#include <stdint.h>
#include <QString>
#include <QDebug>
#include "storeINdata.h"
#include "tslib.h"
#include "shared_mem_buffer.h"
#include "datei.h"

// gpi: grafical access to PI: access from external devices over device controller FOR GUI
// epi: external access from GUI to PI:  FOR external devices (DC)




// store power on/off condition of the devices to control the data request

//static bool indat_savePrnPwr;

void indat_storePrinterPower(bool isOn)
{
    SharedMem::write()->indat_savePrnPwr=isOn;
}

bool indat_isPrinterOn()
{
    return SharedMem::read()->indat_savePrnPwr;
}


//static bool indat_saveMifPwr;

void indat_storeMifarePower(bool isOn)
{
    SharedMem::write()->indat_saveMifPwr=isOn;
}

bool indat_isMifareOn()
{
    return SharedMem::read()->indat_saveMifPwr;
}


//static bool indat_MdbIsOn;

void indat_storeMDBisOn(bool isOn)
{
    SharedMem::write()->indat_MdbIsOn=isOn;
}

bool indat_isMdbOn()
{
    return SharedMem::read()->indat_MdbIsOn;
}



//QString indat_HWversion;
//QString indat_SWversion;
//QString indat_DCstate;

// im shared memory ist kein QString erlaubt!!!!!!!!!!!!!!!!!!!!!!
//    nur standard C Typen!!!!!!

void gpi_storeHWver(QString text)
{
    // change Qstring to array of chars, because shared mem allowes no QString!
    int  nn, LL = text.length();
    if (LL >= versionBufferLen)
        LL=versionBufferLen-1;   // leave place for termination

    for (nn=0; nn<LL; nn++)
    {
        SharedMem::write()->indat_HWversion[nn] = text.at(nn).toLatin1();
    }
    for (nn=LL; nn<versionBufferLen; nn++)
        SharedMem::write()->indat_HWversion[nn] =0;
}

QString epi_loadHWver(void)
{
    // load array of chars from SM and change to QString
    int  nn, LL = versionBufferLen;
    char cc;
    QString myStr;

    myStr.clear();

    for (nn=0; nn<LL; nn++)
    {
        cc = SharedMem::read()->indat_HWversion[nn];
        myStr.append(cc);
    }
    return myStr;
}

void gpi_storeSWver(QString text)
{    
    int  nn, LL = text.length();
    if (LL >= versionBufferLen)
        LL=versionBufferLen-1;   // leave place for termination

    for (nn=0; nn<LL; nn++)
    {
        SharedMem::write()->indat_SWversion[nn] = text.at(nn).toLatin1();
    }
    for (nn=LL; nn<versionBufferLen; nn++)
        SharedMem::write()->indat_SWversion[nn] =0;

}

QString epi_loadSWver(void)
{
    int  nn, LL = versionBufferLen;
    char cc;
    QString myStr;

    myStr.clear();

    for (nn=0; nn<LL; nn++)
    {
        cc = SharedMem::read()->indat_SWversion[nn];
        myStr.append(cc);
    }
    return myStr;

}

void gpi_storeDCstate(QString text)
{
    //text.chop(8);       // DC2 State is shorter (8byte)
    //SharedMem::write()->indat_DCstate=text;
    int  nn, LL = text.length();
    if (LL >= versionBufferLen)
        LL=versionBufferLen-1;   // leave place for termination

    for (nn=0; nn<LL; nn++)
    {
        SharedMem::write()->indat_DCstate[nn] = text.at(nn).toLatin1();
    }
    for (nn=LL; nn<versionBufferLen; nn++)
        SharedMem::write()->indat_DCstate[nn] =0;

}

QString epi_loadDCstate(void)
{

    int  nn, LL = versionBufferLen;
    char cc;
    QString myStr;

    myStr.clear();

    for (nn=0; nn<LL; nn++)
    {
        cc = SharedMem::read()->indat_DCstate[nn];
        myStr.append(cc);
    }
    return myStr;
}


// -------------------------------

/*
static uint64_t Sdata_slaveUID;
static uint8_t Sdata_UIDstr[8];
static QString Sdata_DcUidStr;


void write2file_UID(void)
{
    QByteArray myBA;
    csv_startCreatingFile();
    csv_addUintToFile(Sdata_UIDstr[0]);
    csv_addUintToFile(Sdata_UIDstr[1]);
    csv_addUintToFile(Sdata_UIDstr[2]);
    csv_addUintToFile(Sdata_UIDstr[3]);
    csv_addUintToFile(Sdata_UIDstr[4]);
    csv_addUintToFile(Sdata_UIDstr[5]);
    csv_addUintToFile(Sdata_UIDstr[6]);
    csv_addUintToFile(Sdata_UIDstr[7]);
    csv_addNewlineToFile();
    csv_addUlongvalToFile(Sdata_slaveUID);
    csv_addNewlineToFile();
    csv_addTextToFile(Sdata_DcUidStr);
    csv_addNewlineToFile();
    myBA=csv_readbackArray();
    datei_clearFile(FILENAME_SHARED_UID);
    datei_writeToFile(FILENAME_SHARED_UID, myBA);

}

void gpi_storeUID(uint8_t *buf8byteUid)
{
    uint64_t udltmp=0;
    QString myStr;

    //qDebug()<< "store UID ";

    for (int ii=0; ii<8; ii++)
    {
        //qDebug()<< buf8byteUid[ii] << " ";

        Sdata_UIDstr[ii]=buf8byteUid[ii];
        udltmp|=buf8byteUid[ii];
        udltmp<<=8;
    }
    Sdata_slaveUID=udltmp;

    Sdata_DcUidStr.clear();
    for (int ii=0;ii<8; ii++)
    {

        Sdata_DcUidStr+=QString::number(Sdata_UIDstr[ii],16);
        Sdata_DcUidStr+=" ";
    }

    write2file_UID();
}

void epi_getUIDdec(uint8_t *buf8byteUid)
{
//qDebug()<< "get UID ";
    for (int ii=0; ii<8; ii++)
    {
        //qDebug()<<Sdata_UIDstr[ii] << " ";
        buf8byteUid[ii]=Sdata_UIDstr[ii];
    }
}

QString epi_getUIDstr()
{
    // die UID besteht aus 8 bytes (8 dezimalzahlen)
    // -> umformen in hexstring

    QString myStr;
    for (int ii=0;ii<8; ii++)
    {

        myStr+=QString::number(Sdata_UIDstr[ii],16);
        myStr+=" ";
    }
        return myStr;
}
*/

/*  read from file:
void epi_getUIDfromFile(uint8_t *buf8byteUid)
{
    QByteArray myBA;
        int nn;

    myBA=datei_readFromFile(FILENAME_SHARED_UID);
    for (nn=0; nn<8; nn++)
        buf8byteUid[nn]=csv_getEntryAsUshort(myBA, nn);

}

uint64_t epi_getUIDnumberFromFile(void)
{
    QByteArray myBA;

    myBA=datei_readFromFile(FILENAME_SHARED_UID);
    return csv_getEntryAs2Ulong(myBA, 8);

}

QString epi_getUIDstrFromFile(void)
{
    QByteArray myBA;

    myBA=datei_readFromFile(FILENAME_SHARED_UID);
    return csv_getEntryAsString(myBA, 9);

}
*/

// the same with shared memory :
void gpi_storeUID(uint8_t const *buf8byteUid)
{
    uint64_t udltmp=0;

    for (int ii=0; ii<8; ii++)
    {
//        SharedMem::getData()->Sdata.UIDstr[ii] = buf8byteUid[ii];
        SharedMem::write()->Sdata.UIDstr[ii] = buf8byteUid[ii];
        udltmp |= buf8byteUid[ii];
        udltmp <<= 8;
    }
//    SharedMem::getData()->Sdata.slaveUID = udltmp;
    SharedMem::write()->Sdata.slaveUID = udltmp;
}

void epi_getUIDdec(uint8_t *buf8byteUid)
{
    for (int ii=0; ii<8; ii++)
    {
        //buf8byteUid[ii] = SharedMem::getDataConst()->Sdata.UIDstr[ii];
        buf8byteUid[ii] = SharedMem::read()->Sdata.UIDstr[ii];
    }
}

QString epi_getUIDstr()
{
    // die UID besteht aus 8 bytes (8 dezimalzahlen)
    // -> umformen in hexstring

    QString myStr;
    for (int ii=0;ii<8; ii++)
    {
        //myStr += QString::number(SharedMem::getDataConst()->Sdata.UIDstr[ii], 16);
        myStr += QString::number(SharedMem::read()->Sdata.UIDstr[ii], 16);
        myStr += " ";
    }
    return myStr;
}

