing. When passing information between routes, don’t be afraid to use
parameters. If you're stuck on a routing issue, don’t forget to check out the official

documentation at http://router.vuejs.org/en.

EXERCISE

Use your knowledge of this chapter to answer the following question:

e Name two ways you can navigate between different routes.

See the solution in appendix B.

SUMMARY

e Using slots makes an application more dynamic when passing information into

components.

You can use a dynamic component to switch between components within an

application.

Adding asynchronous component to an application improves speed.
You can use Vue-CLI to convert an application.

You can pass values using props between components.

Child routes can be used to edit information inside parent routes.

Chapter 8. Transitions and animations

This chapter covers

e Understanding transition classes
e Using animations
e Adding JavaScript hooks

e Updating the pet store application

In chapter 7 we looked at advanced components and discussed how we could use single-
file components to break our application into smaller parts. In this chapter we’ll look at
transitions and animations using Vue.js. We'll create simple transitions and animations
using these built-in animation/transition classes. After this, we’ll use JavaScript hooks
to create animations. We'll then look at transitions between components. At the end of
the chapter we’ll update our pet store application and add transitions and animations to
it.

8.1. TRANSITIONS BASICS

To create a transition in Vue.js, you must first understand the <transition>
component element. This is a special element that signifies to Vue.js that you want to
transition or animate one or more elements. The <transition> element wraps a

conditional, a dynamic component, or a component root node.

The transition component is either inserted or removed from the DOM, depending on
certain conditions. For example, a v-1i f directive may add or remove an element that it
surrounds. The transition component can recognize if there are any CSS transitions or
animations when this action occurs. It will then either remove or add the CSS classes at
the appropriate time to create the transition or animation. You can also add special
JavaScript hooks to the component to create more complex scenarios. If no CSS
transitions or animations are found, the DOM operations for insertion and removal will
happen immediately; otherwise, the transition or animation occurs. Let’s look at an

example.

Imagine you're creating a website with a list of book titles. You want the user to toggle
the description on or off by clicking the title. As we've learned in previous chapters, we

can use a v-1if directive to do this.

But you want the description to slowly fade in after clicking the title. You then need it to
fade out after clicking the title again. You can do this in Vue.js using CSS transitions

and the <transition> element.

Open your editor and create an application, as you see in listing 8.1. To begin, create a
simple application that shows a fictitious title of an imaginary book as an <h2> tag at
the top of the page. We'll surround this element by a <div> tag and attach a click event
to it using @c1ick. The purpose of this click event is to toggle a variable named show.
If show is true, and the user clicks the button, it toggles it to false. Ifit’s false, it
will toggle to true.

Inside the body tag you’ll need to add your new transition element. Transition elements
can also have a name attribute. Set the name to fade. Wrapped inside the transition
element is the v-1i £ directive. This directive will toggle the description. At the bottom
of our application, add the Vue constructor with the data function. This will hold all the

variables for our application.

Listing 8.1. Creating a description transition: chapter-08/transition-book-1.html

<!DOCTYPE html>
<html>
<head>
<script src="https://unpkg.com/vue"></script>
</head>
<body>
<div id="app" >
<div @click="show = !show"> 1
<h2>{{title}}</h2>
</div>
<transition name="fade"> 2
<div v-if="show"> 3
<hl>{{description}}</hl>
</div>
</transition>
</div>
<script>
new Vue ({ 4
el: '#app',
data () | 5]
return {
title: 'War and Peace',

description: 'Lorem ipsum dolor sit amet,

consectetur adipiscing elim’',

show: false

1) ;

</script>
</body>
</html>

e 1 Denotes the div tag that toggles variable show to be true or false

¢ 2 Shows the new transition element that’s named fade

e 3 Shows the v-if directive that toggles showing the description or not
* 4 Notes the Vue.js constructor

¢ 5 Shows the data function with variables

Load the application in a browser and open it. You should see a page that looks like
figure 8.1. If you click the title, the description will pop up below it. This example has no
transition at all. Clicking the title toggles the description either off or on. To add the

transition, we must add the transition classes.

Figure 8.1. Toggle without any transition

@ ritle of book
can be clicked.

C | O fite/FUsers/efanchett/vuejs-in-action/code/chapter-08/trargition-book- 1. htmi
War and Peace

Lorem ipsum dolor sit amet, consectetur adipiscing elim

0 Text toggles after click ing
title using show property.

Using listing 8.1, add a style tag inside the head element. For the purposes of simplicity,
we’ll inline the CSS inside the style tags in our example. That way, we don’t have to

worry about adding a separate CSS file.

There are six Vue.js CSS classes that can be applied to the enter and leave transitions.

In this example we’ll use four: v-enter-active, v-leave-active, v—enter, and

v-leave-to. The other two we’ll use later are v-enter-to and v-leave.

In listing 8.1, we didn’t add any animation classes. As I mentioned earlier, if no CSS
classes are present, the v-1 f directive conditional fires immediately and there are no
CSS transitions. We'll need to add CSS transition classes to make the fade effect work.
First, let’s look at what each of these classes does and when they’re added or deleted
from the DOM. Be aware that a frame is an array-like property that represents all
elements in the current window. Table 8.1 shows all the CSS transition classes that you

should be aware of.

Table 8.1. CSS transition classes

Transition class Description

v-enter This is the first state. It is added before the element is inserted

and removed one frame after the element is inserted.

v-enter-active This class is added to the element as long as the element is
entering the DOM. It’s inserted before the element is inserted
and removed when the transition/animation is finished. This is
where you enter in the duration, delay, and easing curve for the

entire transition.

v-enter-to This class was introduced in Vue.js 2.1.8+. This is added one
frame after the element is inserted and removed when the

transition/animation is finished.

v-leave This class is added as soon as the element is leaving, or being

removed, from the DOM. It’s removed after one frame.

v-leave-active This is the active state for the leave animation/transition. This is
similar to the v-enter-active. You can use it to set the duration,
delay, and easing curve of the leaving transition/animation. It’s
added immediately when the leave transition is triggered and
removed when the transition/animation finishes.

v-leave-to This is similar to the v-enter-to and was added after Vue.js
2.1.8+. This is the ending state for the leave. It’s added one frame

after a leaving transition is triggered and removed when the

animation/transition is finished.

Each of these classes is added and removed at different times when elements in the
DOM are added or removed. We can use these elements to construct transitions and
animations. For more information on the transition classes, check out the official

documentation at http://mng.bz/5mb?2.

Let’s add the transitions in the style element inside the head. Before we add these
classes, you may have noticed in listing 8.1 that we added a name attribute to the
transition element. Because we added a name attribute, the CSS class names will begin
with the name we added, fade, instead of v-. If we chose not to add the name attribute
to the transition element, the names of the classes would have remained: v-enter-
active, v-leave-active, and so on. Instead, the class names will start with fade,

fade-enter-active, and fade-leave-active, for example.

Add the fade-enter-active and fade-leave-active CSS transition classes
inside the style tag in the application code from the previous listing. As mentioned,
active classes are where we put the CSS transitions with the delay. In this example we’ll
set opacity, 2.5 seconds, and ease-out. This will create a nice fade effect that will take

2.5 seconds to complete.

Next, we'll add a fade-enter and fade-1eave-to. This will set our initial opacity to
0. This will make sure that the fade occurs correctly with the opacity at 0. Update the
previous example with the new style and see how it works. For the sake of simplicity,
I've removed the other code, and because it’s the same as listing 8.1. You can always
consult the completed code that’s included with the book.

Listing 8.2. Description transition with fade: chapter-08/transition-book.html

<style>
.fade-enter-active, .fade-leave-active { 1

transition: opacity 3.0s ease-out;

.fade-enter, .fade-leave-to { 2

opacity: 0;

}
</style>

e 1 Active states show the duration and easing of transition.

* 2 Enters and leaves states for opacity o

Load this in your browser and open the development tools. You may notice something
interesting when you click the title of the book and look at the source. For 3.0s you’'ll
see a new class that surrounds the description, fade-enter-active and fade-

enter-to. You can see it in figure 8.2.

Figure 8.2. Classes when element is being added to the DOM

[ﬂ Elements Memory Sources Console Audits Network Performance

<html data-ember-extension="1">
¥ chead>.< fhead>
¥ {body>
¥ <div id="app">
¥ <div>
- zh2>War and Peacecfh2> == %8
< fdiv>
¥ ¢div class~"fade-enter-active fade-enter-to">
<hl>Lorem ipsum dolor sit amet, consectetur adipiscing elim</hl»

—

</div?
<fdive
P iscriptradfscripts
fhedu s

nml body diveapp div

These classes only show
up for duration of fade.

These classes will show up only for the duration of the fade. Afterward, the classes will
be removed. If we click the title again, it will begin fading out the text. You can see in
the browser fade-leave-active and fade-leave-to are added to the HTML node

during the transition in figure 8.3.

Figure 8.3. Classes shown when the element is removed from the DOM.
I El Elements Memory Sources Console Audits Network Performance

<html data-ember-extension="1":
P headr..</head>
¥ {body>
¥adiv id="app">
¥ <dive
- <h2:War and Peace</h2: == 58
</div>
¥Y:div class-"fade-leave-active fade-leave-to"> —
<hl>Lorem ipsum dolor sit amet, consectetur adipiscing elim</hl>
< fdiv:

)

< div>
Prerrints s Ffernints
htm| body divEapp div "

These classes only appear
when the elem ent is fad ing out.

These classes are added momentarily while the element is being removed from the

DOM. This is how Vue.js creates its animations and transitions. By adding and
removing classes at different times, elements in Vue.js can create neat transitions and

animations.

8.2. ANIMATIONS BASICS

Animations are another important feature that Vue.js is good at. You may be wondering
what the difference is between animations and transitions. Transitions are moving from
one state to another, whereas animations have multiple states. In the last example, we
went from seeing the text to fading the text. We also saw a transition from no text on

the page to fading the text back in.

Animations are a bit different. You can have multiple states for each animation that can
be within one declaration. You can do neat stuff with animations, such as create
complex movements and chain multiple animations together. Animations can act like

transitions too, but they aren’t transitions.

Let’s take the same example from listing 8.2 and add an animation. We’ll use the same
code, except this time we’ll add a nice bounce effect using CSS keyframes. We want the
animation to fade in and scale when the title is clicked. When the title is clicked again,
we want the animation to scale and fade out. Open your text editor and copy listing 8.2.

Update the transition name to bounce, as seen in listing 8.3.

Listing 8.3. Animation with scale: chapter-08/animation-book-1.html

<div @click="show = !show">
<h2>{{title}}</h2>
</div>
<transition name="bounce"> 1
<div v-if="show">
<hl>{{description}}</hl>
</div>

</transition>

¢ 1 Shows the bounce transition

Now we need to add our new animation. This animation needs the enter-active and
leave-active classes. Begin by deleting the old CSS transition elements. Then add
the bounce-enter-active and the bounce-leave-active classes. Add a CSS
animation with a bounceIn of 2s inside the bounce-enter-active class. Add the

same to the bounce-leave-active class and add a reverse.

Next create the CSS keyframes. Use @keyframes and add 0%, 60%, and 100%. We'll

use CSS transform with a scale of .1 for 0%, 1.2 for 60%, and 1 for 100%. We’ll also
change the opacity from o0 to 1. Add this into the style as shown here.

Listing 8.4. Animation with scale full: chapter-08/animation-book.html

<style>

.bounce-enter-active { 1
animation: bouncelIn 2s;

}

.bounce-leave-active { 2
animation: bouncelIn 2s reverse;

}

@keyframes bounceln {
0% { 4
transform: scale(0.1);

opacity: O0;

60% { 5
transform: scale(l.2);
opacity: 1;

}

100% 6

transform: scale(l);

}
</style>

e 1 Enters active state that uses keyframe bounceln

* 2 Leaves active state that uses keyframe bounceln

¢ 3 Shows the keyframes for animation

* 4 0% animation transforms the scale to 0.1 and sets the opacity at o.

* 5 60% animation transforms the scale to 1.2 and sets the opacity at 1.

¢ 6 Final animation at 100% transforms the scale to 1.

Open the file in your browser and check out the animation. You should see the fade in
and scale occur when you click the title of the book. If you click it again, it will fade

away. Figure 8.4 is a screenshot of the animation halfway through.

Figure 8.4. Screenshot of transition

& | (@ FfileyFyUsers/ehanchelt/vueis-in-action/code/fchapter-08/animation-boglk.himl
War and Peace

Lorem ipsum dolor sit amet, consectetur adipiscing elim

Anim ation is halfway
com pleted during fade out.

The animation creates an effect where the text gets bigger and shrinks at the end.

8.3. JAVASCRIPT HOOKS

The transition and animation classes Vue.js provides should cover most basic
transitions and animations you need, but Vue.js gives us an even more robust solution
if we need it. We can set JavaScript hooks to do even more complex transitions and
animations. We do this by combining the hooks with JavaScript that manipulate and
direct CSS.

These hooks may remind you of the hooks we discussed in an earlier chapter for the
Vue.js lifecycle. These JavaScript hooks are similar but are used for only
transitions/animation. Remember a few things before using these hooks. First, we must
always use the done callback when using the enter and 1eave hooks. Otherwise,
they’ll be called synchronously and the transition will finish right away. In addition, it’s
a good idea to add v-bind:css="false" when using JavaScript-only transitions so
that Vue can skip all the CSS detection for that transition. One last thing to remember is
that all hooks have the e1, or element parameter, passed in except for enter and
leave, which also passes done as a parameter. Don’t worry if this is a little confusing;

I'll show you in the next section how this works.

The JavaScript hooks that we can use when entering are beforeEnter, enter,
afterEnter, and enterCancelled. When a transition is leaving, there’s
beforeleave, leave, afterLeave, and leaveCancelled. All these hooks are

triggered at various times of the animation.

Let’s imagine we’re updating our book example to use the same sort of animations we
were using earlier, except this time, we want to use JavaScript hooks instead of the CSS
classes. How can we do this? Let’s begin by taking our program from listing 8.4 and
deleting the bounce-enter-active and the bounce-leave-active classes. We'll
leave the keyframes in. Instead, we’ll use the JavaScript hooks for enter and leave to

do the animation in JavaScript.

Let’s change the transition element so it has all the JavaScript hooks listed. To do this
we’ll need to use the v-on directive or use the @ sign for short. Add the JavaScript
hooks for before-enter, enter,before-leave, leave, after-leave, after-

enter, enter—-cancelled, and leave-cancelled.

Listing 8.5. JavaScript hooks transition: chapter-08/jshooks-1.html

<transition name="fade" 1
@before-enter="beforeEnter"
@enter="enter"
@before-leave="beforeLeave"
@after-enter="afterEnter"
@enter-cancelled="enterCancelled"
@leave="leave"
@after-leave="afterLeave"
@leave-cancelled="leaveCancelled"

:css="false">

¢ 1 Shows all the hooks for the transition

Next, we’ll need to add the JavaScript hooks in our methods object inside the Vue
instance. To make this work correctly, we’ll need to detect when the animation is
completed. That way, we can clear the style and run done on the event. done is the
parameter that’s used in the enter and 1eave JavaScript hooks. done must be

executed in these hooks. To do that, we’ll create a new event listener.

The event listener waits until the animation completes by looking for animationend.
When the animation completes, the callback will reset the style and execute done. We'll

add this code above the Vue constructor in your HTML file, as shown here.

Listing 8.6. JavaScript hooks event listener: chapter-08/jshook-2.html

function addEventListener (el, done) {
el.addEventListener ("animationend", function () { 1
el.style="";
done () ;

P

* 1 The Event listener watches for the animation to end.

Even though we’re using only 1eave and enter, let’s add all the JavaScript hooks to
our program. Each hook will write to the console log so you can get a better idea when

they're triggered.

Add a new methods object to your Vue.js instance. Add all the JavaScript hooks that
you added to the transition to that methods object. Inside the enter method, add a
function to call the addEventListener that was created earlier and make sure to pass
in the element and done, as you can see in listing 8.7. Next, we’ll use JavaScript to set
up the animation. The el .style.animationName is the name of the keyframe
animation we created inside the style. Theel.style.animationDuration will be

setto 1.5 s.

Inside the 1eave hook, add the same animationName and animationDuration.
We'llalsoadd an el.style.animationDirection and set it to reverse. This will

reverse the animation when the element is leaving the DOM.

Listing 8.7. JavaScript hooks methods: chapter-08/jshooks.html

methods: {
enter (el, done) { 1

console.log("enter");

addEventListener (el,done) ; 2
el.style.animationName = "bounceIn"
el.style.animationDuration = "1.5s";

by

leave (el, done) { 3

console.log("leave");

addEventListener (el,done) ; 4
el.style.animationName = "bounceIn"
el.style.animationDuration = "1.5s";

el.style.animationDirection="reverse";

bo

beforeEnter (el) { 5
console.log("before enter");

bo

afterEnter (el) { 6
console.log("after enter");

bo

enterCancelled(el) { 7
console.log("enter cancelled");

bo

beforeleave (el) { 8
console.log("before leave");

bo

afterLeave (el) { 9
console.log("after leave");

bo

leaveCancelled (el) { 10

console.log("leave cancelled");

e 1The enter hook

e 2 Inside the enter hook is a call to the addEventListener function.
e 3 The leave hook

¢ 4 Inside the leave hook is a call to the addEventListener function.
¢ 5 The beforeEnter hook

e 6 The afterEnter hook

e 7The enterCancelled hook

e 8 The beforeLeave hook

e 9 The afterLeave hook

¢ 10 The leaveCancelled hook

After running this example, it should behave exactly like the book example in listing 8.4.
Click the title and the animation will begin. If you click again, the animation will start in
reverse. Keep an eye on the console. When you first click the title, you’ll see a few

messages, before enter, enter, and then after enter, as seen in figure 8.5.

Figure 8.5. Hooks triggered after clicking title

= 0l Elements Memory Sources Console Aud

O top ¥ | Filter

before enter
enter

after enter

Console m essage when
anim ation begins.These are

from our JavaScript hooks.

This is the order the hooks are executed. The after enter doesn’t fire until the
animation is completed. After clicking the title button again, we can see the order in
which the hooks are triggered. First is before leave,then leave, and finally after

leave, as you can see in figure 8.6.

Figure 8.6. Hooks triggered when element is removed from the DOM.

[k LLI_] Elements Memory Sources Console Audits

O top ¥ | Filter

before leave
leave
after leave

Console m essages appear when
anim ation transitions out. These are

from our JavaScript hooks.

If you look at the source, you’ll also notice the CSS being added and removed after every

click. This is much like the CSS transition classes we saw previously.

8.4. TRANSITIONING COMPONENTS

In the previous chapter we looked at dynamic components. These are components that
we can swap out easily by use of the i s attribute which points to a variable that’s used

to reflect the current component selected.

We can use transitions with components the way we did with the v-i f conditional
directive that we used earlier. To make things easier, we’ll modify the dynamic-
components.html example from chapter 7. Grab a copy of listing 7.5 and make the

changes that follow.

First surround the dynamic component, <component :is="currentView"/>, with
the <transition name="component-fade"> element. Before we go on, let’s

introduce transition modes.

By default, when transitioning components, you’ll notice that one component will
transition in while the other transitions out. This might not always be the desired
outcome. We can add an attribute to our transition called mode. We can either have it
set to in-out or out-in. If the element is set to in-out, the new element transitions
in first; then when complete, the current element transitions out. But when it’s set to
out-in the current element transitions out first; then when complete, the new element
transitions in. This out-1in is what we need for our example so that way the previous
component fades out before the new one appears. In this case, let’s surround our

dynamic component with <transition name="component-fade" mode="out-

in">.

Next, we need to add in our transition classes, as shown in the following listing. Add the
transitions class component-fade-enter-active and the component-fade-
leave-active. We'll add an opacity:0 to the component-fade-enter and the

component-fade-leave-to. This is the completed code.

Listing 8.8. Transitioning dynamic components: chapter-08/component-
transition.html

<!DOCTYPE html>

<html>

<head>

<script src="https://unpkg.com/vue"></script>

<style>

.component-fade-enter-active, .component-fade-leave-active { 1
transition: opacity 2.0s ease;

}

.component-fade-enter, .component-fade-leave-to { 2
opacity: 0;

}

</style>

</head>

<body>

<div class="app">
<button @click="cycle">Cycle</button>
<h1l>
<transition name="component-fade" mode="out-in"> 3
<component :is="currentView"/>
</transition>
</h1>
</div>
<script>
const BookComponent =({
template:
<div>
Book Component
</div>

const FormComponent = {
template:
<div>
Form Component
</div>

const HeaderComponent = {

template:
<div>

Header Component

</div>
}
new Vue ({
el: '".app',
components: {'book-component': BookComponent,
'form-component': FormComponent,
'header-component': HeaderComponent},
data () {
return {

currentView: BookComponent

}y

methods: {
cycle () |
if(this.currentView === HeaderComponent)
this.currentView = BookComponent
else
this.currentView = this.currentView === BookComponent ?
FormComponent : HeaderComponent;
}
}
})
</script>
</body>
</html>

e 1 Shows the transition classes used to fade component
e 2 Shows the transition class used to set the opacity

e 3 Shows the transition component with the mode out-in

Open a browser with the current code and you’ll see a Cycle button. Click the Cycle
button and the previous component, Book Component, will fade out and the new

component, Form Component, will fade in. Figure 8.7 shows a screenshot of the fade
halfway through.

Figure 8.7. In-between transition of components

€ ciick Cycle button.

& | Dlfile//F/Usersfehanchett/vuejs-in-action/code/chapter-08/component-transition.htmi

)

0 Com ponent will fade out and
new component will fade in.

Cycle

If you click the Cycle button again, the Form component will fade away to the Header

component. It then starts over again at Book.

8.5. UPDATING THE PET STORE APPLICATION

We updated the pet store application in the last chapter when we switched it over to
using Vue CLI with single-file components. Now that we have the power of transitions

and animations, let’s update the app to give it a little more flair.

Keep in mind that, depending on the web application you're creating, animations and
transitions might be overkill. Unless you're creating a highly interactive app, you should
probably stick to fewer animations and transitions. For this app, we’ll add one

animation and one transition. Let’s look at the transition first.

8.5.1. Adding a transition to the pet store application

In our app, we want the page to fade in and out between routes. Let’s add a simple fade-
in and fade-out transition when navigating to the checkout page and back to the home
page. As we did before, we’ll use the Vue.js animation classes to accomplish this. Figure

8.8 shows what it will look like mid-transition from the home page to the checkout page.

Figure 8.8. Page transitioning to the checkout page

Vue.js Pet Depot W Checkout

Enter Your Information

First Nama: Last Marme:
Achdress:

Gity:

State: Zip | Postal Code:

Mid -transition
checkout page.

Retrieve the pet store application we were working with in chapter 7 from the code
included with this book. Go into the App.vue file inside the src folder. This file is where
we set up our router from chapter 7. Similar to what we did with our previous examples,
add a transition element and have it surround the router-view. Make sure to add the

mode out-in as you see in listing 8.9.

Next, add the fade-enter-active and the fade-1leave-active class to the style
tag at the bottom. Set the transition to opacity witha .5s ease-out. Add the

fade-enter and the fade-leave-to classes and set the opacity to o.

