Compare commits

...

10 Commits

Author SHA1 Message Date
Thomas Sax
53054ca2d0 Add file 2023-11-14 08:48:48 +01:00
Thomas Sax
ca067b0246 Extended with bna-functionality. 2023-11-14 08:47:37 +01:00
Thomas
7c4fcab33c remove obsolete file 2023-11-14 08:45:57 +01:00
Thomas
7628ec0d5f remove unused file 2023-11-14 08:45:05 +01:00
Thomas
c89decdeae Implemented bna-functionality 2023-11-14 08:40:54 +01:00
Thomas
40848344f5 Changes for BNAÖ case 41, 42, 16. 2023-11-14 08:39:15 +01:00
Thomas
4eabff268e Added bna-function declarations 2023-11-14 08:37:39 +01:00
Thomas
226f6d91c2 Added some variables for bna 2023-11-14 08:36:44 +01:00
Thomas
447d1ceb54 Removed obsolete comments 2023-11-14 08:35:53 +01:00
Thomas
79868787cf Filled struct T_bna and added new version number. 2023-11-14 08:34:32 +01:00
10 changed files with 289 additions and 3110 deletions

View File

@ -377,6 +377,23 @@ struct T_changer
struct T_bna
{
// reported with STATUS:
uint8_t setup; // 0: not 1: got valid parameters from device
uint8_t FeatureLevel;
uint16_t countryCode; // programmed in EMP
uint16_t scalingFactor; // z.B. 5
uint8_t decimalPlace;
uint8_t pad1;
uint16_t stackerCap;
uint16_t billSecureLevel;
uint8_t hasEscrow;
uint8_t accBillTypes[16]; // programmed in EMP z.B. (bit 0..7): 1 2 4 10 20 40 0 0
uint16_t currentStackerLevel; // requested number of notes in billbox
// settings from Master
uint16_t intendedAccept; // bit 0 =5€
uint16_t pad2;
uint16_t billDenomination[16];
};
@ -2215,6 +2232,7 @@ public:
Q_UNUSED(notesToAccept);
}
// can be used to block notes dynamically, example: from now only 5€ bills are allowed (if only 3€ are to be paid)
// only valid till next start-payment. Cannot add notes which are not activated in Json
virtual void bna_requestParameters() const {}
// send command to DC in order to get static invariable device parameters like currency
@ -2335,9 +2353,15 @@ signals:
//#define HWINF_iid "Atb.Psa1256ptu5.software.HWapi/5.0"
// 10.10.2023: added coin changer
#define HWINF_iid "Atb.Psa1256ptu5.software.HWapi/5.1"
//#define HWINF_iid "Atb.Psa1256ptu5.software.HWapi/5.1"
// 20.10.2023: added bill validator
// hier dazwischen: Umstellung ALLER Prototypen
// hier von =0 auf {} durch Gerhard
#define HWINF_iid "Atb.Psa1256ptu5.software.HWapi/5.2"
// 7.11.2023: bna functions activated
Q_DECLARE_INTERFACE(hwinf, HWINF_iid)

