
0
Preface

This book is about porting software between UNIX platforms, the process of taking a soft-
ware package in source form and installing it on your machine. This doesn’t sound like a big
deal at first, but there’s more to it than meets the eye: you need to know how to get the soft-
ware, how to unpack what you get, how to modify the package so that it will compile on your
system, how to compile and install the software on your system, and how to deal with prob-
lems if they crop up.

Nevertheless, it doesn’t inv olve anything that hasn’t already been done to death in hundreds of
well-written books: you can find out about getting software from the Internet in The Whole
Internet User’s Guide and Catalog, by Ed Krol. Unpacking software is basically a matter of
using standard tools described in dozens of good introductory textbooks. Compiling pro-
grams is so simple that most C textbooks deal with it in passing. Installation is just a matter
of copying software to where you want it. Programming is the meat of lots of books on UNIX
programming, for example Advanced Programming in the UNIX environment by Richard
Stevens,

So why yet another book?

Most textbooks give you an idealized view of programming: “This is the way to do it” (“and it
works”). They pay little attention to the ways things can go wrong. UNIX is famed for cryp-
tic or misleading error messages, but not many books go into the details of why they appear or
what they really mean. Even experienced programmers frequently give up when trying to port
software. The probable advantage of completing the port just isn’t worth effort that it takes.
In this book, I’d like to reduce that effort.

If you take all the books I just mentioned, you’ll have to find about 3 feet of shelf space to
hold them. They’re all good, but they contain stuff that you don’t really want to know about
right now (in fact, you’re probably not sure if you ever want to know all of it). Maybe you
have this pressing requirement to get this debugger package, or maybe you finally want to get
the latest version of nethack up and running, complete with X11 support, and the last thing
you want to do on the way is go through those three feet of paper.

That’s where this book comes in. It covers all issues of porting, from finding the software
through porting and testing up to the final installation, in the sequence in which you perform
them. It goes into a lot of detail comparing the features of many different UNIX systems, and
offers suggestions about how to emulate features not available on the platform to which you

i

5 February 2005 02:09

ii

are porting. It views the problems from a practical rather than from a theoretical perspective.
You probably won’t know any more after reading it than you would after reading the in-depth
books, but I hope that you’ll find the approach more related to your immediate problems.

Audience
This book is intended for anybody who has to take other people’s software and compile it on a
UNIX platform. It should be of particular interest to you if you’re:

• A software developer porting software to a new platform.

• A system administrator collecting software products for your system.

• A computer hobbyist collecting software off the Internet.

Whatever your interest, I expect that you’ll know UNIX basics. If you’re a real newcomer,
you might like to refer to Learning the UNIX Operating System, by Grace Todino, John
Strang and Jerry Peek. In addition, UNIX in a Nutshell, available in BSD and System V
flavours, includes a lot of reference material which I have not repeated in this book.

The less you already know, the more use this book is going to be to you, of course. Neverthe-
less, even if you’re an experienced programmer, you should find a number of tricks to make
life easier.

Organization
One of the big problems in porting software is that you need to know everything first. While
writing this book I had quite a problem deciding the order in which to present the material. In
the end, I took a two-pronged approach, and divided this book into two major parts:

1. In the first part, we’ll look at the stages through which a typical port passes: getting the
software, extracting the source archives, configuring the package, compiling the soft-
ware, testing the results, and installing the completed package.

2. In the second part, we’ll take a look at the differences between different flavours of
UNIX, how they can make life hard for you, and how we can solve the problems.

Operating System Versions
Nearly everything in this book is related to one version or another of UNIX,* and a lot of the
text only makes sense in a UNIX context. Nevertheless, it should be of some use to users of
other operating systems that use the C programming language and UNIX tools such as make.

As in any book about UNIX, it’s difficult to give complete coverage to all flavours. The
examples in this book were made with six different hardware/software platforms:

* UNIX is, of course, a registered trademark of its current owner. In this context, I am referring to any
operating system that presents a UNIX-like interface to the user and the programmer.

5 February 2005 02:09

Preface iii

• SCO XENIX/386 on an Intel 386 architecture (version 2.3.2).

• UNIX System V.3 on an Intel 386 architecture (Interactive UNIX/386 version 2.2).

• UNIX System V.4.2 on an Intel 386 architecture (Consensys V4.2).

• BSD on an Intel 386 architecture (BSD/386* 1.1 and FreeBSD).

• SunOS on a Sparc architecture (SunOS 4.1.3).

• IRIX 5.3 on an SGI Indy Workstation (mainly System V.4).