Listing 8.9. Adding transition to pet store: chapter-08/petstore/src/App.vue

<template>
<div id="app">
<transition name="fade" mode="out-in"> 1
<router-view></router-view>
</transition>
</div>
</template>

<script>

export default {
name: 'app'

}

</script>

<style>

#app {

}

.fade-enter-active, .fade-leave-active { 2
transition: opacity .5s ease-out;

}

.fade-enter, .fade-leave-to { 3

opacity: 0;
}
</style>

e 1 Transition component with mode out-in surrounds the router-view.
¢ 2Vue.js transition classes that set the transition.

e 3 Vue.js transition classes that set the opacity.

After making these changes, save the file and run the npm run dev command. This
will start the web server, and the web page should pop up in your browser. If not,
navigate to localhost:8081 and check out the application. Click the checkout button and
the home page and you’ll see the page fade.

8.5.2. Adding an animation to the pet store application

When adding items to the cart, we added several v-if, v-else-if,and v-else
directives. This lets the user know how much inventory is left that they can add to their
cart. When the inventory runs out, an All Out message is displayed. Let’s add an
animation that shakes the text and briefly turns it red when the inventory is depleted
for any item. To do this, we’ll use the Vue.js animation CSS classes we learned about
earlier. Figure 8.9 shows an example of how it will look with the All Out! animation

moving left and right.

Figure 8.9. All Out! animation. The text moves left and right.

Cat Food, 25lb bag

A 25 pound bag of irresistible, organic goodness
for your cat.

$20.00

Addtocart E:\Kellld VI g A w0

Open the Main.vue file and scroll all the way to the bottom. We’re going to use one of
the animation classes, enter-active, to create this animation. We don’t need to
worry about the animation when the element is removed from the DOM, so we’ll skip

adding the 1eave-active class.

Add an animation that shakes the text for around .72 seconds. We'll use a CSS cubic-

bezier and a transform. In addition, we’ll set up animation keyframes at every 10%.

Copy this listing to the Main.vue file.

Listing 8.10. Add animation to pet store: chapter-
08/petstore/src/components/Main.vue

<style scoped>

.bounce-enter-active { 1
animation: shake 0.72s cubic-bezier(.37,.07,.19,.97) both;
transform: translate3d (0, 0, 0);
backface-visibility: hidden;

@keyframes shake { 2
10%, 90% {
color: red;

transform: translate3d(-lpx, 0, 0);

20%, 80% {
transform: translate3d(2px, 0, 0);

30%, 50%, 70% {
color: red;

transform: translate3d(-4px, 0, 0);

40%, 60% {
transform: translate3d(4px, 0, 0);

}
</style>

¢ 71 Enter the active class that starts the animation.

e 2 Shows specific keyframes

After adding the CSS, we’ll need to add the transition element for our animation. In the
Main.vue file, look for the inventory messages. Each message will have the class of
inventory-message. Add the <transition> element and surround the
inventory-message. Make sure to add the mode="out-in" to the transition as you

can see from listing 8.11.

In the previous examples, we transitioned or animated only one element. To animate

more than one element, we need to add a key attribute to the v-else-ifand v-if

directives. Otherwise, Vue’s compiler won’t animate the content correctly.

The Key Attribute

The key attribute is needed whenever you want to transition elements that have the
same tag name. To make them distinct, you must add a unique key attribute. It’s good
practice to always add the key attribute when you’re dealing with multiple items within

a transition component.

Add a key attribute to the v-else-if and v-1if directives. For the v-else-if, the
key will be empty. This is intentional, so it won’t animate. For the v-i f directive we’ll
set the key to 0, as shown here.

Listing 8.11. Add animation to pet store transition element: chapter-
08/petstore/src/components/Main.vue

<transition name="bounce" mode="out-in">

<span class="inventory-message"

v-if="product.availableInventory - cartCount (product.id) === 0"
key ="0">
All Out!

<span class="inventory-message"
v-else-if="product.availableInventory - cartCount (product.id) < 5"
key="">
Only {{product.availableInventory - cartCount (product.id)}} left!

<span class="inventory-message"
v-else key="">Buy Now!

</transition>

e 1 The transition for bounce with a mode attribute
e 2The key is added to v-if and set to zero.

e 3 Another key is added so it won’t animate.

Start the web server by running the npm run dev command and try out the app. Click
the add to cart button until the inventory runs out. You'll see the All Out text move and

shake for a few seconds and turn red.

EXERCISE

Use your knowledge from this chapter to answer this question.
e What’s the difference between an animation and a transition?

See the solution in appendix B.

SUMMARY

Transitions can move elements on your page.

Animations can be scaled, and you can shrink text on the page programmatically.

JavaScript animation hooks can be used to make complex animations.

Transitions with dynamic components are useful for cycling through text.

Chapter 9. Extending Vue

This chapter covers

https://avxhm.se/blogs/hillO

Learning about mixins

Understanding custom directives

Using the render function

Implementing JSX

In the previous chapter we discussed transitions and animations. In this chapter we’ll
look at different ways we can reuse code in Vue.js. This is important because it allows

us to extend the functionality of our Vue.js applications and make them more robust.

We'll begin by looking at mixins. Mixins are a way to share information between
components; functionality is essentially “mixed” into the component. They’re objects
that have the same methods and properties that you’d see in any Vue.js component.
Next, we'll look at custom directives. Custom directives allow us to register our own
directives, which we can use to create whatever functionality we want. Then we’ll look
at the render function. With the render function we can go beyond using normal
templates and create our own using JavaScript. Last, we’ll look at using the render

function with JSX, which is an XML-like syntax for JavaScript.

Don’t worry, I haven’t forgotten about the pet store application. In the next chapter

we’ll revisit it with Vuex.

9.1. REUSING FUNCTIONALITY WITH MIXINS

Mixins are a great tool for many projects. They allow us to take small pieces of
functionality and share them between one or many components. As you write your
Vue.js applications, you’ll notice that your components will start to look alike. One
important aspect in software design is a concept known as DRY (don’t repeat yourself).
If you notice that you're repeating the same code in multiple components, it’s time to

refactor that code into a mixin.

mounir
Typewriter
https://avxhm.se/blogs/hill0

Let’s imagine you have an app that needs to collect a phone number or email address
from your customer. We’ll design our app to have two different components. Each
component will contain a form with an input and a button. When the user clicks the
button, it triggers an alert box that displays the text that was entered into the input box.

It will look like figure 9.1 when we’re done.

Figure 9.1. Mixin example with multiple components

Pop up created with Mixin.

= | (D fileF Ut fehanchatyiuejs- in-actioncode fchager 09 ming heml? e
b . This page says: -
NUKIN | ainicain nents

Enter Ei nter Number

kRN e Icg Sgrnl Com

Press Button 1

This somewhat contrived example shows how we can extract logic as a mixin, in this
case the logic that handles the button click and alert box. This keeps our code clean and

avoids repeating code.

To get started with this example, create a file called mixins.html. To begin, we’ll add our
script tag for Vue.js and a link tag so we can add in Bootstrap for our styling. Then we’ll
add a basic HTML layout. The HTML will use Bootstrap’s grid layout with one row and
three columns. The first column will be set to col-md-3 with an offset of col-md-

of fset-2. This column will display our first component. The next column will have a
column size of col-md-3. The third column will have a column size of col-md-3 and

will show the last component.

Open your mixins.html file and enter the HTML code in the following listing. This is the
first part of the code for this example. We’ll add more code throughout this section. If
you’d like to see the completed code for this example, look for the mixins.html file
included with the code for this book.

Listing 9.1. Adding our mixin HTML/CSS: chapter-09/mixin-html.html

<!DOCTYPE html>
<script src="https://unpkg.com/vue"></script>
<link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css
/bootstrap.min.css"> 1
<html>
<head>

</head>
<body>
<div id="app">
<div id="container">
<hl class="text-center">{{title}}</hl>

<div class="row">

<div class="col-md-3 col-md-offset-2"> 2
<my-compl class="compl"></my-compl> 3

</div>

<div class="col-md-3"> 2

<h2 class="text-center">0r</h2>
</div>

<div class="col-md-3">

<my-comp2 class="comp2"></my-comp2> 4
</div> <!--end col-md-2-->
</div><!-- end row -->
</div> <!-- end container -->
</div> <!-- end app -->

1 Adds Bootstrap CSS code to file

2 Shows the Bootstrap grid system for columns

3 Lists the first component

4 Lists the second component

Now that we’ve added HTML, we’ll work on the Vue.js code. Open the mixins.html file
and add an opening and closing script tag. It’s worth mentioning for this example that
we aren’t using single-file components with Vue-CLI. If we were to do so, this would

work the same way. The only difference is that each component and mixin would be in

its own file.

Add a new Vue instance in between the opening and closing script tag. Inside the Vue
instance we’ll add a data object that returns a title. Because we’re using components,
we'll also need to declare both components that we're using in this example. Add the

code in this listing to the mixins.html file.

Listing 9.2. Adding the Vue.js instance: chapter-09/mixins-vue.html

<script>
new Vue ({ 1
el: '#app',
data () {
return {

title: 'Mixin in example using two components' 2

components: { 3
myCompl: compl,
myComp2: comp2

b
</script>

e 1 Shows the root Vue.js instance declaration
* 2 Lists the data object that returns the title property

e 3 Shows the declaration of components for myComp1 and myComp2

We have a few other things left to do. We need to add both of our components and our
mixin. Each component needs to display text, show an input, and show a button. The

button needs to take whatever input was entered and display an alert box.

Each component is similar in a few ways. Both have a title, both have an input box, and
both have a button. They also behave the same way after clicking a button. At first it
might seem like a good idea to create one component but the visual look and feel of
each component is different. For example, each button is styled differently and the
input boxes themselves accept different values. For this example, we’ll leave them as

separate components.

With that said, we still have similar logic outside the template. We need to create a
mixin that handles a method called pressed that displays an alert box. Open the
mixin.html file and add a new const called myButton above the Vue.js instance. Make
sure to add in the pressed function, an alert, and a data object that returns an item, as

seen in this listing.

Listing 9.3. Adding the mixin: chapter-09/my-mixin.html

<script>
const myButton = { 1
methods: {
pressed (val) { 3

alert (val);
}
by
data () {
return {

item: ''

* 1 Notes the myButton object mixin
¢ 2 Shows methods for the mixin

¢ 3 Notes the pressed function that shows alert box

Now that we have the mixin in place, we can go ahead and add our components. After
the myButton object, add two new components called comp1 and comp2. Each one

will contain an h1 tag, a form, and a button.

In comp1, our input will use a v-mode1 directive to bind the input to a property called
item. In our button, we’ll use the v-on directive shorthand @ symbol to bind the click
event to the pressed method. Then we’ll pass the item property into the method. The
last thing we need to add to our comp1 is to declare the mixin we created. We add the

mixins array at the bottom, as you can see in listing 9.4.

For comp2, we’ll add an h1 tag with a form, an input, and a button. For this
component, we’ll use the v-mode1 directive to bind the item property. The button will
use the v-on directive shorthand @ to bind the click event to the pressed method, as
the same way we did in comp1. We'll pass the i tem property into the method. As with
the other component, we’ll need to define which mixins we want with this component

by using the mixins property array at that bottom.

Info

Mixins aren’t shared between components. Each component receives its own copy of

the mixin. Variables inside the mixin aren’t shared.

I won’t go into detail, but we’ve also added basic Bootstrap classes to the form elements
to style them.

Listing 9.4. Adding in the components: chapter-09/complcomp2.html

const compl = { 1
template: ~<div>
<hl1>Enter Email</hl>
<form>
<div class="form-group">

<input v-model="item" 2

type="email"
class="form-control"
placeholder="Email Address"/>
</div>
<div class="form-group">
<button class="btn btn-primary btn-1g"
@click.prevent="pressed (item)">Press Button 1</button>
</div>
</form>
</div>",

mixins: [myButton]

}

const comp2 = {

template: “<div>
<hl>Enter Number</hl>
<form>

<div class="form-group">
<input v-model="item"
class="form-control"
placeholder="Phone Number"/>
</div>
<div class="form-group">
<button class="btn btn-warning btn-1g"
@click.prevent="pressed(item) ">Press Button 2</button>
</div>
</form>
</div>",

mixins: [myButton]

e 1 Shows the component 1 declaration

e 2 Inputs v-model directive binding item

* 3 Shows the v-on directive with alias @ binds click event to pressed

e 4 Notes the declaration of mixin for component

* 5 The v-model directive binds the input to the item.

e 6 The v-on directive with alias @ binds the click event to pressed.

e 7Shows the mixin declaration at the bottom

Open a browser and load the mixins.html file we’re working on. You should see figure

9.1. Go ahead and enter an email into the Enter Email box. Click the button and you

should see a pop up, as seen in figure 9.2.

Figure 9.2. The image from figure 9.1 after clicking Press Button 1

After click ing button
a pop up is displayed.

(D fibee/i P Users/ehanchttintjs-in-action/code chagter-09 midng hemi? T ¥
4

N
This page says:

NN | i »nents
Enter Ei L=

ENAN e i) B gemas oy

nter Number

Press Bution 1

This works the same if we enter values into the Phone Number box.

9.1.1. Global mixins

Until now, we’ve used named mixins that we’ve declared inside each of our
components. Another type of mixin, a global mixin, doesn’t require any type of

declaration. Global mixins affect every Vue instance created in the app.

You’ll need to be cautious when using global mixins. If you’re using any special third-
party tools, they’ll also be affected. Global mixins are good to use when you're trying to
add custom options that need to be added to every Vue.js component and instance.
Let’s say you need to add authentication to your app and you want the authenticated
user to be available in every Vue component in the application. Instead of registering

the mixin in every component, you can create a global mixin.

Let’s look at our app from the last section. We'll go ahead and change it to a global
mixin. First, take a copy of the mixins.html file from the previous example and copy it

to mixins-global.html. We’ll refactor our application in this file.

Look for the const myButton line inside the script tags. This is our mixin; to use
global mixins, we need to change this from a const to a Vue.mixin. The Vue.mixin
tells Vue.js that this is a global mixin and that it must be injected into every instance.
Delete the const line and add the Vue .mixin ({ line to the top. Next, close the

parenthesis at the bottom as you can see in the following listing.

Listing 9.5. Global mixin: chapter-09/global-mixin.html

Vue.mixin ({ 1
methods: {
pressed(val) {

alert (val) ;

b
data () {
return {

item: "'

e 1 Shows the declaration of the global mixin

e 2 Notes the closing parenthesis

Now that we have the global mixin declared, we can remove the declarations for
myButton inside the components. Delete the mixins: [myButton] line from each
component. That should do it—now you’re using global mixins! If you load the browser
with the newly created mixins-global.html file, it should behave and look the exact

same as you saw previously.

Troubleshooting

If you run into any problems, it might be because you left the mixins declaration at the
bottom of the component definitions. Make sure to delete any reference to myButton

in your app or you’ll get an error.

9.2. LEARNING CUSTOM DIRECTIVES WITH EXAMPLES

In the last eight chapters, we’ve looked at all sorts of directives, including v-on, v-
model, and v-text. But what if we needed to create our own special directive? That’s
where custom directives come in. Custom directives give us low-level DOM access to
plain elements. We can take any element on the page, add a directive, and give it new

functionality.

Keep in mind that custom directives are different than components and mixins. All
three, mixins, custom directives, and components, help promote code reuse but there
are differences. Components are great for taking a large piece of functionality and
separating it into smaller parts and making it available as one tag. Usually this consists
of more than one HTML element and includes a template. Mixins are great at
separating logic into smaller reusable chunks of code that can be shared in multiple

components and instances. Custom directives are geared toward adding low-level DOM

access to elements. Before using any of these three, take a minute to understand which

one will be best for the problem you’re trying to solve.

Two types of directives exist, local and global. Global directives can be accessed
throughout the app at any place on any element. Typically, when you're creating

directives you want them to be global, so you can use them everywhere.

Local directives can be used only in the component that registered that directive. This is
nice to use when you have a specific custom directive that only needs to be used in one
component. For example, you might create a specific select drop-down that works with

only one component.

Before we look at each one, let’s create a simple local custom directive that sets the
color and font size, and adds a Bootstrap class name to an element. It should look like

figure 9.3 when we’re done.

Figure 9.3. Hello World text added using a custom directive.

Exam ple of uging a custom
d irective w ith text.

C | @ e/ FiUsers/ehanche it vuejs-inYction/codechapter-09/directhg-examplehoml -

Hello World

Open a new file and name it directive-example.html. Inside the new file, add simple
HTML. The HTML should include the script tag for Vue and the stylesheet for the
Bootstrap CDN. Inside our app, we’ll create a new directive called v-style-me, as you

can see in this listing. This directive will attach to the p tag.

Listing 9.6. Vue.js local custom directive: chapter-09/directive-html.html

<!DOCTYPE html>
<html>
<head>
<script src="https://unpkg.com/vue"></script>
<link rel="stylesheet" 1
href=https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap
.min.css>
</head>
<body>
<div id='app'>
<p v-style-me> 2
{{welcome}}
</p>
</div>

e 1 Shows the Bootstrap added to the app

e 2 Lists the custom directive for style-me

All custom directives start with a v-*. Now that we have our custom directive in place

on our p tag, we can add the Vue logic to the app.

Create a Vue instance and a data function. This function will return a welcome message.
Next, we’ll need to add a directives object. This will register a local custom directive.

Inside that directives object we can create our directives.

Create a directive called styleMe. Each directive has access to a number of arguments
that it can use:
e el— The element the directive is bound to.

* binding— An object containing several properties, including name, value,
oldvValue, and expression. (See the custom-directive guide for the full list at
http://mng.bz/4NNI.)

e vnode— The virtual node produced by Vue’s compiler.

e oldVnode— The previous virtual node.

For our example we’ll use only e1, for the element. This is always the first argument in
the list. Keep in mind that our sty1leMe element is in camelCase. Because it was

declared in camelCase, it must be in kebab case (v-style-me) in the template.

All custom directives must specify a hook. Much like the lifecycle and animation hooks
we looked at in earlier chapters, the custom directive also has many similar hooks.

These hooks are called at various times of the custom directive’s life cycle:
e bind— This hook is called only once, when the directive is bound to the element.
This is a good place to do setup work.

e nserted— This is called when the bound element has been inserted into the

parent node.
e update— This is called after the containing component VNode has updated.

e componentUpdate— This is called after the containing component’s VNode and
the children of the VNodes have updated.

o unbind— This is called when the directive is unbound from the element.

You may be wondering what a VNode is. In Vue.js the VNode is part of the virtual DOM

that Vue creates when the application is started. VNode is short for virtual node and is

used in the virtual tree that’s created when Vue.js interacts with the DOM.

For our simple example, we’ll use the bind hook. This is fired as soon as the directive is
bound to the element. The bind hook is a good place to do setup work to style the
element. Using JavaScript, we’ll use the style and c1lassName methods of the
element. First add the color blue, then the fontSize 42px, and finally the

className text-center inside the bind hook.

Go ahead and update the directive-example.html file. Your code should match the

following listing.

Listing 9.7. Local directive Vue instance: chapter-09/directive-vue.html

<script>
new Vue ({

el: '#app',

data () {
return {
welcome: 'Hello World' 1
}
b
directives: { 2
styleMe (el, binding, vnode, oldVnode) { 3
bind: { 4
el.style.color = "blue";

el.style.fontSize= "42px";

el.className="text-center";

}

}) s
</script>
</body>
</html>

e 1 The data function returns the welcome property.
e 2 This is where directives are registered.
e 3 Shows the name of the local custom directive, with arguments

* 4 Notes the bind hook

Load up the browser and you should see the Hello World message. Now that we have
this custom directive, we can use it on any element. Create a new div element and add

the v-style-me directive. You'll notice that after you refresh the browser the text is

centered, the font size is changed, and the color is blue.

9.2.1. Global custom directives with modifiers, values, and args

Now that we have a local directive, let’s see what it looks like using a global directive.
We'll convert our simple example, then we’ll look at the binding argument. With the
binding argument, we’ll add a couple of new features to our custom directive. Let’s give
to the directive the ability to pass in the color of the text. In addition, we’ll add a
modifier so we can choose the size of our text, and we’ll pass an arg for the class name.
When it’s all done it will look like figure 9.4.

Figure 9.4. Using global directives with the binding argument

& (D bl F Usersehanchett vosgs-in-action/oode/chapter 09/ directive -global-gxample htmil T ¥

Hello World

Hi everybody

e This text uses the o Exam ple of using a
v-style-me.small custom directive w ith
m od ifier, a binding argum ent.

Copy the last example directive-example.html to directive-global-example.html. The
first thing we need to do is to remove the directives object from the Vue.js instance. Go
into our newly created directive-global-example.html file and remove the directives

object below the data object.

Next, we'll need to create a new Vue .directive. This will tell Vue.js that we’re
creating a global directive. The first argument is the name of the directive. Go ahead
and name it st yle-me. Then we’ll assign the name of the hook. We’ll use the bind

hook the same way we did in the last example.

Inside the bind hook we’ll have two arguments, e1 and binding. The first argument is
the element itself. As we did in the previous example, we can use the el argument to
manipulate the element the directive is attached to by changing its fontSize,
className, and color. The second argument is called binding. This object has
several properties; let’s take a look at binding.modifiers,binding.value, and

binding.arag.

The easiest binding property to work with is binding.value. When we add our new
custom directive to an element, we can specify a value with it. For example, we could

bind 'red' tobinding.value, as follows:

v-style-me=""'red'"

We can also use object literals to pass in multiple values:

v-style-me="{ color: 'orange',K text: 'Hi there' }"

We could then access each value using binding.value.color and
binding.value.text. In listing 9.8, you can see that we set the element
el.style.colortobinding.value.If binding.value does not exist, it defaults
to blue.

The binding.modifiers are accessed by adding a dot to the end of the custom

directive:

v-style-me.small

v-style-me.large

When we access binding.modifers.large, it will return true or false,
depending if the custom directive was declared when attached to the element. In listing
9.8, you can see that we check if binding.modifiers.largeis true. If so, we set
the font size to 42px. Elseif binding.modifiers.small is true, the font size is set

to 1 7px. If neither one of these modifiers is present, the font size isn’t changed.

The last binding property we’ll look at is binding.arg, declared in the custom
directive with a colon and then the name. In this example, text-center is the

argument:

v-style-me:text-center

With all that said, you can chain modifiers, args, and values together. We can
combine all three. The binding.argis 'red',thebinding.modifier issetto

large,and the binding.valueis text-center.

v-style-me:text-center.large=""'red'".

After adding the global custom directive make sure to go back into the HTML and add
the second custom directive with text that displays Hi everybody. In this text, we’ll

use the binding modifier small on it, as shown in the following listing.

Listing 9.8. Completed Vue global directive: chapter-09/directive-global-
example.html

<!DOCTYPE html>

<script src="https://unpkg.com/vue"></script>

<link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap

.min.css"> 1
<html>
<head>
</head>
<body>

<div id='app'>
<p v-style-me:text-center.large=""'red'"> 2

{{welcome}}

</p>
<div v-style-me.small>Hi everybody</div> 3
</div>
<script>
Vue.directive ('style-me', { 4

bind(el, binding) {

el.style.color = binding.value || "blue"; 5

if (binding.modifiers.large) 6
el.style.fontSize= "42px";
else if(binding.modifiers.small)

el.style.fontSize="17px"
el.className=binding.arg; 7

) &

new Vue ({
el: '#app',

data () |
return {

welcome: 'Hello World'

}
1)
</script>
</body>
</html>

1 Shows the Bootstrap CSS added to the app
2 Notes the custom directive declaration with values, arg, and modifier
3 Lists the second custom directive with only a modifier

4 The global custom directive declaration uses the bind hook.

5 The element el.style.color is set to the binding.value or blue.

¢ 6 binding.modifiers are checked here to change the font size.

e 7binding.arg is set to the class name on the element.

