
Git/Internal structure
Understanding something of the internal structure of Git is crucial to understanding how Git works.

Naked Git Structure
Specific Files

COMMIT_EDITMSG
FETCH_HEAD
HEAD
config
description
index
info/exclude
info/refs
ORIG_HEAD

Folders Containing Other Files
branches
hooks
logs
objects
refs/heads
refs/remotes
refs/tags
svn

Basic Concepts
Object Types
Topology Of Commits
The Reflog
Reachability And Garbage Collection

Git files out of .git folder
.gitkeep
.gitignore
.gitattributes

Footnotes

The following is a freshly initialized git v1.9.0 repository.[1]

.
└── .git/
 ├── HEAD
 ├── branches/
 ├── config
 ├── description
 ├── hooks/
 │ ├── applypatch-msg.sample
 │ ├── commit-msg.sample
 │ ├── post-update.sample
 │ ├── pre-applypatch.sample

Contents

Naked Git Structure

https://en.wikibooks.org/wiki/Git/Internal_structure#endnote_tree

 │ ├── pre-commit.sample
 │ ├── prepare-commit-msg.sample
 │ ├── pre-push.sample
 │ ├── pre-rebase.sample
 │ └── update.sample
 ├── info/
 │ └── exclude
 ├── objects/
 │ ├── info/
 │ └── pack/
 └── refs/
 ├── heads/
 └── tags/

Additional files and folders may appear as activity happens on the repository.

The message for a commit being made is saved here by a text editor.

Information is saved here from the last git-fetch(1) (http://git-scm.com/docs/git-f
etch) operation, for use by a later git-merge(1) (http://git-scm.com/docs/git-me
rge).

HEAD indicates the currently checked out code. This will usually point to the branch you're currently
working on.

You can also enter what git calls a "detached HEAD" state, where you are not on a local branch. In this
state the HEAD points directly to a commit rather than a branch.

The configuration file for this git repository. It can contain settings for how to manage and store data in the
local repository, remote repositories it knows about, information about the local user and other configuration
data for git itself.

You can edit this file with a text editor, or you can manage it with the git-config(1) (http://gi
t-scm.com/docs/git-config) command.

Used by repository browser tools - contains a description of what this project is. Not normally changed in
non-shared repositories.

Specific Files

COMMIT_EDITMSG

FETCH_HEAD

HEAD

config

description

index

http://git-scm.com/docs/git-fetch
http://git-scm.com/docs/git-fetch
http://git-scm.com/docs/git-merge
http://git-scm.com/docs/git-merge
http://git-scm.com/docs/git-config
http://git-scm.com/docs/git-config

This is the staging area. It contains, in a compact form, all changes to files that have been staged for the next
commit.

This is your own personal exclude file for your copy of the repo.

If this file exists, it contains definitions, one to a line, of branches (both local and remote) and tags defined
for the repository, in addition to ones that may be defined in individual files in refs/heads and
refs/tags. This file seems to be used for large repositories with lots of branches or tags.

Operations that change commit history on the current branch save the previous value of HEAD here, to
allow recovery from mistakes.

Never seems to be used.

Contains scripts to be run when particular events happen within the git repository. Git gives you a set of
initial example scripts, with .sample on the ends of their names (see the tree listing above); if you take
off the .sample suffix, Git will run the script at the appropriate time.

Hooks would be used, for example, to run tests before creating each commit, filter uploaded content, and
implement other such custom requirements.

The reflogs are kept here.

This is where all the files, directory listings, commits and such are stored.

There are both unpacked objects in numbered directories under this, and "packs" containing many
compressed objects within a pack directory. The uncompressed objects will be periodically collected
together into packs by automatic "git gc" runs.

info/exclude

info/refs

ORIG_HEAD

Folders Containing Other Files

branches

hooks

logs

objects

refs/heads

Can contain one file defining the head commit for each local branch (but see info/refs above).

Can contain one subdirectory for each remote repository you have defined. Within each subdirectory, there
is a file defining the tip commit for each branch on that remote.

Can contain one file defining the commit corresponding to each tag (but see info/refs above).

This directory will appear if you use git-svn(1) (http://git-scm.com/docs/git-svn)
to communicate with a Subversion server.

A Git repository is made up of these object types:

A blob holds the entire contents of a single file. It doesn’t hold any information about the
name of the file or any other metadata, just the contents.
A tree represents the state of a directory tree. It contains the pathnames of all the component
files and their modes, along with the IDs of the blobs holding their contents. Note that there is
no representation for a directory on its own, so a Git repository cannot record the fact that
subdirectories were created or deleted, only the files in them.
A commit points to a tree representing the state of the source tree as of immediately after that
commit. It also records the date/time of the commit, the author/committer information, and
pointers to any parent(s) of that commit, representing the immediately-prior state of the
source tree.
A tag is a name pointing to a commit. These are useful, for example, to mark release
milestones. Tags can optionally be digitally signed, to guarantee the authenticity of the
commit.
A branch is a name pointing to a commit. The difference between a branch and a tag is that,
when a branch is the currently-checked-out branch, then adding a new commit will
automatically update the branch pointer to point to the new commit.