This looks like a strong bias towards Intel architectures. However, most problems are more
related to the software platform than the hardware platform. The Intel platform is unique in
offering almost every flavour of UNIX that is currently available, and it’s easier to compare
them if the hardware is invariant. I believe these examples to be representative of what you
might find on other hardware.

The big difference in UNIX flavours is certainly between UNIX System V.3 and BSD, while
System V.4 represents the logical sum of both of them. At a more detailled level, every sys-
tem has its own peculiarities: there is hardly a system available which doesn’t hav e its own
quirks. These quirks turn out to be the biggest problem that you will have to fight when port-
ing software. Even software that ported just fine on the previous release of your operating
system may suddenly turn into an error message generator.

Conventions used in this book
This book uses the following conventions:

Bold is used for the names of keys on the keyboard. We’ll see more about this in the next sec-
tion.

Italic is used for the names of UNIX utilities, directories and filenames, and to emphasize new
terms and concepts when they are first introduced.

Constant Width is used in examples to show the contents of files, the output from com-
mands, program variables, actual values of keywords, for the names of Usenet newsgroups,
and in the text to represent commands.

Constant Italic is used in examples to show variables for which context-specific substitu-
tions should be made. For example, the variable filename would be replaced by an actual
filename. In addition it is used for comments in code examples.

Constant Bold is used in examples to show commands or text that would be typed in liter-
ally by the user.

Most examples assume the use of the Bourne shell or one of its descendents such as the Korn
Shell, or the Free Software Foundation’s bash. Normally the prompt will be shown as the
default $, unless it is an operation that requires the superuser, in which case it will be shown
as #. When continuation lines are used, the prompt will be the standard >. In cases where the
command wouldn’t work with the C shell, I present an alternative. In the C shell examples,
the prompt is the default %.

* Later versions of this operating system are called BSD/OS.

5 February 2005 02:09

iv

I hav e tried to make the examples in this book as close to practice as possible, and most are
from real-life sources. A book is not a monitor, howev er, and displays that look acceptable
(well, recognizable) on a monitor can sometimes look really bad in print. In particular, the
utilities used in porting sometimes print out “lines” of several hundred characters. I hav e tried
to modify such output in the examples so that it fits on the page. For similar reasons, I have
modified the line breaks in some literally quoted texts, and have occasionally squeezed things
like long directory listings.

Describing the keyboard
It’s surprising how many confusing terms exist to describe individual keys on the keyboard.
My favourite is the any key (“Press any key to continue”). We won’t be using the any
key in this book, but there are a number of other keys whose names need understanding:

• The Enter or Return key. I’ll call this RETURN.

• Control characters (characters produced by holding down the CTRL key and pressing a
normal keyboard key at the same time). These characters are frequently echoed on the
screen as a caret (ˆ) followed by the character entered. In keeping with other Nutshell
books, I’ll write control-D as CTRL-D.

• The ALT key, which emacs afficionados call a META key, works like a second CTRL
key, but generates a different set of characters. These are sometimes abbreviated by pre-
fixing the character with a tilde (˜) or the characters A-. Although these are useful abbre-
viations, they can be confusing, so I’ll spell these out as CTRL-X and ALT-D, etc.

• NL is the new line character. In ASCII, it is CTRL-J, but UNIX systems generate it
when you press the RETURN key.

• CR is the carriage return character, in ASCII CTRL-M. Most systems generate it with
the RETURN key.

• HT is the ASCII horizontal tab character, CTRL-I. Most systems generate it when the
TAB key is pressed.

Terminology
Any technical book uses jargon and technical terms that are not generally known. I’ve tried to
recognize the ones used in this book and describe them when they occur. Apart from this, I
will be particularly pedantic about the way I use the following terms in this book:

program Everybody knows what a program is: a series of instructions to the computer
which, when executed, cause a specific action to take place. Source files don’t fit
this category: a source program (a term you won’t find again in this book) is
really a program source (a file that you can, under the correct circumstances, use
to create a program). A program may, howev er, be interpreted, so a shell script
may qualify as a program. So may something like an emacs macro, whether byte
compiled or not (since emacs can interpret uncompiled macros directly).

5 February 2005 02:09

Preface v

package A package is a collection of software maintained in a source tree. At various
stages in the build process, it will include

• source files: files that are part of the distribution.

• auxiliary files, like configuration information and object files that are not
part of the source distribution and will not be installed.

• installable files: files that will be used after the build process is complete.
These will normally be copied outside the source tree so that the source tree
can be removed, if necessary.