// ///////////////////////////////////////////////////////////////////////////////////
//          Time and Date
// ///////////////////////////////////////////////////////////////////////////////////
/*
struct T_globTime
{
    // Reihenfolge nicht vertauschen!!!!!
    uint8_t     hour;
    uint8_t     minute;
    uint8_t     second;
    uint8_t     Year;
    uint8_t     Month;
    uint8_t     DayOfMonth;
    uint8_t     DayOfWeek;          // 1=monday...7
    uint8_t     reserve1;

    uint16_t     MinutesOfToday;
    uint16_t     reserve2;

    uint32_t     SecondsOfToday;

    uint8_t      IsLeapyear;
    uint8_t      nextLeap;
    uint8_t      lastLeap;
    uint8_t      hoursOfWeek;

    uint16_t     minOfWeek;
    uint16_t     hoursOfMonth;
    uint16_t     minOfMonth;
    uint16_t     dayOfYear;
    uint16_t     hoursOfYear;
    uint16_t     reserve3;

    uint32_t     minOfYear;

    uint8_t      squareOutMode;
    uint8_t      free1;
    uint16_t     reserve4;
    uint32_t     minOfMillenium;
    // bis hierher 44byts
    uint32_t    free2;
    uint32_t    free3;
    uint32_t    free4;

};
static T_globTime getGlobalTime;
*/


void gpi_backupSquareMode(uint8_t squMode)
{
    SharedMem::write()->getGlobalTime.squareOutMode=squMode;
}

uint8_t epi_getSquareMode()
{
    return SharedMem::read()->getGlobalTime.squareOutMode;
}


void gpi_backupTime(uint8_t *timeBuffer, uint8_t Leng)
{
    /*
    // Daten kommen in gleicher Reihenfolge vom Slave
    uint8_t *pTime;
    pTime=&getGlobalTime.hour;
    if (Leng>44) Leng=44;       // mehr brauch ma ned
    for (int nn=0; nn<Leng; nn++)
    {
        *pTime++=timeBuffer[nn];
    }*/

    // new, FastProt: 0=dayOfWeek 1=min 2=sec 3=hours 4=year 5=month 6=dayOfMonth
    SharedMem::write()->getGlobalTime.second=Leng;  // nur damit CompilerWarnung weg ist

    SharedMem::write()->getGlobalTime.DayOfWeek=timeBuffer[0];
    SharedMem::write()->getGlobalTime.minute=timeBuffer[1];
    SharedMem::write()->getGlobalTime.second=timeBuffer[2];
    SharedMem::write()->getGlobalTime.hour=timeBuffer[3];
    SharedMem::write()->getGlobalTime.Year=timeBuffer[4];
    SharedMem::write()->getGlobalTime.Month=timeBuffer[5];
    SharedMem::write()->getGlobalTime.DayOfMonth=timeBuffer[6];

}

void epi_getTime(uint8_t *hh, uint8_t *mm, uint8_t *ss)
{
    *hh=SharedMem::read()->getGlobalTime.hour;
    *mm=SharedMem::read()->getGlobalTime.minute;
    *ss=SharedMem::read()->getGlobalTime.second;
}

void epi_getDate(uint8_t *yy, uint8_t *mm, uint8_t *dd)
{
    *yy=SharedMem::read()->getGlobalTime.Year;
    *mm=SharedMem::read()->getGlobalTime.Month;
    *dd=SharedMem::read()->getGlobalTime.DayOfMonth;
}

void epi_getToday(uint8_t *dow, uint16_t *minOfToday, uint32_t *secOfToday)
{
    *dow=SharedMem::read()->getGlobalTime.DayOfWeek;
    *minOfToday=SharedMem::read()->getGlobalTime.MinutesOfToday;
    *secOfToday=SharedMem::read()->getGlobalTime.SecondsOfToday;
}

bool epi_isLeapYear(uint8_t *lastLeapYear, uint8_t *NextLeapYear)
{
    *lastLeapYear=SharedMem::read()->getGlobalTime.lastLeap;
    *NextLeapYear=SharedMem::read()->getGlobalTime.nextLeap;
    if (SharedMem::read()->getGlobalTime.IsLeapyear)
        return true;
    return false;
}

bool epi_isLeapYear()
{
    if (SharedMem::read()->getGlobalTime.IsLeapyear)
        return true;
    return false;
}

void epi_getSpecialWeekTimeDate(uint8_t *DayOfWeek, uint8_t *HoursOfWeek, uint16_t *MinutesOfWeek)
{
    *DayOfWeek=SharedMem::read()->getGlobalTime.DayOfWeek;
    *HoursOfWeek=SharedMem::read()->getGlobalTime.hoursOfWeek;
    *MinutesOfWeek=SharedMem::read()->getGlobalTime.minOfWeek;
}

void epi_getSpecialMonthTimeDate(uint8_t *DayOfMonth, uint16_t *HoursOfMonth, uint16_t *MinutesOfMonth)
{
    *DayOfMonth=SharedMem::read()->getGlobalTime.DayOfMonth;
    *HoursOfMonth=SharedMem::read()->getGlobalTime.hoursOfMonth;
    *MinutesOfMonth=SharedMem::read()->getGlobalTime.minOfMonth;
}

void epi_getSpecialYearTimeDate(uint16_t *DayOfYear, uint16_t *HoursOfYear, uint32_t *MinutesOfYear)
{
    *DayOfYear=SharedMem::read()->getGlobalTime.dayOfYear;
    *HoursOfYear=SharedMem::read()->getGlobalTime.hoursOfYear;
    *MinutesOfYear=SharedMem::read()->getGlobalTime.minOfYear;
}

QString epi_getRtcTimeStr(uint8_t timeStyle)
{
    // style: 0: hh:mm    1: hh:mm:ss
    QString mystr=nullptr, tempStr=nullptr;

    tempStr.setNum(SharedMem::read()->getGlobalTime.hour,10);
    mystr=tempStr.rightJustified(2,'0',false);  // macht feste Länge, 5->05
    mystr.append(':');
    //tempStr.clear();
    tempStr.setNum(SharedMem::read()->getGlobalTime.minute,10);    // mit 16 statt 10 wirds in HEX angezeigt
    //mystr.append(tempStr);
    mystr+=tempStr.rightJustified(2,'0',false);
    //mystr.append(':');    // so
    //mystr+=':';             // oder so, =gleich

    if (timeStyle==1)     //  hh:mm:ss
    {
        mystr.append(':');
        tempStr.setNum(SharedMem::read()->getGlobalTime.second,10);
        mystr.append(tempStr.rightJustified(2,'0',false));  // wie +=
    }
    return mystr;
}


QString epi_getRtcDateStr(uint8_t dateStyle)
{
    // 1=german dd.mm.yy   2=american yy/mm/dd   3=mm.dd.yy
    QString tmpStr=nullptr, YYstr=nullptr, MMstr=nullptr, DDstr=nullptr, mystr=nullptr;
    mystr.clear();

    tmpStr.setNum(SharedMem::read()->getGlobalTime.Year,10);       // itoa decimal
    YYstr=tmpStr.rightJustified(4,'0',false);   // immer vierstellig
    YYstr[0]='2';                               // 2000 dazu

    tmpStr.setNum(SharedMem::read()->getGlobalTime.Month,10);
    MMstr=tmpStr.rightJustified(2,'0',false);

    tmpStr.setNum(SharedMem::read()->getGlobalTime.DayOfMonth,10);
    DDstr=tmpStr.rightJustified(2,'0',false);

    if (dateStyle==1)     // Germany dd.mm.yy
    {
        mystr=DDstr + '.' + MMstr + '.' + YYstr;
    } else
    if (dateStyle==2)     // american yy/mm/dd
    {
        mystr=YYstr + '/' + MMstr + '/' + DDstr;
    } else
       // mm.dd.yy
    {
        mystr=MMstr + '.' + DDstr + '.' + YYstr;
    }
    return mystr;
}


QString epi_getSlaveTimeDateStr()
{
    QString myStr;
    myStr=epi_getRtcTimeStr(1) + "     " + epi_getRtcDateStr(1);
    return myStr;

}


// ///////////////////////////////////////////////////////////////////////////////////
//          analog values
// ///////////////////////////////////////////////////////////////////////////////////


//static uint16_t   AI_val[MAXNROF_AI];

uint8_t gpi_getMaxNrAIs()
{
    return MAXNROF_AI;
}

void gpi_storeAIs(uint8_t aiNr, uint16_t val)
{
    if (aiNr<MAXNROF_AI)
        SharedMem::write()->AI_val[aiNr]=val;
}

uint16_t epi_loadAIs(uint8_t aiNr)
{
    if (aiNr<MAXNROF_AI)
        return SharedMem::read()->AI_val[aiNr];
    return 0;
}


//--------------
// measurement values
// ADC0: temp
// 1: voltage
// 2: brightness
#define MAXNROF_MEASURE         4

//static uint32_t   Sdata_measurement[MAXNROF_MEASURE];

uint32_t epi_loadMeasureValue(uint8_t ValueNr)
{
    // ValueNr 0=ADC0, 1=ADC1 aso...
    if (ValueNr<MAXNROF_MEASURE)
        return SharedMem::read()->Sdata_measurement[ValueNr];
    return 0;
}

void gpi_storeMeasureValue(uint8_t ValueNr, uint32_t val)
{
    // in mV, also bis 65,535V
    if (ValueNr<MAXNROF_MEASURE)
        SharedMem::write()->Sdata_measurement[ValueNr]=val;