View File

@ -1,185 +1,12 @@
#ifndef SENDWRCMDS_DEFS_H
#define SENDWRCMDS_DEFS_H
#include <stdint.h>
#include "tslib.h"
#include <QString>
// asynch. Commands
// store OUTPUT commands until time to send
// problem: OUT commands are set if a button is pressed or a transaction event happens
// so it's never synchron with sending grid
// but sending must apply the 100ms time grid as we have to wait for the response before sending the next command!!!
// aug2023: used with setSendCommand0
//#define SENDDIRCMD_TestSerial 1
//#define SENDDIRCMD_MakeReset 2
//#define SENDDIRCMD_setTime 3
//#define SENDDIRCMD_setWakeFrequ 4
//#define SENDDIRCMD_MOVEUP_LOCK 5
//#define SENDDIRCMD_MOVEDN_LOCK 6
//#define SENDDIRCMD_OPENUP_DOOR 7
//#define SENDDIRCMD_OPENDN_DOOR 8
//#define SENDDIRCMD_LEDILLU 9
//#define SENDDIRCMD_LEDCOIN 10
//#define SENDDIRCMD_LEDTICKET 11
//#define SENDDIRCMD_LEDPAD 12
//#define SENDDIRCMD_LEDSTART 13
//#define SENDDIRCMD_LEDINSIDE 14
//#define SENDDIRCMD_LED_ALL 15
//#define SENDDIRCMD_FAN 16
//#define SENDDIRCMD_LAERM 17
//#define SENDDIRCMD_REL1 18
//#define SENDDIRCMD_WAKEPTU 20
//#define SENDDIRCMD_AUXPWR 21
//#define SENDDIRCMD_AUXDDR 22
//#define SENDDIRCMD_AUXOUT 23
//#define SENDDIRCMD_UCONTACT_ON 30
//#define SENDDIRCMD_PRN2_SWONOFF 31
//#define SENDDIRCMD_MIF_SWONOFF 32
//#define SENDDIRCMD_MIF_ATBCREATE 33
//#define SENDDIRCMD_MOD_SWONOFF 40
//#define SENDDIRCMD_MOD_WAKE 41
//#define SENDDIRCMD_MDB_POWER 42
//#define SENDDIRCMD_MDB_WAKE 43
//#define SENDDIRCMD_CRED_ON 44
//#define SENDDIRCMD_CRED_WAKE 45
//#define SENDDIRCMD_SHUT_MOV 50
//#define SENDDIRCMD_ESCRO_MOV 51
//#define SENDDIR_OPENVAULT 52
//#define SENDDIR_REJMOT_ON 53
//#define SENDDIR_REJMOT_RUN 54
// Level 2 (serial from DC to devices)
//#define SEND_REQU_SERCONF 100
//#define SEND_REQU_HWversion 101
//#define SEND_REQU_SWversion 102
//#define SEND_REQU_CONDITION 103
//#define SEND_REQU_UID 104
//#define SEND_REQU_TIME 105
// includes wake frequency
//#define SEND_REQU_ANALOGS 110
//#define SEND_REQU_DIG_INPUTS 111
//#define SEND_REQU_DIG_OUTPUTS 112
//#define SEND_REQU_PRN_STATE 120
//#define SEND_REQU_PRN_FONTS 121
//#define SEND_REQU_PRN_ALL 122
//#define SEND_REQU_MIFSTATE 123
// Type and state of reader
//#define SEND_REQU_MIFDATA 124
// Type, UID, Header of card
// read one card sector
// sectors must be addressed by RD_ADD
//#define SEND_REQU_MIF_ATB_TYPE 125
//#define SEND_REQU_MDB_GETSTAT 126
//#define SEND_REQU_MDB_GETWAK 127
//#define SEND_REQU_MDB_GETRESP 128
//#define SEND_REQU_EMP_GETALL 129
//#define SEND_REQU_EMP_GETCOIN 130
//#define SENDDIRCMD_DEVICE_PARA 131
//#define SENDDIRCMD_MACHINE_ID 132
//#define SEND_REQU_DEVICE_PARA 133
//#define SEND_REQU_MACINE_ID 134
// TODO:
//#define SENDDIRCMD_PRN_SETUP 72
//#define SENDDIRCMD_MDB_SNDMSG 92
//#define SENDDIRCMD_EMP_SETT 93
//#define SENDDIRCMD_PRN_BC 80
// further: mdb state, coinchecker state, bill state, modem state, credit_state....
/*
#define SENDDIRCMD_SHUTOPENBYTIME 60
#define SENDDIRCMD_SHUTOPENBYCOIN 61
//#define SENDDIRCMD_SHUT_SENDTIME 62
#define SENDDIRCMD_ESCRO_TAKE 63
#define SENDDIRCMD_ESCRO_GIVE 64
#define SENDDIRCMD_PRN_SYS_CMD 70
#define SENDDIRCMD_PRN_ESC_CMD 71
#define SENDDIRCMD_PRN_MOVE 73
#define SENDDIRCMD_PRN_SETFONT 74
#define SENDDIRCMD_PRN_SETLETT 75
#define SENDDIRCMD_PRN_CUT 76
//#define SENDDIRCMD_PRN_TXT // not needed
#define SENDDIRCMD_PRN_LF 78
#define SENDDIRCMD_PRN_FONTTAB 79
#define SENDDIRCMD_PRN_QR 81
#define SENDDIRCMD_PRN_STOREDQR 82
#define SENDDIRCMD_PRN_LOGO_FL 83
//#define SENDDIRCMD_PRN_LOGO_GRAF 84
//#define SENDDIRCMD_PRN_LOGODAT 85
//#define SENDDIRCMD_PRN_STORBC 86
#define SENDDIRCMD_PRN_STORQR 87
#define SENDDIRCMD_PRN_DOC 88
#define SENDDIRCMD_PRN_CLEARDOC 89
//#define SENDDIRCMD_MDB_POWER 42
//#define SENDDIRCMD_MDB_WAKE 43
#define SENDDIRCMD_MDB_RES 90
#define SENDDIRCMD_MDB_SENDCMD 91
#define SENDDIRCMD_EMP_POLL 94
#define SENDDIRCMD_EMP_STARPPAY 95
#define SENDDIRCMD_EMP_STOPPAY 96
*/
// obsolete:
/*
#define SENDDIRCMD_PRN1_SENDTEXT 54
#define SENDDIRCMD_PRN1_SENDCMD 55
#define SENDDIRCMD_PRN1_SERPAR 56
#define SENDDIRCMD_PRN_LEVEL2_4B 58
#define SENDDIRCMD_PRN_LEVEL2_64 59
*/
// highest priority
//#define CMDSTACKDEPTH 16
// means: up to 16 cmd can be stored. They are issued one by one every 100ms
//void sendWRcmd_clrCmdStack(void);
//bool sendWRcmd_setSendCommand0(uint16_t nextCmd);
// GUI or app sends a command to DC transfered by serial
//uint16_t sendWRcmd_getSendCommand0(void);
// lower priority
//#define CMD4STACKDEPTH 8
//void sendWRcmd_clrCmd4Stack(void);
//bool sendWRcmd_setSendCommand4(uint16_t nextCmd, uint8_t dat1, uint8_t dat2, uint8_t dat3, uint8_t dat4);
//uint16_t sendWRcmd_getSendCommand4(uint8_t *dat1, uint8_t *dat2, uint8_t *dat3, uint8_t *dat4);
//#define CMD8STACKDEPTH 4
//void sendWRcmd_clrCmd8Stack(void);
//bool sendWRcmd_setSendCommand8(uint16_t nextCmd, uint8_t dat1, uint8_t dat2, uint16_t dat3, uint32_t dat4);
//uint16_t sendWRcmd_getSendCommand8(uint8_t *dat1, uint8_t *dat2, uint16_t *dat3, uint32_t *dat4);
// lowest priority
// wait for resonse before send next!
bool sendWRcmd_setSendBlock160(uint8_t leng, uint8_t *buf);
uint8_t sendWRcmd_getSendBlock160(uint8_t *leng, uint8_t *buf);
@ -187,47 +14,6 @@ uint8_t sendWRcmd_getSendBlock160(uint8_t *leng, uint8_t *buf);
void sendWRcmd_INI(void);
//uint8_t epi_store64ByteSendData(uint8_t length, uint8_t *buf);
// HWapi writes data to be forwarded to DC and further to mdb-device
// not batched! don't use twice within 100ms
//uint8_t gpi_restore64ByteSendData(uint8_t *length, uint8_t *buf);
// datif reads data to forward to dc
// ONE printer doc consists of 20 x 64 byte
//#define MAXNROF_PRNBYTES 64
//#define MAXNROF_PRNBLOCKS 20
/*
void epi_resetPrinterStack(void);
uint8_t epi_storePrnText(char *buf, uint8_t leng);
// store text and binary data from Gui in next higher free memory 0....9
uint8_t gpi_restorePrnText(uint8_t *retbuf);
// read printer text and send to slave, size of retbuf== 64
uint8_t gpi_chk4remainingText(void);
// retval: 0: no more textline left (to send) >0: nr of lines
*/
//void epi_storeUserOfSendingTextBuffer(uint8_t user, uint8_t para1, uint8_t para2, uint8_t para3, uint8_t para4 );
// user=1: Text-Print is using this buffer
// 2: QR-code-Printer is using this buffer
//uint8_t gpi_getUserOfSendingTextBuffer(uint8_t *para1, uint8_t *para2, uint8_t *para3, uint8_t *para4);
// user=1: Text-Print is using this buffer
// 2: QR-code-Printer is using this buffer
// #define FDCMD_STACKDEPTH 16 / 32
// short and long commands are queued into the same stack to guaranty right order
void sendFDcmd_clrStack(void);

View File

@ -226,6 +226,13 @@ struct SharedMem
uint32_t Sdata_changedAmount;
uint8_t store_tubeLev[64];
uint8_t store_bnaParameter[64];
uint8_t store_bnaCollect[8];
uint8_t store_bnaContent[64];
// Mitteilung von Hwapi zu Datif:
bool Sdata_coinPaymentNow;

View File

@ -1,6 +1,8 @@
#ifndef STOREINDATA_H
#define STOREINDATA_H
#include <stdint.h>
#include "tslib.h"
#include <QString>
@ -607,6 +609,27 @@ void gpi_storeTubeLevel(uint8_t *data);
void epi_restoreTubeLevel(uint8_t *data);
void gpi_storeBnaParams(uint8_t *data);
void epi_restoreBnaParams(uint8_t *data);
void gpi_storeBnaCollection(uint8_t *data);
void epi_restoreBnaCollection(uint8_t *data);
void gpi_storeBnaContent(uint8_t *data);
void epi_restoreBnaContent(uint8_t *data);
#endif

View File

@ -1058,15 +1058,15 @@ char T_datif::loadRecDataFromFrame()
//if (RdDleng>50) // 1.8.23 nach Verlängerung des Datensatzes um 20byte falsch!!!
//{
gpi_storeVaultRecord(readAddress, receivedData ); // always/max 64byte
/*
/*
qDebug()<<"datif cmd38 got vault data. blockNr: "<<readAddress;
if (readAddress==5)
if (readAddress==0)
for (nn=0; nn<64; nn+=8)
{
qDebug()<<receivedData[nn]<<" "<<receivedData[nn+1]<<" "<<receivedData[nn+2]<<" "<<receivedData[nn+3]<<" "
<<receivedData[nn+4]<<" "<<receivedData[nn+5]<<" "<<receivedData[nn+6]<<" "<<receivedData[nn+7];
}
*/
*/
//}
break;
@ -1085,17 +1085,35 @@ char T_datif::loadRecDataFromFrame()
}
break;
case 41: // get BNA parameters
if (RdDleng>50)
{
gpi_storeBnaParams(receivedData);
}
break;
case 21: // readback version strings of all Json-File in DC
//
gpi_storeJsonVersion(readAddress, receivedData);
break;
case 116: // get BNA current collection
if (RdDleng>7)
{
gpi_storeBnaCollection(receivedData);
}
break;
case 42: // get BNA box content and value of types
// qDebug()<< "CAmaster datif_got 42 ";
// for (uctmp=0; uctmp<64; uctmp++)
// qDebug()<<receivedData[uctmp]<<" ";
if (RdDleng>60)
{
gpi_storeBnaContent(receivedData);
}
break;
}
readSource=0; // 17.05.2023: to avoid multiple recording

