
gwu-libraries.github.io

Git best practices and tips

General practices ————————-

Create (and check out) a local branch to track a remote branch (i.e. a

branch on the github server)

git checkout -b mybranch origin/myremotebranch

Best practice would be to name mybranch exactly the same as myremotebranch, unless there is

a good reason to do otherwise.

Push a local branch to remote (and track)

git push -u origin mybranch

Rebasing periodically while working on a branch

This is a preferred practice for bringing the latest changes from master instead of using merge

because it leaves a cleaner history.

Be very careful about rebasing public branches. Since it gets rid of some commits, it can cause

problems for other developers doing work on the branch.

in your local branch MYBRANCH

git add STUFF

git commit -m 'NOTE'

repeat as desired

IN THE MEANWHILE… the remote master branch (origin/master) has had

some changes.

grab the latest stuff from origin/master to update your

local master branch

git checkout master

Git best practices and tips | gwu-libraries.github.io http://gwu-libraries.github.io/Git.html

1 of 4 4/5/24, 11:15

http://gwu-libraries.github.io/
http://gwu-libraries.github.io/
http://gwu-libraries.github.io/Git.html#create-and-check-out-a-local-branch-to-track-a-remote-branch-ie-a-branch-on-the-github-server
http://gwu-libraries.github.io/Git.html#push-a-local-branch-to-remote-and-track
http://gwu-libraries.github.io/Git.html#rebasing-periodically-while-working-on-a-branch

git pull origin master

go back to MYBRANCH and now rebase with the changes in your

local master branch

git checkout MYBRANCH

git rebase master

if you encounter merge conflicts… edit each affected file, then

git add that file. Then: git rebase --continue

commit your updated branch to origin. May require a -ff to force.

git push origin MYBRANCH

Git squashing before committing a branch to master

The effect of squashing is so that when the branch is merged, it’s one commit rather than a

series of little commits. We want to keep the commit log of master clean and readable.

git commit --squash gives you a chance to compose a single commit message, so you’ll want

to think ahead about what that message should be. It should describe what changes this commit

entails.

Here is a recommended series of steps to follow:

review the last several commits on this branch

git log

let's say you did that and you determined that you want to

squash together the last 12 commits.

Reset the current branch to the commit just BEFORE the last 12 (or other number):

git reset --hard HEAD~12

Alternatively, you could have identified the commit hash of the last commit BEFORE the

changes you want to squash. That would look like:

git reset --hard a7b5c7302c22fb967bba50e55a5fcc7bd2d26cf0

Next: HEAD@{1} is where the branch was just before the previous command.

This next command sets the state of the index to be as it would just

after a merge from that commit:

git merge --squash HEAD@{1}

Commit those squashed changes. The commit message will be

Git best practices and tips | gwu-libraries.github.io http://gwu-libraries.github.io/Git.html

2 of 4 4/5/24, 11:15

http://gwu-libraries.github.io/Git.html#git-squashing-before-committing-a-branch-to-master

prepopulated with a concatenation of the commit messages of all

the squashed commits.

You will be placed in the editor, where you can compose one

unified commit annotation.

Recommend that you delete the prepopulated string of commit

messages, and compose one clean message describing the changes

in the branch.

git commit

push the branch to the remote repo.

Seems to require -ff to force it.

git push -ff origin MYBRANCH

Helpful practices

See previous commit

git show HEAD^

Compare commits across branches

Commits in experiment, but not master

git log master..experiment

Opposite

git log experiment..master

Interactive staging

git add -i

Saving dirty state and return to clean

Save the dirty state of your working directory and return to a clean state. State can be re-applied

to same or a different branch.

git stash save mychanges

git checkout anotherbranch

Git best practices and tips | gwu-libraries.github.io http://gwu-libraries.github.io/Git.html

3 of 4 4/5/24, 11:15

http://gwu-libraries.github.io/Git.html#helpful-practices
http://gwu-libraries.github.io/Git.html#see-previous-commit
http://gwu-libraries.github.io/Git.html#compare-commits-across-branches
http://gwu-libraries.github.io/Git.html#interactive-staging
http://gwu-libraries.github.io/Git.html#saving-dirty-state-and-return-to-clean

git stash pop

Useful flags for git stash :

• --keep-index : Don’t stash staged files.

• -u : Stash untracked files as well.

Remove untracked files and directories

git clean -f -d

Useful flags for git clean :

• -x : Also clean ignored files.

• -i : Interactive clean.

Search for code

git grep -n somfunct

Search for commits with code

git log -Ssomefunct --oneline

History of changes for code

git log -L :somefunct:somefile.py

This site is open source. Improve this page.

Git best practices and tips | gwu-libraries.github.io http://gwu-libraries.github.io/Git.html

4 of 4 4/5/24, 11:15

http://gwu-libraries.github.io/Git.html#remove-untracked-files-and-directories
http://gwu-libraries.github.io/Git.html#search-for-code
http://gwu-libraries.github.io/Git.html#search-for-commits-with-code
http://gwu-libraries.github.io/Git.html#history-of-changes-for-code
https://github.com/gwu-libraries/gwu-libraries.github.io/edit/master/Git.md
https://github.com/gwu-libraries/gwu-libraries.github.io/edit/master/Git.md

