Git best practices and tips | gwu-libraries.github.io http://gwu-libraries.github.io/Git.html

gwu-libraries.github.io

Git best practices and tips

General practices

Create (and check out) a local branch to track a remote branch (i.e. a
branch on the github server)

git checkout -b mybranch origin/myremotebranch

Best practice would be to name mybranch exactly the same as myremotebranch, unless there is
a good reason to do otherwise.

Push a local branch to remote (and track)

git push -u origin mybranch

Rebasing periodically while working on a branch

This is a preferred practice for bringing the latest changes from master instead of using merge
because it leaves a cleaner history.

Be very careful about rebasing public branches. Since it gets rid of some commits, it can cause
problems for other developers doing work on the branch.

in your local branch MYBRANCH
git add STUFF

git commit -m 'NOTE'

repeat as desired

I+

IN THE MEANWHILE.. the remote master branch (origin/master) has had
some changes.

I+

grab the latest stuff from origin/master to update your
local master branch
git checkout master

lof4 4/5/24,11:15

http://gwu-libraries.github.io/
http://gwu-libraries.github.io/
http://gwu-libraries.github.io/Git.html#create-and-check-out-a-local-branch-to-track-a-remote-branch-ie-a-branch-on-the-github-server
http://gwu-libraries.github.io/Git.html#push-a-local-branch-to-remote-and-track
http://gwu-libraries.github.io/Git.html#rebasing-periodically-while-working-on-a-branch

Git best practices and tips | gwu-libraries.github.io http://gwu-libraries.github.io/Git.html

20f4

git pull origin master

go back to MYBRANCH and now rebase with the changes in your
local master branch

git checkout MYBRANCH

git rebase master

if you encounter merge conflicts.. edit each affected file, then
git add that file. Then: git rebase --continue

commit your updated branch to origin. May require a -ff to force.
git push origin MYBRANCH

Git squashing before committing a branch to master

The effect of squashing is so that when the branch is merged, it's one commit rather than a
series of little commits. We want to keep the commit log of master clean and readable.

git commit --squash gives you a chance to compose a single commit message, so you'll want
to think ahead about what that message should be. It should describe what changes this commit
entails.

Here is a recommended series of steps to follow:

review the last several commits on this branch
git log

let's say you did that and you determined that you want to
squash together the last 12 commits.
Reset the current branch to the commit just BEFORE the last 12 (or other number)

git reset --hard HEAD~12

Alternatively, you could have identified the commit hash of the last commit BEFO
changes you want to squash. That would look 1like:
git reset --hard a7b5c7302c22fb967bba50e55a5fcc7bd2d26cf0

Next: HEAD@{1} is where the branch was just before the previous command.
This next command sets the state of the index to be as it would just
after a merge from that commit:

F*

git merge --squash HEAD@{1}

Commit those squashed changes. The commit message will be

4/5/24,11:15

http://gwu-libraries.github.io/Git.html#git-squashing-before-committing-a-branch-to-master

Git best practices and tips | gwu-libraries.github.io

#
#
#
#
#
#
#

prepopulated with a concatenation of the commit messages of all

the squashed commits.
You will be placed in the

unified commit annotation.

Recommend that you delete
messages, and compose one
in the branch.

git commit

editor, where you can compose one

the prepopulated string of commit
clean message describing the changes

push the branch to the remote repo.
Seems to require -ff to force it.

git push -ff origin MYBRANCH

Helpful practices

See previous commit

git show HEADA

Compare commits across branches

Commits in experiment,

git log master..experiment

Opposite
git log experiment..master

Interactive staging

git add -i

but not master

Saving dirty state and return to clean

http://gwu-libraries.github.io/Git.html

Save the dirty state of your working directory and return to a clean state. State can be re-applied
to same or a different branch.

git stash save mychanges
git checkout anotherbranch

3o0f4

4/5/24,11:15

http://gwu-libraries.github.io/Git.html#helpful-practices
http://gwu-libraries.github.io/Git.html#see-previous-commit
http://gwu-libraries.github.io/Git.html#compare-commits-across-branches
http://gwu-libraries.github.io/Git.html#interactive-staging
http://gwu-libraries.github.io/Git.html#saving-dirty-state-and-return-to-clean

Git best practices and tips | gwu-libraries.github.io http://gwu-libraries.github.io/Git.html

git stash pop

Useful flags for git stash:

e --keep-index : Don'’t stash staged files.

e -y : Stash untracked files as well.
Remove untracked files and directories

git clean -f -d

Useful flags for git clean:

e -x : Also clean ignored files.

e -i :Interactive clean.
Search for code

git grep -n somfunct

Search for commits with code

git log -Ssomefunct --oneline

History of changes for code

git log -L :somefunct:somefile.py

This site is open source. Improve this page.

40f4 4/5/24,11:15

http://gwu-libraries.github.io/Git.html#remove-untracked-files-and-directories
http://gwu-libraries.github.io/Git.html#search-for-code
http://gwu-libraries.github.io/Git.html#search-for-commits-with-code
http://gwu-libraries.github.io/Git.html#history-of-changes-for-code
https://github.com/gwu-libraries/gwu-libraries.github.io/edit/master/Git.md
https://github.com/gwu-libraries/gwu-libraries.github.io/edit/master/Git.md