View File

@ -501,6 +501,8 @@ uint8_t hwapi::rtc_setDateTime(void) const
}
void hwapi::rtc_getTime(uint8_t *hh, uint8_t *mm, uint8_t *ss) const
{
epi_getTime(hh, mm, ss);
@ -2968,7 +2970,7 @@ bool hwapi::log_getVaultRecord(struct T_vaultRecord *retVR) const
// 14.9.23 neu: Datensatz erst pruefen, [0..3] enthaelt "Psa>" und [4,5 =Abr.Nr]
uint16_t ds_acc_nr=uchar2uint(buf[5], buf[4]);
if (buf[0]=='P' && buf[1]=='S' && buf[2]=='A' && buf[3]=='>' && ds_acc_nr<60000)
if (buf[0]=='P' && buf[1]=='s' && buf[2]=='a' && buf[3]=='>' && ds_acc_nr<60000)
{
// valid data, copy data to struct
do
@ -4176,22 +4178,55 @@ void hwapi::bna_sendSettings(uint16_t notesToAccept, uint16_t parameters,
// acceptanceLimit: device will stop acceptance once this amount is reached and
// optionally keep last bill in escrow until vend_success()
// is called (put bill to stacker) or vend_failed() is called (return bill)
Q_UNUSED(notesToAccept);
Q_UNUSED(parameters);
Q_UNUSED(billDenomination);
Q_UNUSED(acceptanceLimit);
uint16_t noteAcc=notesToAccept;
uint16_t para=parameters;
uint16_t denom[16];
uint32_t limit=acceptanceLimit;
uint8_t buf[64], nn, pp;
for (nn=0; nn<16; nn++)
denom[nn]=billDenomination[nn];
buf[0]=uint2uchar(noteAcc, LOWBYTE);
buf[1]=uint2uchar(noteAcc, HIGHBYTE);
buf[2]=uint2uchar(para, LOWBYTE);
buf[3]=uint2uchar(para, HIGHBYTE);
pp=4;
for (nn=0; nn<16; nn++)
{
buf[pp++]=uint2uchar(denom[nn], LOWBYTE);
buf[pp++]=uint2uchar(denom[nn], HIGHBYTE);
}
buf[pp++]=ulong2uchar(limit, 0);
buf[pp++]=ulong2uchar(limit, 1);
buf[pp++]=ulong2uchar(limit, 2);
buf[pp++]=ulong2uchar(limit, 3);
longFDcmd_set(35, 41, 0, pp, buf);
}
void hwapi::bna_setCurrentAcceptance(uint16_t notesToAccept) const
{
// can be used to block notes dynamically, example: from now only 5€ bills are allowed (if only 3€ are to be paid)
Q_UNUSED(notesToAccept);
uint8_t LB, HB;
uint16_t val=notesToAccept;
LB=uint2uchar(val, LOWBYTE);
HB=uint2uchar(val, HIGHBYTE);
sendFDcmd_set(170, 0, 0, LB, HB, LB, HB);
}
void hwapi::bna_requestParameters(void) const
{
// send command to DC in order to get static invariable device parameters like currency
// device must be powered and polled to get these
sendFDcmd_set(0, 41, 0, 0, 0, 0, 0);
}
bool hwapi::bna_getAllParameters(struct T_bna *bna) const
@ -4199,38 +4234,128 @@ bool hwapi::bna_getAllParameters(struct T_bna *bna) const
// get all constant data from reader (e.g. currency)
// and actual Host-Settings (sent with bna_sendSettings() or json)
// retval = true if data are valid
Q_UNUSED(bna);
return false;
uint8_t buf[66], nn, pp;
epi_restoreBnaParams(buf);
bna->setup=buf[0];
bna->FeatureLevel=buf[1];
bna->countryCode=uchar2uint(buf[3], buf[2]);
bna->scalingFactor=uchar2uint(buf[5], buf[4]);
bna->decimalPlace=buf[6];
bna->pad1=0;
bna->stackerCap=uchar2uint(buf[8], buf[7]);
bna->billSecureLevel=uchar2uint(buf[10], buf[9]);
bna->hasEscrow=buf[11];
for (nn=0; nn<16; nn++)
bna->accBillTypes[nn] = buf[nn+12];
bna->currentStackerLevel = uchar2uint(buf[29], buf[28]);
bna->intendedAccept = uchar2uint(buf[31], buf[30]);
bna->pad2=0;
pp=32;
for (nn=0; nn<16; nn++)
{
bna->billDenomination[nn] = uchar2uint(buf[pp+1], buf[pp]);
pp+=2;
}
if (bna->setup)
return true;
else
return false;
}
void hwapi::bna_requestCurrentNotes(void) const
{
// send command to DC in order to get transaction data
sendFDcmd_set(0, 116, 0, 0, 0, 0, 0);
}
uint8_t hwapi::bna_getCurrentNotes(uint16_t latestBill, uint16_t *currentNotes) const
{
// returns number of collected bank notes since start-command (current transaction)
// latestBill: last accepted bank note, value in cent
// currentNotes an array with up to 16 (further) notes collected
Q_UNUSED(latestBill);
Q_UNUSED(currentNotes);
return 0;
// latestBill: not used
// currentNotes[0] = last bill value
// currentNotes[1] = 0/1 1 if bill in escrow 0 if bill in cash box (stacker)
// currentNotes[2,3] = total sum of collected bills within this transaction
// incoming data:
//DB1: nr of bills (this transaction)
//DB2: 1 if bill in escrow
//DB3..6: collected amount
//DB7,8: denomination of last bill
uint8_t buf[10], haveBilInEscrow, haveNrOfBills;
uint16_t lastBillVal;
uint32_t collAmountThisTrans;
epi_restoreBnaCollection(buf);
haveNrOfBills=buf[0];
haveBilInEscrow=buf[1];
collAmountThisTrans = uchar2ulong(buf[5],buf[4],buf[3],buf[2]);
lastBillVal = uchar2uint(buf[7],buf[6]);
currentNotes[0]=latestBill; // just to get rid of compiler warning
currentNotes[0]=lastBillVal;
currentNotes[1]=haveBilInEscrow;
currentNotes[2]=uint16_t(collAmountThisTrans);
collAmountThisTrans>>=16;
currentNotes[3]=uint16_t(collAmountThisTrans);
return haveNrOfBills;
}
void hwapi::bna_requestStackerLevel(void) const
{
sendFDcmd_set(0, 42, 0, 0, 0, 0, 0);
}
uint16_t hwapi::bna_getStackerLevel(uint32_t *amountInStacker, uint16_t *countOfBills) const
{
// return val: nr of bills in stacker
// countOfBills: array of up to 16 sums, countOfBills[0]=nr of 5€-bills in stacker
// countOfBills[1] for 10€ and so on
Q_UNUSED(amountInStacker);
Q_UNUSED(countOfBills);
return 0;
// countOfBills[0..7] = count of bills of bill-type 0..7 (e.g. countOfBills[0]=nr of 5€-bills in stacker)
// countOfBills[8..15] = value of bill-type 0...7
// receive data:
//je zwei Byte pro Wert,
//1…16: Anzahl Scheine pro Typ
//33…48: Wertigkeit der Typen
uint8_t buf[66], nn, pp, qq;
uint16_t nrOfBills[16], valueOfBills[16], anzahl=0;
uint32_t totalSum=0;
epi_restoreBnaContent(buf);
pp=0; qq=32;
for (nn=0; nn<16; nn++)
{
nrOfBills[nn]=uchar2uint(buf[pp+1],buf[pp]);
pp+=2;
valueOfBills[nn]=uchar2uint(buf[qq+1],buf[qq]);
qq+=2;
}
//qDebug()<< "CAmaster hwapi::bna_getStackerLevel " << nrOfBills[0] <<" "<< nrOfBills[1]
// <<" "<<nrOfBills[2]<<" "<<nrOfBills[3];
// qDebug()<< valueOfBills[0] <<" "<< valueOfBills[1] <<" "<<valueOfBills[2]<<" "<<valueOfBills[3];
// nur 8 zurueckmelden, mehr kommen derzeit von DC auch nicht
for (nn=0; nn<8; nn++)
{
countOfBills[nn]=nrOfBills[nn];
countOfBills[nn+7]=valueOfBills[nn];
}
for (nn=0; nn<8; nn++)
{
totalSum += nrOfBills[nn] * valueOfBills[nn];
anzahl += nrOfBills[nn];
}
//qDebug()<<"sum: "<< totalSum <<" Anzahl: "<<anzahl;
*amountInStacker=totalSum;
return anzahl;
}