After loading up the browser, you should see the Hello World message. Notice how the
second text, Hi Everybody, isn’t centered and is smaller to the left of the screen. We got
this because we used the v-style-me directive with only the small modifier. In that

case, it changed the font size; however, it left the default color blue.

If you look closely at the source, you’ll notice that a class of “undefined” was added to
the second text div, because we assigned the binding.argtoel.className in the
custom directive. However, because we didn’t declare it, it’s undefined by default.
Beware this could happen: it would probably be a good idea to do a check on

binding.arg before we set it to el .className. I'll leave that for you to do.

9.3. RENDER FUNCTIONS AND JSX

Until now we’ve written all Vue.js applications using templates. This will work most of
the time; however, there may be instances where you need to have the full power of
JavaScript. For those cases, we can define our own render function instead of using a
template. The render function will operate similarly to templates. It will output HTML,

but you must write it in JavaScript.

JSX is an XML-like syntax that can be converted to JavaScript using a plugin. It’s a way
we can define our HTML inside JavaScript, like the render function. It’s more
commonly used with React, another frontend framework. We can use the full power of
JSX with Vue.js, with the help of a Babel plugin.

Using JSX isn’t the same as using the render function. To use JSX, you need to install
a special plugin. But the render function works without any special setup inside your

Vue.js instances.

In my experience, using the render function in Vue.js to create complex HTML is
difficult. Common directives such as v-for, v-1if, and v-model aren’t available. You
have alternatives for these directives, but you’ll have to write extra JavaScript. But JSX
is a strong suitable alternative. The JSX community is large and the syntax is much
closer to templates, and you still get the benefit and power of JavaScript. The Babel
plugin for Vue.js and JSX is well-supported and maintained, which is also nice. For
those reasons, I'll only give a simple overview of the render function before we move
on to JSX.

Tip

If you’d like to learn about the render function in more detail, check out the official

guides at https://vuejs.org/v2/guide/render-function.html.

9.3.1. Render function example

Let’s create a simple example using render. Let’s imagine we have a global Vue.js
component that has a property named welcome. We want it to display the welcome
message with an HTML header. We'll use a prop called header to pass in which header
touse, h1, h2, h3, h4, or h5. In addition, we’ll add a click event to the message so it
shows an alert box. To make this good looking, we’ll use Bootstrap’s classes. Let’s make
sure our h1l tag also has a class of text-center on it. When it’s all done it will look
like figure 9.5.

Figure 9.5. An example of using the render function

C | @ filee// P Usersfehanchaty/ vueis- in-scton/code/chapier-Do/render-basic hmi | Y

Hello World Erik

Cutputted from
render function.

Create a file called render-basic.html. In this file, we’ll create our small app. Before we
create our component, let’s create the HTML. Inside the HTML, add your script for Vue
and your link to the Bootstrap CDN.

Inside the body, include a div with ID of app and a new component called my-comp.
The div is optional; we could assign the ID of app directly to the my-comp component.
For the sake of clarity, we’ll leave the div in as is. Inside that component, it will have a
prop called header that will be assigned to 1. Inside the opening and closing brackets,
we’ll put in a name: Erik. Remember from a previous chapter anything in between the
brackets of a component can be referenced with a slot. We can access slots using the
render function, as we’ll see next. Copy and paste the code from the following listing

into the render-basic.html file.

Listing 9.9. Render basics html: chapter-09/render-html.html

<!DOCTYPE html>
<html>

<head>

<script src="https://unpkg.com/vue"></script>

<link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.cs
OS>
</head>
<body>

<div id="app">

<my-comp header="1">Erik</my-comp>
</div>

<script>

e 1Vue.js script is added.
* 2 Bootstrap stylesheet is added.

e 3 Component is added with header prop.

Now that we have the HTML in place, we must add a root Vue.js instance before we can
add a global component. At the bottom of the page inside the script tags, add new
Vue ({el: '"#app'}).

After we add our root Vue.js instance, let’s create our global component. Make sure to
have the root Vue.js instance after the global component or you’ll get an error. The first
thing we’ll need inside our component is a data function that returns welcome. We’ll

make it say, “Hello World.” We also need to declare our prop header.

Instead of declaring a template property on the component, we’ll declare a render
function. Inside that function it will have one argument called createElement. (You
may sometimes see this as h; it’s the same thing.) Inside the render function, you

must return createElement with the proper arguments.

When you return createElement, you're building a virtual DOM by describing the
elements and child elements you’d like to define in your HTML. This is also known as a
virtual node (VNode). You are essentially creating a tree of VNodes that represents the
virtual DOM.

As you can see from listing 9.10, the createElement accepts three arguments. The
first is a string, object, or function. This is usually where you put in the DOM element,
such as a div. The second argument is an object. This represents the attributes you
want included on the element. The third is an array or string. If it’s a string, it
represents the text that will be included inside the tag. But if it’s an array, it usually
represents the child VNodes. Each VNode is like adding another createElement. It

has the same arguments. For this example, we’ll use only a string.

Inside our Vue . component add the render (createElement) function. Inside the
function, return createElement, as you see in listing 9.10. The first argument we want
is the header tag. We need to use the prop passed in to form the header value. In this
case we sent in 1, which we need to create an h1. We can concatenate the letter h with

our prop this.header.

The next argument is the attribute object. Because we’re using Bootstrap, we want to
use the text-center class to align the text in the middle of the screen. To do that, we
create an object and have the first property be c1ass, with the value being text-
center. In JavaScript, class is a defined keyword, so it must be in quotes. Our next
attribute is our event. Event handlers are represented by the keyword on when using
the render function. In this example, we use the click event and display an alert box

that shows c1icked.

The last argument is the array or string. This will define what we see inside our header
tag. To make things more interesting, we’ll combine the welcome message that we
defined in the data function and the text inside the opening and closing brackets of the
component, Eri k. To get this text, we can use this.$slots.default[0].text.
This will get the text in the brackets as if it was the default text in a slot. We can now
concatenate that with the welcome message. Copy this code into the render-basic.html.

It should be all you need.

Listing 9.10. Adding the render function: chapter-09/render-js.html

Vue.component ('my-comp', {
render (createElement) {

return createElement ('h'+this.header,

n W N R

{'class':'text-center',
on: {
click(e) {
alert ('Clicked") ;

}
Hy
this.welcome + this.S$slots.default[0].text) 5
by
data () {
return {
welcome: 'Hello World '
}
}o
props: ['header']

P

new Vue ({el: '#app'}) 6
</script>
</body>
</html>

e 1 Notes the global component called my-comp

* 2 The render function is paired with the createElement argument.
e 3 Returns the createElement argument

e 4 The attribute object with the class and click event defined

* 5 Notes the string that will show in the header element

e 6 Lists the root Vue.js instance that must be added

Load the render-basic.html file and look at the output, it should show the Hello World
Erik message. Change the prop header to a different value. You should see the text get

smaller as you increase the number. Click the message and you should see figure 9.6.

Figure 9.6. The alert box created using the render function after clicking the

message.
Fop up created by the
render function afrer
click ing m essage.
C | @ file/ /{7 Users/ehanchett vueis-in-action/code/chapter-0%/render-Basic himl - Al
o
This page says:
Clacled
9.3.2. JSX example

With JSX, you can create HTML similarly to templates and still have the full power of
JavaScript. To do this, we’ll create an app using Vue-CLI. Our goal is to re-create the
last example but use JSX instead. This example should accept a property, a class, and

show an alert box when the message is clicked.

Before we start, make sure you have Vue-CLI installed: the instructions are in appendix
A. Open a terminal window and create an app called jsx-example. You'll be asked to

respond to a few prompts: enter no for all of them.

Listing 9.11. Terminal commands to create jsx project

$ vue init webpack Jjsx-example

? Project name jsx-example

? Project description A Vue.js project

? Author Erik Hanchett <erikhanchettblog@gmail.com>
? Vue build standalone

? Install vue-router? No

? Use ESLint to lint your code? No

? Setup unit tests No

? Setup e2e tests with Nightwatch? No

vue-cli - Generated "jsx-example'".
To get started:

cd jsx-example

npm install

Next, change to the jsx-example directory and run npm install. This will install all
the dependencies. Now we’ll need to install the Babel plugin for JSX. If you have any
problems with the installation of the plugin, please check the official GitHub page at
https://github.com/vuejs/babel-plugin-transform-vue-jsx. The example I'm about to
introduce to you only touches on the basics of JSX. I highly recommend reading the
official documentation on the GitHub website on all the options available. Run npm

install for all the recommended libraries, as shown here.

Listing 9.12. Terminal commands to install plugin

$ npm install\
babel-plugin-syntax-jsx\
babel-plugin-transform-vue-jsx\
babel-helper-vue-jsx-merge-props\
babel-preset-env\

--save-dev

After you have the plugin installed, you’ll need to update the .babelrc file. This is in the
root folder. Inside it, you’ll see many presets and plugins. Add "env" to the list of

presets and "transform-vue-jsx" to the list of plugins, as in this listing.

Listing 9.13. Update .babelrc: chapter-09/jsx-example/.babelrc

"presets": [
["env", |
"modules": false
1y
"stage-2",

"envﬂ 1

1y
"plugins": ["transform-runtime", "transform-vue-jsx"], 2
"env": {

"test": {

"presets": ["env", "stage-2"] }

* 1 Adds env to the list of presets

e 2 Adds transform-vue-jsx to the list of plugins

Now that we’ve set up JSX, we can start coding. By default, Vue-CLI creates a
HelloWorld.vue file. We’ll use that file, but we’ll need to make several modifications. Go
into the src/App.vue file and update the template. Remove the img node and add the
HelloWorld component with two props. The first prop is our header, which will
determine the header tag level. The second prop will be called name. In listing 9.10, we
used slots instead of a named prop. In the following listing, we’ll make a slight
modification and pass the name in as a property instead. The result will be the same.

Update your src/App.vue file so it matches this.

Listing 9.14. Update App.vue: chapter-09/jsx-example/src/App.vue

<template>
<div id="app">
<HelloWorld header="1" name="Erik"></HelloWorld> 1
</div>
</template>

<script>
import HelloWorld from './components/HelloWorld'

export default {
name: 'app',
components: {
HelloWorld

}
</script>

<style>
</style>

e 1 The Hello World component with two props, name and header

Because we're using Bootstrap, we need to include it somewhere. Find the index.html
file in the root folder. Add the link to the Bootstrap CDN, as shown here.

Listing 9.15. Update the index.html file: chapter-09/jsx-example/index.html

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width,initial-scale=1.0">
<title>jsx-example</title>
<link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap
.min.css"> 1
</head>
<body>
<div id="app"></div>
</body>
</html>

e 1 Adds Bootstrap CDN

Open the src/components/HelloWorld.vue file. Delete the top template—because we’ll
be using JSX, we no longer need it. Inside the export default, let’s set up the data
object first. The data object will return welcome, as well as a message. The msg property
will construct the HTML for the header and it will concatenate the message we want to

show on screen using ES6 template literals.

Add a methods object as well. This will have a pressed method that will trigger an
alert box that shows c1icked. Last, add a props array at the bottom, for header and

name.

The render function for JSX is similar to the render function we used in our first
example. By convention, instead of using createElement, we use the letter h. Then

we return the JSX we need.

As you can see in listing 9.16, the render function returns several tags. The first is a
div tag that surrounds all the JSX. Then we have a div with a class that equals text-
center. We then add an on-click event handler that is assigned to this.pressed. In
normal Vue.js, data binding is done with text interpolation using the Mustache syntax

(double braces). In JSX, we use only a single brace.

The last thing we add is a special property called domPropsInnerHTML. This is a
special option added by the babel-plugin-transform-vue plugin. If you're
familiar with React, it’s similar to the dangerouslySetInnerHTML option. It takes

this.msg and interprets it as HTML. Be aware that taking user input and converting it

to HTML may lead to cross-site-scripting attacks, so be cautious whenever you use
domPropsInnerHTML. Copy the text from the following listing if you haven’t already

and save it in your project.

Listing 9.16. Update HelloWorld.vue: chapter-09/jsx-example/HelloWorld.vue

<script>
export default {
name: 'HelloWorld',
render (h) {
return (
<div>

~

<div class="text-center"
on-click={this.pressed}
domPropsInnerHTML={this.msg}></div>
</div>
)
by
data () {

return {

O N W N

welcome: 'Hello World ',
msg: "<h${this.header}>Hello World S${this.name} 6
</h${this.header}>",
}
b
methods: {
pressed () | 7
alert ('Clicked")

by

props: ['header', 'name'] 8
}
</script>

<style scoped>
</style>

* 1 AJSXrender function

e 2 Notes a div tag surrounding the JSX

* 3 Notes a div tag with the class attribute

e 4 The on click event handler that creates pop up box
e 5 The domPropsInnerHTML adds this.msg to div.

¢ 6 The Hello World with name added message

e 7 This is the method that shows the alert box.

e 8 Shows the two props for header and name

Save the file and start your server. Run npm run dev (or npm run serve if you're
on vue-cli 3.0) on the command line, and you can open the webpage at
http://localhost:8080. It should show the Hel11o World Erik message. Try to
change several of the values passed into the He11oWor1d component inside App.vue.

By changing the header, you can change the level of header tag that’s displayed.

EXERCISE

Use your knowledge from this chapter to answer this question:

e What is a mixin and when should you use it?

See the solution in appendix B.

SUMMARY

* You can share code snippets between multiple components using mixins.
* You can use custom directives to change the behavior of individual elements.

* You can use modifiers, values, and args to pass information into custom directives

to create dynamic elements on the page.
e The render function gives you the full power of JavaScript inside your HTML.

e JSX can be used in your Vue.js application as an alternative to using the render

function and still allow you to use the full power of JavaScript inside your HTML.

Part 3. Modeling data, consuming APIs, and testing

As your Vue.js applications grow larger and more complicated, you’ll need to start
thinking about a way to store data more efficiently in them. Luckily for us, Vuex offers
an amazing solution that makes this process easy. We'll learn that in greater detail in

chapter 10.

In chapter 11, dovetailing nicely from chapter 10, we’ll look at communicating with a
server. We'll discuss talking to a backend system and processing data. We’ll then learn
about server-side rendering, a new technology that will increase the speed of your

application.

In chapter 12, we’ll learn how to test. As a professional web developer, you’ll need to
know how to test your application. Testing helps eliminates bugs, and your applications
will be more stable. We'll also take a peek at development operations, also known as
DevOps. We'll learn how it can benefit our development lifecycle when deploying our

application and making sure everything is working properly.

Chapter 10. Vuex

This chapter covers

e Understanding state

e Using getters

e Implementing mutations

e Adding actions

e Working with Vuex helpers

e Learning about project setup and modules

In chapter 9, we looked at ways we could extend Vue.js and reuse part of its functionality
without repeating code. In this chapter, we’ll look at how we store data in our
application and how that data is shared between components. One of the preferred
ways of sharing data in an application is by using a library called Vuex. Vuex is a state-
management library that helps create a centralized store that can be shared with all the

components in the application.

We’ll begin by looking at when we should use Vuex and when we shouldn’t. Certain
applications benefit more from Vuex than others. Next, we’ll look at state and how we
can centrally locate it. Afterward we’ll explore getters, mutations, and actions. All three
allow us to keep track of state in our application. Then we’ll look at Vuex helpers, which
will help us eliminate part of our boilerplate code. Last, we’ll see what type of directory

structure we can use to fully take advantage of Vuex in larger applications.

10.1. VUEX, WHAT IS IT GOOD FOR?

The Vuex state-management library mutates state. It stores state in a central location,
which makes it easy for any component to interact with. State is the information or data
that supports our application. This is important because we need to access that

information in a reliable and understandable way.

If you've used other single-page frameworks, such as React, you may be already familiar

with several of these concepts. React uses a similar state-management system called
Redux. Both Redux and Vuex are inspired by a state-management system called Flux.
Flux is an architecture that Facebook created to help build its client-side web
applications. It promotes a unidirectional data flow from actions, to a dispatcher, to a
store, to a view. This flow helps separate state from the rest of the application and it
promotes synchronous updates. You can learn more about flux from the official

documentation at https://facebook.github.io/flux/docs/overview.html.

Vuex uses these principles to help mutate state in a predictable, synchronous way.
Developers don’t have to worry about synchronous or asynchronous functions changing
state in a way that we don’t expect. Let’s say we’re interacting with an API on the
backend that delivers a JSON payload to the application. But at the same time a third-
party library is changing this information. We don’t want a scenario where the third-
party library mutates the data in an unpredictable way. Vuex helps protect us from this

scenario by forcing all mutations to be synchronous.

You may be wondering why we need Vuex at all. After all, Vue.js gives us ways to pass
information to components. As we learned from the components chapters, we can pass
data using props and custom events. You could even come up with an event bus to pass
information around and facilitate cross-component communication. You can see in

figure 10.1 how this might look.

Figure 10.1. Simple example of using props and an event bus

Simple example with a few components

o Data is passed via props
to child com ponents.

Root Vue.js instance

P Callback to change data
|
I

data some data
props J props L props
props some data props some data pmps some data |,
Component 1 Component 2 ‘ Component 3 -

Component 2
listens with Son

Call Semit
i L Event bus

9 Exam pls of using an event bus
to pass nform ation between

com ponents w ith custom events

This works well for smaller applications with only a handful of components. In that
scenario, we have to pass information to only a few components. What if our
application were larger, with more complexity and levels? You can imagine that inside a
larger application, keeping straight all the callbacks, passed props, and the event bus
would be difficult.

This is where Vuex comes in. It introduces a more organized way to keep track of our
state in one central store. Let’s imagine a scenario where you might consider Vuex. In
this scenario we’re creating a blog, and inside that blog we have several components
including post, comments, create, edit, and delete. We also have an admin interface

where we can ban and add users.

Let’s see how that would look with Vuex. As you can see in figure 10.2, the Edit Bio
component is nested under the admin component. The Edit Bio component needs to
have access to the user information, so it can update it. When using a central store with
Vuex, we can access the store, mutate the information, and commit it straight from the
Edit Bio component. This is a significant improvement from having to pass the
information down from the root vue.js instance to the admin component then finally to
the Edit Bio component using props. Trying to keep the information straight from

multiple places would be difficult.

Figure 10.2. How a central store is used with Vuex

Central store holds data
that can be accessed

from any com ponent. Blog example using Vuex

f')l Central store H

Root Vue.js instance

blog data
get data # +
| Display posts Edit posts Delete posts ‘ Create posts
component component component component
Display comments Admin
component
change data - et
e Edit bio
component

With all that said, there’s a price to pay with Vuex: adding Vuex will add more
complexity and boilerplate code to your app. As I mentioned, you probably shouldn’t

use Vuex for simple apps with only a few components. Vuex thrives in larger

applications where state can be more complicated.

10.2. VUEX STATE AND MUTATIONS

Vuex uses a single object that contains the state for your complete application. This is
also sometimes referred to as the single source of truth. As the name suggests, all the

data is stored in exactly one place and isn’t duplicated anywhere in the application.

Tip

It’s worth mentioning that even though we’re using Vuex, we don’t have to put all our
state in Vuex. Individual components can still have their own local state. In certain
situations, this might be preferable. For example, in your component you might have a

local variable that’s only used in that component. That variable should stay local.

Let’s create a simple example of using state with Vuex. For this example, we’ll use a
single file. Later, we’ll see how we can add Vuex to a Vue-CLI application. Open a text
editor and create a file called vuex-state.html. In this file we’ll display a message that’s
stored in the central store and show a counter. When it’s all done it will look like figure
10.3.

Figure 10.3. Creating a simple app using Vuex

C | @ file///F:;/Users/ehanchett/vuejs-in-action/code/chapter-10/vuex-state.html

Vuex App
w 0 Header is created from
Hello World root Vue.js instance.

3

Erase ba 9 Welcom e m essage is

stored inside Vuex.

o C lick ing the buthon increm ents

counter using Vuex.

We'll first add a script tag CDN link to both Vue and Vuex. Next, we’ll add in the HTML.
For our HTML we’ll use an H1, H2, H3 and a button tag. The h1 tag will display the

header, which is a local variable defined in the Vue.js instance. The welcome and
counter messages will be computed properties derived from our Vuex store. The
button element will trigger an action called increment. Add the code in this listing to

the top of the vuex-state.html file.

Listing 10.1. Adding HTML to our Vuex app: chapter-10/vuex-html.html

<!DOCTYPE html>
<html>
<head>
<script src="https://unpkg.com/vue"></script> 1
<script src="https://unpkg.com/vuex"></script>
</head>
<body>
<div id="app">
<hl>{{header}}</hl>
<h2>{{welcome}}</h2>
<h3>{{counter}}</h3>
<button @click="increment">Press Me</button>

</div>

a 0 AN W

* 1 Shows a CDN script tag for Vue

e 2Shows a CDN script tag for Vuex

* 3 Denotes the header variable

e 4 Lists the welcome computed property
* 5 Shows the counter computed property

* 6 Notes the button with click action set to increment

Now that we have our HTML in place, let’s begin by adding in a Vuex store. The Vuex
store will hold all our data for our example. This will include the msg and count

properties.

To update the state, we’ll use something called mutations. You can think of mutations
as setters in other programming languages. Setters set values; mutations are what we
use to update the state of the application. In Vuex, mutations must be synchronous. In
our example, the counter will be triggered only when the button is pressed, so we don’t
have to worry about asynchronous code. (Later we’ll look at actions that can help solve

the problem when you’re dealing with things that are asynchronous.)

Inside our mutations object we’ll add an increment function that increments state. Take
the code in this listing and add it to the bottom of the vuex-state.html file.

Listing 10.2. Add our Vuex state and mutations: chapter-10/vuex-state-mut.html

<script>
const store = new Vuex.Store ({
state: {
msg: 'Hello World', 1

count: O

by
mutations: {
increment (state) { 2

state.count++;

¢ 1 The Vuex.Store holds state information.

¢ 2 Shows the mutations that increment the state

We have our HTML and Vuex store in place, and we can now add the logic that
connects everything. We want to make sure that our template displays the msg and

counter from the Vuex state and that we can update that count.

Create a Vue.js instance with a new data function. This will return the local header
property that displays Vvuex App. In the next section, we’ll add a computed property
which will have two functions, welcome and counter. The welcome property will

return store.state.msqg. The counter will return store.state.count.

Finally, we’ll need to create a method called increment. To update the store and
access the mutations we set up in Vuex, we can’t call the mutation directly. We must
use a special function called commi t. This will tell Vuex to update the store and commit
the change, so to speak. The store.commit ('increment') does the commit to the
mutation we created. Add the following code to the vuex-state.html file under the code

you created in listing 10.2.

Listing 10.3. Adding our Vue.js instance: chapter-10/vuex-instance.html

new Vue ({
el: '#app',
data () |
return {
header: 'Vuex App' 1
}
bo
computed: {

welcome () {

return store.state.msg 2

bo
counter () {
return store.state.count; 3
}
bo
methods: {
increment () |

store.commit ('increment') 4

1)
</script>
</body>
</html>

* 1 Shows the header property that displays the message
e 2 The computed property returns the msg state.
e 3 The computed property returns the counter state.

¢ 4 The increment method triggers the Vuex increment mutation.

Now we have a fully functional app that uses Vuex! Click the button a few times, and

you should see the counter increment by one after each button click.

Let’s update this application so that each button click updates the count by 10. If you
look closely at the mutations increment function, it has only one argument: state.
However, we can pass another argument to it: we’ll call it payload. This payload can be

sent from the increment method we created in the root Vue.js instance.

Take the vuex-state.html file and copy it into a new file called vuex-state-pass.html.

This file will hold our new application, which shows how to pass in a payload.

As you can see in listing 10.4, we need to update only the mutations object and the
increment method. Add another argument called payload to the increment
mutation. The payload will be added to the state.count. Inside the increment
method, add 10 as another argument to the store.commi t. Update the vuex-
state.html as shown here.

Listing 10.4. Passing payload into a mutation: chapter-10/vuex-state-pass-
1.html

mutations: {

increment (state, payload) { 1

state.count += payload;

methods: {
increment () {

store.commit ('increment', 10) 2

e 1 The increment mutation accepts a payload and adds it to the count.

¢ 2 The increment method now passes 10 to the mutation.

Save the vuex-state-pass.html file and reload your browser. After clicking the button, it
should now increment by 10 instead of by 1. If it’s not loading correctly, check your web

browser’s console. Make sure you didn’t have any typos.

10.3. GETTERS AND ACTIONS

In the previous example, we directly accessed the store from our computed properties.
What if we had multiple components that needed to access these computed properties?
What if we wanted to always display a welcome message in all caps? This is where

getters can help us out.

Inside Vuex, we have something called getters. With getters, all components can access
the state in the same way. Let’s continue with our example from section 10.2. We're
going to update it with getters instead of directly accessing the state in our computed
properties. In addition, we want the getter for msg to convert the message to all

uppercase letters.

Take the vuex-state-pass.html file from the previous example and copy it to vuex-state-
getter-action.html. To make things simple, we’ll leave the HTML the way it was before.
When it’s all done it should look like figure 10.4.

Figure 10.4. Hello World app using setters and actions

C | @ filey//F/Users/ehanchett/vuejs-in-action/code/chapter- 10/vuex-state-getter.html

Vuex App
f e Vuex getter sets m esgsage
HELLO WORLD and c apitalizes it.

S0

_/—> o C lick ing button increm ents
Press Me counter by 10.

You can see that the Hello World message is now in capital letters. Clicking the Press

Me button increments the counter as it did in the last example.

Inside your newly created vuex-state-getter-action.html file, look for the Vvuex.Store
below the <script> tag. Below the mutations object add a new object called getters.
Inside getters we'll create msg and count as you can see in listing 10.5. Both msg and

count take one argument, state.

In our msg getter, we'll return state.msg. toUppercase (). This will ensure that
whenever we use the msg getter, it will return the value in all caps. For our count
getter, it will return state.count. Update the vuex-state-getter-action.html with the

new getters object under mutations.

Listing 10.5. Adding new getters: chapter-10/vuex-state-getter-action1.html

mutations: {
increment (state,payload) {
state.count += payload;
}
b
getters: { 1
msg (state) {

return state.msg.toUpperCase() ;

b
count (state) { 3

return state.count;

bo

* 1 The new getters object defines getters for Vuex.
¢ 2 The msg getter returns msg in all caps.

e 3 Shows the count getter

Actions are another integral part of Vuex. I previously mentioned that mutations are
synchronous. But what if we’re dealing with asynchronous code? How can we be sure
that our asynchronous code will still affect state? That’s where actions in Vuex comes

in.

Let’s imagine in our example that we are accessing a server, and we’re waiting for a
response. This is an example of an asynchronous action. Unfortunately, mutations must
be synchronous, so we can’t use that. Instead, we’ll add the asynchronous operation

using a Vuex action.

In this example we’ll create a delay using a setTimeout. Open the vuex-state-getter-
action.html file and add a new object called actions after the getter object we created.
Inside that object, we’ll have our increment action that takes a context and
payload. The context is what we’ll use to commit our changes. We’ll wrap our
context.commit inside a setTimeout. This is so we can simulate a delay from a
server. We can also pass a payload to the context . commi t. This will get passed to the

mutation. Update the code based on this listing.

Listing 10.6. Adding actions: chapter-10/vuex-state-getter-action2.html

b
actions: { 1
increment (context, payload) {
setTimeout (function () {
context.commit ('increment', payload); 3
},2000) ;

* 1 The actions object is used for asynchronous and synchronous actions.
* 2 The increment function accepts a context and payload.

e 3 This triggers the increment mutation and passes the payload to it.

Now that we’ve updated our Vuex.Store, we can move on to the root Vue.js instance.
Instead of accessing the store directly, we’ll update the computed property to access the
getters instead. We'll also update the increment method. We’ll use the

store.dispatch ('increment', 10) to accessthe new Vuex action we created.

The first argument of dispatch is always the name of the action. The second

argument is always the payload that will get passed into the action.

Tip

The payload can be a simple variable or even an object.

Update the vuex-state-getter-action.html code with the new Vue.js instance from this

listing.

Listing 10.7. Updating the Vue.js instance: chapter-10/vuex-state-getter-

action3.html

new Vue ({

el: '#app',
data () {
return {
header: 'Vuex App'
}
I
computed: {
welcome () |
return store.getters.msg;
s

counter () {

return store.getters.count;

}

bo

methods: {
increment () |

store.dispatch('increment',

10); 3

e 1 The computed property welcome returns the getters msg.

e 2 The computer property counter returns the getters count.

e 3 The method dispatches the increment action.

Load the app and click the button a few times. You'll notice a delay, but the counter will
update by 10 after each press.

10.4. ADDING VUEX TO VUE-CLI WITH THE PET STORE APP

Let’s return to the pet store application that we’ve been working on. If you remember
the last time we worked on it, we added fancy animations and transitions. Now that

we’ve learned the basics of Vuex, let’s add it to the mix.

Let’s move the product data into the store. If you recall from the previous chapters, we
initialized the store in the created hook of the Main component in the pet store
application. Instead, we’ll have the create hook dispatch a new action that will initialize
the store inside Vuex. We'll also add a new products computed property that retrieves
our products using a Vuex getter that we’ll set up. When all is done it will look and

behave the same as it did before, as seen in the figure 10.5.

Figure 10.5. Showing the completed pet store application

@ origina

pet store app.
@ The Vue CLI defaults to 8080.You

can change this in config/index j=.

= 0 | @ e il CI-RE

Vue.js Pet Depot i

Cat Food, 25lb bag

A 25 pound bag of iresistible, organic goodness
for your cat.

520.00

m Buy Now! *ooh R

\u'l.-i.' < ,||I Cat House

10.4.1. Vuex installation in Vue-CLI

To begin, let’s install Vuex! This is straightforward. If you haven’t already, retrieve the
latest version of the pet store application that we last worked on in chapter 8. Or you can
download the completed code for this chapter from GitHub at
https://github.com/ErikCH/VuejsInActionCode.

Open a terminal window and change directories into the root of the pet store
application folder. Run the following command at the prompt to install the latest

version of Vuex and save it into the package.json file in the pet store application:

$ npm install vuex

Next, we'll need to add the store to the main.js file in the src folder. We haven’t created
the store yet, but let’s import it anyway. By convention, the store is usually located in
the src/store/store.js file. This is up to you, and different developers come up with
different conventions. For now, this will work for us. Later in the chapter, we’ll discuss

alternative folder structures with something called modules.

Inside the root Vue.js instance, we need to add the store, as shown in the following
listing. Add the store to the root instance under router. By the way, because we’re using

ES6, we can use the shorthand store, instead of store: store.

Listing 10.8. Updating the main.js file: chapter-10/petstore/src/main.js

// The Vue build version to load with the “import’ command
// (runtime-only or standalone) has been set in webpack.base.conf with an

alias.

import Vue from 'vue

import App from './App'

import router from './router'

require('./assets/app.css')

import { store } from './store/store'; 1
Vue.config.productionTip = false

/* eslint-disable no-new */
new Vue ({
el: '#app',
router,
store, 2
template: '<App/>',
components: { App }

e 1 Imports the store into the main.js file

e 2 Adds it into the Vue.js instance

Now that we’ve added the store into the root instance, we can access it throughout the
application. Create a file in src/store/store.js. This file will be our Vuex store and hold
the information for the products in our pet store application. At the top of the file, add
two import statements, one each for Vue and Vuex. Next, we’ll add a Vue . use (Vuex) .

This will connect everything.

Inside the main.js file, we imported store from . /store/store. We need to export a
store object inside the store.js file, so that the main.js file can import it. As you can see

in listing 10.9, we export a const store of Vuex.Store.

We'll first add our state and mutations objects. The state object will hold an empty
object called products. We'll load that using our initStore soon. Our mutations will
be called SET STORE. The mutation will take the passed-in products and assign it to
state.products. Inside the newly create src/store/store.js file, add the code from

this listing.

Listing 10.9. Creating the main.js file: chapter-10/store-partl.html

import Vue from 'vue';

import Vuex from 'vuex';

Vue.use (Vuex) ; 1
export const store = new Vuex.Store ({ 2
state: { 3
products: {}
bo
mutations: { 4

'SET STORE' (state, products) {

state.products = products;

}y

e 1 Sets Vuex with Vue
e 2 Exports Vuex.Store so it can be later used in the main.js file
e 3 The state object shows products.

¢ 4 The mutations object shows our set store function.

We need to add the action and getter to the store. The getter will return
products. The action is a little more complicated. What we want to do is move the

created hook code that uses Axios to read the static/products.json file to the actions

object in Vuex.

Remember that I mentioned that mutations had to be synchronous and that only
actions inside Vuex would accept asynchronous code? To get around this, we’ll put the

Axios code inside a Vuex action.

Create the actions object inside the store.js file and add initStore. Inside this action,
copy and paste the created lifecycle hook from the components/Main.vue file. Instead
of assigning the response.data.products to the products object, we’ll now use the
commit function to trigger our mutation. We’'ll pass in the
response.data.products as the payload to SET STORE. After all is done, it should
look like this.

Listing 10.10. Adding actions and getters to store.js: chapter-10/store-part2.html

actions: { 1
initStore: ({commit}) => {

axios.get ('static/products.json')

.then ((response) =>{
console.log(response.data.products) ;
commit ('SET STORE', response.data.products)

1)

}

b

getters: { 3
products: state => state.products

}

1)

e 1 The actions object used for asynchronous code
¢ 2 The initstore action commits the mutation.

e 3 The products getter returns the store for products.

We’re getting close, and now all we need to do is update the Main.vue file so it uses the
Vuex store instead of the local products object. Open the src/components/Main.vue file
and look for the data function. Remove the line products: {}.We’ll now access it

from a computed property that returns the store.

Look for the computed properties after the methods inside Main.vue. You should see
cartItemCount and sortedProducts. Add a new computed property called

products and have it return the products getter.

Keep in mind that because we added the store to the root Vue.js instance in the main.js
file, we don’t have to do any special imports. Also, the store is always accessed by
this.$store when using Vue-CLI. Make sure to remember the dollar sign or you'll

get an error. Add the products computed property to the Main.vue file, as shown here.

Listing 10.11. Adding product’s computed property: chapter-10/computed-
petstore.html

computed: { 1
products () {

return this.$store.getters.products; 2

by

e 1 The computed property for the Main.vue file

e 2 The computed property for products returns getters for products.

Locate the created hook that initialized the products object. Delete the contents of that
object and instead have it call the initStore action we created earlier in the Vuex
store. As we did with our previous example, use di spatch to trigger the action. Update
the created hook inside the Main.vue file so it triggers the Vuex initStore action, as

shown in this listing.

Listing 10.12. Updating created hook: chapter-10/created-petstore.html

by
created: function() {
this.$store.dispatch('initStore"'); 1

e 1 Dispatches the code to initialize the Vuex store

That should be it. Run npm run dev from the console and you should see a window
open with the pet store application. Try adding items to the cart and verify that all is
working. If things aren’t working, check the console for errors. It’s easy to accidentally
type Vuex . store instead of Vuex . Store inside the src/store/store.js file. Beware of

these problems!

10.5. VUEX HELPERS

Vuex gives us a handful of helpers that can be used to reduce the amount of verbosity
and repetition when adding getters, setters, mutations, and actions to our application.
You can find a full list of all the Vuex helpers in the official guides at
https://vuex.vuejs.org/en/core-concepts.html. Let’s look at these helpers and see how they

work.

The first helper you should know about is mapGetters. This helper is used to add all

our getters to our computed properties, without having to type every one of them. To

use mapGetters we’ll need to import it into our component first. Let’s look at our pet

store application one more time and add in the mapGetters helper.

Open the src/components/Main.vue file and look for the script tag. Inside that tag you
should see an import for the header component. Right after that import, add in the

mapGetters from Vuex as seen here.

Listing 10.13. Adding mapGetters: chapter-10/map-getter.html

<script>
import MyHeader from './Header.vue';
import {mapGetters} from 'vuex'; 1

export default {

e 1 Imports the mapGetters from Vuex

Next, we'll need to update our computed property. Look for the computed property for

products that we added earlier. Delete it and add a new mapGetters object.

The mapGetters object is unique and to add it correctly, we need to use the ES6
spread operator which expands our expression in places where zero or more

arguments are expected. You can find more information on the ES6 spread syntax from
the MDN docs at http://mng.bz/b0J8.

The mapGetters will make sure that all our getters will be added as if they were
computed properties. As you can imagine, this syntax is much simpler and cleaner than
having to write a computed property for each getter. Each getter is listed in an array

inside mapGetters. Add the mapGetters to the Main.vue file.

Listing 10.14. Adding mapGetters to computed properties: chapter-10/map-
getter2.html

Yy
computed: {
. .mapGetters ([1
'products' 2
1)

cartItemCount () {

e 1 Shows the mapGetters helper array

* 2 Shows the list of getters

If you run npm run dev, youll see that our pet store application runs normally. Using
mapGetters in our application isn’t too useful, but as it grows and we add more

getters, this will save us time.

The other three helpers you should know about are mapState, mapMutations, and
mapActions. All three behave the same way and are useful to help reduce the amount

of boilerplate code you need to write.

Let’s imagine you have several pieces of data in your store. In this instance, you don’t
need any getters and you’ll be accessing the state directly from your component. In this

case, you might use the mapState helper inside your computed properties.

Listing 10.15. mapState example: chapter-10/map-state.html

import {mapState} from 'vuex' 1
computed: {
..mapState ([2
'datal',
'data2',
'data3"'

e 1 Imports mapState from Vuex

e 2 Uses the spread operator to define mapState and variables

As with mapState and mapGetters, let’s say you also have several mutations you
want access to in your component. You can use the mapMutations helper method to
make this easy (shown in the following listing). The mut1 in the listing maps

this.mutl () to 'this.S$store.commit ('mutl').

Listing 10.16. mapMutations example: chapter-10/map-mut.html

import {mapMutations} from 'wvuex' 1
methods: {
..mapMutations ([2
'mutl’',

'mut2’',

'mut3’

e 1 Imports mapMutations from Vuex into component

e 2 The mapMutations helper adds these methods.

Finally, we’ll look at the mapActions helper. This helper maps actions to our app, so
we don’t have to create every method and have it dispatch each action. Using the same
example, let’s say this application also has some asynchronous operations. We can’t use
mutations, so we must use actions instead. We created these in Vuex and now we need
to access them in our component method object. Adding mapActions to our methods
will take care of this. The act1 maps this.actl () to
this.S$store.dispatch('actl'), asshown in listing 10.17.

Listing 10.17. mapActions example: chapter-10/map-actions.html

import {mapActions} from 'vuex' 1
methods: {
..mapActions ([2
'actl',
'act2',
'act3'

e 1 Imports the mapActions from Vuex

¢ 2 The mapActions helper adds the acti1, act2, and act3 methods.

These helpers will come in handy as your application grows, and it will cut down on the
amount of code you need to write. Keep in mind that you’ll need to plan the names in
your store because they’ll map out to the names in your components as you use these

helpers.

10.6. AQUICK LOOK AT MODULES

In the earlier sections of this chapter, we created a store.js file in the src/store directory
for the pet store application. This worked well for our relatively small application.
However, what if our application were much larger? The store.js file would quickly

become bloated and it would be difficult to keep track of everything in it.

The Vuex solution for this is modules. Modules allow us to divide our store into smaller
pieces. Each module has its own state, mutations, actions, and getters, and you can

even nest modules inside it.

Let’s refactor our pet store application to use modules. First, we’ll need to keep our
store.js file; however, we need to create a new folder named modules inside our store
folder. Inside that folder create a file called products.js. The folder structure should
look like figure 10.6.

Figure 10.6. Folder structure for modules

o Dirmrectories where
store is located.

— modules
— products.js
— store.js

9 Files for Vuex store.

Inside the products.js file, we’ll need to create four objects: state, getters, actions, and
mutations. We’ll need to copy and paste each of the values from our store.js to the

products.js file.

Open the src/store/store.js file and start copying over the code. When you’re done, your

products.js file should look like the following listing.

Listing 10.18. Adding products modules: chapter-10/products-mod.js

const state = { 1
products: {}

b

const getters = { 2

products: state => state.products

const actions = { 3
initStore: ({commit}) => {
axios.get ('static/products.json')
.then ((response) =>{

console.log(response.data.products) ;

commit ('SET STORE', response.data.products)
1)

b
const mutations = { 4

'SET _STORE' (state, products) {

state.products = products;

e 1 Holds all the Vuex state
e 2 Holds all the Vuex getters
* 3 Holds all the Vuex actions

* 4 Holds all the Vuex mutations

After adding everything to the product.js file, we need to create an export. This will
allow the file to be imported into the store.js file. At the bottom of the file, add an
export default. Thisis an ES6 export command that allows you to import it from

other files.

At the bottom of product.js, add the default export.

Listing 10.19. Adding the export: chapter-10/products-export.js

export default { 1
state,
getters,
actions,

mutations,

¢ 1 Shows the ES6 export of everything

We’ll need to update the store.js file. In this file we’ll add a new module object, and in
this object, we can list all the modules we added. Make sure to add an import to the

modules/products file we created.

In our case, we have only one, so we’ll go ahead and add it into the module object. Make

sure to delete everything in the Vuex. Store so it matches the following listing.

Listing 10.20. New store.js file: chapter-10/store-update.js

import Vue from 'vue';
import Vuex from 'vuex';

import products from './modules/products’'; 1

Vue.use (Vuex) ;

export const store = new Vuex.Store ({
modules: { 2

products

e 1 Imports the products module

¢ 2 The modules object lists all modules.

Once we have the modules imported, we’re ready to go. Refresh the application and it

should behave as it always has.

Namespaces with Vuex

In certain larger applications, breaking up your store into modules might present a
problem. As the program grows and more modules are added, the names of your
actions, getters, mutations, and state might collide. You might, for example, name two
getters with the same name in two different files accidentally. Because everything in
Vuex shares the same global namespace, you'll get a duplicate getter key error in your

console when this happens.

To alleviate this problem, you can use namespaces. By setting the namespaced: true
at the top of your Vuex.store you can break up your modules per namespace. To learn
more about namespaces and how to set this up in your file, please check out the Vuex

official documentation at https://vuex.vuejs.org/en/modules.html.

EXERCISE

Use your knowledge from this chapter to answer this question:

e What are several advantages of using Vuex over the normal data passing of a Vue.js

application?

See the solution in appendix B.

SUMMARY

* You can restructure your application to use centralized state management.
* You can access the data store inside the application from anywhere.

* You can avoid problems with your application store getting out of sync by using

mutations and actions with Vuex.
* You can use Vuex helpers to reduce the amount of boilerplate code needed.

e Inlarger applications, you can use modules and namespaces to keep state more

manageable.

Chapter 11. Communicating with a server

This chapter covers https://avxhm.se/blogs/hill0

Using Nuxt.js for server-side rendering

Retrieving third-party data with Axios

Using VuexFire

Adding authentication

We've discussed Vuex and how state management can benefit our larger Vue.js
applications. Now we’re going to look at communicating with a server. In this chapter,
we'll look at server-side rendering (SSR) and how we can use it to help improve our
app’s responsiveness. We'll use Axios to retrieve data from a third-party API. Then we’ll
look at VuexFire. VuexFire is library that helps us communicate with Firebase, a
backend service that helps with application development. Last, we’ll see how to add

simple authentication to our VuexFire app.

Before we move on, let me preface this chapter by saying there are many ways to
communicate with a server in Vue.js. We could use an XMLHt tpRequest Or use any
number of AJAX libraries out there. In the past, Vue officially recommended the Vue
resource library as the official AJAX library. Evan You, the creator of Vue, retired the
library in late 2016 from official recommendation status. As far as the Vue community

goes, you can use whatever library you like.

With all that said, I determined that Axios, Nuxt.js, and VuexFire are several of the
most popular libraries that could help us communicate with a server in one way or
another. They're all different, however. Nuxt.js is a powerful framework for creating
server-rendered apps, but Axios is a frontend HTTP client. VuexFire helps us

communicate with Firebase. All three take different approaches to communication.

The purpose of this chapter is to give you working knowledge of all three of these
libraries and frameworks. We’ll create examples for each, but we won’t go too deep.

Each subject could warrant its own chapter—and in the case of Nuxt, its own book.

mounir
Typewriter
https://avxhm.se/blogs/hill0

Nevertheless, this will be a good primer for these topics, and I'll include links to each

resource, so you can dive in deeper.

11.1. SERVER-SIDE RENDERING

Vue.js is a single-page application framework that uses client-side rendering. The logic
and routing of the application are written in JavaScript. When the browser connects to
the server, the JavaScript is downloaded. The browser is then responsible for rendering
the JavaScript and executing the Vue.js application. With larger applications, the time
to download and render the application can be significant. You can see from figure 11.1
how this might look.

Figure 11.1. Client-side rendering

Client-side Rendering

Client asks for web page > o

|1

I

1

I

]

I

I

]

1 I
9 Server sends app over with 1
JavaScript .
I

]

]

I

I

]

]

]

]

]

]

I

]

]

]

1 I

Brcnwser executes
JavaScript

(4]

Vue.js app loads

o mm m m mw
S

Server-side rendering (SSR) with Vue.js is different. In this case, Vue.js reaches out to
the server, which then sends over the HTML so the browser can display the page
immediately. The user sees the page load quickly. The server then sends the JavaScript,
and it loads in the background. It’s worth mentioning that even if the user sees the

webpage, they may not interact with it until Vue is done executing (figure 11.2).

Figure 11.2, Server-side rendering

Server-side Rendering

- I r
@ < Initial HTML sent |

Browser displays
web page
immediately

Q < Server sends JavaScript ||

"Vue js app loads ||

(3]

|

Browser loads
JavaScript

©—0

" —,_— i —_—

T ———————— T ——————————————

L e]
-

o o

Typically, SSR is a more pleasant experience for the user because the initial load is fast.

Most users don’t have the patience to wait for slow apps to load.

SSR also has unique advantages for search engine optimization (SEO). SEO is a term
that describes getting organic visibility (non-paid) on search-engine results. Although
little is known of the precise methods Google and other search engines use when
determining search-engine rankings, there’s a worry that search-engine robots have
problems when crawling client-side rendered pages. This could cause issues with

rankings. SSR helps prevent these problems.