}



QString epi_getSlaveTemperatureStr()
{
    char myStr[8], halfDegree=0, Minus=0, oneChar;
    int16_t val=0, pp, einer, zehner;
    QString myqStr;

    //qDebug() << "AIN0: " << epi_loadAIs(0) << "AIN1: " << epi_loadAIs(1);

    uint32_t meas_temper=epi_loadMeasureValue(MEASCHAN_TEMPERATURE);
    // im SaxFormat gespeichert, hier umwandeln in String

    //qDebug() << "meas_temper: " << meas_temper;


    for (pp=0; pp<8; pp++) myStr[pp]=0;
    if (meas_temper&1)      // ungerade, also ,5°C
    {
        halfDegree=1;
        meas_temper &=0xFFFE;    // um 0,5°C abrunden
    }
    if (meas_temper<100)
    {
        Minus=1;
        val=int16_t(meas_temper)/2;
        val-=50;
    } else
    {
        val=int16_t(meas_temper)-100;
        val/=2;
    }
    pp=0;   // pointer auf string
    if (Minus)
        myStr[pp++]='-';
    // val is now 0..150 for pos Temp or 0..49 for negativ temperature
    if (val<10)
    {
        // only one digit, just change to ascii
        oneChar = char(val)+0x30;
        if (tslib_isDecAsciiNumber(oneChar))
            myStr[pp++]=oneChar;
        else
            myStr[pp++]='0';
    } else
    if (val<100)
    {
        // 10...99
        einer=val%10;
        zehner=val/10;
        //myStr[pp++]=char(zehner);
        //myStr[pp++]=char(einer);

        oneChar = char(zehner)+0x30;
        if (tslib_isDecAsciiNumber(oneChar))
            myStr[pp++]=oneChar;
        else
            myStr[pp++]='0';

        oneChar = char(einer)+0x30;
        if (tslib_isDecAsciiNumber(oneChar))
            myStr[pp++]=oneChar;
        else
            myStr[pp++]='0';

    } else
    {
        // 100...150
        myStr[pp++]='1';    // hunderter Stelle immer 1
        val-=100;
        einer=val%10;
        zehner=val/10;
        //myStr[pp++]=char(zehner)+0x30;
        //myStr[pp++]=char(einer)+0x30;
        oneChar = char(zehner)+0x30;
        if (tslib_isDecAsciiNumber(oneChar))
            myStr[pp++]=oneChar;
        else
            myStr[pp++]='0';

        oneChar = char(einer)+0x30;
        if (tslib_isDecAsciiNumber(oneChar))
            myStr[pp++]=oneChar;
        else
            myStr[pp++]='0';
    }
    myStr[pp++]=',';
    if (halfDegree)
        myStr[pp++]='5';
    else
        myStr[pp++]='0';
    myqStr.clear();
    myqStr.append(myStr);
    myqStr.append("°C");
    return myqStr;
}

QString epi_getSlaveVoltageStr()
{
    // value in "meas_volt" in mV, also bis 65,535V. Value range [6000...16000] (6V...16V)
    QString myqStr;
    uint32_t vor, nach, tmp32;
    uint16_t pp;
    char myStr[12], ke; //, kz, kh;

    uint32_t ultmp=epi_loadMeasureValue(MEASCHAN_VOLTAGE);
    for (pp=0; pp<12; pp++) myStr[pp]=0;

    //qDebug() << ultmp << "mV";

    myqStr.clear();
    vor=ultmp/1000;
    //qDebug() << "vor: " << vor;

    nach=ultmp%1000;
    //qDebug() << "nach: " << nach;
    pp=0;
    if (vor>9)
    {
        myStr[pp++]=char(vor/10)+0x30;
    }
    myStr[pp++]=char(vor%10)+0x30;
    myStr[pp++]=',';

    ke=char(nach/100);
    //qDebug() << "ke: " << ke;
    myStr[pp++]=char(ke)+0x30;

    tmp32=nach%100;
    ke=char(tmp32/10);
    //qDebug() << "ke: " << ke;
    myStr[pp++]=char(ke)+0x30;

    tmp32=nach%10;
    ke=char(tmp32);
    //qDebug() << "ke: " << ke;
    myStr[pp++]=char(ke)+0x30;


    myStr[pp++]='V';
    myqStr.append(myStr);
    return myqStr;
}



// ///////////////////////////////////////////////////////////////////////////////////
//          digital inputs
// ///////////////////////////////////////////////////////////////////////////////////

/* come all in with 0x1201:
D0: upper door  D1: low door  D2:vault door
D3: cash box    D4: bill box in
D5: bit 0: upper lockbar up   bit1:down
D6: bit 0: lower lockbar up   bit1:down

D7: 0
D7: DI_contact Power Is On

D8: OptoIn 1,2
D9: Aux0...5
D10:Wake from ptu
D11: DI Wake From Mdb
D12: Ready from printer
D13: Coin Shutter Input
D14: CoinEscrow switch
D15: Mifare IN
D16: Modem_Wake In

D18: DI Mif Pwr is on
D19: DI MDB_TxD_rdBack
D20: DI Aux Pwr is on
D21: DI GSM Pwr from PO2 is ON
D22:  DI Credit Pwr from PO2 is on
        =DI RdBack Credit Wake
D23:  DI Printer Pwr from PO2 is on
D24:  DI MDB Pwr from PO2 is on
  */

//static uint8_t di_doorSwitch;
void gpi_storeDI_doorSwitches(uint8_t upperDoor, uint8_t lowerDoor, uint8_t vaultDoor)
{
    SharedMem::write()->di_doorSwitch=0;
    if (upperDoor) SharedMem::write()->di_doorSwitch |=1;
    if (lowerDoor) SharedMem::write()->di_doorSwitch |=2;
    if (vaultDoor) SharedMem::write()->di_doorSwitch |=4;
//    qDebug()<<"storeINdata: "<<upperDoor << lowerDoor << vaultDoor;
//    qDebug()<<"storeINdata: "<<di_doorSwitch;

}

uint8_t epi_getDI_doorSwitches(void)
{
    // bit0: upper door  1: low door  2:vault door
    return SharedMem::read()->di_doorSwitch;
}


//static uint8_t di_vaultSwitch;
void gpi_storeDI_vaultSwitches(uint8_t CashBoxIn, uint8_t BillBoxIn)
{
    SharedMem::write()->di_vaultSwitch=0;
    if (CashBoxIn) SharedMem::write()->di_vaultSwitch |=1;
    if (BillBoxIn) SharedMem::write()->di_vaultSwitch |=2;
}

uint8_t epi_getDI_vaultSwitches(void)
{
    // bit0: cash box    1: bill box in
    return SharedMem::read()->di_vaultSwitch;
}


//static uint8_t di_lockSwitch;
void gpi_storeDI_lockSwitches(uint8_t indatUL, uint8_t indatLL)
{
    // D5: bit 0: upper lockbar up   bit1:down
    // D6: bit 0: lower lockbar up   bit1:down
    SharedMem::write()->di_lockSwitch=0;
    if (indatUL & 1) SharedMem::write()->di_lockSwitch |=1;
    if (indatUL & 2) SharedMem::write()->di_lockSwitch |=2;
    if (indatLL & 1) SharedMem::write()->di_lockSwitch |=4;
    if (indatLL & 2) SharedMem::write()->di_lockSwitch |=8;
}

uint8_t epi_getDI_lockSwitches(void)
{
    // retval: bit 0: upper lockbar up   bit1: upper lockbar is down
    //         bit 2: lower lockbar up   bit1: lower lockbar is down

    return SharedMem::read()->di_lockSwitch;
}

//static uint8_t di_opto;
void gpi_storeDI_optos(uint8_t indatOpto)
{
    // OptoIn bit 0,1: optoin 1,2
    SharedMem::write()->di_opto=0;
    if (indatOpto & 1) SharedMem::write()->di_opto |=1;
    if (indatOpto & 2) SharedMem::write()->di_opto |=2;

}

uint8_t epi_getDI_optos(void)
{
    // bit0: opto in 1    1: opto in 2
    return SharedMem::read()->di_opto;
}


//static uint8_t di_aux;
void gpi_storeDI_auxIn(uint8_t indatAuxIn)
{
    // Aux0...5
    SharedMem::write()->di_aux=indatAuxIn;
}

uint8_t epi_getDI_auxIn(void)
{
    // bit0: auxin 1  ...  5: auxin 6
    return SharedMem::read()->di_aux;
}


//static bool di_wakeFromPtu;
void gpi_storeDI_ptuWake(uint8_t indat)
{
    if (indat)
        SharedMem::write()->di_wakeFromPtu=true;
    else
        SharedMem::write()->di_wakeFromPtu=false;
}

bool epi_getDI_ptuWake(void)
{
    return SharedMem::read()->di_wakeFromPtu;
}


//static bool di_wakeFromMdb;
void gpi_storeDI_mbdWake(uint8_t indat)
{
    if (indat)
        SharedMem::write()->di_wakeFromMdb=true;
    else
        SharedMem::write()->di_wakeFromMdb=false;
}

bool epi_getDI_mdbWake(void)
{
    return SharedMem::read()->di_wakeFromMdb;
}


//static bool di_PrnReady;
void gpi_storeDI_prnReady(uint8_t indat)
{
    if (indat)
        SharedMem::write()->di_PrnReady=true;
    else
        SharedMem::write()->di_PrnReady=false;
}

bool epi_getDI_prnReady(void)
{
    return SharedMem::read()->di_PrnReady;
}


//static bool di_CoinAttach;
void gpi_storeDI_CoinAttach(uint8_t indat)
{
    if (indat)
        SharedMem::write()->di_CoinAttach=true;
    else
        SharedMem::write()->di_CoinAttach=false;
}

bool epi_getDI_CoinAttach(void)
{
    return SharedMem::read()->di_CoinAttach;
}

//static bool di_CoinEscrowOpen;
void gpi_storeDI_CoinEscrow(uint8_t indat)
{
    if (indat)
        SharedMem::write()->di_CoinEscrowOpen=true;
    else
        SharedMem::write()->di_CoinEscrowOpen=false;
}

bool epi_getDI_CoinEscrow(void)
{
    return SharedMem::read()->di_CoinEscrowOpen;
}


//static bool di_mifCardTap;
void gpi_storeDI_mifareCardTapped(uint8_t indat)
{
    if (indat)
        SharedMem::write()->di_mifCardTap=true;
    else
        SharedMem::write()->di_mifCardTap=false;
}

bool epi_getDI_mifareCardTapped(void)
{
    return SharedMem::read()->di_mifCardTap;
}


//static bool di_wakeFromModem;
void gpi_storeDI_modemWake(uint8_t indat)
{
    if (indat)
        SharedMem::write()->di_wakeFromModem=true;
    else
        SharedMem::write()->di_wakeFromModem=false;
}

bool epi_getDI_modemWake(void)
{
    return SharedMem::read()->di_wakeFromModem;
}



//static bool di_contactPwrOn;

void gpi_storeDI_contactPowerIsOn(bool di_contact_PwrOn)
{
    SharedMem::write()->di_contactPwrOn=di_contact_PwrOn;
}

bool epi_getDI_contactPwr(void)
{
    // invertiert!
    if (SharedMem::read()->di_contactPwrOn)
        return false;
    return true;
}

//static bool di_mifarePwrOn;

void gpi_storeDI_MifarePowerIsOn(bool di_mifare_PwrOn)
{
    SharedMem::write()->di_mifarePwrOn=di_mifare_PwrOn;
}

bool epi_getDI_mifarePwr(void)
{
    return SharedMem::read()->di_mifarePwrOn;
}

//static bool di_rdbk_mdbTxd;

void gpi_storeDI_readbackMdbTxD(bool di_rdbkMdbTxd)
{
    SharedMem::write()->di_rdbk_mdbTxd=di_rdbkMdbTxd;
}

bool epi_getDI_mdbTxd(void)
{
    return SharedMem::read()->di_rdbk_mdbTxd;
}

//static bool di_AuxPwrOn;

void gpi_storeDI_AuxPowerIsOn(bool di_Aux_PwrOn)
{
    SharedMem::write()->di_AuxPwrOn=di_Aux_PwrOn;
}

bool epi_getDI_auxPwr(void)
{
    return SharedMem::read()->di_AuxPwrOn;
}

//static bool di_gsmPwrOn;

void gpi_storeDI_GsmPowerIsOn(bool di_gsm_PwrOn)
{
    SharedMem::write()->di_gsmPwrOn=di_gsm_PwrOn;
}

bool epi_getDI_gsmPwr(void)
{
    return SharedMem::read()->di_gsmPwrOn;
}

//static bool di_creditPwrOn;

void gpi_storeDI_CreditPowerIsOn(bool di_credit_PwrOn)
{
    // invertieren!!!
    if (di_credit_PwrOn)
        SharedMem::write()->di_creditPwrOn=0;
    else
        SharedMem::write()->di_creditPwrOn=1;
}

bool epi_getDI_creditPwr(void)
{
    return SharedMem::read()->di_creditPwrOn;
}

//static bool di_printerPwrOn;

void gpi_storeDI_PrinterPowerIsOn(bool di_printer_PwrOn)
{
    SharedMem::write()->di_printerPwrOn=di_printer_PwrOn;
}

bool epi_getDI_printerPwr(void)
{
    return SharedMem::read()->di_printerPwrOn;
}

//static bool di_mdbPwrOn;

void gpi_storeDI_MdbPowerIsOn(bool di_mdb_PwrOn)
{
    SharedMem::write()->di_mdbPwrOn=di_mdb_PwrOn;
}

bool epi_getDI_mdbPwr(void)
{
    return SharedMem::read()->di_mdbPwrOn;
}

//static bool di_rejMot_home;

void gpi_storeDI_rejMot_home(bool di)
{
    SharedMem::write()->di_rejMot_home=di;
}

bool epi_getDI_rejectMotor_homepos(void)
{
    return SharedMem::read()->di_rejMot_home;
}

//static uint8_t di_npe_sensor;

void gpi_storeDI_paperLow(uint8_t di)
{
    // 0: Sensor sees paper 1: no paper 99: off
    SharedMem::write()->di_npe_sensor=di;
}

uint8_t epi_getDI_npe_sensor(void)
{
    return SharedMem::read()->di_npe_sensor;
}



// ///////////////////////////////////////////////////////////////////////////////////
//          readaback digital outputs
// ///////////////////////////////////////////////////////////////////////////////////


/*
D0  bit0: MDB devices 0=off 1=on
    bit1: MDB bus power
    bit2: MDB WakeOut

D1=Printer
D2=Credit
D3=Modem

D5: serial drv on/off, Serial mux1, Serial mux2
D6: Leds, Fan,
D7: Siren and relay
D8: PtuWakeOut
D9: Power Aux/Barcode
D10: AuxDir 1...6
D11: AuxOut 1...6
D12: Coin shutter output
D13: CoinEscrow Outputs
*/

//static uint8_t do_mbdRxTst;
void gpi_storeDO_mdbRxTst(uint8_t mdbRxTst)
{
    SharedMem::write()->do_mbdRxTst=mdbRxTst;
}

bool epi_getDO_mdbRxTestOut(void)
{
    if (SharedMem::read()->do_mbdRxTst & 1)
        return true;
    return false;
}

//static uint8_t do_motorBits;
void gpi_storeDO_motorOutputs(uint8_t Pwr)
{
    //D1: motor outputs bit0: upper lock forw bit 1 backw
    //                          Bit2: lowLock forw  bit3: LL backw
    SharedMem::write()->do_motorBits=Pwr;
}

uint8_t epi_getDO_motorOuts(void)
{
    // bit0: upper lock forward    bit 1 backward
    // bit2: lower lock forward    bit 3 backward
    return SharedMem::read()->do_motorBits;
}



//static uint8_t do_serialSwitch;                 // serial drv on/off, Serial mux1, Serial mux2
void gpi_storeDO_serialSwitch(uint8_t state)    // serial drv on/off, Serial mux1, Serial mux2
{
    SharedMem::write()->do_serialSwitch=state;
}

uint8_t epi_getDO_serialSwitch(void)
{
    // serial drv on/off, Serial mux1, Serial mux2
    return SharedMem::read()->do_serialSwitch;
}

bool epi_getDO_serialDriverIsOn(void)
{

    if ( SharedMem::read()->do_serialSwitch & 1)
        return true;
    return false;
}

bool epi_getDO_serialMux1isSetToPrinter(void)
{
    // mux1 off: serial is switched to printer
    if ((SharedMem::read()->do_serialSwitch & 2)==0)
        return true;
    return false;
}

bool epi_getDO_serialMux1isSetToModem(void)
{
    // mux1 on: serial is switched to modem
    if ((SharedMem::read()->do_serialSwitch & 2)>0)
        return true;
    return false;
}

bool epi_getDO_serialMux2isSetToCredit(void)
{
    // mux2 off: serial is switched to credit card terminal
    if ((SharedMem::read()->do_serialSwitch & 4)==0)
        return true;
    return false;
}

bool epi_getDO_serialMux2isSetToMifare(void)
{
    // mux2 on: serial is switched to mifare reader
    if ((SharedMem::read()->do_serialSwitch & 4)>0)
        return true;
    return false;
}






//static uint8_t do_ledsAndFan;
void gpi_storeDO_ledsAndFan(uint8_t ledState)
{
    // bit0: coinled  1:front_illu 2: paper-led  3:pinpad-led  4:start-led  5:service-led  6:fan
    SharedMem::write()->do_ledsAndFan=ledState;
}

bool epi_getDO_led_coin(void)
{
    if (SharedMem::read()->do_ledsAndFan & 1)
        return true;
    return false;
}

bool epi_getDO_led_front(void)
{
    if (SharedMem::read()->do_ledsAndFan & 2)
        return true;
    return false;
}

bool epi_getDO_led_ticket(void)
{
    if (SharedMem::read()->do_ledsAndFan & 4)
        return true;
    return false;
}

bool epi_getDO_led_pin(void)
{
    if (SharedMem::read()->do_ledsAndFan & 8)
        return true;
    return false;
}

bool epi_getDO_led_start(void)
{
    if (SharedMem::read()->do_ledsAndFan & 16)
        return true;
    return false;
}

bool epi_getDO_led_inside(void)
{
    if (SharedMem::read()->do_ledsAndFan & 32)
        return true;
    return false;
}

bool epi_getDO_fan(void)
{
    if (SharedMem::read()->do_ledsAndFan & 64)
        return true;
    return false;
}



//static uint8_t do_laermUndRelay;
void gpi_storeDO_sirenAndRelay(uint8_t sirenRelay)
{
    // bit0: siren  1:relay
    SharedMem::write()->do_laermUndRelay=sirenRelay;
}

bool epi_getDO_sirene(void)
{
    if (SharedMem::read()->do_laermUndRelay & 1)
        return true;
    return false;
}

bool epi_getDO_relay(void)
{
    if (SharedMem::read()->do_laermUndRelay & 2)
        return true;
    return false;
}



//static uint8_t do_ptuWake;
void gpi_storeDO_ptuWake(uint8_t state)
{
    SharedMem::write()->do_ptuWake=state;
}

bool epi_getDO_ptuWake(void)
{
    if (SharedMem::read()->do_ptuWake>0)
        return true;
    return false;
}

//static uint8_t do_auxPower;
void gpi_storeDO_auxPower(uint8_t pwr)
{
    SharedMem::write()->do_auxPower=pwr;
}

bool epi_getDO_auxPower(void)
{
    if (SharedMem::read()->do_auxPower>0)
        return true;
    return false;
}



//static uint8_t do_coinShutter;
void gpi_storeDO_coinShutter(uint8_t state)
{
    SharedMem::write()->do_coinShutter=state;
}

bool epi_getDO_coinShutterOpen(void)
{
    // bit0: Coin shutter output,    bit1: input-test-output
    if (SharedMem::read()->do_coinShutter & 1)
        return true;
    return false;
}

bool epi_getDO_coinShutterTest(void)
{
    // bit0: Coin shutter output,    bit1: input-test-output
    if (SharedMem::read()->do_coinShutter & 2)
        return true;
    return false;
}

//static uint8_t do_coinEscrow;

void gpi_storeDO_coinEscrow(uint8_t state)
{
    SharedMem::write()->do_coinEscrow=state;
}

uint8_t epi_getDO_coinEscrow(void)
{
    // retval: 1:return flap is open   2:take flap is open    0:closed
    if (SharedMem::read()->do_coinEscrow &1)
        return 1;           // return flap is open
    if (SharedMem::read()->do_coinEscrow &2)
        return 2;           // take flap is open
    return 0;
}

//static uint8_t do_printerPower;

void gpi_storeDO_printerPwrOn(uint8_t state)
{
    SharedMem::write()->do_printerPower=state;
}

uint8_t epi_getDO_printerPwr(void)
{
    return SharedMem::read()->do_printerPower;
}

//------------------------------------------------------------------------------------
//------------------------------------------------------------------------------------
//----------------------------- Mifare Card Reader -----------------------------------

//#define NROFMIFSTATEBYTES   40
//static uint8_t Sdata_MIF_STATE[NROFMIFSTATEBYTES];


void gpi_clearMifHwData(void)
{
    for (uint8_t nn=0; nn<64; nn++)
        SharedMem::write()->Sdata_MIF_DATA[nn]=0;

}

void gpi_storeMifHwData(uint8_t *receivedData)
{
    for (uint8_t nn=0; nn<64; nn++)
        SharedMem::write()->Sdata_MIF_DATA[nn]=receivedData[nn];

}

uint8_t epi_restoreMifHwData(uint8_t *buf, uint8_t maxBufferSize)
{
    if (maxBufferSize<64)
        return 1;   // error

    for (uint8_t nn=0; nn<64; nn++)
        buf[nn]=SharedMem::read()->Sdata_MIF_DATA[nn];

    return 0;   // ois OK
}




void gpi_clearMifAtbData(void)
{
    for (uint8_t nn=0; nn<64; nn++)
        SharedMem::write()->Sdata_MIF_ATB[nn]=0;
}

void gpi_storeMifAtbData(uint8_t *receivedData)
{
    for (uint8_t nn=0; nn<64; nn++)
        SharedMem::write()->Sdata_MIF_ATB[nn]=receivedData[nn];

}

uint8_t epi_restoreMifAtbData( uint8_t *buf, uint8_t maxBufferSize)
{
    if ( maxBufferSize<64)
        return 1;   // error

    for (uint8_t nn=0; nn<64; nn++)
        buf[nn]=SharedMem::read()->Sdata_MIF_ATB[nn];

    return 0;   // ois OK
}

// not used
//void gpi_storeNewMifareCard(uint8_t typ, uint8_t *holder )
//{
//    SharedMem::write()->mif_cardType=typ;
//    uint8_t nn;

//    //tslib_strcpy(holder, SharedMem::write()->mif_cardHolder, 7);
//    for (nn=0; nn<7; nn++)
//        SharedMem::write()->mif_cardHolder[nn] = holder[nn];
//    SharedMem::write()->mif_cardHolder[7]=0;
//}

// not used
//uint8_t epi_mifGetCardType(uint8_t *holder)
//{
    //holder[8] = name of card holder
    // retval Type of MifareCard, 1=upper door, 2=lower door 3=test printer 4=test coins

    //tslib_strcpy(SharedMem::read()->mif_cardHolder, holder, 7);

//    uint8_t nn;

//    for (nn=0; nn<7; nn++)
//        holder[nn]= SharedMem::read()->mif_cardHolder[nn];
//    holder[7]=0;
//    return SharedMem::read()->mif_cardType;
//    return 0;
//}


//------------------------------------------------------------------------------------
//------------------------------------------------------------------------------------


//static uint8_t Sdata_PRN_STATE[pi_prnStateArraySize];

void epi_restorePrinterState(uint8_t *buf)
{
    uint8_t nn;

    for (nn=0; nn<pi_prnStateArraySize; nn++)
        buf[nn]=SharedMem::read()->Sdata_PRN_STATE[nn];

}

void gpi_storePrinterState(uint8_t *buf)
{
    uint8_t nn;

    for (nn=0; nn<pi_prnStateArraySize; nn++)
        SharedMem::write()->Sdata_PRN_STATE[nn]=buf[nn];

}

//static uint8_t Sdata_PRN_FONTS[pi_prnFontArraySize];

void epi_restorePrinterFonts(uint8_t *buf)
{
    uint8_t nn;

    for (nn=0; nn<pi_prnFontArraySize; nn++)
        buf[nn]=SharedMem::read()->Sdata_PRN_FONTS[nn];

}

void gpi_storePrinterFonts(uint8_t *buf)
{
    uint8_t nn;

    for (nn=0; nn<pi_prnFontArraySize; nn++)
        SharedMem::write()->Sdata_PRN_FONTS[nn]=buf[nn];
/*
    qDebug()<<"printer fonts stored " <<Sdata_PRN_FONTS[0]<<" "<<Sdata_PRN_FONTS[1]<<" " \
           <<Sdata_PRN_FONTS[2]<<" "<<Sdata_PRN_FONTS[3]<<" " \
          <<Sdata_PRN_FONTS[4]<<" "<<Sdata_PRN_FONTS[5]<<" "  \
            <<Sdata_PRN_FONTS[6]<<" "<<Sdata_PRN_FONTS[7]<<" " \
           <<Sdata_PRN_FONTS[8]<<" "<<Sdata_PRN_FONTS[9]<<" "  \
          <<Sdata_PRN_FONTS[10]<<" "<<Sdata_PRN_FONTS[11];
*/
}




//static bool Sdata_mdb_busRdy;
//static bool Sdata_mdb_V12on;
//static bool Sdata_mdb_V5on;

// DB0: mdb_bus_ready (switched on)
// DB1: rdBackV12devicePower
// DB2: rdBackV5busPwr
void gpi_storeMdbState(uint8_t busReady, uint8_t V12on, uint8_t V5on )
{
    SharedMem::write()->Sdata_mdb_busRdy=bool(busReady);
    SharedMem::write()->Sdata_mdb_V12on=bool(V12on);
    SharedMem::write()->Sdata_mdb_V5on=bool(V5on);
}

bool epi_restoreMdbBusReady(void)
{
    return SharedMem::read()->Sdata_mdb_busRdy;
}

bool epi_restoreMdbV12Ready(void)
{
    return SharedMem::read()->Sdata_mdb_V12on;
}

bool epi_restoreMdbV5Ready(void)
{
    return SharedMem::read()->Sdata_mdb_V5on;
}



//static uint8_t Sdata_mdbNrOfRecData;
//static uint8_t Sdata_RecBuff[40];

// last received mdb answer (from mdb device)
// only needed if a special command was sent directly
// DB0: mdb Device-Nr
// DB1: last sent mdb command
// DB2: nr of received (payload) data bytes (apart from ACK, can be 0....34)
// DB3...DB38: rec.data (payload)
void gpi_storeMdbResponse(uint8_t leng, uint8_t *data)
{
    uint8_t nn;
    if (leng>40) leng=40;
    tslib_strclr(SharedMem::write()->Sdata_RecBuff,0,40);
    SharedMem::write()->Sdata_mdbNrOfRecData=leng;
    //tslib_strcpy(data, SharedMem::write()->Sdata_RecBuff, uint16_t(Sdata_mdbNrOfRecData));
    for (nn=0; nn<leng; nn++)
        SharedMem::write()->Sdata_RecBuff[nn] = data[nn];

}

void epi_restoreMdbResponse(uint8_t *leng, uint8_t *data)
{
    uint8_t nn, LL;
    LL=SharedMem::read()->Sdata_mdbNrOfRecData;
    //tslib_strcpy(SharedMem::read()->Sdata_RecBuff, data, SharedMem::read()->Sdata_mdbNrOfRecData);
    for (nn=0; nn<LL; nn++)
        data[nn] = SharedMem::read()->Sdata_RecBuff[nn];

    *leng = LL;
}


//static uint8_t Sdata_empNrOfsettings;
//static uint8_t Sdata_emp_settingsBuff[66];

void gpi_storeEmpSettings(uint8_t leng, uint8_t *data)
{
    uint8_t nn;
    if (leng>64) leng=64;
    SharedMem::write()->Sdata_empNrOfsettings=leng;
    //tslib_strcpy(data, SharedMem::write()->Sdata_emp_settingsBuff, leng);
    for (nn=0; nn<leng; nn++)
        SharedMem::write()->Sdata_emp_settingsBuff[nn] = data[nn];

}

void epi_restoreEmpSettings(uint8_t *leng, uint8_t *data)
{
    uint8_t nn, LL;
    LL=SharedMem::read()->Sdata_empNrOfsettings;
    *leng=LL;
    //tslib_strcpy(SharedMem::read()->Sdata_emp_settingsBuff, data, SharedMem::read()->Sdata_empNrOfsettings);
    for (nn=0; nn<LL; nn++)
        data[nn] = SharedMem::read()->Sdata_emp_settingsBuff[nn];


}





// ......................................................................
// Münzbuffer[10]: Münze für Münze auslesen (LIFO)
// 4.5.21


/*
struct T_coin
{
    uint8_t valid;
    uint8_t signal;
    uint8_t error;
    uint8_t pad;
    uint16_t value;
};

static struct T_coin gotCoin[MEMDEPTH_GOTCOINS];
static uint8_t ctr_gotCoin;
*/

void sub_enterData(uint8_t valid, uint8_t signal, uint8_t error, uint16_t value )
{
    uint8_t pGotCoin;

    pGotCoin=SharedMem::read()->ctr_gotCoin;
    if (pGotCoin<MEMDEPTH_GOTCOINS)
    {
        SharedMem::write()->gotCoin[pGotCoin].valid=valid;
        SharedMem::write()->gotCoin[pGotCoin].signal=signal;
        SharedMem::write()->gotCoin[pGotCoin].error=error;
        SharedMem::write()->gotCoin[pGotCoin].value=value;
    }
    pGotCoin++;
    SharedMem::write()->ctr_gotCoin=pGotCoin;

}

void gpi_storeEmpCoinSignal(uint8_t leng, uint8_t *data)
{
    // leng is number of coin record with 5 bytes each
    uint8_t LL=leng;    //  nr of coin records
    uint16_t vv, pp=0;

    vv=uchar2uint(data[pp+4], data[pp+3]);
    sub_enterData(data[pp], data[pp+1], data[pp+2], vv );
    pp+=5;
    LL--;

}

uint8_t epi_isNewCoinLeft(void)
{
    // retval: 0...16 coins left in FIFO
    return SharedMem::read()->ctr_gotCoin;
}

void epi_restoreEmpCoinSignal(uint8_t *valid, uint8_t *signal, uint8_t *error, uint16_t *value)
{
    uint8_t pGotCoin;

    pGotCoin=SharedMem::read()->ctr_gotCoin;

    pGotCoin--;
    if (pGotCoin<MEMDEPTH_GOTCOINS)
    {
        *valid=SharedMem::read()->gotCoin[pGotCoin].valid;
        *signal=SharedMem::read()->gotCoin[pGotCoin].signal;
        *error=SharedMem::read()->gotCoin[pGotCoin].error;
        *value=SharedMem::read()->gotCoin[pGotCoin].value;
    }
    SharedMem::write()->ctr_gotCoin=pGotCoin;
}



//static uint8_t Sdata_NrOfDeviceSetting;
//static uint8_t Sdata_DeviceSettingBuff[66];

void gpi_storeRbDeviceSettings(uint8_t leng, uint8_t *data)       // getestet am 12.4.23TS
{
    uint8_t nn;

    if (leng>64) leng=64;
    SharedMem::write()->Sdata_NrOfDeviceSetting=leng;
    //tslib_strcpy(data, SharedMem::write()->Sdata_DeviceSettingBuff, leng);
    for (nn=0; nn<leng; nn++)
        SharedMem::write()->Sdata_DeviceSettingBuff[nn] = data[nn];

}

void epi_restoreRbDeviceSettings(uint8_t *leng, uint8_t *data)    // getestet am 12.4.23TS
{
    uint8_t nn, LL;
    LL=SharedMem::read()->Sdata_NrOfDeviceSetting;

    *leng=LL;
    //tslib_strcpy(SharedMem::read()->Sdata_DeviceSettingBuff, data, SharedMem::read()->Sdata_NrOfDeviceSetting);
    for (nn=0; nn<LL; nn++)
        data[nn] = SharedMem::read()->Sdata_DeviceSettingBuff[nn];

}



/*
Beispiel:

void gpi_storeUID(uint8_t const *buf8byteUid)
{
    uint64_t udltmp=0;

    for (int ii=0; ii<8; ii++)
    {
        SharedMem::getData()->Sdata.UIDstr[ii] = buf8byteUid[ii];
        udltmp |= buf8byteUid[ii];
        udltmp <<= 8;
    }
    SharedMem::getData()->Sdata.slaveUID = udltmp;
}

void epi_getUIDdec(uint8_t *buf8byteUid)
{
    for (int ii=0; ii<8; ii++)
    {
        buf8byteUid[ii] = SharedMem::getDataConst()->Sdata.UIDstr[ii];
    }
}

*/

//static uint8_t Sdata_NrOfMachineIDSetting;
//static uint8_t Sdata_NrOfMachineIDBuff[66];

void gpi_storeMachineIDsettings(uint8_t leng, uint8_t *data)
{
    uint8_t nn;
    if (leng>64) leng=64;
    //Sdata_NrOfMachineIDSetting=leng;
    //tslib_strcpy(data, Sdata_NrOfMachineIDBuff, leng);
    SharedMem::write()->SizeMachineIDBuff=leng;

    for (nn=0; nn<64; nn++)
        SharedMem::write()->MachineIDBuff[nn]=data[nn];

}

void epi_restoreMachineIDsettings(uint8_t *leng, uint8_t *data)
{

    //*leng=Sdata_NrOfMachineIDSetting;
    //tslib_strcpy(Sdata_NrOfMachineIDBuff, data, Sdata_NrOfMachineIDSetting);
    uint8_t uctmp, nn;

    uctmp=SharedMem::read()->SizeMachineIDBuff;
    *leng=uctmp;
    for (nn=0; nn<64; nn++)
        data[nn]=SharedMem::read()->MachineIDBuff[nn];

}




//static uint32_t store_insertedAmount;
//static uint16_t store_lastCoinType[64];
//static uint16_t store_lastCoinValue[64];
//static uint8_t  p_lastCoin;
//static char     store_curPayNewCoin;

void epi_clearCurrentPayment(void)
{
    // call at beginning of coin collection
    int nn;

    SharedMem::write()->store_insertedAmount=0;
    SharedMem::write()->p_lastCoin=0;

    // 17.5.23TS: ergänzt:
    for (nn=0; nn<64; nn++)
    {
        SharedMem::write()->store_lastCoinType[nn]=0;
        SharedMem::write()->store_lastCoinValue[nn]=0;
    }
    SharedMem::write()->store_curPayNewCoin=0;
}

void gpi_storeCurrentPayment(uint32_t insertedAmount, uint16_t lastCoinType, uint16_t lastCoinValue)
{
    uint8_t pLC=SharedMem::read()->p_lastCoin;
    SharedMem::write()->store_insertedAmount=insertedAmount;
    SharedMem::write()->store_lastCoinType[pLC]=lastCoinType;
    SharedMem::write()->store_lastCoinValue[pLC]=lastCoinValue;
    pLC++;
    SharedMem::write()->p_lastCoin=pLC;
    SharedMem::write()->store_curPayNewCoin++;

    //qDebug()<<"gpi_storeCurrentPayment "<<insertedAmount<<" " << lastCoinType<<" " << lastCoinValue;
}

uint32_t epi_CurrentPaymentGetAmount(void)
{
    return SharedMem::read()->store_insertedAmount;
}

uint16_t epi_CurrentPaymentGetLastCoin(void)
{
    uint8_t pp;

    pp=SharedMem::read()->p_lastCoin;
    if (pp==0)
        return 0;       // noch keine Münze erhalten
    if (pp>0) pp--;
    //store_curPayNewCoin=0;      // nur 1x melden
    return SharedMem::read()->store_lastCoinValue[pp];
}

bool epi_CurrentPaymentGetAllCoins(uint16_t *types, uint16_t *values)
{
    // alle bei diesem Verkauf eingeworfenen Münzen sind gespeichert falls die jmd. braucht
    uint8_t nn;
    uint8_t pp;

    pp=SharedMem::read()->p_lastCoin;
    if (pp==0)
        return false;
    for (nn=0; nn<64; nn++)
    {
        types[nn]= SharedMem::read()->store_lastCoinType[nn];
        values[nn]=SharedMem::read()->store_lastCoinValue[nn];
    }

    return true;
}


//uint64_t stor_wakSrc;
//uint8_t  stor_reason;


void gpi_storeWakeSources(uint8_t *receivedData)
{
    uint8_t uctmp;
    int nn;
    SharedMem::write()->stor_wakSrc=0;
    for (nn=5; nn>=0; nn--)
    {
        uctmp=receivedData[nn];
        SharedMem::write()->stor_wakSrc |=uctmp;
        SharedMem::write()->stor_wakSrc<<=8;
    }
    SharedMem::write()->stor_reason=receivedData[6];
}

uint64_t epi_getWakeSources(void)
{
    return SharedMem::read()->stor_wakSrc;
}

uint8_t epi_getWakeReason(void)
{
    return SharedMem::read()->stor_reason;
}



//static uint8_t store_rbDevParamLen;
//static uint8_t store_rbDevParams[66];

void gpi_storeExtendedTime(uint8_t leng, uint8_t *data)
{
    uint8_t nn;
    if (leng>64) leng=64;
    SharedMem::write()->store_rbDevParamLen=leng;
    //tslib_strcpy(data, SharedMem::write()->store_rbDevParams, leng);
    for (nn=0; nn<leng; nn++)
        SharedMem::write()->store_rbDevParams[nn] = data[nn];
}

void epi_restoreExtendedTime(uint8_t *leng, uint8_t *data)
{
    uint8_t nn, LL;
    LL=SharedMem::read()->store_rbDevParamLen;
    *leng=LL;
    //tslib_strcpy(SharedMem::read()->store_rbDevParams, data, SharedMem::read()->store_rbDevParamLen);
    for (nn=0; nn<LL; nn++)
        data[nn] = SharedMem::read()->store_rbDevParams[nn];
}


// store device conditions
//static uint8_t store_deviceCondLen;
//static uint8_t store_deviceCond[66];


void epi_clearDeviceConditions(void)
{
    uint8_t nn;
    SharedMem::write()->store_deviceCondLen=0;
    for (nn=0; nn<64; nn++)
        SharedMem::write()->store_deviceCond[nn]=0;
}

void gpi_storeDeviceConditions(uint8_t leng, uint8_t *data)
{
    uint8_t nn;
    if (leng>64) leng=64;
    SharedMem::write()->store_deviceCondLen=leng;
    //tslib_strcpy(data, SharedMem::write()->store_deviceCond, leng);
    for (nn=0; nn<leng; nn++)
        SharedMem::write()->store_deviceCond[nn]=data[nn];
}

void epi_restoreDeviceConditions(uint8_t *leng, uint8_t *data)
{
    uint8_t nn, LL;
    LL=SharedMem::read()->store_deviceCondLen;
    *leng=LL;
    //tslib_strcpy(SharedMem::read()->store_deviceCond, data, SharedMem::read()->store_deviceCondLen);
    for (nn=0; nn<LL; nn++)
        data[nn] = SharedMem::read()->store_deviceCond[nn];
}



// store dynamic machine conditions
//static uint8_t store_machCondLen;
//static uint8_t store_machCond[66];

void epi_clearDynMachineConditions(void)
{
    uint8_t nn;
    SharedMem::write()->store_machCondLen=0;
    for (nn=0; nn<64; nn++)
        SharedMem::write()->store_machCond[nn] = 0;
}


void gpi_storeDynMachineConditions(uint8_t leng, uint8_t *data)
{
    uint8_t nn;
    if (leng>64) leng=64;
    SharedMem::write()->store_machCondLen=leng;
//    tslib_strcpy(data, SharedMem::write()->store_machCond, leng);
    for (nn=0; nn<leng; nn++)
        SharedMem::write()->store_machCond[nn] = data[nn];

 }

void epi_restoreDynMachineConditions(uint8_t *leng, uint8_t *data)
{
    uint8_t nn, LL;
    LL=SharedMem::read()->store_machCondLen;
    *leng=LL;
    //tslib_strcpy(SharedMem::read()->store_machCond, data, SharedMem::read()->store_machCondLen);
    for (nn=0; nn<LL; nn++)
        data[nn] = SharedMem::read()->store_machCond[nn];
}



//static uint8_t  store_DcBackupNrOfAccNr;
//static uint16_t store_DcBackupAccNr[16];    // z.Z. nur 8

void gpi_storeDCbackupAccNr(uint8_t leng, uint8_t *data)
{
    if (leng>32) leng=32;
    SharedMem::write()->store_DcBackupAccNr[0]=uchar2uint(data[1], data[0]);
    SharedMem::write()->store_DcBackupAccNr[1]=uchar2uint(data[3], data[2]);
    SharedMem::write()->store_DcBackupAccNr[2]=uchar2uint(data[5], data[4]);
    SharedMem::write()->store_DcBackupAccNr[3]=uchar2uint(data[7], data[6]);
    SharedMem::write()->store_DcBackupAccNr[4]=uchar2uint(data[9], data[8]);
    SharedMem::write()->store_DcBackupAccNr[5]=uchar2uint(data[11], data[10]);
    SharedMem::write()->store_DcBackupAccNr[6]=uchar2uint(data[13], data[12]);
    SharedMem::write()->store_DcBackupAccNr[7]=uchar2uint(data[15], data[14]);
    SharedMem::write()->store_DcBackupNrOfAccNr=8;
}

void epi_restoreDCbackupAccNr(uint8_t *leng, uint16_t *accNrs)
{
    // return accNrs[0..7]
    uint8_t nn;

    *leng=SharedMem::read()->store_DcBackupNrOfAccNr;
    for (nn=0; nn<8; nn++)
        accNrs[nn]=SharedMem::read()->store_DcBackupAccNr[nn];

}




void epi_iniVRstorage(void)
{
    tslib_strclr(SharedMem::write()->store_vaultrecord, 0, PI_SIZOFVAULTRECORD);
    SharedMem::write()->store_gotNrBlocksOfVaultRec=0;
}

void gpi_storeVaultRecord(uint8_t blkNr, uint8_t *data )
{
    uint16_t start=blkNr, ii;
    //qDebug()<<"storing vault data "<<blkNr;
    SharedMem::write()->store_gotNrBlocksOfVaultRec |= (1<<start);  // setze pro Block ein bit, wir brauchen block 0...5
                                                // also muss store_gotNrBlocksOfVaultRec auf 0x1F stehen
    start<<=6;      // *64
    if ((start+64) > PI_SIZOFVAULTRECORD)
        start=320;      // beginning of 6.block
    for (ii=0; ii<64; ii++)
        SharedMem::write()->store_vaultrecord[start+ii]=data[ii];

}

bool epi_checkIfVaultRecordAvailable(void)
{
    uint8_t data;

    data=SharedMem::read()->store_gotNrBlocksOfVaultRec;
   // qDebug()<<"epi_checkIfVaultRecordAvailable: "<<data;
    if (data==0x3F)
        return true;
    else
        return false;
}

uint8_t epi_getLoadedVaultBlocks(void)
{
    // return 0x0011 1111 if all 6 blocks arer loaded (one bit per block)
    uint8_t data;

    data=SharedMem::read()->store_gotNrBlocksOfVaultRec;
    return data;
}

bool epi_restoreVaultRecord(uint16_t *length, uint8_t *buf )
{
    uint16_t nn;
    uint8_t  dat;

    *length=384;    //genau: 340;
    for (nn=0; nn<384; nn++)
    {
        dat = SharedMem::read()->store_vaultrecord[nn];
        buf[nn]=dat;
    }
    return true;
}


//static uint32_t store_amount;
//static uint16_t store_nrOfCoins;

void gpi_storeCBlevel(uint32_t amount, uint16_t nrOfCoins )
{
    SharedMem::write()->store_amount=amount;
    SharedMem::write()->store_nrOfCoins=nrOfCoins;
}

uint32_t epi_getCashBoxContent(void)
{
    return SharedMem::read()->store_amount;
}

uint16_t epi_getNrOfCoinsInCashBox(void)
{
    return SharedMem::read()->store_nrOfCoins;
}

//static bool store_DcDataAreValid;

void gpi_storeDcDataValid(bool isVal)
{
    SharedMem::write()->store_DcDataAreValid = isVal;
}


bool epi_areDcDataValid()
{
    return SharedMem::read()->store_DcDataAreValid;
}

// ....................................................................................
// 24.5.2023

//static uint8_t storeDCdynPrinterData[64];
//static uint8_t DCdynPrinterDataActual;


/*
uint8_t nn, LL;
    LL=SharedMem::read()->Sdata_mdbNrOfRecData;
    //tslib_strcpy(SharedMem::read()->Sdata_RecBuff, data, SharedMem::read()->Sdata_mdbNrOfRecData);
    for (nn=0; nn<LL; nn++)
        data[nn] = SharedMem::read()->Sdata_RecBuff[nn];
*/

void epi_clearDynData(void)
{
    uint8_t nn;
    SharedMem::write()->DCdynPrinterDataActual=0;
    //memset(SharedMem::write()->storeDCdynPrinterData,0, sizeof(storeDCdynPrinterData));
    for (nn=0; nn<64; nn++)
        SharedMem::write()->storeDCdynPrinterData[nn]=0;
}

void gpi_storeDynData(uint8_t *DCdynDat)
{
    uint8_t nn;
    // buffer size: 64 byte
    //memcpy(SharedMem::write()->storeDCdynPrinterData, DCdynDat, 64);
    SharedMem::write()->DCdynPrinterDataActual=1;
    for (nn=0; nn<64; nn++)
        SharedMem::write()->storeDCdynPrinterData[nn] = DCdynDat[nn];
}

bool epi_getDynPrnData(uint8_t *DCdynDat)
{
    // buffer size: 64 byte
    // return true if data are new and valid
    uint8_t nn;
    if (SharedMem::read()->DCdynPrinterDataActual)
    {
        //memcpy(DCdynDat, SharedMem::read()->storeDCdynPrinterData, 64);
        for (nn=0; nn<64; nn++)
            DCdynDat[nn] = SharedMem::read()->storeDCdynPrinterData[nn];
        return true;
    } else
    {
        return false;
    }
}


void gpi_storeNextDCaccNr(uint16_t nxtDcAccNr)
{
    SharedMem::write()->store_DCNextAccountNumber = nxtDcAccNr;

}

uint16_t epi_getNextDCaccNr(void )
{
    return SharedMem::read()->store_DCNextAccountNumber;

}






void gpi_storeMifCardType(uint16_t length, uint8_t *data)
{
    SharedMem::write()->storeMifCardTypDataLen = length;

    for (uint8_t ii=0; ii<64; ii++)
        SharedMem::write()->storeMcardTypData[ii] = data[ii];

}

void epi_restoreMifCardType(uint16_t *length, uint8_t *data)
{
    *length = SharedMem::read()->storeMifCardTypDataLen;
    for (uint8_t ii=0; ii<64; ii++)
        data[ii] = SharedMem::read()->storeMcardTypData[ii];

}



// before with local memory:
//static uint8_t Sdata_rawData[RAW_BL_DATALEN];
//static uint8_t Sdata_LengthRawData;

void gpi_storeRawReceivedData(uint8_t  RdDlen, uint8_t *receivedData)
{
    uint8_t nn, lrd;

    lrd=RdDlen;
    if (lrd>RAW_BL_DATALEN)
        lrd=RAW_BL_DATALEN;
    SharedMem::write()->Sdata_LengthRawData=lrd;
    for (nn=0; nn<lrd; nn++)
        SharedMem::write()->Sdata_rawData[nn]=receivedData[nn];
    //qDebug()<<"dcBL got data"<<  Sdata_LengthRawData << "bytes :)";

}

uint8_t epi_getRawReceivedData(uint8_t *receivedData)
{
    uint8_t nn, lrd;

    lrd=SharedMem::read()->Sdata_LengthRawData;
    for (nn=0; nn<lrd; nn++)
        receivedData[nn] = SharedMem::read()->Sdata_rawData[nn];
    SharedMem::write()->Sdata_LengthRawData=0;  // nur 1x gueltig
    return lrd;
}

uint8_t epi_getRawRecLength(void)
{
    // retval=length
    return SharedMem::read()->Sdata_LengthRawData;
}
/*
QString epi_getRawReceivedString()
{
    uint8_t nn;     //, ret;
    QString myString=nullptr, tmpStr=nullptr;

    myString.clear();
    if (Sdata_LengthRawData==0)
        return myString;

    for (nn=0; nn<Sdata_LengthRawData; nn++)
    {
        tmpStr.clear();
        tmpStr.setNum(Sdata_rawData[nn],16);   // problem: wenn >0x80 dann wird EIN Byte 16 stellig angezeigt
        int ll=tmpStr.length();
        if (ll>2)
        {
            myString.append(tmpStr[ll-2]);
            myString.append(tmpStr[ll-1]);
        } else
        {
            myString.append(tmpStr);
        }
            myString.append(" ");

    }
    //ret=Sdata_LengthRawData;
    //Sdata_LengthRawData=0;
    return myString;
}*/

void epi_clrRawReceivedString()
{
    SharedMem::write()->Sdata_LengthRawData=0;
}



// Mitteilung von Hwapi zu Datif (request coin type)

void epi_setNowCoinPay(bool on_off)
{
    SharedMem::write()->Sdata_coinPaymentNow=on_off;
}

bool gpi_getNowCoinPay (void)
{
    return SharedMem::read()->Sdata_coinPaymentNow;
}

// Mitteilung von Hwapi zu Datif: using BL now

void epi_setNowIsBootload(bool on_off)
{
    SharedMem::write()->Sdata_bootloadingNow=on_off;
}

bool gpi_getNowIsBootload(void)
{
    return SharedMem::read()->Sdata_bootloadingNow;
}




// new from 28.9.23 and earliest from DC version 4.45
// store all versions of the DC-Jsons
//#define  numberOfJsons     36
//#define  versionStringLength    16
//char    store_jsonVersion[versionStringLength][numberOfJsons];

void gpi_storeJsonVersion(uint8_t  jsonNr, uint8_t *versionString)
{
    // jsonNr=1...36, 1=config file (cust.Nr) 2=devices  3=cash  4=res.
    //      5=printer template 1 ..... 36= template 32
    // length of buffer is always 16 byte
    uint8_t nn, lrd;
    char einZeichen;

    lrd=jsonNr;
    if (lrd>0 && lrd<=numberOfJsons)
    {
        lrd--;
        for (nn=0; nn<versionStringLength; nn++)
        {
            einZeichen=char(versionString[nn]);
            SharedMem::write()->store_jsonVersion[nn][lrd]=einZeichen;
        }
    }
}

void epi_getJsonVersion(uint8_t  jsonNr, char *versionString)
{
    // jsonNr=1...36, 1=config file (cust.Nr) 2=devices  3=cash  4=res.
    //      5=printer template 1 ..... 36= template 32
    // length of buffer is always 16 byte
    uint8_t nn, lrd;

    lrd=jsonNr;
    if (lrd>0 && lrd<=numberOfJsons)
    {
        lrd--;
        for (nn=0; nn<versionStringLength; nn++)
            versionString[nn] = SharedMem::read()->store_jsonVersion[nn][lrd];
    }

}



void gpi_storeChangerResult(uint8_t  result, uint32_t amount)
{
    SharedMem::write()->Sdata_changeResult=result;
    SharedMem::write()->Sdata_changedAmount=amount;

}

uint8_t epi_getChangerResult(uint32_t *returnedAmount)
{
    *returnedAmount=SharedMem::read()->Sdata_changedAmount;
    return SharedMem::read()->Sdata_changeResult;
}


void gpi_storeTubeLevel(uint8_t  *data)
{
    int nn;
    for (nn=0; nn<64; nn++)
    {
        SharedMem::write()->store_tubeLev[nn]=data[nn];
    }

}

void epi_restoreTubeLevel(uint8_t  *data)
{
    int nn;
    for (nn=0; nn<64; nn++)
    {
        data[nn]=SharedMem::read()->store_tubeLev[nn];
    }

}




void gpi_storeBnaParams(uint8_t  *data)
{
    int nn;
    for (nn=0; nn<64; nn++)
    {
        SharedMem::write()->store_bnaParameter[nn]=data[nn];
    }

}

void epi_restoreBnaParams(uint8_t  *data)
{
    int nn;
    for (nn=0; nn<64; nn++)
    {
        data[nn]=SharedMem::read()->store_bnaParameter[nn];
    }

}


void gpi_storeBnaCollection(uint8_t  *data)
{
    int nn;
    for (nn=0; nn<8; nn++)
    {
        SharedMem::write()->store_bnaCollect[nn]=data[nn];
    }

}

void epi_restoreBnaCollection(uint8_t  *data)
{
    int nn;
    for (nn=0; nn<8; nn++)
    {
        data[nn]=SharedMem::read()->store_bnaCollect[nn];
    }

}


void gpi_storeBnaContent(uint8_t  *data)
{
    int nn;
    for (nn=0; nn<64; nn++)
    {
        SharedMem::write()->store_bnaContent[nn]=data[nn];
    }

}

void epi_restoreBnaContent(uint8_t  *data)
{
    int nn;
    for (nn=0; nn<64; nn++)
    {
        data[nn]=SharedMem::read()->store_bnaContent[nn];
    }

}