0
src/runProc.cpp Executable file → Normal file
View File

View File

@ -1,811 +0,0 @@
#include <stdint.h>
#include <QString>
#include <QDebug>
#include <QDateTime>
#include "tslib.h"
#include "sendWRcmd.h"
#include "shared_mem_buffer.h"
void indat_PrnPwr(void);
void sendWRcmd_INI(void)
{
sendWRcmd_clrCmdStack();
sendWRcmd_clrCmd4Stack();
sendFDcmd_clrStack();
}
// Command Stack for commands without parameters
//static uint16_t nextAsynchsendCmd0[CMDSTACKDEPTH];
//static uint8_t nrOfCmdsInQueue;
/* convention: use simple (not rotating) FIFO Stack:
Example: nrOfCmdsInQueue=4 then
nextAsynchsendCmd0[0]=cmd1 // was stored as first
nextAsynchsendCmd0[1]=cmd2
nextAsynchsendCmd0[2]=cmd3
nextAsynchsendCmd0[3]=cmd4 // came in as last
Send: [0] first, then move buffer 1 down:
nextAsynchsendCmd0[0]=cmd2
nextAsynchsendCmd0[1]=cmd3
nextAsynchsendCmd0[2]=cmd4
nextAsynchsendCmd0[3]=0;
nrOfCmdsInQueue=3 now
*/
void sendWRcmd_clrCmdStack(void)
{
uint8_t nn;
for (nn=0; nn<CMDSTACKDEPTH; nn++)
SharedMem::write()->nextAsynchsendCmd0[nn]=0;
SharedMem::write()->nrOfCmdsInQueue=0;
}
bool sendWRcmd_setSendCommand0(uint16_t nextCmd)
{
// write Command to memory, wait for transport
uint8_t ciq=SharedMem::read()->nrOfCmdsInQueue;
if (ciq>=CMDSTACKDEPTH)
{
qDebug() << "cannot save cmd because stack is full";
return false; // not possible
}
SharedMem::write()->nextAsynchsendCmd0[ciq++]=nextCmd;
SharedMem::write()->nrOfCmdsInQueue=ciq;
//qDebug() << "PI cmd queued:"<< nextCmd << ", saved, pp=" << nrOfCmdsInQueue;
return true; // ok, will be sent
}
uint16_t sendWRcmd_getSendCommand0(void)
{
uint16_t nxtAsynchCmd, data;
uint8_t nn, ll;
uint8_t ciq=SharedMem::read()->nrOfCmdsInQueue;
if (ciq==0 || ciq>CMDSTACKDEPTH)
return 0; // error
nxtAsynchCmd=SharedMem::read()->nextAsynchsendCmd0[0];
// move Puffer down by one element
if (ciq>0)
ll=ciq-1;
else
ll=0;
for (nn=0; nn<ll; nn++)
{
data=SharedMem::read()->nextAsynchsendCmd0[nn+1];
SharedMem::write()->nextAsynchsendCmd0[nn]=data;
}
SharedMem::write()->nrOfCmdsInQueue=ciq;
//qDebug() << "PI cmd queued:"<< nxtAsynchCmd << ", restored, pp now =" << nrOfCmdsInQueue;
return nxtAsynchCmd;
}
//---------------------------------------------------------------------------------------------------------------------
//---------------------------------------------------------------------------------------------------------------------
// Command Stack for commands with 4 parameters
/*
static uint16_t nextAsynchsendCmd4[CMD4STACKDEPTH];
static uint8_t nextCmd4para1[CMD4STACKDEPTH];
static uint8_t nextCmd4para2[CMD4STACKDEPTH];
static uint8_t nextCmd4para3[CMD4STACKDEPTH];
static uint8_t nextCmd4para4[CMD4STACKDEPTH];
static uint8_t nrOfCmds4InQueue;
*/
void sendWRcmd_clrCmd4Stack(void)
{
uint8_t nn;
for (nn=0; nn<CMD4STACKDEPTH; nn++)
{
SharedMem::write()->nextAsynchsendCmd4[nn]=0;
SharedMem::write()->nextCmd4para1[nn]=0;
SharedMem::write()->nextCmd4para2[nn]=0;
SharedMem::write()->nextCmd4para3[nn]=0;
SharedMem::write()->nextCmd4para4[nn]=0;
}
SharedMem::write()->nrOfCmds4InQueue=0;
}
bool sendWRcmd_setSendCommand4(uint16_t nextCmd, uint8_t dat1, uint8_t dat2, uint8_t dat3, uint8_t dat4)
{
// write Command to memory, wait for transport
uint8_t ciq;
ciq=SharedMem::read()->nrOfCmds4InQueue;
if (ciq>=CMD4STACKDEPTH)
{
qDebug() << "cannot save cmd because stack is full";
return false; // not possible
}
SharedMem::write()->nextAsynchsendCmd4[ciq]=nextCmd;
SharedMem::write()->nextCmd4para1[ciq]=dat1;
SharedMem::write()->nextCmd4para2[ciq]=dat2;
SharedMem::write()->nextCmd4para3[ciq]=dat3;
SharedMem::write()->nextCmd4para4[ciq]=dat4;
ciq++;
SharedMem::write()->nrOfCmds4InQueue=ciq;
//qDebug() << QDateTime::currentDateTime().time()
// << "sendWRcmd 4 byte saved, pp=" << nextCmd
// << " para: " << SharedMem::getDataConst()->nextCmd4para1[pp];
return true; // ok, will be sent
}
/*
uint16_t sendWRcmd_getSendCommand4(uint8_t *dat1, uint8_t *dat2, uint8_t *dat3, uint8_t *dat4)
{
uint16_t nxtAsynchCmd;
uint8_t nn, ll;
if (nrOfCmds4InQueue==0 || nrOfCmds4InQueue>CMD4STACKDEPTH)
return 0; // error
nxtAsynchCmd=nextAsynchsendCmd4[0];
*dat1=nextCmd4para1[0];
*dat2=nextCmd4para2[0];
*dat3=nextCmd4para3[0];
*dat4=nextCmd4para4[0];
//qDebug() << "cmd4 restored to send from [0]; pp=" << nrOfCmds4InQueue;
//qDebug() << " data1: " << nextCmd4para1[0] << " data2: " << nextCmd4para2[0] <<
// " data3: " << nextCmd4para3[0] << " data4: " << nextCmd4para4[0];
// move Puffer down by one element
if (CMD4STACKDEPTH>0)
ll=CMD4STACKDEPTH-1;
else
ll=0;
for (nn=0; nn<ll; nn++)
{
nextAsynchsendCmd4[nn]=nextAsynchsendCmd4[nn+1];
nextCmd4para1[nn]=nextCmd4para1[nn+1];
nextCmd4para2[nn]=nextCmd4para2[nn+1];
nextCmd4para3[nn]=nextCmd4para3[nn+1];
nextCmd4para4[nn]=nextCmd4para4[nn+1];
}
if (nrOfCmds4InQueue>0)
nrOfCmds4InQueue--;
//qDebug() << "cmd4 after push down: pp=" << nrOfCmds4InQueue;
return nxtAsynchCmd;
}
*/
uint16_t sendWRcmd_getSendCommand4(uint8_t *dat1, uint8_t *dat2, uint8_t *dat3, uint8_t *dat4)
{
uint16_t nxtAsynchCmd, data;
uint8_t nn;
uint8_t ciq=SharedMem::read()->nrOfCmds4InQueue;
if (ciq==0 || ciq > CMD4STACKDEPTH)
return 0; // error
nxtAsynchCmd=SharedMem::read()->nextAsynchsendCmd4[0];
*dat1=SharedMem::read()->nextCmd4para1[0];
*dat2=SharedMem::read()->nextCmd4para2[0];
*dat3=SharedMem::read()->nextCmd4para3[0];
*dat4=SharedMem::read()->nextCmd4para4[0];
//qDebug() << "cmd4 restored to send from [0]; pp=" << nrOfCmds4InQueue;
//qDebug() << " data1: " << nextCmd4para1[0] << " data2: " << nextCmd4para2[0] <<
// " data3: " << nextCmd4para3[0] << " data4: " << nextCmd4para4[0];
// move Puffer down by one element
if (ciq>0) ciq--;
for (nn=0; nn<ciq; nn++)
{
data=SharedMem::read()->nextAsynchsendCmd4[nn+1];
SharedMem::write()->nextAsynchsendCmd4[nn]=data;
data=SharedMem::read()->nextCmd4para1[nn+1];
SharedMem::write()->nextCmd4para1[nn]=data;
data=SharedMem::read()->nextCmd4para2[nn+1];
SharedMem::write()->nextCmd4para2[nn]=data;
data=SharedMem::read()->nextCmd4para3[nn+1];
SharedMem::write()->nextCmd4para3[nn]=data;
data=SharedMem::read()->nextCmd4para4[nn+1];
SharedMem::write()->nextCmd4para4[nn]=data;
}
SharedMem::write()->nrOfCmds4InQueue=ciq;
return nxtAsynchCmd;
}
void sendWRcmd_clrCmd8Stack(void)
{
uint8_t nn;
for (nn=0; nn<CMD8STACKDEPTH; nn++)
{
SharedMem::write()->nextAsynchsendCmd8[nn]=0;
SharedMem::write()->nextCmd8para1[nn]=0;
SharedMem::write()->nextCmd8para2[nn]=0;
SharedMem::write()->nextCmd8para3[nn]=0;
SharedMem::write()->nextCmd8para4[nn]=0;
}
SharedMem::write()->nrOfCmds8InQueue=0;
}
bool sendWRcmd_setSendCommand8(uint16_t nextCmd, uint8_t dat1, uint8_t dat2, uint16_t dat3, uint32_t dat4)
{
// write Command to memory, wait for transport
uint8_t ciq;
ciq=SharedMem::read()->nrOfCmds8InQueue;
if (ciq>=CMD8STACKDEPTH)
{
qDebug() << "cannot save cmd because stack is full";
return false; // not possible
}
SharedMem::write()->nextAsynchsendCmd8[ciq]=nextCmd;
SharedMem::write()->nextCmd8para1[ciq]=dat1;
SharedMem::write()->nextCmd8para2[ciq]=dat2;
SharedMem::write()->nextCmd8para3[ciq]=dat3;
SharedMem::write()->nextCmd8para4[ciq]=dat4;
ciq++;
SharedMem::write()->nrOfCmds8InQueue=ciq;
return true; // ok, will be sent
}
uint16_t sendWRcmd_getSendCommand8(uint8_t *dat1, uint8_t *dat2, uint16_t *dat3, uint32_t *dat4)
{
uint16_t nxtAsynchCmd, data;
uint8_t nn;
uint8_t ciq=SharedMem::read()->nrOfCmds8InQueue;
if (ciq==0 || ciq > CMD8STACKDEPTH)
return 0; // error
nxtAsynchCmd=SharedMem::read()->nextAsynchsendCmd8[0];
*dat1=SharedMem::read()->nextCmd8para1[0];
*dat2=SharedMem::read()->nextCmd8para2[0];
*dat3=SharedMem::read()->nextCmd8para3[0];
*dat4=SharedMem::read()->nextCmd8para4[0];
// move buffer down by one element
if (ciq>0) ciq--;
for (nn=0; nn<ciq; nn++)
{
data=SharedMem::read()->nextAsynchsendCmd8[nn+1];
SharedMem::write()->nextAsynchsendCmd8[nn]=data;
data=SharedMem::read()->nextCmd8para1[nn+1];
SharedMem::write()->nextCmd8para1[nn]=data;
data=SharedMem::read()->nextCmd8para2[nn+1];
SharedMem::write()->nextCmd8para2[nn]=data;
data=SharedMem::read()->nextCmd8para3[nn+1];
SharedMem::write()->nextCmd8para3[nn]=data;
data=SharedMem::read()->nextCmd8para4[nn+1];
SharedMem::write()->nextCmd8para4[nn]=data;
}
SharedMem::write()->nrOfCmds8InQueue=ciq;
return nxtAsynchCmd;
}
//static uint8_t sendAsynchDataBuf[160]; // no stack, only ONE buffer
//static uint8_t sendAsyDatLen;
bool sendWRcmd_setSendBlock160(uint8_t leng, uint8_t *buf)
{
if (leng>SENDASYDAT_BUFFSIZE) leng=SENDASYDAT_BUFFSIZE;
SharedMem::write()->sendAsyDatLen=leng;
tslib_strclr(SharedMem::write()->sendAsynchDataBuf, 0, SENDASYDAT_BUFFSIZE);
for (uint8_t nn=0; nn<leng; nn++)
SharedMem::write()->sendAsynchDataBuf[nn]=buf[nn];
return true; // ok, will be sent
}
uint8_t sendWRcmd_getSendBlock160(uint8_t *leng, uint8_t *buf)
{
uint8_t dl=SharedMem::read()->sendAsyDatLen;
*leng=dl;
for (uint8_t nn=0; nn<dl; nn++)
buf[nn]=SharedMem::read()->sendAsynchDataBuf[nn];
SharedMem::write()->sendAsyDatLen=0;
//tslib_strclr(SharedMem::write()->sendAsynchDataBuf, 0, SENDASYDAT_BUFFSIZE);
return *leng;
}
// ------------------------------------------------------------------------------------
// MDB Sendind Data are store here for next transport to DC (Device Controller)
// Transport to Slave runs every 100ms, answer from mdb-slave (e.g. coin changer) comes rigth
// with next slave answer
// start with: SENDDIRCMD_EXCHGMDB,
// send crude data from here to DC, DC to mdb slaves, mdb answer, return here within 50ms
//static uint8_t Sdata_mdbSendBuffer[MDBSEND_BUFFSIZE];
//static uint8_t Sdata_mdbSendLen;
uint8_t epi_store64ByteSendData(uint8_t length, uint8_t *buf)
{
if (length>MDBSEND_BUFFSIZE) length=MDBSEND_BUFFSIZE;
// HWapi writes data to be forwarded to DC and further to mdb-device
for (uint8_t nn=0; nn<length; nn++)
SharedMem::write()->Sdata_mdbSendBuffer[nn]=buf[nn];
SharedMem::write()->Sdata_mdbSendLen=length;
return 0;
}
uint8_t gpi_restore64ByteSendData(uint8_t *length, uint8_t *buf)
{
// datif reads data to forward to dc
uint8_t dl=SharedMem::read()->Sdata_mdbSendLen;
for (uint8_t nn=0; nn<dl; nn++)
buf[nn]=SharedMem::read()->Sdata_mdbSendBuffer[nn];
*length=dl;
SharedMem::write()->Sdata_mdbSendLen=0;
return 0;
}
//------------------------------------------------------------------------------------
//------------------------------------------------------------------------------------
//---------------------------------------- Printer Text Fifo -------------------------
//static uint8_t prnDataParameters[];
//static uint8_t prnDataBufferUser;
void epi_storeUserOfSendingTextBuffer(uint8_t user, uint8_t para1, uint8_t para2, uint8_t para3, uint8_t para4 )
{
// user=1: Text-Print is using this buffer
// 2: QR-code-Printer is using this buffer
SharedMem::write()->prnDataBufferUser=user;
SharedMem::write()->prnDataParameters[0]=para1;
SharedMem::write()->prnDataParameters[1]=para2;
SharedMem::write()->prnDataParameters[2]=para3;
SharedMem::write()->prnDataParameters[3]=para4;
// qDebug() << "new user stored: " << user;
}
uint8_t gpi_getUserOfSendingTextBuffer(uint8_t *para1, uint8_t *para2, uint8_t *para3, uint8_t *para4)
{
// user=1: Text-Print is using this buffer
// 2: QR-code-Printer is using this buffer
//qDebug() << "returning user "<< prnDataBufferUser;
*para1=SharedMem::read()->prnDataParameters[0];
*para2=SharedMem::read()->prnDataParameters[1];
*para3=SharedMem::read()->prnDataParameters[2];
*para4=SharedMem::read()->prnDataParameters[3];
return SharedMem::read()->prnDataBufferUser;
}
// Sending Text Fifo
// ONE printer doc consists of 20 x 64 byte
// #define MAXNROF_PRNBYTES 64
// #define MAXNROF_PRNBLOCKS 20
//static char Sdata_PRN_TEXT[MAXNROF_PRNBLOCKS][MAXNROF_PRNBYTES];
//static uint8_t pPrnDataBuff; // points to next PRINTER_BLOCK
//static uint8_t pPrnDataBuff; // points to next waiting printer text
// defined above, needed if more then one text is stored (before sent)
// every block will be sent after 100ms, if 8 blocks are stored within this 100ms
// then pointer goes up to 8. Important: FIFO!!!!!!!!
void epi_resetPrinterStack(void)
{
SharedMem::write()->pPrnDataBuff=0;
}
uint8_t epi_storePrnText(char *buf, uint8_t leng)
{
// store text from Gui in next higher free memory 0....9
uint16_t len;
uint8_t pp, nn;
pp=SharedMem::read()->pPrnDataBuff; // next free memory block with 64byte each
if (pp>=MAXNROF_PRNBLOCKS)
return 1; // not possible, no free mem
//len=tslib_strlen(buf); // kennt keine Binärzeichen!!!!!!
len=leng;
if (len>MAXNROF_PRNBYTES)
len=MAXNROF_PRNBYTES;
tslib_strclr(SharedMem::write()->Sdata_PRN_TEXT[pp], 0, MAXNROF_PRNBYTES);
for (nn=0; nn<len; nn++)
SharedMem::write()->Sdata_PRN_TEXT[pp][nn]=buf[nn]; // copy new text into buffer
if (SharedMem::read()->pPrnDataBuff<MAXNROF_PRNBLOCKS)
SharedMem::write()->pPrnDataBuff++; // inc pointer if end not yet reached
return 0; // OK
}
uint8_t gpi_restorePrnText(uint8_t *retbuf)
{
// read printer text and send to slave, size of retbuf == 64
// always read from [0] because this is the oldest (Fifo)
// then move all text lines down by one and dec pointer
uint8_t nn, mm, pp=SharedMem::read()->pPrnDataBuff;
char buf[MAXNROF_PRNBYTES];
if (pp==0) // next free memory block with 64byte each
return 1; // no text in buffer
// example: pp=5: then buffers [0...4] are occupied
for (nn=0; nn<MAXNROF_PRNBYTES; nn++)
retbuf[nn] = uint8_t (SharedMem::read()->Sdata_PRN_TEXT[0][nn]); // restore oldest text
// now copy textline [1] to [0], then
// copy textline [2] to [1], then
// copy textline [3] to [2] .... upto [pp-1] to [pp-2]
// hint: copying from 9....0 would delete all strings!!!!!!
for (nn=0; nn<(pp-1); nn++)
{
for (mm=0; mm<MAXNROF_PRNBYTES; mm++)
buf[mm]=SharedMem::read()->Sdata_PRN_TEXT[nn+1][mm];
for (mm=0; mm<MAXNROF_PRNBYTES; mm++)
SharedMem::write()->Sdata_PRN_TEXT[nn][mm]=buf[mm];
}
if (pp>0) pp--;
SharedMem::write()->pPrnDataBuff=pp;
// example: pp=4: then buffers [0...3] are still occupied, pp=0: all buffers empty
// now clear highest copyed line (which became free now)
tslib_strclr(SharedMem::write()->Sdata_PRN_TEXT[pp], 0, MAXNROF_PRNBYTES);
// optionally: clear all remaining higher lines:
for (nn=(pp+1); nn<MAXNROF_PRNBLOCKS; nn++)
tslib_strclr(SharedMem::write()->Sdata_PRN_TEXT[nn], 0, MAXNROF_PRNBYTES);
return 0;
}
uint8_t gpi_chk4remainingText(void)
{
// retval: 0: no more textline left (to send) >0: nr of 64byte-blocks
return (SharedMem::read()->pPrnDataBuff);
}
// ---------------------------------------------------------------------------------
// 11.4.23 neu, Kommando direkt an "FastDevice"-protokoll senden, nicht mehr umsetzen
// ---------------------------------------------------------------------------------
/*
// header
static uint8_t nextFDwrCmd[FDCMD_STACKDEPTH];
static uint8_t nextFDrdCmd[FDCMD_STACKDEPTH];
static uint8_t nextFDblkNr[FDCMD_STACKDEPTH];
static uint8_t nextFDshort[FDCMD_STACKDEPTH];
// short data
static uint8_t nextFDpara1[FDCMD_STACKDEPTH];
static uint8_t nextFDpara2[FDCMD_STACKDEPTH];
static uint8_t nextFDpara3[FDCMD_STACKDEPTH];
static uint8_t nextFDpara4[FDCMD_STACKDEPTH];
// long data:
static uint8_t longFDlength[FDCMD_STACKDEPTH];
static uint8_t longFDpara[FDCMD_STACKDEPTH][64];
static uint8_t p_nextFDcmdsInQueue;
*/
/* convention: use simple (not rotating) FIFO Stack:
Example: nrOfCmdsInQueue=4 then
nextAsynchsendCmd0[0]=cmd1 // was stored as first
nextAsynchsendCmd0[1]=cmd2
nextAsynchsendCmd0[2]=cmd3
nextAsynchsendCmd0[3]=cmd4 // came in as last
Send: [0] first, then move buffer 1 down:
nextAsynchsendCmd0[0]=cmd2
nextAsynchsendCmd0[1]=cmd3
nextAsynchsendCmd0[2]=cmd4
nextAsynchsendCmd0[3]=0;
nrOfCmdsInQueue=3 now
*/
void sendFDcmd_clrStack(void)
{
uint8_t nn;
for (nn=0; nn<FDCMD_STACKDEPTH; nn++)
{
SharedMem::write()->nextFDwrCmd[nn]=0;
SharedMem::write()->nextFDrdCmd[nn]=0;
SharedMem::write()->nextFDblkNr[nn]=0;
SharedMem::write()->nextFDshort[nn]=0;
SharedMem::write()->nextFDpara1[nn]=0;
SharedMem::write()->nextFDpara2[nn]=0;
SharedMem::write()->nextFDpara3[nn]=0;
SharedMem::write()->nextFDpara4[nn]=0;
SharedMem::write()->longFDlength[nn]=0;
memset(&SharedMem::write()->longFDpara[nn][0],0,64);
}
SharedMem::write()->p_nextFDcmdsInQueue=0;
}
bool sendFDcmd_set(uint8_t nextWrCmd, uint8_t nextRdCmd, uint8_t blockNum, uint8_t dat1, uint8_t dat2, uint8_t dat3, uint8_t dat4)
{
// write Command to memory, wait for transport
uint8_t pFDcmd=SharedMem::read()->p_nextFDcmdsInQueue;
if (pFDcmd >=FDCMD_STACKDEPTH)
{
qDebug() << "cannot save cmd because stack is full";
return false; // not possible
}
SharedMem::write()->nextFDwrCmd[pFDcmd]=nextWrCmd;
SharedMem::write()->nextFDrdCmd[pFDcmd]=nextRdCmd;
SharedMem::write()->nextFDblkNr[pFDcmd]=blockNum;
SharedMem::write()->nextFDpara1[pFDcmd]=dat1;
SharedMem::write()->nextFDpara2[pFDcmd]=dat2;
SharedMem::write()->nextFDpara3[pFDcmd]=dat3;
SharedMem::write()->nextFDpara4[pFDcmd]=dat4;
//qDebug() << "data with 4 data byte saved, pp=" << pFDcmd;
//qDebug() << " dat1=" << nextCmd4para1[pFDcmd] << " dat2=" << nextCmd4para2[pFDcmd]
// << " dat3=" << nextCmd4para3[pFDcmd] << " dat4=" << nextCmd4para4[pFDcmd];
SharedMem::write()->nextFDshort[pFDcmd]=1; // 1=short
pFDcmd++;
SharedMem::write()->p_nextFDcmdsInQueue=pFDcmd;
return true; // ok, will be sent
}
bool longFDcmd_set(uint8_t nextWrCmd, uint8_t nextRdCmd, uint8_t blockNum, uint8_t length, uint8_t *data)
{
// write Command to memory, wait for transport
// data buffer size always 64! data[64], padded with 0
uint8_t nn;
uint8_t pFDcmd=SharedMem::read()->p_nextFDcmdsInQueue;
if (pFDcmd>=FDCMD_STACKDEPTH)
{
qDebug() << "cannot save cmd because stack is full";
return false; // not possible
}
SharedMem::write()->nextFDwrCmd[pFDcmd]=nextWrCmd;
SharedMem::write()->nextFDrdCmd[pFDcmd]=nextRdCmd;
SharedMem::write()->nextFDblkNr[pFDcmd]=blockNum;
SharedMem::write()->longFDlength[pFDcmd]=length;
for (nn=0; nn<64; nn++)
SharedMem::write()->longFDpara[pFDcmd][nn]=data[nn];
SharedMem::write()->nextFDshort[pFDcmd]=2;
pFDcmd++;
SharedMem::write()->p_nextFDcmdsInQueue=pFDcmd;
return true; // ok, will be sent