Blobs, trees and commits all have IDs which are computed from SHA-1 hashes of their contents. These IDs
allow different Git processes on different machines to tell whether they have identical copies of things,
without having to transfer their entire contents over. Because SHA-1 is a cryptographically strong hash
algorithm, it is practically impossible to make a change to the contents of any of these objects without
changing its ID. Git doesn’t prevent you from rewriting history, but you cannot hide the fact that you have
done so.

refs/remotes

refs/tags

svn

Basic Concepts

Object Types

http://git-scm.com/docs/git-svn

just a graph

directed edges

A commit may have 0, 1 or more parents. Typically there is only one commit with no parents—a root
commit—and that is the first commit to the repository. A commit which makes some change to one branch
will have a single parent, the previous commit on that branch. A commit which is a merge from two or more
branches will have two or more parent commits.

Note that a branch points to a single commit; the chain of commits is implicit in the parent(s) of that commit,
and their parents, and so on.

The commit history in Git is arranged as a directed acyclic graph (DAG). To understand what this means,
let’s take the terms step by step.

In mathematical terms, a graph is a bunch of points (nodes)
connected by lines (edges).

A directed graph is one where each edge has a direction,
represented here by an arrowhead. Note that the arrow points
from the child to the parent, not the other way round; it is the
child that records who its parent(s) are, the parent does not
record who its children are, because the set of children can
change at any time, but the parent cannot change without
invalidating its SHA-1 hash.

Acyclic means that, if you start from any point and traverse edges in the direction of the
arrows, you can never get back to your starting point, no matter what choice you make at any
branch. No child can ever be a (direct or indirect) parent of itself!

Topology Of Commits

https://en.wikibooks.org/wiki/File:DAG_graph.png
https://en.wikibooks.org/wiki/File:DAG_graph.png
https://en.wikibooks.org/wiki/File:DAG_directed.png
https://en.wikibooks.org/wiki/File:DAG_directed.png

cycles not allowed

In Git terms, each node represents a commit, and the lines and arrows represent parent-child relationships.
Banning cycles simply means that a commit cannot be a (direct or indirect) parent or a child of itself!

The reflogs record changes that are not saved as part of the commit history—things like rebases, fast-
forward merges, resets and the like. There is one reflog per branch. The reflog is not a public part of the
repository, it is strictly specific to your local copy, and information is only kept in it for a limited time (2
weeks by default). It provides a safety net, allowing you to recover from mistakes like deleting or
overwriting things you didn’t mean to.

A commit is reachable if it is pointed to by a branch, tag or reflog entry, or is a parent of a commit which is
reachable. A tree is correspondingly reachable if it is pointed to by a reachable commit, and a blob is
reachable if it is pointed to by a reachable tree. Other commit/tree/blob objects are unreachable, and are not
really serving any purpose beyond taking up space.

It is quite normal for your repositories to accumulate unreachable objects over time, perhaps as a result of
aborted commits, deletion of unwanted branches, that kind of thing. Such objects will be deleted from the
repository by a git gc command. This is also done automatically every now and then by some other
commands, so it is rarely necessary to invoke git gc explicitly.

Placed in a directory, it guarantees that it will be committed, even if empty.

Contains the files and folders to exclude from versioning. Ex:

/var/
/vendor/

The Reflog

Reachability And Garbage Collection

Git files out of .git folder

.gitkeep

.gitignore

https://en.wikibooks.org/wiki/File:DAG_cyclic.png
https://en.wikibooks.org/wiki/File:DAG_cyclic.png

/.env.*.local

Contains somes attributes[1]. For example, to ignore .gitattributes and .gitignore in the "git archive" exports:

.gitattributes export-ignore

.gitignore export-ignore

1. ^ Generated with tree v1.5.1.1 using tree -AnaF.

1. https://git-scm.com/docs/gitattributes

Retrieved from "https://en.wikibooks.org/w/index.php?title=Git/Internal_structure&oldid=4101268"

This page was last edited on 5 September 2022, at 22:20.

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using
this site, you agree to the Terms of Use and Privacy Policy.

.gitattributes

Footnotes

https://git-scm.com/docs/gitattributes
https://en.wikibooks.org/w/index.php?title=Git/Internal_structure&oldid=4101268
https://creativecommons.org/licenses/by-sa/4.0/
https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use
https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy

