DCLibraries/src/sendWRcmd.cpp

843 lines
28 KiB
C++
Raw Normal View History

2023-11-08 13:02:26 +01:00
#include <stdint.h>
#include <QString>
#include <QDebug>
#include <QDateTime>
#include "tslib.h"
#include "sendWRcmd.h"
#include "shared_mem_buffer.h"
void indat_PrnPwr(void);
void sendWRcmd_INI(void)
{
//sendWRcmd_clrCmdStack();
//sendWRcmd_clrCmd4Stack();
sendFDcmd_clrStack();
}
// Command Stack for commands without parameters
//static uint16_t nextAsynchsendCmd0[CMDSTACKDEPTH];
//static uint8_t nrOfCmdsInQueue;
/* convention: use simple (not rotating) FIFO Stack:
Example: nrOfCmdsInQueue=4 then
nextAsynchsendCmd0[0]=cmd1 // was stored as first
nextAsynchsendCmd0[1]=cmd2
nextAsynchsendCmd0[2]=cmd3
nextAsynchsendCmd0[3]=cmd4 // came in as last
Send: [0] first, then move buffer 1 down:
nextAsynchsendCmd0[0]=cmd2
nextAsynchsendCmd0[1]=cmd3
nextAsynchsendCmd0[2]=cmd4
nextAsynchsendCmd0[3]=0;
nrOfCmdsInQueue=3 now
*/
void sendWRcmd_clrCmdStack(void)
{
uint8_t nn;
for (nn=0; nn<CMDSTACKDEPTH; nn++)
SharedMem::write()->nextAsynchsendCmd0[nn]=0;
SharedMem::write()->nrOfCmdsInQueue=0;
}
bool sendWRcmd_setSendCommand0(uint16_t nextCmd)
{
// write Command to memory, wait for transport
uint8_t ciq=SharedMem::read()->nrOfCmdsInQueue;
if (ciq>=CMDSTACKDEPTH)
{
qDebug() << "cannot save cmd because stack is full";
return false; // not possible
}
SharedMem::write()->nextAsynchsendCmd0[ciq++]=nextCmd;
SharedMem::write()->nrOfCmdsInQueue=ciq;
//qDebug() << "PI cmd queued:"<< nextCmd << ", saved, pp=" << nrOfCmdsInQueue;
return true; // ok, will be sent
}
uint16_t sendWRcmd_getSendCommand0(void)
{
uint16_t nxtAsynchCmd, data;
uint8_t nn;
uint8_t ciq=SharedMem::read()->nrOfCmdsInQueue;
if (ciq==0 || ciq>CMDSTACKDEPTH)
return 0; // error
nxtAsynchCmd=SharedMem::read()->nextAsynchsendCmd0[0];
// move Puffer down by one element
if (ciq>0) ciq--;
for (nn=0; nn<ciq; nn++)
{
data=SharedMem::read()->nextAsynchsendCmd0[nn+1];
SharedMem::write()->nextAsynchsendCmd0[nn]=data;
}
SharedMem::write()->nrOfCmdsInQueue=ciq;
//qDebug() << "PI cmd queued:"<< nxtAsynchCmd << ", restored, pp now =" << nrOfCmdsInQueue;
return nxtAsynchCmd;
}
//---------------------------------------------------------------------------------------------------------------------
//---------------------------------------------------------------------------------------------------------------------
// Command Stack for commands with 4 parameters
/*
static uint16_t nextAsynchsendCmd4[CMD4STACKDEPTH];
static uint8_t nextCmd4para1[CMD4STACKDEPTH];
static uint8_t nextCmd4para2[CMD4STACKDEPTH];
static uint8_t nextCmd4para3[CMD4STACKDEPTH];
static uint8_t nextCmd4para4[CMD4STACKDEPTH];
static uint8_t nrOfCmds4InQueue;
*/
/*
void sendWRcmd_clrCmd4Stack(void)
{
uint8_t nn;
for (nn=0; nn<CMD4STACKDEPTH; nn++)
{
SharedMem::write()->nextAsynchsendCmd4[nn]=0;
SharedMem::write()->nextCmd4para1[nn]=0;
SharedMem::write()->nextCmd4para2[nn]=0;
SharedMem::write()->nextCmd4para3[nn]=0;
SharedMem::write()->nextCmd4para4[nn]=0;
}
SharedMem::write()->nrOfCmds4InQueue=0;
}
bool sendWRcmd_setSendCommand4(uint16_t nextCmd, uint8_t dat1, uint8_t dat2, uint8_t dat3, uint8_t dat4)
{
// write Command to memory, wait for transport
uint8_t ciq;
ciq=SharedMem::read()->nrOfCmds4InQueue;
if (ciq>=CMD4STACKDEPTH)
{
qDebug() << "cannot save cmd because stack is full";
return false; // not possible
}
SharedMem::write()->nextAsynchsendCmd4[ciq]=nextCmd;
SharedMem::write()->nextCmd4para1[ciq]=dat1;
SharedMem::write()->nextCmd4para2[ciq]=dat2;
SharedMem::write()->nextCmd4para3[ciq]=dat3;
SharedMem::write()->nextCmd4para4[ciq]=dat4;
ciq++;
SharedMem::write()->nrOfCmds4InQueue=ciq;
//qDebug() << QDateTime::currentDateTime().time()
// << "sendWRcmd 4 byte saved, pp=" << nextCmd
// << " para: " << SharedMem::getDataConst()->nextCmd4para1[pp];
return true; // ok, will be sent
}
*/
/*
uint16_t sendWRcmd_getSendCommand4(uint8_t *dat1, uint8_t *dat2, uint8_t *dat3, uint8_t *dat4)
{
uint16_t nxtAsynchCmd;
uint8_t nn, ll;
if (nrOfCmds4InQueue==0 || nrOfCmds4InQueue>CMD4STACKDEPTH)
return 0; // error
nxtAsynchCmd=nextAsynchsendCmd4[0];
*dat1=nextCmd4para1[0];
*dat2=nextCmd4para2[0];
*dat3=nextCmd4para3[0];
*dat4=nextCmd4para4[0];
//qDebug() << "cmd4 restored to send from [0]; pp=" << nrOfCmds4InQueue;
//qDebug() << " data1: " << nextCmd4para1[0] << " data2: " << nextCmd4para2[0] <<
// " data3: " << nextCmd4para3[0] << " data4: " << nextCmd4para4[0];
// move Puffer down by one element
if (CMD4STACKDEPTH>0)
ll=CMD4STACKDEPTH-1;
else
ll=0;
for (nn=0; nn<ll; nn++)
{
nextAsynchsendCmd4[nn]=nextAsynchsendCmd4[nn+1];
nextCmd4para1[nn]=nextCmd4para1[nn+1];
nextCmd4para2[nn]=nextCmd4para2[nn+1];
nextCmd4para3[nn]=nextCmd4para3[nn+1];
nextCmd4para4[nn]=nextCmd4para4[nn+1];
}
if (nrOfCmds4InQueue>0)
nrOfCmds4InQueue--;
//qDebug() << "cmd4 after push down: pp=" << nrOfCmds4InQueue;
return nxtAsynchCmd;
}
*/
/*
uint16_t sendWRcmd_getSendCommand4(uint8_t *dat1, uint8_t *dat2, uint8_t *dat3, uint8_t *dat4)
{
uint16_t nxtAsynchCmd, data;
uint8_t nn;
uint8_t ciq=SharedMem::read()->nrOfCmds4InQueue;
if (ciq==0 || ciq > CMD4STACKDEPTH)
return 0; // error
nxtAsynchCmd=SharedMem::read()->nextAsynchsendCmd4[0];
*dat1=SharedMem::read()->nextCmd4para1[0];
*dat2=SharedMem::read()->nextCmd4para2[0];
*dat3=SharedMem::read()->nextCmd4para3[0];
*dat4=SharedMem::read()->nextCmd4para4[0];
//qDebug() << "cmd4 restored to send from [0]; pp=" << nrOfCmds4InQueue;
//qDebug() << " data1: " << nextCmd4para1[0] << " data2: " << nextCmd4para2[0] <<
// " data3: " << nextCmd4para3[0] << " data4: " << nextCmd4para4[0];
// move Puffer down by one element
if (ciq>0) ciq--;
for (nn=0; nn<ciq; nn++)
{
data=SharedMem::read()->nextAsynchsendCmd4[nn+1];
SharedMem::write()->nextAsynchsendCmd4[nn]=data;
data=SharedMem::read()->nextCmd4para1[nn+1];
SharedMem::write()->nextCmd4para1[nn]=data;
data=SharedMem::read()->nextCmd4para2[nn+1];
SharedMem::write()->nextCmd4para2[nn]=data;
data=SharedMem::read()->nextCmd4para3[nn+1];
SharedMem::write()->nextCmd4para3[nn]=data;
data=SharedMem::read()->nextCmd4para4[nn+1];
SharedMem::write()->nextCmd4para4[nn]=data;
}
SharedMem::write()->nrOfCmds4InQueue=ciq;
return nxtAsynchCmd;
}
*/
/*
void sendWRcmd_clrCmd8Stack(void)
{
uint8_t nn;
for (nn=0; nn<CMD8STACKDEPTH; nn++)
{
SharedMem::write()->nextAsynchsendCmd8[nn]=0;
SharedMem::write()->nextCmd8para1[nn]=0;
SharedMem::write()->nextCmd8para2[nn]=0;
SharedMem::write()->nextCmd8para3[nn]=0;
SharedMem::write()->nextCmd8para4[nn]=0;
}
SharedMem::write()->nrOfCmds8InQueue=0;
}
bool sendWRcmd_setSendCommand8(uint16_t nextCmd, uint8_t dat1, uint8_t dat2, uint16_t dat3, uint32_t dat4)
{
// write Command to memory, wait for transport
uint8_t ciq;
ciq=SharedMem::read()->nrOfCmds8InQueue;
if (ciq>=CMD8STACKDEPTH)
{
qDebug() << "cannot save cmd because stack is full";
return false; // not possible
}
SharedMem::write()->nextAsynchsendCmd8[ciq]=nextCmd;
SharedMem::write()->nextCmd8para1[ciq]=dat1;
SharedMem::write()->nextCmd8para2[ciq]=dat2;
SharedMem::write()->nextCmd8para3[ciq]=dat3;
SharedMem::write()->nextCmd8para4[ciq]=dat4;
ciq++;
SharedMem::write()->nrOfCmds8InQueue=ciq;
return true; // ok, will be sent
}
uint16_t sendWRcmd_getSendCommand8(uint8_t *dat1, uint8_t *dat2, uint16_t *dat3, uint32_t *dat4)
{
uint16_t nxtAsynchCmd, data;
uint8_t nn;
uint8_t ciq=SharedMem::read()->nrOfCmds8InQueue;
if (ciq==0 || ciq > CMD8STACKDEPTH)
return 0; // error
nxtAsynchCmd=SharedMem::read()->nextAsynchsendCmd8[0];
*dat1=SharedMem::read()->nextCmd8para1[0];
*dat2=SharedMem::read()->nextCmd8para2[0];
*dat3=SharedMem::read()->nextCmd8para3[0];
*dat4=SharedMem::read()->nextCmd8para4[0];
// move buffer down by one element
if (ciq>0) ciq--;
for (nn=0; nn<ciq; nn++)
{
data=SharedMem::read()->nextAsynchsendCmd8[nn+1];
SharedMem::write()->nextAsynchsendCmd8[nn]=data;
data=SharedMem::read()->nextCmd8para1[nn+1];
SharedMem::write()->nextCmd8para1[nn]=data;
data=SharedMem::read()->nextCmd8para2[nn+1];
SharedMem::write()->nextCmd8para2[nn]=data;
data=SharedMem::read()->nextCmd8para3[nn+1];
SharedMem::write()->nextCmd8para3[nn]=data;
data=SharedMem::read()->nextCmd8para4[nn+1];
SharedMem::write()->nextCmd8para4[nn]=data;
}
SharedMem::write()->nrOfCmds8InQueue=ciq;
return nxtAsynchCmd;
}
*/
//static uint8_t sendAsynchDataBuf[160]; // no stack, only ONE buffer
//static uint8_t sendAsyDatLen;
bool sendWRcmd_setSendBlock160(uint8_t leng, uint8_t *buf)
{
if (leng>SENDASYDAT_BUFFSIZE) leng=SENDASYDAT_BUFFSIZE;
SharedMem::write()->sendAsyDatLen=leng;
tslib_strclr(SharedMem::write()->sendAsynchDataBuf, 0, SENDASYDAT_BUFFSIZE);
for (uint8_t nn=0; nn<leng; nn++)
SharedMem::write()->sendAsynchDataBuf[nn]=buf[nn];
return true; // ok, will be sent
}
uint8_t sendWRcmd_getSendBlock160(uint8_t *leng, uint8_t *buf)
{
uint8_t dl=SharedMem::read()->sendAsyDatLen;
*leng=dl;
for (uint8_t nn=0; nn<dl; nn++)
buf[nn]=SharedMem::read()->sendAsynchDataBuf[nn];
SharedMem::write()->sendAsyDatLen=0;
//tslib_strclr(SharedMem::write()->sendAsynchDataBuf, 0, SENDASYDAT_BUFFSIZE);
return *leng;
}
// ------------------------------------------------------------------------------------
// MDB Sendind Data are store here for next transport to DC (Device Controller)
// Transport to Slave runs every 100ms, answer from mdb-slave (e.g. coin changer) comes rigth
// with next slave answer
// start with: SENDDIRCMD_EXCHGMDB,
// send crude data from here to DC, DC to mdb slaves, mdb answer, return here within 50ms
//static uint8_t Sdata_mdbSendBuffer[MDBSEND_BUFFSIZE];
//static uint8_t Sdata_mdbSendLen;
/*
uint8_t epi_store64ByteSendData(uint8_t length, uint8_t *buf)
{
if (length>MDBSEND_BUFFSIZE) length=MDBSEND_BUFFSIZE;
// HWapi writes data to be forwarded to DC and further to mdb-device
for (uint8_t nn=0; nn<length; nn++)
SharedMem::write()->Sdata_mdbSendBuffer[nn]=buf[nn];
SharedMem::write()->Sdata_mdbSendLen=length;
return 0;
}
uint8_t gpi_restore64ByteSendData(uint8_t *length, uint8_t *buf)
{
// datif reads data to forward to dc
uint8_t dl=SharedMem::read()->Sdata_mdbSendLen;
for (uint8_t nn=0; nn<dl; nn++)
buf[nn]=SharedMem::read()->Sdata_mdbSendBuffer[nn];
*length=dl;
SharedMem::write()->Sdata_mdbSendLen=0;
return 0;
}
*/
//------------------------------------------------------------------------------------
//------------------------------------------------------------------------------------
//---------------------------------------- Printer Text Fifo -------------------------
//static uint8_t prnDataParameters[];
//static uint8_t prnDataBufferUser;
/*
void epi_storeUserOfSendingTextBuffer(uint8_t user, uint8_t para1, uint8_t para2, uint8_t para3, uint8_t para4 )
{
// user=1: Text-Print is using this buffer
// 2: QR-code-Printer is using this buffer
SharedMem::write()->prnDataBufferUser=user;
SharedMem::write()->prnDataParameters[0]=para1;
SharedMem::write()->prnDataParameters[1]=para2;
SharedMem::write()->prnDataParameters[2]=para3;
SharedMem::write()->prnDataParameters[3]=para4;
// qDebug() << "new user stored: " << user;
}
uint8_t gpi_getUserOfSendingTextBuffer(uint8_t *para1, uint8_t *para2, uint8_t *para3, uint8_t *para4)
{
// user=1: Text-Print is using this buffer
// 2: QR-code-Printer is using this buffer
//qDebug() << "returning user "<< prnDataBufferUser;
*para1=SharedMem::read()->prnDataParameters[0];
*para2=SharedMem::read()->prnDataParameters[1];
*para3=SharedMem::read()->prnDataParameters[2];
*para4=SharedMem::read()->prnDataParameters[3];
return SharedMem::read()->prnDataBufferUser;
}
*/
// Sending Text Fifo
// ONE printer doc consists of 20 x 64 byte
// #define MAXNROF_PRNBYTES 64
// #define MAXNROF_PRNBLOCKS 20
//static char Sdata_PRN_TEXT[MAXNROF_PRNBLOCKS][MAXNROF_PRNBYTES];
//static uint8_t pPrnDataBuff; // points to next PRINTER_BLOCK
//static uint8_t pPrnDataBuff; // points to next waiting printer text
// defined above, needed if more then one text is stored (before sent)
// every block will be sent after 100ms, if 8 blocks are stored within this 100ms
// then pointer goes up to 8. Important: FIFO!!!!!!!!
/*
void epi_resetPrinterStack(void)
{
SharedMem::write()->pPrnDataBuff=0;
}
uint8_t epi_storePrnText(char *buf, uint8_t leng)
{
// store text from Gui in next higher free memory 0....9
uint16_t len;
uint8_t pp, nn;
pp=SharedMem::read()->pPrnDataBuff; // next free memory block with 64byte each
if (pp>=MAXNROF_PRNBLOCKS)
return 1; // not possible, no free mem
//len=tslib_strlen(buf); // kennt keine Binärzeichen!!!!!!
len=leng;
if (len>MAXNROF_PRNBYTES)
len=MAXNROF_PRNBYTES;
tslib_strclr(SharedMem::write()->Sdata_PRN_TEXT[pp], 0, MAXNROF_PRNBYTES);
for (nn=0; nn<len; nn++)
SharedMem::write()->Sdata_PRN_TEXT[pp][nn]=buf[nn]; // copy new text into buffer
if (SharedMem::read()->pPrnDataBuff<MAXNROF_PRNBLOCKS)
SharedMem::write()->pPrnDataBuff++; // inc pointer if end not yet reached
return 0; // OK
}
uint8_t gpi_restorePrnText(uint8_t *retbuf)
{
// read printer text and send to slave, size of retbuf == 64
// always read from [0] because this is the oldest (Fifo)
// then move all text lines down by one and dec pointer
uint8_t nn, mm, pp=SharedMem::read()->pPrnDataBuff;
char buf[MAXNROF_PRNBYTES];
if (pp==0) // next free memory block with 64byte each
return 1; // no text in buffer
// example: pp=5: then buffers [0...4] are occupied
for (nn=0; nn<MAXNROF_PRNBYTES; nn++)
retbuf[nn] = uint8_t (SharedMem::read()->Sdata_PRN_TEXT[0][nn]); // restore oldest text
// now copy textline [1] to [0], then
// copy textline [2] to [1], then
// copy textline [3] to [2] .... upto [pp-1] to [pp-2]
// hint: copying from 9....0 would delete all strings!!!!!!
for (nn=0; nn<(pp-1); nn++)
{
for (mm=0; mm<MAXNROF_PRNBYTES; mm++)
buf[mm]=SharedMem::read()->Sdata_PRN_TEXT[nn+1][mm];
for (mm=0; mm<MAXNROF_PRNBYTES; mm++)
SharedMem::write()->Sdata_PRN_TEXT[nn][mm]=buf[mm];
}
if (pp>0) pp--;
SharedMem::write()->pPrnDataBuff=pp;
// example: pp=4: then buffers [0...3] are still occupied, pp=0: all buffers empty
// now clear highest copyed line (which became free now)
tslib_strclr(SharedMem::write()->Sdata_PRN_TEXT[pp], 0, MAXNROF_PRNBYTES);
// optionally: clear all remaining higher lines:
for (nn=(pp+1); nn<MAXNROF_PRNBLOCKS; nn++)
tslib_strclr(SharedMem::write()->Sdata_PRN_TEXT[nn], 0, MAXNROF_PRNBYTES);
return 0;
}
uint8_t gpi_chk4remainingText(void)
{
// retval: 0: no more textline left (to send) >0: nr of 64byte-blocks
return (SharedMem::read()->pPrnDataBuff);
}
*/
// ---------------------------------------------------------------------------------
// 11.4.23 neu, Kommando direkt an "FastDevice"-protokoll senden, nicht mehr umsetzen
// ---------------------------------------------------------------------------------
/*
// header
static uint8_t nextFDwrCmd[FDCMD_STACKDEPTH];
static uint8_t nextFDrdCmd[FDCMD_STACKDEPTH];
static uint8_t nextFDblkNr[FDCMD_STACKDEPTH];
static uint8_t nextFDshort[FDCMD_STACKDEPTH];
// short data
static uint8_t nextFDpara1[FDCMD_STACKDEPTH];
static uint8_t nextFDpara2[FDCMD_STACKDEPTH];
static uint8_t nextFDpara3[FDCMD_STACKDEPTH];
static uint8_t nextFDpara4[FDCMD_STACKDEPTH];
// long data:
static uint8_t longFDlength[FDCMD_STACKDEPTH];
static uint8_t longFDpara[FDCMD_STACKDEPTH][64];
static uint8_t p_nextFDcmdsInQueue;
*/
/* convention: use simple (not rotating) FIFO Stack:
Example: nrOfCmdsInQueue=4 then
nextAsynchsendCmd0[0]=cmd1 // was stored as first
nextAsynchsendCmd0[1]=cmd2
nextAsynchsendCmd0[2]=cmd3
nextAsynchsendCmd0[3]=cmd4 // came in as last
Send: [0] first, then move buffer 1 down:
nextAsynchsendCmd0[0]=cmd2
nextAsynchsendCmd0[1]=cmd3
nextAsynchsendCmd0[2]=cmd4
nextAsynchsendCmd0[3]=0;
nrOfCmdsInQueue=3 now
*/
void sendFDcmd_clrStack(void)
{
uint8_t nn;
for (nn=0; nn<FDCMD_STACKDEPTH; nn++)
{
SharedMem::write()->nextFDwrCmd[nn]=0;
SharedMem::write()->nextFDrdCmd[nn]=0;
SharedMem::write()->nextFDblkNr[nn]=0;
SharedMem::write()->nextFDshort[nn]=0;
SharedMem::write()->nextFDpara1[nn]=0;
SharedMem::write()->nextFDpara2[nn]=0;
SharedMem::write()->nextFDpara3[nn]=0;
SharedMem::write()->nextFDpara4[nn]=0;
SharedMem::write()->longFDlength[nn]=0;
memset(&SharedMem::write()->longFDpara[nn][0],0,64);
}
SharedMem::write()->p_nextFDcmdsInQueue=0;
}
bool sendFDcmd_set(uint8_t nextWrCmd, uint8_t nextRdCmd, uint8_t blockNum, uint8_t dat1, uint8_t dat2, uint8_t dat3, uint8_t dat4)
{
// write Command to memory, wait for transport
uint8_t pFDcmd=SharedMem::read()->p_nextFDcmdsInQueue;
if (pFDcmd >=FDCMD_STACKDEPTH)
{
qDebug() << "cannot save cmd because stack is full";
return false; // not possible
}
SharedMem::write()->nextFDwrCmd[pFDcmd]=nextWrCmd;
SharedMem::write()->nextFDrdCmd[pFDcmd]=nextRdCmd;
SharedMem::write()->nextFDblkNr[pFDcmd]=blockNum;
SharedMem::write()->nextFDpara1[pFDcmd]=dat1;
SharedMem::write()->nextFDpara2[pFDcmd]=dat2;
SharedMem::write()->nextFDpara3[pFDcmd]=dat3;
SharedMem::write()->nextFDpara4[pFDcmd]=dat4;
//qDebug() << "data with 4 data byte saved, pp=" << pFDcmd;
//qDebug() << " dat1=" << nextCmd4para1[pFDcmd] << " dat2=" << nextCmd4para2[pFDcmd]
// << " dat3=" << nextCmd4para3[pFDcmd] << " dat4=" << nextCmd4para4[pFDcmd];
SharedMem::write()->nextFDshort[pFDcmd]=1; // 1=short
pFDcmd++;
SharedMem::write()->p_nextFDcmdsInQueue=pFDcmd;
return true; // ok, will be sent
}
bool longFDcmd_set(uint8_t nextWrCmd, uint8_t nextRdCmd, uint8_t blockNum, uint8_t length, uint8_t *data)
{
// write Command to memory, wait for transport
// data buffer size always 64! data[64], padded with 0
uint8_t nn;
uint8_t pFDcmd=SharedMem::read()->p_nextFDcmdsInQueue;
if (pFDcmd>=FDCMD_STACKDEPTH)
{
qDebug() << "cannot save cmd because stack is full";
return false; // not possible
}
SharedMem::write()->nextFDwrCmd[pFDcmd]=nextWrCmd;
SharedMem::write()->nextFDrdCmd[pFDcmd]=nextRdCmd;
SharedMem::write()->nextFDblkNr[pFDcmd]=blockNum;
SharedMem::write()->longFDlength[pFDcmd]=length;
for (nn=0; nn<64; nn++)
SharedMem::write()->longFDpara[pFDcmd][nn]=data[nn];
SharedMem::write()->nextFDshort[pFDcmd]=2;
pFDcmd++;
SharedMem::write()->p_nextFDcmdsInQueue=pFDcmd;
return true; // ok, will be sent
}
bool longFDcmd_set(uint8_t nextWrCmd, uint8_t nextRdCmd, uint8_t blockNum, uint8_t length, QByteArray *data)
{
// write Command to memory, wait for transport
// data buffer size always 64! data[64], padded with 0
uint8_t nn;
uint8_t pFDcmd=SharedMem::read()->p_nextFDcmdsInQueue;
char ctmp;
if (pFDcmd>=FDCMD_STACKDEPTH)
{
qDebug() << "cannot save cmd because stack is full";
return false; // not possible
}
SharedMem::write()->nextFDwrCmd[pFDcmd]=nextWrCmd;
SharedMem::write()->nextFDrdCmd[pFDcmd]=nextRdCmd;
SharedMem::write()->nextFDblkNr[pFDcmd]=blockNum;
SharedMem::write()->longFDlength[pFDcmd]=length;
for (nn=0; nn<64; nn++)
{
ctmp=data->at(nn);
SharedMem::write()->longFDpara[pFDcmd][nn]=ctmp;
}
SharedMem::write()->nextFDshort[pFDcmd]=2;
pFDcmd++;
SharedMem::write()->p_nextFDcmdsInQueue=pFDcmd;
return true; // ok, will be sent
}
bool sendFDcmd_get(uint8_t *nextWrCmd, uint8_t *nextRdCmd, uint8_t *blockNum, uint8_t *dat1, uint8_t *dat2, uint8_t *dat3, uint8_t *dat4)
{
uint8_t nn, mm, data; // ll
uint8_t pFDcmd=SharedMem::read()->p_nextFDcmdsInQueue;
if (pFDcmd==0 || pFDcmd>FDCMD_STACKDEPTH)
return false; // not possible
*nextWrCmd=SharedMem::read()->nextFDwrCmd[0];
*nextRdCmd=SharedMem::read()->nextFDrdCmd[0];
*blockNum=SharedMem::read()->nextFDblkNr[0];
*dat1=SharedMem::read()->nextFDpara1[0];
*dat2=SharedMem::read()->nextFDpara2[0];
*dat3=SharedMem::read()->nextFDpara3[0];
*dat4=SharedMem::read()->nextFDpara4[0];
//qDebug() << "sendFDcmd_get [0]; pp=" << SharedMem::read()->p_nextFDcmdsInQueue;
//qDebug() << " data1: " << SharedMem::read()->nextCmd4para1[0] << " data2: " << SharedMem::read()->nextCmd4para2[0] <<
// " data3: " << SharedMem::read()->nextCmd4para3[0] << " data4: " << SharedMem::read()->nextCmd4para4[0];
// move Puffer down by one element
//if (FDCMD_STACKDEPTH>0)
// ll=FDCMD_STACKDEPTH-1;
//else
// ll=0;
if (pFDcmd>0) pFDcmd--; else pFDcmd=0;
//for (nn=0; nn<ll; nn++)
for (nn=0; nn<pFDcmd; nn++)
{
data=SharedMem::read()->nextFDwrCmd[nn+1];
SharedMem::write()->nextFDwrCmd[nn]=data;
data=SharedMem::read()->nextFDrdCmd[nn+1];
SharedMem::write()->nextFDrdCmd[nn]=data;
data=SharedMem::read()->nextFDblkNr[nn+1];
SharedMem::write()->nextFDblkNr[nn]=data;
data=SharedMem::read()->nextFDpara1[nn+1];
SharedMem::write()->nextFDpara1[nn]=data;
data=SharedMem::read()->nextFDpara2[nn+1];
SharedMem::write()->nextFDpara2[nn]=data;
data=SharedMem::read()->nextFDpara3[nn+1];
SharedMem::write()->nextFDpara3[nn]=data;
data=SharedMem::read()->nextFDpara4[nn+1];
SharedMem::write()->nextFDpara4[nn]=data;
data=SharedMem::read()->nextFDshort[nn+1];
SharedMem::write()->nextFDshort[nn] = data;
data=SharedMem::read()->longFDlength[nn+1];
SharedMem::write()->longFDlength[nn] = data;
for (mm=0; mm<64; mm++)
{
SharedMem::write()->longFDpara[nn][mm] = SharedMem::read()->longFDpara[nn+1][mm];
}
}
SharedMem::write()->p_nextFDcmdsInQueue=pFDcmd;
//qDebug() << "cmd4 after push down: pp=" << nrOfCmds4InQueue;
// clear released buffer:
//for (nn=p_nextFDcmdsInQueue; nn<FDCMD_STACKDEPTH; nn++)
//{
SharedMem::write()->nextFDwrCmd[pFDcmd]=0;
SharedMem::write()->nextFDrdCmd[pFDcmd]=0;
SharedMem::write()->nextFDblkNr[pFDcmd]=0;
SharedMem::write()->nextFDpara1[pFDcmd]=0;
SharedMem::write()->nextFDpara2[pFDcmd]=0;
SharedMem::write()->nextFDpara3[pFDcmd]=0;
SharedMem::write()->nextFDpara4[pFDcmd]=0;
SharedMem::write()->nextFDshort[pFDcmd]=0;
SharedMem::write()->longFDlength[pFDcmd]=0;
for (mm=0; mm<64; mm++)
SharedMem::write()->longFDpara[pFDcmd][mm] = 0;
//}
/*
qDebug() << "sendFDcmd_set, stack now: " << p_nextFDcmdsInQueue;
for (nn=0; nn<16; nn++)
{
qDebug() << "header: " << nextFDwrCmd[nn] << " / " << nextFDrdCmd[nn] << " / "<< nextFDblkNr[nn] << " / " << nextFDshort[nn];