}
bool sendFDcmd_get(uint8_t *nextWrCmd, uint8_t *nextRdCmd, uint8_t *blockNum, uint8_t *dat1, uint8_t *dat2, uint8_t *dat3, uint8_t *dat4)
{
uint8_t nn, mm, data; // ll
uint8_t pFDcmd=SharedMem::read()->p_nextFDcmdsInQueue;
if (pFDcmd==0 || pFDcmd>FDCMD_STACKDEPTH)
return false; // not possible
*nextWrCmd=SharedMem::read()->nextFDwrCmd[0];
*nextRdCmd=SharedMem::read()->nextFDrdCmd[0];
*blockNum=SharedMem::read()->nextFDblkNr[0];
*dat1=SharedMem::read()->nextFDpara1[0];
*dat2=SharedMem::read()->nextFDpara2[0];
*dat3=SharedMem::read()->nextFDpara3[0];
*dat4=SharedMem::read()->nextFDpara4[0];
//qDebug() << "sendFDcmd_get [0]; pp=" << SharedMem::read()->p_nextFDcmdsInQueue;
//qDebug() << " data1: " << SharedMem::read()->nextCmd4para1[0] << " data2: " << SharedMem::read()->nextCmd4para2[0] <<
// " data3: " << SharedMem::read()->nextCmd4para3[0] << " data4: " << SharedMem::read()->nextCmd4para4[0];
// move Puffer down by one element
//if (FDCMD_STACKDEPTH>0)
// ll=FDCMD_STACKDEPTH-1;
//else
// ll=0;
if (pFDcmd>0) pFDcmd--; else pFDcmd=0;
//for (nn=0; nn<ll; nn++)
for (nn=0; nn<pFDcmd; nn++)
{
data=SharedMem::read()->nextFDwrCmd[nn+1];
SharedMem::write()->nextFDwrCmd[nn]=data;
data=SharedMem::read()->nextFDrdCmd[nn+1];
SharedMem::write()->nextFDrdCmd[nn]=data;
data=SharedMem::read()->nextFDblkNr[nn+1];
SharedMem::write()->nextFDblkNr[nn]=data;
data=SharedMem::read()->nextFDpara1[nn+1];
SharedMem::write()->nextFDpara1[nn]=data;
data=SharedMem::read()->nextFDpara2[nn+1];
SharedMem::write()->nextFDpara2[nn]=data;
data=SharedMem::read()->nextFDpara3[nn+1];
SharedMem::write()->nextFDpara3[nn]=data;
data=SharedMem::read()->nextFDpara4[nn+1];
SharedMem::write()->nextFDpara4[nn]=data;
data=SharedMem::read()->nextFDshort[nn+1];
SharedMem::write()->nextFDshort[nn] = data;
data=SharedMem::read()->longFDlength[nn+1];
SharedMem::write()->longFDlength[nn] = data;
for (mm=0; mm<64; mm++)
{
SharedMem::write()->longFDpara[nn][mm] = SharedMem::read()->longFDpara[nn+1][mm];
}
}
SharedMem::write()->p_nextFDcmdsInQueue=pFDcmd;
//qDebug() << "cmd4 after push down: pp=" << nrOfCmds4InQueue;
// clear released buffer:
//for (nn=p_nextFDcmdsInQueue; nn<FDCMD_STACKDEPTH; nn++)
//{
SharedMem::write()->nextFDwrCmd[pFDcmd]=0;
SharedMem::write()->nextFDrdCmd[pFDcmd]=0;
SharedMem::write()->nextFDblkNr[pFDcmd]=0;
SharedMem::write()->nextFDpara1[pFDcmd]=0;
SharedMem::write()->nextFDpara2[pFDcmd]=0;
SharedMem::write()->nextFDpara3[pFDcmd]=0;
SharedMem::write()->nextFDpara4[pFDcmd]=0;
SharedMem::write()->nextFDshort[pFDcmd]=0;
SharedMem::write()->longFDlength[pFDcmd]=0;
for (mm=0; mm<64; mm++)
SharedMem::write()->longFDpara[pFDcmd][mm] = 0;
//}
/*
qDebug() << "sendFDcmd_set, stack now: " << p_nextFDcmdsInQueue;
for (nn=0; nn<16; nn++)
{
qDebug() << "header: " << nextFDwrCmd[nn] << " / " << nextFDrdCmd[nn] << " / "<< nextFDblkNr[nn] << " / " << nextFDshort[nn];
qDebug() << " short data: " << nextFDpara1[nn] << " / "<< nextFDpara2[nn] << " / "<< nextFDpara3[nn]<< " / "<< nextFDpara4[nn];
qDebug() << " long data: " << longFDlength[nn] << " / "<< longFDpara[nn][0] << " / "<< longFDpara[nn][1]
<< " / "<< longFDpara[nn][2] << " / "<< longFDpara[nn][3] << " / "<< longFDpara[nn][4];
}
*/
return true; // ok, will be sent
}
uint8_t checkNextFDcmd(void)
{
// return 0: no command waiting
// 1: short cmd
// 2: long cmd
//qDebug() << "chk nxt fd cmd: "<<p_nextFDcmdsInQueue<<" "<<nextFDshort[0]<<" "<<nextFDshort[1]<<" "<<nextFDshort[2]<<" "<<nextFDshort[3];
if (SharedMem::read()->p_nextFDcmdsInQueue==0)
return 0;
if (SharedMem::read()->nextFDshort[0]==1)
return 1;
return 2;
}
uint8_t check4FDshortCmd(void)
{
// returns number of waiting command, max FDCMD_STACKDEPTH
return SharedMem::read()->p_nextFDcmdsInQueue;
}
uint8_t check4freeFDshortCmd(void)
{
// returns number of free places in short-command stack
return FDCMD_STACKDEPTH - SharedMem::read()->p_nextFDcmdsInQueue;
}
bool longFDcmd_get(uint8_t *nextWrCmd, uint8_t *nextRdCmd, uint8_t *blockNum, uint8_t *length, uint8_t *data)
{
uint8_t nn, mm, uctmp;
uint8_t pFDcmd=SharedMem::read()->p_nextFDcmdsInQueue;
if (pFDcmd==0 || pFDcmd>FDCMD_STACKDEPTH)
return false; // not possible
*nextWrCmd=SharedMem::read()->nextFDwrCmd[0];
*nextRdCmd=SharedMem::read()->nextFDrdCmd[0];
*blockNum=SharedMem::read()->nextFDblkNr[0];
*length = SharedMem::read()->longFDlength[0];
for (mm=0; mm<64; mm++)
data[mm] = SharedMem::read()->longFDpara[0][mm];
if (pFDcmd>0) pFDcmd--; else pFDcmd=0;
//for (nn=0; nn<ll; nn++)
for (nn=0; nn<pFDcmd; nn++)
{
uctmp=SharedMem::read()->nextFDwrCmd[nn+1];
SharedMem::write()->nextFDwrCmd[nn]=uctmp;
uctmp=SharedMem::read()->nextFDrdCmd[nn+1];
SharedMem::write()->nextFDrdCmd[nn]=uctmp;
uctmp=SharedMem::read()->nextFDblkNr[nn+1];
SharedMem::write()->nextFDblkNr[nn]=uctmp;
uctmp=SharedMem::read()->nextFDpara1[nn+1];
SharedMem::write()->nextFDpara1[nn]=uctmp;
uctmp=SharedMem::read()->nextFDpara2[nn+1];
SharedMem::write()->nextFDpara2[nn]=uctmp;
uctmp=SharedMem::read()->nextFDpara3[nn+1];
SharedMem::write()->nextFDpara3[nn]=uctmp;
uctmp=SharedMem::read()->nextFDpara4[nn+1];
SharedMem::write()->nextFDpara4[nn]=uctmp;
uctmp=SharedMem::read()->nextFDshort[nn+1];
SharedMem::write()->nextFDshort[nn]=uctmp;
uctmp=SharedMem::read()->longFDlength[nn+1];
SharedMem::write()->longFDlength[nn]=uctmp;
for (mm=0; mm<64; mm++)
{
SharedMem::write()->longFDpara[nn][mm] = SharedMem::read()->longFDpara[nn+1][mm];
}
}
SharedMem::write()->p_nextFDcmdsInQueue=pFDcmd;
// clear released buffer:
SharedMem::write()->nextFDwrCmd[pFDcmd]=0;
SharedMem::write()->nextFDrdCmd[pFDcmd]=0;
SharedMem::write()->nextFDblkNr[pFDcmd]=0;
SharedMem::write()->nextFDpara1[pFDcmd]=0;
SharedMem::write()->nextFDpara2[pFDcmd]=0;
SharedMem::write()->nextFDpara3[pFDcmd]=0;
SharedMem::write()->nextFDpara4[pFDcmd]=0;
SharedMem::write()->nextFDshort[pFDcmd]=0;
SharedMem::write()->longFDlength[pFDcmd]=0;
for (mm=0; mm<64; mm++)
SharedMem::write()->longFDpara[pFDcmd][mm] = 0;
return true; // ok, will be sent
}