Vue.js doesn’t come with SSR by itself, but there are great libraries that make it easy to
add SSR to our app. The two most popular are vue-server-renderer and Nuxt.js. You
can find more information on SSR from the official SSR guides at https://ssr.vuejs.org/.

Instead. we’ll look at how we can create an SSR app using Nuxt.js.

11.2. INTRODUCING NUXT.JS

Nuxt.js is a higher-level framework built on top of the Vue ecosystem that helps create
SSR applications without having to worry about all the aspects of delivering a

production-ready, server-rendered app.

Nuxt focuses on Ul rendering, and much of the client/server layer is abstracted away. It

can act as a standalone project or an addition to a Node.js-based project. In addition, it

has a built-in static generator that can be used to create Vue.js websites.

When you create a project with Nuxt, you get Vue 2, the Vue router, Vuex, vue-server-
renderer, and vue-meta. Under the hood it uses Webpack to help put everything

together. It’s an all-in-one package for getting up and running.

Info

We can use Nuxt with an existing Node.js application but we won’t look at that today. If
you want more information on creating a Nuxt app with an existing Node.js project,

check the official documentation at https://nuxtjs.org/guide/installation.

Nuxt provides a starter template to help us get started. This starter template can be
downloaded from the official GitHub repository at http://mng.bz/w0YV. We can also
create a project using the starter template with Vue-CLI. (If you haven’t installed Vue-

CLI, see appendix A for installation instructions.)

If you're using Nuxt, you’ll need Node. Nuxt requires version 8 or later to work.

Otherwise, you’ll get async errors when you try to start the project.

Info

The project listed in this chapter is working on Nuxt 1.0. But as of this writing, Nuxt 2.0
is in development and in beta. This example should work on both but if you encounter
any problems, check the official GitHub repository for this book at
https://github.com/ErikCH/VuejsInActionCode. This code will be maintained.

We'll use the Vue-CLI to create a project. At the command prompt, run the following

command:

$ vue init nuxt-community/starter-template <project-name>

This will create a new Nuxt project using the starter template. Next, you’ll need to

change into the directory and install the dependencies with the following commands:

$ cd <project-name>

$ npm install

To launch the project, run the npm run dev command:

$ npm run dev

This will start a new project on localhost port 3000. If you open a web browser, you
should see the welcome page (figure 11.3). If the welcome page isn’t displayed, double-
check to make sure you didn’t skip the npm install step.

Figure 11.3. Nuxt.js starter template page

& O | @ ecaront anlyY

Huxt .js server running
on port 3000,

start

Nuxt.js project

Dacumentation GitHub |

Let’s look at how to use Nuxt.js in a real app.

11.2.1. Creating a music search app

Server-side rendered apps can be useful and powerful. Let’s look at what Nuxt.js can do
for us. Let’s imagine you need to create an app that interacts with the iTunes API. The
iTunes API has a list of millions of artists and albums. You want to search for any artist

and display their discography.

Note

You can find more information on the iTunes API in the official documentation at
http://mng.bz/rm99.

In building our app, we’ll use two different routes. The first route will display an input

box for searching the iTunes API. This page will look like figure 11.4.

Figure 11.4. Search page for the iTunes API

ol & @ locathost 300 LN -

= iTunes Search &,

Search iTunes

Taylor Swift

The next route will display the artist’s album information.

Info

To make things look nicer, we’ll use a material component framework called Vuetify.
We’ll talk more about that later.

To make things more interesting, we’ll pass information from our search route into the
results route by using a parameter. After entering an artist’s name in the search box
(Taylor Swift), the results page will be displayed (figure 11.5). You can see in the URL
box at the top of the page that “Taylor%20Swift” has been passed in.

Figure 11.5. Search results page

(- C | D socamost B0 retuity Tayke g

= iTunes Search c

Results for Taylor Swift

Reputation
Taylor Swift

1989
Taylor Swift

The search page will display all the albums associated with the artist. It will display the
album name, artist name, and the cover art, and the card will link to the iTunes artist
page. In this example we’ll also look at middleware, which will allow us to write code
before the route is rendered. We’'ll see how we can use the Axios library to communicate

with the iTunes API. We'll wrap everything up by looking at Vuex again.

11.2.2. Creating a project and installing dependencies

Let’s begin creating our music API app by using the Vue-CLI starter template. We'll

then install all our dependencies. Run the following command at the prompt:

$ vue init nuxt-community/starter-template itunes-search

After the application is created, install Vuetify and Axios as an npm package using the
npm install command. In addition, Vuetify requires both the stylus and stylus-

loader so we can set up our stylus CSS that Vuetify uses.

Note

Vuetify is a material component framework for Vue.js 2.0. It adds many easy-to-use
and beautifully crafted components. It has similarities to other UI frameworks, such as

Bootstrap. You can find more about Vuetify at the official website at https://vuetifyjs.com.

Run the following commands to install Vuetify, Axios, stylus, and stylus-loader:

cd itunes-search
npm install

npm install vuetify
npm install axios

npm install stylus —-save-dev

v »nr W W A »

npm install stylus-loader —--save-dev

This will install all the dependencies we need to get started, but to get these
dependencies to work correctly, we’ll need a little more setup. We’re going to set up
Axios and Vuetify in our vendor file, register Vuetify inside our app, set up the Vuetify
plugin, and finally set up our CSS and fonts.

The nuxt.config.js file is used to configure the Nuxt app, so navigate to the
nuxt.config.js file in the root of the /itunes-search folder. Find the section that begins
with extend (config, ctx).This section is used to automatically run ESLint on
our code every time we save. (ESLint is a pluggable linting utility that checks our code
for style and formatting, among other things.) We could edit the .eslintrc.js file and
change the default linting, but for the sake of simplicity, we’ll delete this section
instead. This will turn off the automatic linting. Next add a new vendor option under
build. We then need to add Axios and Vuetify to the vendor option, as seen in listing
11.1.

Let me explain how this works. Every time we import a module in Nuxt.js, the code is
added to a page bundle that Webpack creates. This is a part of something called code
splitting. Webpack splits our code into bundles, which then can be loaded on demand
or in parallel. When we add the vendor option it makes sure that the code is only added
once to the vendor bundle file. Otherwise each import would add to each page bundle
and increase the size of the project. It’s good practice to always add your modules to the
vendor option so it won’t get duplicated in your project. (Nuxt 2.0 no longer requires
the vendor option. This can be removed.) Update the package.json file in the root

/itunes-search folder with the new vendor options.

Listing 11.1. Removing ESLint from nuxt.config.js: chapter-11/itunes-
search/nuxt.config.js

build: {

vendor: ['axios', 'vuetify'] 1

e 1 Adds Axios and Vuetify to vendor bundle and removes linting.

Although we’ve added Axios and Vuetify as vendors, we’re not done. Vuetify requires a
little more setup. We'll need to add a plugins section to the nuxt.config.js file and add

the plugin to the /plugins folder.

Plugins in Nuxt.js are a way of adding external modules to your application; they
require a little more setup. Plugins run before the root Vue.js instance is instantiated.

Unlike adding a vendor option, a corresponding file runs in the /plugins folder.

The official documentation for Vuetify recommends that we import Vuetify and tell Vue
to use it as a plugin. We’ll add this code to our plugin file. Add a new file in the plugins

folder, and name it vuetify.js. Inside the file, register Vuetify with Vue, as shown here.

Listing 11.2. Adding the Vuetify plugin: chapter-11/itunes-
search/plugins/vuetify.js

import Vue from 'wvue'

import Vuetify from 'vuetify'

Vue.use (Vuetify) 1

e 1 Adds Vuetify to Vue app

Next, we'll need to add a reference to the plugin in the nuxt.config.js. Open the

nuxt.config.js file in the root of the app folder and add the plugins.

Listing 11.3. Adding plugins reference: chapter-11/itunes-search/nuxt.config.js

plugins: ['~plugins/vuetify.js'], 1

e 1 Notes the reference to the plugins file

The last thing we need to do to get Vuetify working is to add CSS. The official
documentation recommends that you import the material design icons from Google
and add a link to the Vuetify CSS file.

Remember earlier when we imported the stylus loader? Well now we can add a link to

our own stylus file in the nuxt.config.js file. In the CSS block at the top, delete the

main.css file, if it exists, and add a link to the app.styl file that we’ll create in a moment.
Also, add a stylesheet in the head section for the Google material design icons. The
completed nuxt.config.js file should look like this.

Listing 11.4. Adding CSS and fonts: chapter-11/itunes-search/nuxt.config.js

module.exports = {
/*
** Headers of the page
=
head: {
title: 'iTunes Search App',
meta: [
{ charset: 'utf-8' },
{ name: 'wviewport', content: 'width=device-width, initial-scale=1"' }
{ hid: 'description', name: 'description', content: 'iTunes search
project' }
1y

link: [
{ rel: 'icon', type: 'image/x-icon', href: '/favicon.ico' 1},
{rel: 'stylesheet', href: 'https://fonts.googleapis.com/
css?family=Roboto:300,400,500,700|Material+Icons'} 1
]
by
plugins: ['~plugins/vuetify.Jjs'],
css: ['~assets/app.styl'], 2
/*
** Customize the progress bar color
2y
loading: { color: '"#3B8070' },
/*
** Build configuration
Ly
build: {
vendor: ['axios', 'vuetify']
}
}
4 4

e 1 Adds a link to material design icons

e 2 Removes main.css and adds in a link to app.styl

Now we need to create the assets/app.styl file, as shown in the following listing. This
will import the Vuetify styles for the app.

Listing 11.5. Adding CSS stylus: chapter-11/itunes-search/assets/app.styl

// Import Vuetify styling

@require '~vuetify/src/stylus/main' 1

e 1 Imports the main CSS

After this is done, run the npm run dev command and verify that you don’t see any
errors in the console. If you do, open the nuxt.config.js file and check for any missing
commas or typos. Also, make sure you've installed all the dependencies, including

stylus and stylus-loader. Those must be installed for Vuetify to work.

11.2.3. Creating our building blocks and components

Components are our building blocks of our application. It’s where we can split our app
into distinct parts that we can build back together. Before we build our routes, you may
have noticed that there’s a components folder. This folder is where we can put all our

normal, plain components.

Note

Nuxt.js gives us two different types of components. One is supercharged and the other
is not. Supercharged components have access to special Nuxt-only configurations and
are all located in the pages folder. These options let you access server-side data. The
pages directory is also where we set up our routes and where our index component is

located.

In this section, we’ll discuss using the components in the components folder. We’'ll
create two components for our iTunes search application: Card, which will hold the
information for each artist album that we find, and Toolbar. The Toolbar
component will create a simple toolbar that will be displayed at the top of each route.
We'll use Vuetify to help create both components. I'll show you the HTML and CSS for

these using Vuetify, but we won’t go into much detail.

Note

If you'd like to explore all the options of Vuetify, I recommend you read through the
quickstart guide at https://vuetifyjs.com/vuetify/quick-start.

Create a file, Toolbar.vue, in the components folder. This file will hold our Toolbar

template. Inside this template we’ll use several of Vuetify’s built-in components. We'll
also add scoped CSS to remove the text decorations on the links. When we’re done, the
toolbar should look like figure 11.6.

Figure 11.6. iTunes search ToolBar.vue

The Toolbarvue will be displayed
at the top of every page.

iTunes Search

In Vue.js, we normally use the route-11ink component to navigate inside the
application, but this component doesn’t exist in Nuxt. To navigate between routes, we
must use the nuxt-11ink component instead; it works exactly like the route-link. As
you can see in listing 11.6, we’ll use the nuxt-11ink component to create a link to the
root of the application whenever someone clicks the iTunes Search text at the top. Add
this code to the Toolbar.vue file.

Listing 11.6. Adding the Toolbar component: chapter-11/itunes-
search/components/Toolbar.vue

<template>
<v-toolbar dark color="blue"> 1
<v-toolbar-side-icon></v-toolbar-side-icon>
<v-toolbar-title class="white--text">
<nuxt-link class="title" to="/">iTunes Search</nuxt-link> 2
</v-toolbar-title>
<v-spacer></v-spacer>
<v-btn to="/" icon>
<v-icon>refresh</v-icon>
</v-btn>
</v-toolbar>
</template>
<script>
</script>
<style scoped> 3
.title {
text-decoration: none !important;
}
.title:visited{
color: white;
}
</style>

* 1 Adds the v-toolbar Vuetify component

¢ 2 The nuxt-link component navigates to “/”.

e 3 Shows the scoped CSS for this component

The next component we need to create is the Card component. It will be used in the
results route, and will display each album from the artist. Once again, we’ll use Vuetify

to make this component look nice. When it’s all done, it should look like figure 11.7.

Figure 11.7. Card.vue component with example text

o Album name

Reputation
Taylor Swift

9 Artist nam e 9 Cover art

In addition to Vuetify, we’ll also use props. The results route will be responsible for
accessing the API and retrieving the album information. We’ll then pass that
information into the component using props. We'll passin the title, image,

artistName,url,and color.

The v-card component accepts an href and a color attribute. We can use a v-on

directive to bind our props to them. The v-card-media component accepts an img
attribute. Our image prop will bind to it. Finally, the artistName and title will be
displayed using a class. This will center the title and artist name in the card. Copy the

code from this listing and create a file in the components folder named Card.vue.

Listing 11.7. Adding the Card component: chapter-11/itunes-
search/components/Card.vue

<template>
<div id="e3" style="max-width: 400px; margin: auto;"
class="grey lighten-3">

<v-container

fluid
style="min-height: 0;"
grid-list-1g>
<v-layout row wrap>
<v-flex xsl2>
<v-card target=" blank"
chref="url"
:color="color"
class="white--text">
<v-container fluid grid-list-1lg>
<v-layout row>
<v-flex xs7>
<div>
<div class="headline">{{title}}</div>
<div>{{artistName}}</div>
</div>
</v-flex>
<v-flex xsb5>
<v-card-media
:src="image"
height="100px"
contain>
</v-card-media>
</v-flex>
</v-layout>
</v-container>
</v-card>
</v-flex>
</v-layout>
</v-container>
</div>
</template>
<script>
export default {
props: ['title', 'image', 'artistName',
'url', 'color'],
}
</script>

e 1 The Vuetify v-card component accepts an href and color attribute.

e 2 A div with a class of headline displays the title.

¢ 3 A div shows the artist name

* 4 The Vuetify v-card-media component that accepts an src image.

e 5 A list of props being passed into the component.

These components—Toolbar and Card—will come in handy later when we put

together our pages and default layout.

11.2.4. Updating the default layout

Now that we have our components in place, we need to update our default layout in the
layouts folder. As the name suggests, the default layout is a component that wraps every
page in the application. Inside each layout is a <nuxt /> component. This is the entry
point for each page. The file default.vue implements the default layout. This can be
overridden inside any page component. We’'ll look at the page structure in the next
section. Pages are components that have special properties, and they help define the

routing of the application.

For our simple app, we’ll update the default.vue file and make several minor changes.
We want to add the Toolbar.vue file to the top of every route, so we don’t have to keep
adding it to every page in our app. All we have to do is add it once to the default layout,
and then it will appear on every page of our application. Update the default.vue file and
add a new section element with a class named container. Import the Toolbar
component in the <script> and add it to components. Then add the new
<ToolBar/> component above the <nuxt /> component, in the following listing.

Update the default.vue file in the /layouts folder so it matches this.

Listing 11.8. Updating the default layout: chapter-11/itunes-
search/layouts/default.vue

<template>
<section class="container"> 1
<div>
<ToolBar/> 2
<nuxt/>
</div>
</section>
</template>

<script>
import ToolBar from '~/components/Toolbar.vue'; 3
export default ({

components: {

ToolBar

}
</script>
<style>

¢ 1 Shows the container for the section that surrounds div
e 2 Adds the Toolbar component to the template

e 3 Imports the ToolBar component

Now that we have the layout in place, let’s move on to Vuex.

11.2.5. Adding a store using Vuex

The album information from the iTunes API will reside in the Vuex store. In Nuxt.js,
Vuex stores can be accessed anywhere in the application including in the middleware.
The middleware allows us to write code before the route loads. We'll look at middleware

in a later section.

Using Vuex, we'll create a simple store. It will have one property in the state, called
albums, and it will have a mutation called add. The add will take the payload and
assign it to the state.albums in the store/index.js file, as you can see in the following

listing. Create a file in the store folder named index.js. Add this code to it.

Listing 11.9. Adding a Vuex store: chapter-11/itunes-search/store/index.js

import Vuex from 'vuex'

const createStore = () => {

return new Vuex.Store ({

state: { 1
albums: []

b

mutations: {
add (state, payload) { 2

state.albums = payload;

export default createStore

e 1The albums property is the only state in the Vuex store.

e 2 Adds mutation that adds the payload to albums

Now that we have the store in place, we can have our middleware make a call to our API

and save it in the store.

11.2.6. Using middleware

Middleware is a term used in Node.js and Express to refer to a function that has access
to a request object and a response object. In Nuxt.js, middleware is similar. It’s run on
the server and client and can be set on any page in the application. It has access to both

the request and response object and it’s run before the route is rendered.

Note

Middleware and asyncData, which we’ll learn more about later, are run on the server
and the client. What this means is when a route loads for the first time the asyncData
and middleware are run from the server. However, every subsequent time the route
loads it’s run on the client. In some instances, you may want to run code purely on the
server and not the client. This is where the serverMiddleware property comes in
handy. This property is configured in the nuxt.config.js and can be used to run
application code on the server. For more information on serverMiddleware check

out the official guides at https://nuxtjs.org/api/configuration-servermiddleware/.

Middleware is created in the /middleware directory. Each middleware file has a
function that has access to an object called context. Context has many different
keys, including request, response, store, params, and environment. You can
find the full listing of context object keys in the official documentation at

https://nuxtjs.org/api/context.

In our application, we want to send the name of the artist in a route parameter. This is
accessible by using the context . params object. We can use that parameter to
construct a request to the iTunes search API and retrieve a list of albums. We can then

take that list and assign it to our albums property inside our Vuex store.

To make a request to the server, we need to use a library that simplifies the process.
Many libraries exist, but I like Axios, the HTTP library that we can use from the
browser or Node.js to make HTTP requests. It transforms our JSON data automatically
and it supports promises. To learn more about Axios, check out the official GitHub page

at https://github.com/axios/axios.

Create a file named search.js in the middleware folder. Add the code in listing 11.10.
This code makes an HTTP GET request to the iTunes API and passes in the params. id
as the search term in the request. When the promise returns, it calls the add mutation
using the store.commit function. You may have noticed that we’re using the ES6
destructuring for {params, store}. Instead of passing in the context, we can use
destructuring to pull out the keys we need.

Listing 11.10. Setting up middleware: chapter-11/itunes-
search/middleware/search.js

import axios from 'axios'

export default function ({params, store}) { 1
return axios.get (https://itunes.apple.com/
search?term=${params.id}&entity=album’)
.then ((response) => {
store.commit ('add', response.data.results) 2

P

* 1 Shows the default function that has access to the store and params

e 2The response from the server request is added to the store.

We have everything in place now, so we can look at pages and the route.

11.2.7. Generating routes using Nuxt.js

Routing in Nuxt.js is a little different from what you see in a normal Vue.js application.
You don’t have a VueRouter that you have to set up for all the routes. Instead, routes

are derived by the file tree created under the pages directory.

Each directory is a route in your application. Each .vue file in that directory
corresponds to the route as well. Let’s imagine you have a pages route and in that route
you have a user route. To create these routes, your directory structure will look like

figure 11.8.

Figure 11.8. Directory structure to create routes

— index.vue

o These are d irectories that

[p-im represent the generated route,
—_ index. vue
— [USer

— index.vue
- one.vue

L_/J 0 These are files that correspond

to com ponents in the route.

The directory structure in the pages folder will automatically generate the route shown

in this listing.

Listing 11.11. Automatically generated route structure

router: {
routes: [

{

name: 'index',

path: '/"',

component: 'pages/index.vue' 1
br
{

name: 'user',

path: '/user',

component: 'pages/user/index.vue'
b
{

name: 'user-one',

path: '/user/one',

component: 'pages/user/one.vue'

* 1 Notes the pages 3index route

This is a quick example of the type of routing you can do. You can find more

information on routing from the official guides at https://nuxtjs.org/guide/routing.

For our app we’ll have something much simpler. We’ll only have two routes, and one of
them will be dynamic. To define a dynamic route in Nuxt you must put an underscore
before the name. As seen in figure 11.9 the root of the pages folder has an index.vue file.
This is the root component and will be loaded when the application starts. You’ll also
see a README.md file. This file can be deleted; it’s only there to remind you what
should be inside the directory. The id route is dynamic. The ID will match the artist

name and will be passed into the route.

Figure 11.9. Directory structure of iTunes search app

rem— index.vue o Directory that
m— REQDME : M represents routes.
— results

L— id.vue

N

e Dynam ic route represented
by an underscore.

Inside the pages folder create a results directory. Then open the index.vue file. Delete
everything and add the fairly simple code from listing 11.12. We have a template at the
top with an <h1> tag and a <form> element. A v-on directive is attached to the submit
event on the form. We'll also use the event modifier prevent to stop the form from

submitting.

Inside the submit method, we'll use this. $router.push. This will route the
application over to the results/ page. We'll pass the search results into the route as a
parameter. Because we set up the dynamic _id route, the search results will show up
as part of the URL. For example, if we search for Taylor Swift, the URL will be
/results/taylor%2o0swift. Don’t worry about the %20, this is added in automatically and

represents a space character.

At the bottom of the page component, add a style tag, as shown in this listing. This will
center the text and add a little padding.

Listing 11.12. Creating the index page: chapter-11/itunes-search/pages/index.vue

<template>
<div>
<hl>Search iTunes</hl>

<form @submit.prevent="submit"> 1
<input placeholder="Enter Artist Name"
v-model="search"
ref="'search' autofocus />
</form>
</div>
</template>
<script>
export default ({
data () |
return {
search: "'
}
bo
methods: {
submit (event) {
this.$router.push(results/${this.search}) ; 2

}
</script>

<style> 3
* |

text-align: center;

hl {

padding: 20px;
}
</style>

¢ 1 Shows the form element with a v-on directive that triggers the submit

method on submit
e 2 Routes the app to the results page

* 3 Centers and adds padding to the page.

The final piece to this app is the id page that will display a card for each album in the

result. It will also alternate the colors between blue and red on each card.

Earlier in this chapter, I mentioned that pages are supercharged components. In other
words, they have certain Nuxt-only options available to them. These options include
fetch, scrollToTop, head, transition, layout, and validate. We'll look at
two other options called asyncData and middleware. If you want to learn more

about Nuxt options, check out the official documentation at https://nuxtjs.org/guide/views.

The middleware option allows us to define the middleware we want to use in our
page. This middleware will run each time the component is loaded. You can see in

listing 11.13 that the _id.vue file is using the middleware search we created earlier.

The other option is called asyncData. This is helpful because it allows us to retrieve
data and pre-render it on the server without using a store. As you saw in the
middleware section, we had to use the Vuex store to save our data so it could be
accessed by our components. When using asyncData, you don’t have to do this. Let’s
look first at how to access the data using middleware. Then we’ll refactor to use

asyncData.