qDebug() << " short data: " << nextFDpara1[nn] << " / "<< nextFDpara2[nn] << " / "<< nextFDpara3[nn]<< " / "<< nextFDpara4[nn];
qDebug() << " long data: " << longFDlength[nn] << " / "<< longFDpara[nn][0] << " / "<< longFDpara[nn][1]
<< " / "<< longFDpara[nn][2] << " / "<< longFDpara[nn][3] << " / "<< longFDpara[nn][4];
}
*/
return true; // ok, will be sent
}
uint8_t checkNextFDcmd(void)
{
// return 0: no command waiting
// 1: short cmd
// 2: long cmd
//qDebug() << "chk nxt fd cmd: "<<p_nextFDcmdsInQueue<<" "<<nextFDshort[0]<<" "<<nextFDshort[1]<<" "<<nextFDshort[2]<<" "<<nextFDshort[3];
if (SharedMem::read()->p_nextFDcmdsInQueue==0)
return 0;
if (SharedMem::read()->nextFDshort[0]==1)
return 1;
return 2;
}
uint8_t check4usedFDstack(void)
{
// returns number of waiting command, max FDCMD_STACKDEPTH
return SharedMem::read()->p_nextFDcmdsInQueue;
}
uint8_t check4freeFDstack(void)
{
// returns number of free places in command stack
return FDCMD_STACKDEPTH - SharedMem::read()->p_nextFDcmdsInQueue;
}
bool longFDcmd_get(uint8_t *nextWrCmd, uint8_t *nextRdCmd, uint8_t *blockNum, uint8_t *length, uint8_t *data)
{
uint8_t nn, mm, uctmp;
uint8_t pFDcmd=SharedMem::read()->p_nextFDcmdsInQueue;
if (pFDcmd==0 || pFDcmd>FDCMD_STACKDEPTH)
return false; // not possible
*nextWrCmd=SharedMem::read()->nextFDwrCmd[0];
*nextRdCmd=SharedMem::read()->nextFDrdCmd[0];
*blockNum=SharedMem::read()->nextFDblkNr[0];
*length = SharedMem::read()->longFDlength[0];
for (mm=0; mm<64; mm++)
data[mm] = SharedMem::read()->longFDpara[0][mm];
if (pFDcmd>0) pFDcmd--; else pFDcmd=0;
//for (nn=0; nn<ll; nn++)
for (nn=0; nn<pFDcmd; nn++)
{
uctmp=SharedMem::read()->nextFDwrCmd[nn+1];
SharedMem::write()->nextFDwrCmd[nn]=uctmp;
uctmp=SharedMem::read()->nextFDrdCmd[nn+1];
SharedMem::write()->nextFDrdCmd[nn]=uctmp;
uctmp=SharedMem::read()->nextFDblkNr[nn+1];
SharedMem::write()->nextFDblkNr[nn]=uctmp;
uctmp=SharedMem::read()->nextFDpara1[nn+1];
SharedMem::write()->nextFDpara1[nn]=uctmp;
uctmp=SharedMem::read()->nextFDpara2[nn+1];
SharedMem::write()->nextFDpara2[nn]=uctmp;
uctmp=SharedMem::read()->nextFDpara3[nn+1];
SharedMem::write()->nextFDpara3[nn]=uctmp;
uctmp=SharedMem::read()->nextFDpara4[nn+1];
SharedMem::write()->nextFDpara4[nn]=uctmp;
uctmp=SharedMem::read()->nextFDshort[nn+1];
SharedMem::write()->nextFDshort[nn]=uctmp;
uctmp=SharedMem::read()->longFDlength[nn+1];
SharedMem::write()->longFDlength[nn]=uctmp;
for (mm=0; mm<64; mm++)
{
SharedMem::write()->longFDpara[nn][mm] = SharedMem::read()->longFDpara[nn+1][mm];
}
}
SharedMem::write()->p_nextFDcmdsInQueue=pFDcmd;
// clear released buffer:
SharedMem::write()->nextFDwrCmd[pFDcmd]=0;
SharedMem::write()->nextFDrdCmd[pFDcmd]=0;
SharedMem::write()->nextFDblkNr[pFDcmd]=0;
SharedMem::write()->nextFDpara1[pFDcmd]=0;
SharedMem::write()->nextFDpara2[pFDcmd]=0;
SharedMem::write()->nextFDpara3[pFDcmd]=0;
SharedMem::write()->nextFDpara4[pFDcmd]=0;
SharedMem::write()->nextFDshort[pFDcmd]=0;
SharedMem::write()->longFDlength[pFDcmd]=0;
for (mm=0; mm<64; mm++)
SharedMem::write()->longFDpara[pFDcmd][mm] = 0;
return true; // ok, will be sent
}