File diff suppressed because it is too large Load Diff

View File

@ -1984,7 +1984,7 @@ void epi_iniVRstorage(void)
void gpi_storeVaultRecord(uint8_t blkNr, uint8_t *data )
{
uint16_t start=blkNr, ii;
qDebug()<<"storing vault data "<<blkNr;
//qDebug()<<"storing vault data "<<blkNr;
SharedMem::write()->store_gotNrBlocksOfVaultRec |= (1<<start); // setze pro Block ein bit, wir brauchen block 0...5
// also muss store_gotNrBlocksOfVaultRec auf 0x1F stehen
start<<=6; // *64
@ -2332,7 +2332,67 @@ void epi_restoreTubeLevel(uint8_t *data)
void gpi_storeBnaParams(uint8_t *data)
{
int nn;
for (nn=0; nn<64; nn++)
{
SharedMem::write()->store_bnaParameter[nn]=data[nn];
}
}
void epi_restoreBnaParams(uint8_t *data)
{
int nn;
for (nn=0; nn<64; nn++)
{
data[nn]=SharedMem::read()->store_bnaParameter[nn];
}
}
void gpi_storeBnaCollection(uint8_t *data)
{
int nn;
for (nn=0; nn<8; nn++)
{
SharedMem::write()->store_bnaCollect[nn]=data[nn];
}
}
void epi_restoreBnaCollection(uint8_t *data)
{
int nn;
for (nn=0; nn<8; nn++)
{
data[nn]=SharedMem::read()->store_bnaCollect[nn];
}
}
void gpi_storeBnaContent(uint8_t *data)
{
int nn;
for (nn=0; nn<64; nn++)
{
SharedMem::write()->store_bnaContent[nn]=data[nn];
}
}
void epi_restoreBnaContent(uint8_t *data)
{
int nn;
for (nn=0; nn<64; nn++)
{
data[nn]=SharedMem::read()->store_bnaContent[nn];
}
}