Create a file in the pages/results folder called _id.vue. Inside that new component, add
a v-1f directive for albumData. This will guarantee the album data is loaded before

being displayed. Next, create a v—for directive that iterates through the albumbData.

On each iteration, we’ll show a card and pass into it the album data for title, image,
artistName, url, and color. The color will be calculated by a method called

picker. It will alternate between red and blue based on the index value.

At the top of the file, we’ll access the { { Sroute.params.id}}. This is the parameter

that’s passed in from the search results.

As you can see in the next listing, we’ll add a computed property called al1bumbata.
This will retrieve the data from the store. The store is populated by the middleware

search that’s triggered as soon as the route loads, as shown here.

Listing 11.13. Creating our dynamic route: chapter-11/itunes-
search/pages/results/_id.vue

<template>
<div>
<hl1>Results for {{$route.params.id}}</hl> 1
<div v-if="albumData"> 2
<div v-for="(album, index) in albumData"> 3
<Card :title="album.collectionCensoredName" 4
:image="album.artworkUrl60"
rartistName="album.artistName"
:url="album.artistViewUrl"
:color="picker (index)"/>
</div>
</div>
</div>
</template>
<script>
import axios from 'axios';
import Card from '~/components/Card.vue'
export default {
components: {
Card
by
methods: {
picker (index) { 5
return index % 2 == 0 ? 'red' : 'blue'
}
by
computed: { 6
albumData () {
return this.$store.state.albums;
}
I
middleware: 'search' 7

}
</script>

1 The message displays the route parameter passed in from the search.
2 The v-if directive that will only display if albumData is present.

3 The v-for directive that iterates through the albumData.

4 The Card component that’s passed-in album information.

5 The picker method that returns red and blue alternately.

6 The computed property that returns the store property for albums.

7 Specifies which middleware to run for this route

Run the command npm run dev and open a web browser on localhost port 3000. If
you already have it running, make sure to close and restart. You should see the iTunes
search app open. If not, look in the console for the error. Sometimes it’s as simple as a

typo in the component name.

Let’s do one more modification of our app. Like I said earlier, we have access to
something called asyncData. This option is used to load data server side, on the initial
load of the component. It’s similar to using a middleware, because we’ll have access to

the context.

When using asyncData, be cautious. You will not have access to the component
through this option because it’s called before the component is initiated. However, it
will merge the data you retrieve with the component so you don’t have to use Vuex. You
can find more information on asyncData from the official documentation at

https://nuxtjs.org/guide/async-data.

Open the _id.vue file again and delete the albumbData computed property. We won’t
use it. Instead create an asyncData option, shown in listing 11.14. Inside that option,
we’ll do an HTTP GET request using Axios. Similar to middleware, asyncData also
has access to the context object. We'll use ES6 destructuring to retrieve the params,
and then use them in the iTunes API call. In the response, we’ll set the albumbData
object. This object will be available to us after the component is initialized, as shown in
listing 11.14.

Listing 11.14. The asyncData example: chapter-11/itunes-
search/pages/results/_id.vue

asyncData ({ params }) { 1
return axios.get (https://itunes.apple.com/
search?term=${params.id}&entity=album’)
.then ((response) => { 2
return {albumData: response.data.results} 3

)

e 1 The asyncData option has access to the params key.

e 2The iTunes response appears after passing in the params.id to the

axios.get command.

e 3 This will return a new albumData property that can be accessed in the

component.

That should be it for asyncData. Save the file and run the npm run dev command
again. You should see the page as it was before. As you can see, we have the same

results, but we don’t have to use the Vuex store.

11.3. COMMUNICATING WITH A SERVER USING FIREBASE AND
VUEXFIRE

Firebase is a Google product that helps you create apps quickly for mobile and desktop.
It offers several services, including analytics, databases, messaging, crash reporting,
cloud storage, hosting, and authentication. Firebase scales automatically and is easy to
get up and running. You can find more information about all the Firebase services at

the official home page at https://firebase.google.com/.

For our example in this section, we’ll use two of these services: authentication and the
Realtime database. We're going to take our existing pet store application and modify it

to include these services.

Let’s imagine we were told that we needed to host our products for our pet store app in
the cloud and add authentication. Recall from the previous chapter that our pet store
application uses a flat file, products.json. We’'ll need to move the products.json contents
to Firebase’s Realtime database. We'll then modify our application so it pulls from
Firebase instead of the flat file.

Another important aspect is to add simple authentication using one of Firebase’s built-
in cloud providers. We'll make a new button in our header to sign in and sign out, and
we’ll see how we can save our session data into our Vuex store. When all is done, our

app will look like figure 11.10.

Figure 11.10. Completed pet store application using Firebase

S D oamppioan

Vue.js Pet Depot ¥ Chackot Bl 5190 Out

Cat Food, 25Ib bag

A 25 pound bag of iresistible, organic goodness
for your cat

$20.00

Buy Now! gt f ok

11.3.1. Setting up Firebase

free. (Firebase is free for a certain number of transactions a month; after that you’ll

have to pay.)

After logging in, you'll be presented with the Welcome to Firebase page. You’ll then

Figure 11.11. Creating a Firebase project

Click here o create
a new project.

B Frebase

After clicking Add project, you’ll need to type in a project name and country region.
Click Create Project and you’ll see the Firebase console. This is where we’ll set up our

database, authentication, and retrieve the keys we need to get started.

Click Database on the left side. You should see two options: Realtime Database and
Cloud Firestore. We're going to use the Realtime Database. Click Get Started (figure
11.12).

Figure 11.12. Database selection

Click here to create
a Realcim & Database.

r =
=
-

Fealtime Database

STABILITY

:
&
8

At this point, we’ll add the products.json file into the Firebase database. We could
import the JSON file, but we’ll add it manually so we can understand how everything
works. Click the plus (+) symbol next to the name you gave the database. Add a
Products child. Before clicking Add, click the plus symbol again. This will create
another child. In the Name box, add a number. Click the plus symbol again and create
seven children. These will be title, description, price, image, availableInventory, id, and
rating. Fill in the information and repeat the process for another product. After you're
done, it should look like figure 11.13.

Figure 11.13. Firebase Realtime Database setup

@ cilick the plus here to
create each product.

GO htps.ipetstore-fire firebaseio com ﬂ .E) :

FName [T] + x
- Mame [1d | Value [1881] =
 Name [title | Value [Cat Foed, 251b ba | =
- Mame [deseription | Value [A 25 pound bag of <emrir] x
— Mame price | "J'.._!‘l.ne 2008] =
- Name [1mage | Value [/static/images/product-1] x
— Name [availablelnv| Value [10 | x
L~ Name [rating | Walue [1] =
—NameR] + x
- Mame [1d | Value [1882] =
— Name [title | value [Yarn] =
= Name |[description | Value [Yarn your cat can play «f
(-~ Name [price | Value [299] x
I~ Name [1mage | Value [/static/images/varn.jp | x
— Name |[availablelnv| Value |7] =
L~ Name [rating | Value [3] =

CANCEL m ﬂ
\

@ click to add products.

Click Add and you’ll see the two products in the database. Repeat this process and add a

few more into it if you like.

After this is done, we’ll need to set up authentication. Click Authentication in the
console on the left side. You’'ll see a window that has a button for SET UP SIGN-IN

Figure 11.14. Setting up authentication

et S F Ceated Lol by Lds AD 4~

Authenticate and manage users from a
variely of providers without server-side code

¥ Leam more E Yiew the gocs

SET UP SIGH-IN METHOD

Thiz is where you will click to
create a nevw sign-in m ethod.

On the next page, choose Google. We'll be using this for our authentication in our app.
We could as easily set up Facebook or Twitter, but for this example we’ll assume that
anyone who wants to log in to our app must also have a Google account. In the setup
window, slide the Enable button and save your work, as shown in figure 11.15. That

should be it; that will enable us to sign in with Google.

Figure 11.15. Enable Google sign-in.

Make sure to set this
button slider to enable.,

EI Gl
Enable ‘

Googhe sign-in i automatically configuréd on your connected 05 and web apps. To St up Goagle
sign-in for youf Android apps, you need 1o add the SHAY fingerprint [for each app on your Project
Setlings.

£ Update the pioiect-level setting below 19 continue
Propect public-facing name (T

project-334843312240

Whitelist client I1Ds from extemal projects (optional) &

Web SDK configuration &

Finally, we need to grab configuration information. Head back to the project overview
console page by clicking Project Overview on the left side. You'll see an Add Firebase to

your web app button. Click this button and a window will open with your Firebase keys

and initialization information. Record this information for later; we’ll need it when

setting up Firebase in our app.

11.3.2. Setting up our pet store app with Firebase

Now that we’ve set up Firebase, we need to update our pet store app to use it. The last
time we used our pet store was in chapter 10, when we added in Vuex. Copy the pet store
app from the previous chapter or download the code for the chapter. We’ll use this code

as a starting point.

For Firebase to work correctly with Vue, we’ll need to use a library called VueFire. This
will help us communicate with Firebase and set up the bindings we need. You can find
more information on VueFire on their official GitHub page at

https://github.com/vuejs/vuefire.

Open your console and change directories to the location of your pet store app. Install

VueFire and Firebase with the following commands:

$ cd petstore

$ npm install firebase vuefire -save

This will install and save all the dependencies we need.

Create a file named firebase.js in the src folder in the root of the pet store app.
Remember when you copied the initialization information from the Firebase console?
We'll need that now. At the top of the file, write import {initializeApp} from
Firebase. After the import, create a const variable named app and paste in the

initialization information you recorded earlier.

Create two exports, one called db and the other called productsRef. This will allow us
to connect to the Firebase database and retrieve the product information we created
earlier. If you’d like more information on the Firebase API, check the official API
documentation at https://firebase.google.com/docs/reference/js/. Copy the code from listing

11.15 into the src/firebase.js file.

Listing 11.15. Setting up Firebase and initializing files: chapter-
11/petstore/src/firebase.js

import { initializeApp } from 'firebase'; 1

const app = initializeApp ({ 2
apiKey: "<API KEY>",
authDomain: "<AUTH DOMAIN>",

databaseURL: "<DATABASE URL>",
projectId: "<PROJECT ID>",
storageBucket: "<STORAGE BUCKET>",
messagingSenderId: "<SENDER ID>"

})
export const db = app.database(); 3

export const productsRef = db.ref('products'); 4

e 1 Imports initializeApp into the file
* 2 Shows the keys for Firebase received from the Firebase console
* 3 Uses ES6 export for the database

e 4 Uses ES6 export for the products reference

We now need to set up our main.js file so it can see the VueFire library we installed
earlier. We'll also need to make sure we import Firebase and the firebase.js we created
earlier. The Vue .use (VueFire) line will set VueFire as a plugin for the app. This is

required by the VueFire installation. Update the src/main.js file with this code.

Listing 11.16. Setting up main file: chapter-11/petstore/src/main.js

import Vue from 'wvue'

import App from './App'

import router from './router'

require ('./assets/app.css"')

import { store } from './store/store';
import firebase from 'firebase'; 1
import './firebase'; 2
import VueFire from 'vuefire'; 3
Vue.use (VueFire) ; 4
Vue.config.productionTip = false

/* eslint-disable no-new */
new Vue ({
el: '#app',
router,
store,
template: '<App/>"',
components: { App }

e 1 Imports Firebase into the app

e 2 Imports the firebase.js file.

e 3 Imports vuefire.

e 4 Sets up vuefire as a plugin.

It’s a good idea at this point to make sure we don’t have any errors. Save all your files
and run the npm run dev command in your console. This will start your server on
localhost. Make sure you don’t see any errors in the console. It’s easy to forget an
import, so make sure you didn’t forget any inside the main.js file. Because we have

everything set up, let’s look at how to set up authentication in our app.

11.3.3. Updating Vuex with authentication state

Earlier I mentioned that we’ll use authentication in our app. To save this information,
we’ll need to update the Vuex store. To make things easy, we’ll create a state property
called session. After a user is authenticated, Firebase returns a user object which
holds session information. It’s a good practice to save that information so it’s available

anywhere in the app.

Open the store/modules/products.js file, and add a new session property in state. The
same way we did in the last chapter, we'll add in a getter and amutation. We'll
name the mutation SET_SESSION. Update the store/modules/products.js file so it

matches this listing.

Listing 11.17. Updating Vuex: chapter-11/petstore/store/modules/products.js

const state = {
products: {1},

session: false 1

b

const getters = {
products: state => state.products,

session: state => state.session 2

b

const actions = {
initStore: ({commit}) => {

axios.get ('static/products.json')

.then ((response) =>{
console.log(response.data.products) ;
commit ('SET STORE', response.data.products)

1)

I8

const mutations = {
'SET_STORE' (state, products) {

state.products = products;

by
'SET SESSION' (state, session) { 3

state.session = session;
}i

export default {
state,
getters,
actions,

mutations,

* 1 The session state property defaults to false.
e 2 The getter for the session
¢ 3 The mutation called SET_SESSION sets session data.

Now that we have a place to set the session data in Vuex, we can add the code to

retrieve it from Firebase.

11.3.4. Updating the header component with authentication

Inside the header, we display the site name and Checkout button. Let’s update the

header so it shows a Sign In and Sign Out button.

When the header is complete, it will look like figure 11.16 after someone is signed in.
Notice how in figure 11.16 a picture is shown next to the Sign Out text. This is retrieved

from the user object from Firebase.

Figure 11.16. User is signed in.

S8ign out button is d isplayved if
the user is already signed in.

W Checkout [} sign Out

Vue.js Pet Depot

After the user signs out, the button changes to Sign In, as figure 11.17 shows.

Figure 11.17. User is signed out.

Sign in button will only be
d isplayed if user is not signed in.

Vue.js Pet Depot ¥ Checkout sign in

Open the src/components/Header.vue file. In this file, we’ll update the template with
the new buttons. We’ll also need to add two new methods for signing in and out. Under
the navbar-header, add a new div section for the sign in (see listing 11.18). Below
that, add another div section for sign out. Inside the sign out div, we’ll also add an

image that will be retrieved from the mySession property.

Surrounded by both divs will be a v-1i f directive. If the mySession property is
false it will show the Sign In button. We'll use a v-e1se directive to show the Sign
Out button if mySession is true. If the session is signed in, we’ll see a Sign Out

button; if the session is signed out, we’ll see a Sign In button.

Because the code for the header component is so large, I've broken it into three listings
(listing 11.18, 11.19, and 11.20). Make sure to take each of these listings and combine
them. Take the combined code from the listing and overwrite the file for

src/components/Header.vue, as shown next.

Listing 11.18. Updating header component: chapter-11/header-temp.html

<template>
<header>
<div class="navbar navbar-default">
<div class="navbar-header">
<hl><router-link :to="{name: 'iMain'}">
{{ sitename }}
</router-1link></hl1>
</div>
<div class="nav navbar-nav navbar-right cart">
<div v-if="!mySession"> 1
<button type="button"
class="btn btn-default btn-1g"

v-on:click="signIn"> 2
Sign In
</button>
</div>
<div v-else> 3

<button type="button"
class="btn btn-default btn-1g"
v-on:click="signOut"> 4
<img class="photo"

:src="mySession.photoURL" />

Sign Out
</button>
</div>
</div>
<div class="nav navbar-nav navbar-right cart">
<router-1link
active-class="active"
tag="button"
class="btn btn-default btn-1g"
:to="{name: 'Form'}">

{{cartItemCount}}

Checkout
</router-link>
</div>
</div>
</header>
</template>

1 The mySession property will display the Sign In button if it’s false.

2 Shows the button with the v-on directive for sign in

3 If the mySession property is true, the Sign Out button will be
displayed.

4 Displays an image from mySession

In the template, we created two methods, signIn and signOut. We also created a new
property called mySession. Let’s go ahead and create the script section of our
component with these new methods and a computed property. Make sure to import

firebase from 'firebase' atthe top of the script (listing 11.19).

The first thing we need to do is add a lifecycle hook called be foreCreate. This hook
fires before the component is created. In this hook, we want to set our Vuex store with
the current session. Firebase conveniently has an observer that will do this called
onAuthStateChanged. This observer is triggered whenever a user signs in or out. We
can use this to update our store with the session information using SET STORE. For
more information on onAuthStateChanged, check out the official documentation at
http://mng.bz/4F31.

Now that we can track when a user signs in and out, we can create those methods.
Create a method named signIn. Inside that method create a provider
firebase.auth.GoogleAuthProvider (). Pass that provider into

firebase.auth () .signInWithPopup. This will create a popup asking the user to

sign into their Google account. The signInWithPopup will create a promise. If the
login is successful, we display “signed in” in the console. If it isn’t successful, we see

“error” in the console.

Remember, because we set up an observer for onAuthStateChanged inside the
beforeCreate hook, we don’t have to set up any other variable after a user logs in.

The observer will update the store automatically after we sign in or sign out.

The signOut method works the same way. When the user signs out, a message “signed

out” shows in the console. If there is an error, “error in sign out!” is displayed.

For our computed property mySession, we'll return the Vuex getter for session. If
the session doesn’t exist, it will be set to false. It’s worth mentioning that we could
have used mapGetters with Vuex. This would automatically map the getters session
with the name session in our component. However, because we’re dealing with one

getter, I decided to return this.S$store.getters.session instead.

Copy the code from the following listing and add it to the bottom of the new combined

file that you’ll be using for src/components/Header.vue.

Listing 11.19. Updating header component 2: chapter-11/header-script.js

<script>
import firebase from 'firebase';

export default {

name: 'Header',
data () {
return {
sitename: "Vue.js Pet Depot"
}
}o
props: ['cartItemCount'],
beforeCreate () {
firebase.auth () .onAuthStateChanged((user)=> { 1
this.$store.commit ('SET SESSION', user || false)
)
by
methods: {
showCheckout () {
this.$router.push ({name: 'Form'});
by
signIn () { 2
let provider = new firebase.auth.GoogleAuthProvider();
firebase.auth () .signInWithPopup (provider) .then (function (result) {

console.log('signed in!"'");
}) .catch (function (error) {

console.log('error ' + error)

1)
bo
signOut () { 3
firebase.auth () .signOut () .then (function () {
// Sign-out successful.
console.log("signed out!")
}) .catch (function (error) {
console.log("error in sign out!")
// An error happened.
1)
}
b
computed: {
mySession () { 4

return this.$store.getters.session;

}

</script>
¢ 1 The onAuthStateChanged observer is set inside the beforeCreate hook.
e 2 The signln method signs the user in.
e 3 The signOut method signs the user out.

¢ 4 The mySession computed property gets the session information.

Finally, we’ll need to add a new photo class to our CSS that will size the photo in our
button. Take the code from the following listing and combine it with the previous

listings to create the new Header.vue file in the src/components folder.

Listing 11.20. Updating header styles: chapter-11/header-style.html

<style scoped>
a {
text-decoration: none;

color: black;

.photo { 1

width: 25px;
height: 25px;

.router-link-exact-active {
color: black;

}
</style>

* 1 The photo class that sets the width and height of image

After adding all the code for the new Header.vue file, make sure to run the npm run
dev command and check for errors. It’s easy to make a mistake on the
onAuthStateChanged observer and not commit it to the Vuex store. Look out for
that.

11.3.5. Updating Main.vue to use Firebase Realtime database

With all the authentication out of the way, let’s start retrieving information from the
database. By default, we left the database configuration in Firebase to read only. That

will work for us.

First, update the mapGetters in the src/components/Main.vue file. You’'ll notice that
we're retrieving the products getter. Remove that and add the session getter. We

won'’t use this now, but it’s nice to know we can use the session inside the main

component.

To use the Realtime database with Firebase, all we need to do is import the
productsRef from the firebase.js file. Then we’ll need to create a Firebase object that
maps productsRef to products. That should be it! All the other code in our
Main.vue file can remain the same. Take the code in this listing and update the

src/components/Main.vue file.

Listing 11.21. Updating Main.vue file: chapter-11/update-main.js

import { productsRef } from '../firebase'; 1
export default {
name: 'imain',
firebase: { 2
products: productsRef
by

computed: {

. .mapGetters ([

'session' 3

e 1 Imports the productsRef from firebase/.js file
e 2 Maps productsRef to products

e 3 Updates mapGetters that only retrieves session not products

Save all the files and run npm run dev. Inside the browser, you’ll notice a slight delay
before the products show up. This indicates the products are being downloaded from
Firebase. You could always go into Firebase and add a new product, and it should show

up on your list of products.

One thing you may wonder is what we could do next. With the session property, we
could set up different sections of the app that are accessible only if a user is logged in.
We could do this with the v-1i f directive or through the router. With the router we can
add a meta tag to a route. Then we could use the router.beforeEach to navigate to
certain routes if a user is logged in. This concept is called navigation guards. You can
read up on the navigation guards section in the official documentation at
https://router.vuejs.org/guide/advanced/navigation-guards.html. In the next chapter, we’ll

look at testing and how we can use it to make sure our app is doing what we expect.

EXERCISE

Use your knowledge from this chapter to answer the following question:

e What’s one advantage of using asycData in your Nuxt apps versus using

middleware?

See the solution in appendix B.

SUMMARY

¢ You can use libraries like Axios to talk to web APIs.

Fast-loading sites can be created with server-side rendered Nuxt.js apps.

e You can grab information from an online datastore using Firebase.

Users can be authenticated inside your application.

Chapter 12, Testing

This chapter covers

Understanding why we test

Implementing unit tests

Testing components

Testing Vuex

We've discussed many important topics in this book, but one often-neglected topic
doesn’t get enough attention: testing. Testing is an extremely important aspect in any
software development project. It ensures that the app behaves the way we expect it to—
without bugs. In this chapter, we’ll discuss why you should create tests for your
application. Then we’ll look at the fundamentals of unit testing. Next, we’ll look at
component testing, both the output and the methods. Finally, we’ll see how to get

started testing with Vuex.

It’s worth mentioning before we start that testing is a huge subject. In this chapter, I'll
cover several of the most important aspects of testing with Vue.js. I strongly
recommend you look over Edd Yerburgh’s Testing Vue,js Applications (Manning,
2018). In his book, Edd delves into much more detail on creating and developing tests.
He also covers server-side rendering testing, snapshot testing, and testing mixins and

filters.

Snapshot testing

Snapshot tests are useful tools when you want to ensure that the UI doesn’t change
unexpectedly. In this chapter, I'll use mocha-webpack, which doesn’t support snapshot
testing as of this writing. However, if you want to learn more about snapshot testing,
look over the official guides for more information on how to set up Jest with snapshot

testing at http://mng.bz/1Rur.

12.1. CREATING TEST CASES

Typically, in the world of software development, there are two ways of testing code:

manually and automated. Let’s talk about coding manually first.

You probably started testing manually as soon as you started coding. For every line of
code you've written, you've probably gone back and checked to make sure the output
you expect is occurring. For example, in our pet store app we added a button that added
a product to our cart. In the previous chapters we tested that manually by clicking the

button and then checking the number of items in the cart.

In our pet store app, we also added a button that routes to the checkout page. Once
again, we can click that button and make sure that it redirects properly. Manual testing

works fine for smaller apps where there isn’t much going on.

Now let’s imagine a scenario where we're working with a team of developers. We have
an app in production and many developers are working on the code. Developers are
pushing code throughout the day to the version control system. As you can imagine,
relying on every developer to thoroughly test their code manually and verify they
haven’t broken anything is impossible. Manual testing is a nightmare and bugs could

certainly crop up.