Some software does not require any conversion: you can just install the sources
straight out of the box. We won’t argue whether this counts as a package. It cer-
tainly shouldn’t giv e you any porting headaches.

We’ll use two other terms as well: building and porting. It’s difficult to come up with a hard-
and-fast distinction between the two—we’ll discuss the terms in Chapter 1, Introduction.

Acknowledgements
Without software developers all over the world, there would be nothing to write about. In par-
ticular, the Free Software Foundation and the Computer Sciences Research Group in Berkeley
(now defunct) have giv en rise to an incredible quantity of freely available software. Special
thanks go to the reviewers Larry Campbell and Matt Welsh, and particularly to James Cox,
Jerry Dunham, and Jörg Micheel for their encouragement and meticulous criticism of what
initially was just trying to be a book. Thanks also to Clive King of the University of Aberyst-
wyth for notes on data types and alignment, Steve Hiebert with valuable information about
HP-UX, and Henry Spencer and Jeffrey Friedl for help with regular expressions.

Finally, I can’t finish this without mentioning Mike Loukides and Andy Oram at O’Reilly and
Associates, who gently persuaded me to write a book about porting, rather than just present-
ing the reader with a brain dump.

5 February 2005 02:09

1
Introduction

One of the features that made UNIX successful was the ease with which it could be imple-
mented on new architectures. This advantage has its down side, which is very evident when
you compare UNIX with a single-platform operating system such as MS-DOS: since UNIX
runs on so many different architectures, it is not possible to write a program, distribute the
binaries, and expect them to run on any machine. Instead, programs need to be distributed in
source form, and installation involves compiling the programs for the target hardware. In
many cases, getting the software to run may be significantly more than just typing make.

What is porting?
It’s difficult to make a clear distinction between porting and building. In this book, we’ll use
three terms:

• building a package is the planned process of creating an installable software package.
This is essentially the content of Chapter 5, Building the package.

• installation is the planned process of putting an installable software package where users
can use it. This is what we talk about in Chapter 9, Installation.

• Some people use the term porting to describe a software installation requiring undocu-
mented changes to adapt it to a new environment, not including the process of configura-
tion if this is intended to be part of the build process. Although this is a useful definition,
it contains an element of uncertainty: when you start, you don’t know whether this is
going to be a build or a port. It’s easier to call the whole process porting, whether you
just have to perform a simple build or complicated modifications to the source. That’s
the way we’ll use the term in this book.

The effort required to port a package can vary considerably. If you are running a SparcStation
and get some software developed specifically for SparcStations, and the software does not
offer much in the way of configuration options, you probably really can get it to run by read-
ing the sources onto disk, and typing make and make install. This is the exception, how-
ev er, not the rule. Even with a SparcStation, you might find that the package is written for a
different release of the operating system, and that this fact requires significant modifications.
A more typical port might include getting the software, configuring the package, building the

1

5 February 2005 02:09

2

package, formatting and printing the documentation, testing the results and installing files in
the destination directories.

How long does it take?
It is very difficult to gauge the length of time a port will take to complete. If a port takes a
long time, it’s not usually because of the speed of the machine you use: few packages take
more than a few hours to compile on a fast workstation. Even the complete X11R6 window-
ing system takes only about 4 hours on a 66 MHz Intel 486 PC.

The real time-consumers are the bugs you might encounter on the way: if you’re unlucky, you
can run into big trouble, and you may find yourself getting to know the package you’re port-
ing much more intimately than you wish, or even having to find and fix bugs.

Probably the easiest kind of program to port is free software, that is to say, software that is
freely redistributable. As a result of the ease of redistribution, it tends to be ported more fre-
quently and to more platforms, so that configuration bugs get ironed out more evenly than in
commercial software. Porting a product like bison* from the Free Software Foundation is
usually just a matter of minutes:

$ configure
checking how to run the C preprocessor
... messages from configure
$ make
... messages from make
$ make install

On an Intel 486/66, configure runs for 15 seconds, make runs for about 85 seconds, and make
install runs for about 5 seconds—all in all, less than two minutes. If ev erything were that
simple, nobody would need this book.