In certain organizations, a quality assurance department is responsible for manually
testing code after the development department releases it. This helps reduce the
chances of a bug reaching production but it slows down the whole process. In addition,
many quality assurance developers don’t have the resources or time to run a complete

regression test on the code.

Definition

Regression testing is a type of software testing that verifies that the application still

performs the same way after it was updated.

But automated testing can help solve several of the problems that manual testing runs
into. In our imaginary scenario, we could create several automated tests that a
developer could run before pushing their code to production. Automated tests run
much quicker then manual testing and they’re more likely to catch bugs immediately.

With many automated test cases, a developer can run a full regression on a code base

and not worry about having to manually test everything, which is time-consuming.

Although automated testing has many benefits, it has its disadvantages. The one
disadvantage that you must consider is the upfront cost. Writing test cases takes time,
and although you’ll probably save time in the long run, you’ll spend a longer time
writing test cases when compared with writing the code. After everything is set up
though, processes such as continuous integration, delivery, and deployment can save

time, as we’ll see in the next section.

12.2. CONTINUOUS INTEGRATION, DELIVERY, AND DEPLOYMENT

Automated testing has the added benefit of enabling workflows such as continuous
development. This workflow consists of continuous integration, delivery, and
deployments. As the name suggests, these workflows are closely related. We’ll briefly

discuss each one.

Imagine we're creating a basic app that connects to a database and retrieves
information for a book website. We have a team of developers working on the code
base, but the team is running into a number of issues. Most developers are having
merge conflicts when they push their code into their version control system every few
weeks. In addition, every Friday one person is responsible for manually creating a
staging environment for the latest code. (A staging environment runs production code
for testing purposes.) This increasingly has taken more time to do because the code
base has gotten larger and more complicated. Pushing to production is no better. Half
the time the production code won’t build correctly, and it takes hours to fix. The
manager has decided to switch to continuous development to help fix these problems.

The first step in that process is continuous integration.

12.2.1. Continuous integration

Continuous integration (CI) is the practice of merging code into a master branch

several times a day.

Definition

A master branch is where the production code usually resides. A branch is a version-
control term that describes a duplication of a code base so modifications can happen in

parallel in both branches.

The obvious benefit of CI is that it helps avoid merge conflicts. Merge conflicts happen
when multiple developers try to merge or combine their code into a single branch.
Merging code into a master branch several times a day helps avoid one developer’s
work-in-progress breaking another developer’s code. Because the master branch is
updated continuously, another developer working on the same project can easily pull
the latest code down into their own development environment and be relatively sure it’s

up to date.

In our imaginary scenario, our manager decides to make the CI process smoother by
implementing a service that helps run automated test cases before any developer can
push their code. In version control systems like Git, developers can submit pull
requests. Services such as Travis, CircleCI, and Jenkins can help check that the pull
request passes all the test cases before the code can be merged. After the systems are in
place, the team has seen fewer merge conflicts, but they still have problems with

deployment.

12.2.2. Continuous delivery

Continuous delivery is a software-engineering approach that aims to build, test, and
release software in a fast and frequent manner. The purpose is to create a fast and
reliable deployment pipeline that’s guided by a set of checks that must pass before the
code is released. For example, before the software is released, all test cases must pass
and the build must pass without any errors or warnings. These types of checks help

provide more dependable, consistent releases.

Typically, CI isn’t the responsibility of the development team. Usually a team of people
known as DevOps or development operations is responsible for setting up and
maintaining continuous delivery. It’s good to understand the basics of this process and

how it relates to testing.

With continuous delivery, merging or committing code to the master branch triggers a
build of the website. This can save time because it removes the manual step of
deploying the website to the staging environment. It has the added benefit that it will
deploy only if all test cases pass, so it’s less likely that the website will be broken.

With continuous delivery, our team no longer needs to have someone waste hours
creating and deploying a staging environment. Continuous delivery will make sure that
it occurs daily. With that said, what does continuous deployment have to do with

continuous delivery?

12.2.3. Continuous deployment

Continuous deployment goes one step further than continuous delivery and deploys
code directly to production on every single change. As with continuous delivery,

developers can rest assured that all tests pass before the code is deployed to production.

As you can imagine, deploying to production after every change can be dangerous if the
automated tests aren’t robust enough to check all parts of the app. The worst-case
scenario is that a broken website gets deployed to production. At that point, a rollback
or emergency fix is needed. Now that we’ve seen the way we can integrate testing into a
workflow, let’s look into what type of tests are available and how we can use these test

in Vue.js.

12.3. TYPES OF TESTS

In the world of testing, we can create several types of tests. In this chapter we’ll look at

the most common, including unit and component testing.

Unit tests are tests against the smallest parts of our application. These are often
functions in our apps, but not always. They can also be components. Let’s begin by

creating a basic unit test to see how it works.

Unit tests have unique advantages. For one, they’re fast and run quickly. Because they
only test a small piece of code, they can run fast. They can also act as documentation.
They’re instructions on how the code should behave. Unit tests are also reliable because
they only test a small part of the code. They can be run thousands of times and produce
the same output. Unlike other tests that might have to rely on APIs that frequently fail,
unit tests should never have this problem. Imagine a scenario where you've created an
application that converts the temperature from Fahrenheit to Celsius. In this app, we
have one function that does the conversion. We could easily create a unit test to verify

that the amount returned was correct. You can see that in this listing.

Listing 12.1. A basic unit test: chapter-12/unit.js

function convert (degree) {
let value = parseFloat (degree) ;
return (value-32)/ 1.8;

function testConvert () { 1
if (convert (32) !== 0) {

throw new Error ("Conversion failed"):;

testConvert () ;

¢ 1 A basic unit test that checks the convert function.

The second type of tests we're going to look at are component tests. These tests run
against each component and verify how they should behave. They can be a little more
complicated than unit tests because they test more of the application and they’re more
difficult to debug. But they verify that the component meets its requirements and

achieves its goal.

12.4. SETTING UP OUR ENVIRONMENT

Now that we have a good idea about the kinds of tests that are out there and why we
should test, let’s set up our environment. Our pet store app could use several tests, so
let’s add them.

In this section we’ll modify our pet store application so we can use the latest testing
libraries recommended by Vue.js. As of this writing, the Vue-CLI didn’t have these
libraries built in when we generated our project, so we’ll need to do a little setup. This

will require us to install several packages and configure a few files.

To begin our setup, we’ll need to get a copy of our pet store app. If you've been
following along, feel free to use the app you've created. If not, copy the pet store app
from chapter 11 at https://github.com/ErikCH/VuejsInActionCode.

The vue-test-utils is the official unit-testing library for Vue.js. It makes testing Vue.js
much easier and you should use it. We’ll cover the basics of the library in this chapter; if
you’d like more information, you can read how it works in the official guides at

https://vue-test-utils.vuejs.org.

You may remember from chapter 7, that when we created the pet store app we said yes
to Nightwatch and Karma. This will work but at the time of writing, the Vue-CLI
doesn’t support the vue-test-utils library out of the box. Because this library isn’t

installed by default, we need to install it.

We'll also need to make a choice regarding which test-runner we want to use within the
vue-test-utils library. A test-runner will pick up the unit tests that we create and execute
them. When we first installed our pet store app, Mocha and Karma were our only test-
runner choices. Karma works with vue-test-utils but it isn’t officially recommended.
The vue-test-utils team recommends either Jest or mocha-webpack. Because we
already have Mocha installed, we’ll go ahead and install mocha-webpack. Jest is also an

excellent choice, but it won’t be covered in this book.

Note

Keep in mind that if you choose Jest, all the tests in this book will still work, but you’ll
have a little different setup. You can find instructions on how to set up Jest at the
official guides at http://mng.bz/3Dch.

Because we're going to use mocha-webpack as our test runner, we’ll need to install a
few other things. To run tests, we’ll need a browser. We could run our tests in a real
browser, such as Chrome or Firefox, but it’s not recommended because running in a
browser can be slow and it’s not as flexible as using a headless browser. Instead we’ll
use modules called jsdom and jsdom-global. These modules will simulate a browser for

us; they’re headless browsers used to run our test cases.

Definition

A headless browser doesn’t have a graphical user interface (GUI) and is used to
facilitate automated control of a web page. The headless browser performs much the
same as contemporary browsers, but interaction is typically accomplished through a
CLI.

We’ll need to pick an assertion library, and Chai and Expect are popular choices.
Assertion libraries are used to verify things are correct instead of relying on things like
if statements. The vue-test-utils team recommends using Expect with mocha-
webpack, so we’ll go ahead and install that. You can find more information on picking

an assertion library at http://mng.bz/glyp.

That last library we need to install is the webpack-node-externals. This will help us

exclude certain npm dependencies from our test bundle.

Retrieve the latest version of the pet store app that’s included with this book. Beware, if
you download the latest version of the pet store app from chapter 11 you’ll need to enter
your Firebase configuration inside the firebase.js file in the src folder if you haven’t

done so already. If you forget this step the application will not load!

After you retrieve the latest version of the pet store app, install these dependencies by

running the following commands:

$ cd petstore

$ npm install

$ npm install --save-dev @vue/test-utils mocha-webpack
$ npm install --save-dev jsdom jsdom-global

$ npm install —--save-dev expect

$ npm install --save-dev webpack-node-externals

After the dependencies are installed, we’ll add configuration. Edit the
webpack.base.conf.js file in the build folder of the pet store app. Copy and paste the
code from the following listing at the bottom of the file to configure the webpack-node-
externals and inline-cheap-module-source map. This is required by those modules for

everything to work correctly.

Listing 12.2. Setting up source map and node externals: chapter-12/setup.js

if (process.env.NODE ENV === 'test') {
module.exports.externals = [require ('webpack-node-externals') ()] 1
module.exports.devtool = 'inline-cheap-module-source-map'

* 1 Sets up the test environment

Inside the test folder you’ll notice the unit and e2e folders. We won’t use these folders,
so feel free to delete them. Add a new file called setup.js inside the test folder. The
setup.js file is where we’ll set the global variables for jsdom-global and expect. This
will make it so we don’t have to import both modules into every single test case. Copy

and paste the code from this listing into the test/setup.js file.

Listing 12.3. Setting up tests: chapter-12/petstore/setup.js

require ('jsdom-global') () 1
global.expect = require ('expect')
e 1 Sets up jsdom-globa

e 2 Sets expect inside app

Next, we need to update the test script in the package.json file. This script will run the
mocha-webpack test runner and our tests. For the sake of simplicity, all tests will have a
spec. js file extension. Edit the package.json file and replace the scripts test section

with this line.

Listing 12.4. Updating package.json: chapter-12/testscript.js

"test": "mocha-webpack --webpack-config
build/webpack.base.conf.js --require

test/setup.js test/**/*.spec.js" 1

* 1 Notes the test script inside package.json file

That is all the configuration we need for our setup. Now we can start creating test cases!

12.5. CREATING OUR FIRST TEST CASE WITH VUE-TEST-UTILS

For our first test using vue-test-utils, let’s see if we can verify that our Form component
works correctly after clicking the Order button. When you click the Order button on the
form component, an alert box appears. We can test for an alert box, but it’s not easy
with our setup and will require us to change our jsdom-global configuration. For the
purposes of this test, we’ll create a property called madeOrder. This will be defaulted to
false. After clicking the Order button, it will turn t rue.

The order form will be updated so it shows a message at the bottom that the order is
complete (figure 12.1). When madeOrder is true, the text will appear. When it’s
false, the text will not show up. We add this so we can get a little more feedback when

the order button is clicked, because we’re no longer going to use the alert box.

Figure 12.1. Pet depot checkout page that displays Ordered at the bottom

Pet Depot Checkout

Enter Your Information

First Name: Last Name:
John Smith
Addrass:
555 Olive: St
City:
Jefferson
State: Zip | Postal Code:
AL * 78542
¥ Ship As Gift? * Home = Business

Place Order

First Name: John
Last Hame: Smith
Address: 555 Olive 5t
City: Jefferson

Zip: TES4Z

State: Alabama
Method: Home Address
Gift: Send As A Gift

e
Ordered

New message at the bottom
that shows Ordered .

To make this change, we need to update the src/components/Form.vue file Add a new
property in the file called madeOrder in the data function. Edit the submitForm
method and delete the alert box, then add this.madeOrder = true. This will
guarantee that the property is set to t rue when the app starts up. Update the

src/components/Form.vue with the code in this listing.

Listing 12.5. Update to the Form component: chapter-12/form-update.js

dontSendGift: 'Do Not Send As A Gift'

b
madeOrder: false 1

methods: {
submitForm () {

this.madeOrder = true; 2

e 1 Adds a new property for madeOrder

¢ 2 Sets madeOrder to true

We’re now ready to create our first test case. Let’s verify that after the Place Order
button is clicked, the madeOrder property is set to true. To test this, we’ll use the vue-
js-utils shallow function. The shallow function renders a Vue component and stubs
out any child components it has. The other common function is mount which works the

same as shallow, except it doesn’t stub the child component.

We'll also need to import the Form component. We'll pass this into the shallow
function later to create a wrapper around it. Next, you’ll notice something called
describe. The describe function is used to group similar tests together into a test
suite. When we run the tests from the command line, we can see whether the test suite

passed or failed.

The it function is a test case. This will be our unit test that tests our button and verifies
that it updated the madeOrder property correctly. We can have multiple test cases in

each test suite.

Because we're using the expect assertion library, we’ll use it to make sure that the
madeOrder property is set to true. In listing 12.6 we’re using
wrapper.vm.madeOrder to access the property. The wrapper object returned from
the shallow function has several properties including one called vm. We can use the
vm property to access any Vue instance methods or properties, allowing us to run any

method or get any property inside the Vue component. This is handy.

wrapper also has a find function that accepts a selector. The find function can use
any valid CSS selector, such as tag names, IDs, or classes. We can then use the
trigger function to trigger the event—in this case, a click event on the button. Take

the following listing and create a new Form.spec.js file.

Listing 12.6. Our first test case: chapter-12/petstore/test/Form.spec.js

import { shallow } from '@vue/test-utils' 1
import Form from '../src/components/Form.vue'
describe ('Form.vue', () => {
it ('Check if button press sets madeOrder to true', () => {
const wrapper = shallow (Form) 3

wrapper.find('button') .trigger ('click") 4

expect (wrapper.vm.madeOrder) .toBe (true) ; 5

})

1 Imports shallow to use in the test case

2 Imports the form component

e 3 Assigns the wrapper to shallow version of component

4 Finds then triggers the button

5 Verifies madeOrder is true

Let’s run our test cases. Make sure you're in the pet store top-level directory and run
the npm test command. This should run our test suite. If you see an error, make sure
you installed all the dependencies that we discussed earlier and verify the package.json

file has the test script inside it. Figure 12.2 displays what we’ll see when all of our tests

pass!

Figure 12.2. Checking our first test case, which is successful

Compiled successfully in 2364ms

> o Wam e of test.
m TEﬁtiﬂg., . /

Form' vue
¢ Check if button press sets madeOrder to true (39ms)

1 passing (43ms)]

Tests completed successfully

Because everything passed, a successful message is displayed. Let’s see what it looks
like when it fails. Go back into the petstore/test/Form.spec.js file. Look for the expect
statement and set the value to false instead of t rue. Run the command npm test
again and it should fail. Notice from figure 12.3 that the expected value and the received

value are displayed in the output.

Figure 12.3. The test case fails

o Shows failed tests

Compiled successfully in 2273ms 0 Show = cutput

of failed test

Testing...

Form.vue
1) Check if button press sets madeOrder to true

0 passing (182ms)
1 failing

1) Form.vue Check if button press sets madeOrder to true:
Error: expect(received).toBe(expected)

Expected value to be (using Object.is):
false
Received:
true
at Context.<anonymous> (.tmp/mocha-webpack/1516573267453 /webpack: /test/Form.spec.)s:9:1)

Now that we understand the basics of testing, let’s look at testing components.

12.6. TESTING COMPONENTS

Before we test our components, we need a general idea of our specifications. What

should we expect the components to do? We'll use our pet store app as an example.

We have three components in our application: Main, Header, and Form. The Header
component’s job is to display the number of items in the shopping cart and to show
either a Sign In or a Sign Out button. The Form component’s responsibility is to show
all our form inputs, and it gives us an option to order by clicking the Order button.
Main is used to display all our products. It needs to render all the components from our

Firebase store.

We won't test every component, but it’s important to write down specifications for each

component before creating any test cases. That way we’ll know what to test.

12.6.1. Testing props

Many of our components will have props that are passed in to them. For example, in
our pet store app, the cartItemCount is passed into our Header component and
displayed in the top right corner. Let’s create a test case that verifies that this prop is

passed in.

Create a file in the petstore/test/ directory called Header.spec.js. This file will contain
all our tests for the Header component. Before we can begin, we need to do a little

setup.

If you look at the Header.vue file, you’ll notice that we're using Firebase and Vuex. The

beforeCreate hook calls a Firebase function and sets the value using a Vuex store
command that commits the session. We won’t test Vuex or Firebase in this example,
but we’ll need to import them, otherwise we’ll get an error. Make sure to import both

../src/firebaseand ../src/store/store as seen in listing 12.7.

At the top of the file, import shallow from the vue-test-utils library. In addition,
import something called createLocalVue. We need this function so we can set up

Vuex.

Next, we'll create a 1ocalVue variable and assign it to createLocalVue (). This
function returns a 1ocalVue class. You can think of it as a photocopier that produces a

photocopy version of Vue. We can use this to help set up Vuex for our testing.

You can see from listing 12.7 that we use the shal1low function again, but it looks a little
different than the unit test we created earlier. The shal1low function can accept an
optional second argument. This object holds more information that the component
needs. Inside it, we can set the props data using propsData as well as 1ocalvue and

store.

To set the props, we must pass something in to it. The easiest way to do that is to add
cartItemCount. We pass that variable into the propsData, and it will be set inside

the Header component.

The last thing we do is check that the wrapper.vm.cartItemCount matches the
cartItemCount variable. If theyre the same, the test passes. Take the code in the next

listing and copy it to the petstore/test/Header.spec.js file.

Listing 12.7. Testing a prop: chapter-12/header-prop-test.js

import { shallow, createLocalVue } from '@vue/test-utils';

import Header from '../src/components/Header.vue';

import Vuex from 'vuex'; 1
import '../src/firebase';

import { store } from '../src/store/store'; 3
const localVue = createlLocalVue()

localVue.use (Vuex)

describe ('Header.vue', () => {

it ('Check prop was sent over correctly to Header', () => {
const cartItemCount = 10;
const wrapper = shallow (Header, { 4

store, localVue, propsData: { cartItemCount } 5

})

expect (wrapper.vm.cartItemCount) .toBe (cartItemCount) ; 6

})

1)

1 Imports Vuex into test case

e 2 Imports Firebase into test case

e 3 Imports Vuex store into test case

¢ 4 The new wrapper const has a second argument.
e 5The props data is set to cartIitemCount.

¢ 6 Expect verifies that the cartlitemCount matches from the passed-in

prop.

Now that we can check props, let’s look at text.

12.6.2. Testing text

Sometimes you want to test if text is rendered somewhere in the component. It doesn’t

matter what element renders the text, only that an element renders it.

Keep in mind when writing tests that each test case should test only one thing. It might
be easy to create multiple assertions inside a test case that checks text, but it’s often
better to take these types of tests and create multiple test cases out of them. We’ll follow

this rule of creating a single assertion in a test case.

Open the petstore/test/Header.spec.js file and add a new test case. In our last test case,
we verified that the cartItemCount prop was being passed correctly into the Header
component. Now we want to verify whether the text from the prop is displayed properly

inside the component in the span tag.

To do this, we’ll create another wrapper the way we did before. This time, we’ll use the
wrapper . £ind function to look up the span. We can then use the text () function to
extract the text inside the span, which is our cartItemCount. We then use the
toContain function to verify that the contents match. Copy the code from the

following listing into the pet/test/Header.spec.js as another test after the last test.

Listing 12.8. Testing text: chapter-12/header-text-test.js

it ('Check cartItemCount text is properly displayed', () => {

const cartItemCount = 10;

const wrapper = shallow (Header, ({

store, localVue, propsData: { cartItemCount }
})
const p = wrapper.find('span'); 1
expect (p.text ()) .toContain(cartItemCount) 2

e 1 The wrapper finds the span tag.

e 2 The assertion checks whether the text matches cartlitemCount.

12.6.3. Testing CSS classes

When testing classes, we can use the method classes, which returns an array of
classes attached to an element. Let’s add a quick check to verify whether the class on

one of our divs is correct.

Inside the petstore/test/Header.spec.js file, add a new test case. In this test case we’ll
create a new wrapper. This time we’ll use a findA11 which will return all the divs in
the component. We can use the at (0) to retrieve the first div. From there we can use
our expect statement on p.classes () to retrieve all the classes attached to the first

div. The toContain will return true if any of the classes match.

If we look at the Header.vue file, we'll notice that both navbar and navbar-default

are attached to the first div. Because we're looking for navbar, this test will pass.

Listing 12.9. Testing classes: chapter-12/header-classes-test.js

it ('Check if navbar class is added to first div', () => {
const cartItemCount = 10;
const wrapper = shallow (Header, {
store, localVue, propsData: { cartItemCount }
})
const p = wrapper.findAll('div') .at(0); 1
expect (p.classes()) .toContain ('navbar');

e 1 This looks for all the divs and returns the first one.

¢ 2 This checks the classes attached to see if navbar exists.

Before we get too much further, run npm test at the command prompt and verify that
all the tests are passing (figure 12.4). If any are failing, double-check the expect
statements and that you’re importing everything correctly at the top of the file.

Figure 12.4. All tests are passing

DRI Compiled successfully in 33990ms

IEEEIN Testing. .. @) A1l tests are passing
for Form sue
and Hea dervue
Form.vue
¢ Check if button press sets madelOrder to true

Header.vue
Check prop was sent over correctly to Header
¢ Check cartItemCount text is properly displaved
¢ Check if navbar class is added to first dlvi

4 passing (85ms)

EEI Tests completed successfully
All tests are passing, so let’s move on to Vuex.

12.6.4. Testing with a mocked Vuex

The Vuex store is a central location where we can hold data for the application. In our
pet store app, we used it to set the session data and hold our product info. When using

Vuex, it’s a smart idea to test the store.

Note

Vuex testing is complicated and has many moving parts. Unfortunately, I won’t cover
them all here. To learn more about Vuex testing, start with the official Vuex testing

guides at https://vue-test-utils.vuejs.org/guides/using-with-vuex.html.

For our test cases, we'll test our Header component and how it works when the session
is set to true or false. We want to verify that if the session exists, the Sign Out button

displays and if the session doesn’t exist, the Sign Up button displays.

Earlier in this chapter, we imported the store directly into our test file. This was only a
temporary workaround so we could create other test cases for the Header component.
This won’t work for testing Vuex. To test our Vuex store, we’ll need to mock the store

completely. This is much simpler than you think.

At the top of the petstore/test/Header.spec.js file, you'll see an import of the store.
Delete this line. We'll create a mock of the store. A mock is an object that has the same
structure as a complex object that you cannot use in your test (similar to our Vuex
store), but with an implementation that you can control. Beneath the describe

statement, add the new variables: store, getters, and mutations, as shown in

listing 12.10. Then create a be foreEach function. The code inside the beforeEach

runs before every test case. It’s a good place to put setup code.

For the sake of simplicity, our store will be rudimentary. We'll have a getter for
session that returns false, and a mutation that returns an empty object. We can
use new Vuex.Store to create the store (make sure you use a capital S in Store). Copy

the code in the following listing into the top of the petstore/test/Header.spec.js file.

Listing 12.10. Mocking Vuex: chapter-12/header-vuex-mock.js

describe ('Header.vue', () => {

let store; 1
let getters;

let mutations;

beforeEach (() => { 2

getters = { 3
session: () => false

}

mutations = { 4
SET_SESSION: () => {}

}

store = new Vuex.Store ({ 5
getters,
mutations

})

1 Shows the store, getters, and mutations variables

2 Runs before each test

3 The session getter is set to false.
e 4 The mutation SET_SESSION returns an empty object.

* 5 A new store is created.

Now that we’ve mocked our Vuex store, we can use it in our test cases. We can assume
if the sessionissetto false, the Sign In button will be displayed. If this is a little
confusing, go to the Header.vue file in the src folder, where you’ll see a v—-1 f directive
that relies on a computed property called mySession. If mySessionis false, the
Sign In button is displayed. The v-e1se directive shows a Sign Out button if it’s true.

Copy the code from this listing into the petstore/test/Header.js file.

Listing 12.11. Testing Sign In: chapter-12/header-signin-test.js

it ('Check if Sign in button text is correct for sign in', () => {

const cartItemCount = 10;
const wrapper = shallow (Header, ({
store, localVue, propsData: { cartItemCount }
})
expect (wrapper.findAll ('button') .at(0) .text()) .toBe ("Sign In"); 1

})

e 1The assertion expect looks at the text of the button and verifies it’s

Sign In.

Conversely, we should also check that, if the session is signed in, that the Sign Out
button displays. You can do this a few ways, but one of the easiest is to create a store
with a new getter.session. When we create the wrapper, the new store will be
added, and the Header component will act as if the session were set to t rue instead
of false. Copy the code from the following listing and add it as another test case in the

petstore/test/Header.spec.js file.

Listing 12.12. Testing Sign Out: chapter-12/header-signout-test.js

it ('Check if Sign in text is correct for sign out', () => {
const cartItemCount = 10;
getters.session = () => true;
store = new Vuex.Store ({ getters, mutations})
const wrapper = shallow (Header, {
store, localVue, propsData: { cartItemCount }
})
expect (wrapper.findAll ('button') .at (0) .text ()) .toBe ("Sign Out"); 1

1)

e 1 Checks if button text is Sign Out

Run the test and they’ll all pass. These are all the tests we’re going to run for our pet
store app. As an exercise, go into the Forms or Main component and add some test

cases.

12.7. SETTING UP THE CHROME DEBUGGER

When you’re debugging tests, you often end up using the console.log to see what
variables are doing during the execution of code. This works, but there is a better way.

We can use the Chrome debugger to make our job much easier.

Inside your test cases, you can add a debugger statement. Add the debugger keyword
anywhere in the test. This will stop the execution of code as soon as the debugger
statement is parsed. This will work only if you use the node inspector with the Chrome
browser. The node inspector is a tool that is built into Node 8.4.0 or later and helps
with debugging with the Chrome browser. To run tests with the node inspector, we’ll
need to run the following code. You can either run this from the command line or add it
to your package.json file under scripts. Open your package.json file and add this line

under the scripts section.

Listing 12.13. Adding inspect to the package.json file: chapter-
12/petstore/package.json

"private": true,
"scripts": {
"inspect": "node --inspect --inspect-brk node modules/mocha-

webpack/bin/mocha-webpack --webpack-config build/webpack.base.conf.js -

require test/setup.js test/**/*.spec.js"

e 1 Runs the script command to inspect the browser

To run this command type in npm run inspect in the console. This will begin the

node inspector. Alternatively, you can run this command from the command line:

$ node --inspect --inspect-brk node modules/mocha-webpack/bin/mocha-webpac
--webpack-config build/webpack.base.conf.js --require test/setup.js

test/**/*.spec.]s

Either way, a new debugger on localhost 127.0.0.1 will start. You should see an output
like this:

Debugger listening on ws://127.0.0.1:9229/71ba3e86-8c3c-410f-a480-
ae3098220b59
For help see https://nodejs.org/en/docs/inspector

Open your Chrome browser and type the URL: chrome://inspect. This opens a Devices

page (figure 12.5).

Figure 12.5. Chrome Devices page

DevTools Devices

Dot o Drpocrvnt USE devions Peat forwarding

o DRROo A Largs Configuee—

Ot et D Tiosodt for Node

Chromecast -

Remote Target .

Target (vi.3.0)

P riode_modbn mochai-webpacybin motha-wibpadic

apect
k—) This target will appear

after a few seconds.

After a few seconds, you should see a target at the bottom and a link that shows inspect.
Click the Inspect button and a separate window opens. The Inspect window starts in the
paused state. Click the arrow to start the debugger (figure 12.6).

Figure 12.6. Chrome Inspect window

This arrvow starts
the paused debugger.

Mol Memory Jounted Comolr [mbaev

Wetwork Filenstem Contend soripts ¥ I 8 mocha-webpacs ® ok 2 1 e D
(el o) 1[{Fenction (RAperty ire, sciule, filerame, dlraase g
() | SIportl, regulre, AE=L P = O Debugger paused
s 3 raamiral .. LABELE")
fat o " WMatch
L
" v Coll Stk

® (ARG

oSy, somply

After the debugger starts, it will stop at the place in our code where we added the
debugger statement. From here, we can view the console, and look at variables, as you
can see in figure 12.7. For example, if you click the wrapper, then __proto__, and then

__proto___again, you'll see all the wrapper methods.

Figure 12.7. Debugger statement showing all the wrapper methods.

ntent seripts B i | [mocha-webpack globaljs Headerspecis X o]l | Ie, A ¥
53] 1e('Check 1f Sign In text if correct for sign In", {) => { -
54 const cartltesCount = 19; D Debugger
55 const wrapper = shallow(Header, { * Watch
56 store, localVue, propsData: { cartltesCount }
n v Call Stack
59 expect{wrapper. Findd11{ ‘button’). at(8). vext()). toBe("5ign In"); . oL
51]-] callFn .
62 fe("Check if Sign in text i2 correct for sign cut", () =» {
63 const cartItes{ount = 18; cartltes(ount = 18 Tv‘.unnable_.[
=] getrers. desiion = () =» troe; :
65 store = mgw Vue,Store({ getters, = wrapper = VueWrapper {update: §, Runner.nin
3 CORST frd = shallow(Hesder, { options: {_}, wersion: 2.5, -} "
&7 S Tenna ey st P et SagrrT remConat =010 -
VueHrapper {ancsnymmes
&9 ™k classes: F closses() = 1
8 xpel k contains: f contoins(selector) a("5ign Out”); et
1l 1 F destroy: F destroy() {Amnymo
renitted: § emicted(event) 1
78 1); » esittedBylrder: § esittedBplrder() et
Eaxists: F extses()
4 e find: £ Fina$Sl(selector) (ancaymo
e finddll: F FflnddliS1(selector)
A WEBPACK » hasAttribute: F hasdctributef{ottribull aone n
A cese/MHed * hasClase: F hesClogss(closshone) " ifn n
{]. Line 66 Cobl » hasFrop: § hosProp(prop, value)
1 E hasStyle: F hosStyle(style, volue)
w o L »htel: F hesl() =
a P

All these m ethods are
available on the Wrapper.

Use the Chrome inspector whenever you need to figure out a test, and you’re not sure

what variables do.

EXERCISE

Use your knowledge from this chapter to answer the following questions:

e Why is it important to test? What tool is made for Vue.js that can help with testing?

See the solution in appendix B.

SUMMARY

e Unit test cases test small units of functionality.

e Writing tests allows you to test functions and verify they work as expected in the

application.

* You can debug your test cases in real-time using the Chrome browser.

Appendix A. Setting up your environment

Developing without the right tools is like exploring a cave without a flashlight: it will get
done, but you'll be in the dark the whole time. That said, if you already have the tools
that are covered in this section, or alternatives you feel comfortable with, skip to the

next section.

A.1. CHROME DEVELOPER TOOLS

Far and away, our “best buddy” on this journey will be the Chrome Developer Tools. If
you haven’t done so, install the Chrome browser. You can find it at
https://www.google.com/chrome/. You can access the Developer Tools from the browser
menu at View > Developer > Developer Tools or by right-clicking a page and choosing

Inspect as seen in figure A.1.

Figure A.1. The default view of Chrome’s Developer Tools pane shows the HTML
markup of a web page, and the CSS styles attached to a selected element.

The HTML used to mark up The pane on the right-hand side can be used o view
our web page or application man y different aspects of the selected m arkup including
is Bown in this pane. the styles applied to it and the events bound to it

When you inspect your code, you'll use the JavaScript console in Developer Tools most
frequently. You can switch to it using the Console tab or open it directly from the menu

at View > Developer > JavaScript Console.

You can even bring up a console while looking at any other tab in the Developer Tools

by pressing the ESC key, as seen in figure A.2. This allows us to do things like look at the

HTML while we manipulate it from JavaScript.

Figure A.2. The JavaScript console lets us inspect and interact with HTML markup
as well as the JavaScript of our Vue application.

wd w1y R L g s e v 8 TU I g ey
man s "] i e whams - igna
e Sy i i S g i e Pl 10y e S s b e e G L
:
o mprgie-tap bprapsdiing i popebiteg et s

i gy e fae e

The JavaScript conscle lets us execute code, view
representations of JavaScript objects, and interact
w ith the DOM elem ents used by our application.

A.2. VUE-DEVTOOLS FOR CHROME

The core Vue team has developed a Chrome extension—vue-devtools—that’s tailored to

the task of inspecting Vue applications at runtime.

You can install the vue-devtools extension from the Chrome Web Store by visiting
http://mng.bz/RpuC. The adventurous can build the extension from—and hack at—the
code itself by cloning the GitHub repository located at https://github.com/vuejs/vue-

devtools.

Post-Installation Note

Chrome can be a little finicky right after an extension has been installed. If you open
the Developer Tools pane and don’t see a Vue tab after you install the extension, try

opening a new tab or window before restarting Chrome.

After you've installed the extension, you need to enable it for use on local files, because
we won’t use a web server for the first few chapters. In Chrome, select Window >
Extensions, then locate the Vue.js devtools entry. Tick the Allow access to file URLs

check box and you’re all set, as seen in figure A.3.

Figure A.3. Enabling vue-devtools to work with local files requires updating
settings in the Extensions preference page.

L3 v Vue. js devioods

Descripbon
Viergion

]
Permissicong

Allow in IRCognto

Allow access 10 file URLS -]
Vi i Cheome Wb Store

Source

Fermcidd @8 100 "

After installing the extension, we can see data used by our application, isolate specific
components from our application, and even time travel! It allows us to go back and
replay activity that previously took place in our app, at least. Figure A.4 shows all the

parts of the extension.

Figure A.4. The vue-devtools extension lets us explore our Vue applications in real
time.

The Com ponents tab lets The Vuex tab is for inspecting the
you navigate an contents of a data store when using

applications structure. Vuet com panion Vuex Library.

The pane shows a tree structure Data and other properties
of all of the com ponent of the selected com ponent
instances in an application. are shown here,

A.3. OBTAINING A CHAPTER’S COMPANION CODE

The source code for this book is available to download from the publisher’s website
(www.manning.com/books/vue-js-in-action). Chapter code is available on GitHub at
https://github.com/ErikCH/VuejsInActionCode. If you have any questions or find any
mistakes, feel free to open an issue! This is also where you'll find all the pictures for

each chapter.

A.4. INSTALLING NODE.JS AND NPM

In the book we’ll need Node.js and npm so we can use the Vue-CLI tool and have access

to the hundreds of thousands of modules available. It’s recommended that you
download either the current or LTS (Long Term Support) version of Node. Either one

will work fine.
Here are a few approaches that you can use to get Node, which includes npm:

* Homebrew or MacPorts— This is a popular choice for Mac OS users.
e One-click installers— Windows and Mac both have this option.

e Install using the Linux package management system— Yum, apt-get, or

pacman can be used to install Node on a Linux environment.

o Install using NVM— NVM (Node Version Manager) is a script that helps manage

Node.js versions. It’s available for Windows and Mac. It’s a great option.

A.4.1. Installing Node.js using one-click installers

By far, one of the easiest ways to download Node.js is using a one-click installer. Head

over to http://nodejs.org/en/download. Choose your version of Windows or Mac, 32-bit or

64-bit, and download the .msi for windows or .pkg for Mac as seen in figure A.5.

Figure A.5. The homepage to download Node

Dovwmnload the Node.js source code or a pre-buill installer for your platform, and start developing today.

LTS Current

Bt omenstndiisd For Mot Liers Lategy Falunis

- & &8
i |

Windows Installer Macintosh Installer Source Code

Windows Installer {.msi) 2-bit 4-bit
Windows Binary (.zip)

macO5s Installer (.pkg)

macO35 Binaries (tar.gz) 641

Linux Binaries (x86/x64)

Linux Binaries (ARM) ARy

Source Code

A.4.2. Install Node.js using NVM

NVM is another excellent choice. NVM is a script that helps manage multiple active
versions of Node.js. You can install Node.js without even having to visit the website.
The script separates each version of Node that you download. I recommend this to most
beginners, although you need to understand how to use the command line. You can find
NVM at https://github.com/creationix/nvm. A Windows version can be found at

https://github.com/coreybutler/nvm-windows/releases.

To install NVM on a Mac, open the command prompt and run this command:

$ curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.33.2/instal
| bash

This will download the latest version of NVM.

To install NVM on a Windows system, click on the nvm-setup.zip file on the nvm-

windows release webpage. Unzip the files and run the nvm-setup.exe file.

After installing NVM or NVM for Windows, run this command to download the latest

version of Node.js.

$ nvm install node

That’s it! Now you have Node and npm installed on your system!

A.4.3. Install Node.js via Linux package management system

All major Linux distributions offer Node.js packages in their repositories. For example,

in Ubuntu you can use apt-get:

$ sudo apt-get install nodejs

In Fedora, you can use yum:

$ yum install nodejs

You need to check with your Linux distribution to find out more details on how to
install packages on your system. Keep in mind that certain distributions may have
outdated versions of Node.js available for download. In that case, you might be better

off with NVM or downloading Node.js from the official website.

A.4.4. Install Node.js using MacPorts or Homebrew

Macports and Homebrew are package management systems for the Mac. To download
Node.js, you need to first install Macports or Homebrew. You can find the latest
information on how to install Homebrew at http://brew.sh and Macports at

WWWw.macports.org.

After you have one of these package managers installed on your Mac, you can run the

following command to install Node.

For Homebrew:

S brew install node

For MacPorts:

$ sudo port install nodejs

You should be good to go after this!

A.4.5. Verifying that Node is installed

To test the installation of Node.js run the -v command:

S node -v

$ npm -v

These commands will display the current version of Node and NPM installed. As of this

writing the latest LTS version is 6.11 and the latest current version is 8.2.1.

A.5. INSTALLING VUE-CLI

Before installing Vue-CLI make sure you have at least Node.js >= 4.6, 6.x preferred,
npm version 3+, and Git. In chapter 11, we use Nuxt.js. In that case, make sure to have
Node.js >= 8.0. Vue-CLI will work fine either way. Follow the previous instructions to
install Node. To install Git, follow the instructions on the official Git website at
http://mng.bz/D7zz.

After installing all the prerequisites, open a terminal and run this command:

$ npm install -g vue-cli

Running commands in Vue-CLI is easy. Type in vue-cli init template name and

then the project name like this:

$ vue init <template-name> <project-name>

$ vue init webpack my-project

That should be it.

Note, as of the writing of this book, Vue-CLI 2.9.2 is the latest version. The newest
version of Vue-CLI 3.0 is still in beta. For information on how to install and work with
Vue-CLI 3.0, follow the official guides at http://mng.bz/5t1C.

Appendix B. Solutions to chapter exercises

Solutions to the exercise questions in chapters 2—12 are listed here.

CHAPTER 2

e In section 2.4 we created a filter for the price. Can you think of any other
filters that might be helpful?

Filters in Vue.js are commonly used to do text filtering. One filter you may want to add

is a way to capitalize the product title.

CHAPTER 3

* Earlier in the chapter we looked at computed properties and methods.

What are the differences?

Computed properties are useful when you're trying to derive a value. The value will be
automatically updated whenever any of its underlying values are updated. It’s also
cached to avoid repetitively calculating a value that doesn’t need to be recalculated
when it hasn’t changed, as in a loop. Note that methods are functions bound to the Vue
instance. They only evaluate when they’re explicitly called. Unlike computed properties,
methods accept parameters. Computed properties cannot. Methods are useful in the
same situations where any JavaScript functions would be useful. An application isn’t

effective without supporting robust user interactions.

CHAPTER 4

e How does two-way data binding work? When should you use it in your

Vue.js application?

In the simplest terms two-way data binding works when updates in the model update
the view, and updates in the view update the model. Two-way data binding should be

used throughout your application when dealing with forms and inputs.

CHAPTER S
e What’s a v-for range and how does it compare to a normal v-for?

A v-for directive is used to render a list of items based on an array. Usually it’s in the
format of item in items, where itemis the source array and item is an alias for the
element being iterated on. The v-for can also be used as a range in the format of i tem

in (number). In that case, it will repeat the template that many times.

CHAPTER 6

e How do you pass information from a parent to a child component?
What do you use to pass information from a child component back to a

parent component?

The typical way of passing information from a parent component to a child component
is using props. Props must be explicitly set inside the child component. To pass
information from a child component to a parent component you can use

Semit (eventName) . It’s worth mentioning that later we’ll look at other ways of

passing information between components, including using a data store.

CHAPTER 7
e Name two ways you can navigate between different routes.

To navigate between different routes, you can use two different approaches. Inside the
template you can add a router-link element. Or inside the Vue instance you can use

this.Srouter.push.

CHAPTER 8
¢ What’s the difference between an animation and a transition?

Transitions move from one state to another, whereas animations have multiple states.

CHAPTER 9
* What is a mixin and when should you use it?

Mixins are a way to distribute reusable functionality for components. You should use
mixins whenever you see that you're writing the same code over and over again
between components. Repeating code goes against the DRY (don’t repeat yourself)

principal and should be refactored. Mixins will be “mixed” into the component’s own

options.

CHAPTER 10

e What are several advantages of using Vuex over the normal data passing

of a Vue.js application?

Vuex uses a central store to capture the state of the application. This helps our Vue.js
app mutate state in a predictable synchronous way. This helps prevent unintended
consequences occurring when state in our application changes. One advantage this has
is that it helps organize data in our application in one place. Larger Vue.js applications
can be cumbersome. Passing information or relying on an event bus isn’t ideal. Vuex

helps abstract this problem away by providing one central store to hold all information.

CHAPTER 11

e What’s one advantage of using asyncData in your Nuxt apps versus

using middleware?

The asyncData object is loaded on page components before they’re loaded. It has
access to the context object and is loaded on the server side. One advantage it may have
over using middleware is that its results will be merged with the data object on the
page. This can be more advantageous than using middleware, where we might have to

use a Vuex store to save data so it can be retrieved later inside the page component.

CHAPTER 12

¢ Why is it important to test? What tool is made for Vue.js that can help

with testing?

Testing should be a fundamental part of any organization writing code. Automated
testing is much quicker, and less error prone, than manually testing. It has a higher
upfront cost, although it will save time in the long run. Vue.js offers many tools to help
with testing. One of the most important is the vue-test-utils library. This will help do

proper testing with our Vue.js applications.

CHEAT SHEET

Component information

Vue.component ('my-component', {
props: { The parameters the component accepts
myMessage: String,
product: Object,
email: {

type: String,

required: true,
default: "test@test.com"
validator: function (value) {

Return true or false

}y

data: function () { Must be a function
return {
firstName: 'Vue' ,
lastName: 'Info'
}
bo
methods: { e }
computed: (Return values cached until
fullName: function () { dependencies change
return this.firstName + ' ' + this.lastName
}
}
watch: { Called when firstName changes value
firstName: function (value, oldValue) { .. }
b,
components: { components that can be used in the template

ButtonComponent, IconComponent

bo
template: ' {{ myMessage }}',
}) Can also use backticks for multiline

CUSTOM EVENTS

Use props to pass data into child components and use custom events to pass data to

parent elements.

Set listener on component, within its parent:

<button-counter v-on:incrementThis="incVal">

Inside parent component:

methods: (
incval: function (toAdd) { . . .}

Inside button-counter:

this.$emit ('incrementThis', 5) Data sent up to parent

__—

Custom event name

LIFECYCLE HOOKS

beforeCreate beforeUpdate
created updated
beforeMount beforeDestroy
mounted destroyed

Using a single slot

Component template:

<div>
<h2>I'm a title</h2>
<slot>
//0Only displayed if no content
</slot>
</div>

Use of component with data for slot:

<my-component>
<p>This will go in the slot</p>

</my-component>

Multiple slots

Component template:

<div class="container">
<header>
<slot name="header"></slot>
</header>
<main>
<slot>Default content is here</slot>
</main>
<footer>
<slot name="footer"></slot>
</footer>
</div>

Use of component with data for slot:

<app-layout>

<hl slot="header">Page title</hl>
<p>the main content.</p>

<p slot="footer">Contact info</p>
</app-layout>

CHEAT SHEET

Expressions

<div id="app">

<p>I have a {{ widget }}</p>
<p>{{ widget + 's' }}</p>
<p>{{ isWorking ? 'YES' 3 'NO' }y</p>
<p>{{ widget.getSalePrice () }I</p>
</div>
Directives

Element inserted/removed based on truthiness:

<p v-if="inStock">{{ widget }}</p>
<p v-else-if="onOrder">. . .</p>
<hl wv-else>. . .</hl>

Uses element’s display CSS property:

<hl v-show="ok">Hello World!</hl>

Two-way data binding:

<input v-model="firstName" />

v-model.lazy=". . ." Syncs input after change
v-model.number=". . ." Always returns a number
v-model.trim=". . ." Removes whitespace

List rendering

<1li w-for="item in items" :key="item.id"»

{{ dtem }} ~A

</li=> key recommended

To access the position in the array:

<li wv-for="(item, index) in items">.
To iterate through objects:

<li wv-for="(value, key) in object">.
Using v-for with a component:

<my-item v-for="item in products"

:products="item" :key="item.id">
Binding
za v-bind:href="url"s...</a=>
Shorthand

HH““=—b za :href="url"s.</a=

True or false will add or remove attribute:
<button :disabled="isButtonDisabled">...
If i sActive is truthy, the class active will appear:
<div :class="{ active: 1isActive }">.
Style color set to value of activeColor:

<div :style="{ color: activeColor }">

Actions/events

Calls add method on component after click:

<button wv-on:click="add"=...

Shorthand

\——b zbutton @click="add"s...

Arguments can be passed.
<button (@click="add (widget) ">.
To prevent page reload . . .
<form (@submit.prevent="add">.
.. Only trigger once:

.

.stop Stop all event propagation
.self Only trigger 1if event.target is element itself.
Keyboard entry example:

<input Q@keyup.enter="submit">

	Part 1
	Chapter 1
	Chapter 2
	Part 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Part 3
	Chapter 10
	Chapter 11
	Chapter 12
	Appendix