On the other hand, this simple view omits a point or two. bison comes with typeset documen-
tation. Like most products of the Free Software Foundation, it is written in texinfo format,
which relies on TEX for formatting. It doesn’t get formatted automatically. In fact, if you
look for the target in the Makefile, you’ll find that there isn’t one: the Makefile ignores printed
documentation. I consider this a bug in the Makefile. Never mind, it’s easy enough to do it
manually:

$ tex bison.texinfo
tex: not found

This is a fairly typical occurrence in porting: in order to port a package, you first need to port
three other, more complicated packages. In fact, most ports of bison are made in order to
compile some other product, such as the GNU C compiler. In order to get our documentation
printed, we first need to port TEX, which is appropriately depicted in its own printed documen-
tation as a shaggy lion. This is definitely a non-trivial port: TEX consists of dozens of differ-
ent parts, the source tree varies greatly depending on where you get it from, the whole thing is
written in Web, Donald Knuth’s own private dialect of Pascal, and once you get it to run you

* bison is a parser generator, compatible with yacc.

5 February 2005 02:09

Chapter 1: Introduction 3

discover that the output (deliberately) does not match any printer available, and that you need
a so-called printer driver to output it to your favourite laser printer—yet another port.

Under these circumstances, it wouldn’t be surprising if you give up and rely on the online
documentation supplied with bison. bison has two different online reference documents: a
man page and something called info, a cross-linked documentation reader from the Free Soft-
ware Foundation. The man page is two pages long, the info runs to over 200K in five files.
There are no prizes for guessing where the real information is. But how do you run info?
Simple: you port the GNU texinfo package. This time it’s not quite as bad as porting TEX, but
it’s still more difficult than porting bison.

This scenario is fairly typical: you set out to port something simple, and everything seems to
be fine, and then you find that a minor part of the port can really take up lots of time. Typi-
cally, this is the point where most people give up and make do with what they hav e achieved.
This book is intended to help you go the whole distance.

Why we need to port
There are three main reasons why a port might be more than a simple recompilation:

• Different operating system. Depending on what features the operating system offers, the
program may need to be modified. For example, when porting a program from UNIX to
DOS, I will definitely have to do something about file naming conventions. If I port a
System V.4 program to BSD I may find I need to replace STREAMS calls with sockets
calls.

• Different hardware. This is obvious enough with something like a display driver. If the
driver you have is designed for a Sun workstation and you’re porting it to a PC, you will
be involved in some serious rewriting. Even in more mundane circumstances, things like
the kind of CPU involved might influence the program design.

• Local choices. These includes installation pathnames and cooperation with other
installed software. For example, if I use the emacs editor, I may choose to use the etags
program to cross-reference my source files; if I use vi, I would probably prefer to use
ctags. Depending on the C compiler, I may need to use different compilation options. In
many cases, this seems to be similar to the choice of operating system, but there is a sig-
nificant difference: in general, changing your kernel means changing your operating sys-
tem. You can change the C compiler or even the system library without changing the
basic system.

Unix flavours
UNIX spent the first ten years of its existence as the object of computer science research.
Developed in Bell Labs (part of AT&T), it was significantly extended in the University of Cal-
ifornia at Berkeley (UCB), which started releasing significant updates, the so-called Berkeley
Software Distribution (BSD) in 1977. By the time AT&T decided to commercialize UNIX
with System III in the early 80’s, the fourth BSD was already available, and both System III
and System V drew heavily from it. Nevertheless, the differences were significant, and

5 February 2005 02:09

4

despite the advent of System V.4, which basically just added all features available in any
UNIX dialect into one package, the differences remain. A good overview of the relationship
between the Unixes can be found on page 5 of The Design and the Implementation of the
4.3BSD UNIX Operating System by Sam Leffler, Kirk McKusick, Mike Karels and John
Quarterman. In this book I will concentrate on the differences that can be of importance when
porting from one flavour to another.

Research UNIX

Research UNIX is the original UNIX that has been developed inside Bell Labs since 1969.
The last version that became widely available was the Seventh Edition, in 1978. This version
can be considered the granddaddy of them all*, and is also frequently called Version 7. In this
book, I’ll make frequent references to this version. Work on Research UNIX continued until
1993, by which time it had reached the Tenth Edition. It’s unlikely that you’ll have much to
do with it directly, but occasionally ideas from Research UNIX trickle into other flavours.

Berkeley UNIX (BSD)

The first Berkeley Software Distribution was derived from the 6th edition in 1977 and ran on
PDP-11s only. 2BSD was the last PDP-11 version: 2.11BSD is still available for PDP-11s, if
you have a need (and a UNIX source licence). 3BSD was derived from 2BSD and the 7th edi-
tion — via a short-lived version called 32V—in 1979. Since then, BSD has evolved relatively
free of outside borrowings. With the closure of the Computer Science Research Group in
Berkeley in autumn 1993 and the release of 4.4BSD in early 1994, the original BSD line has
died out, but the public release of the complete sources will ensure the continued availability
of Berkeley UNIX for a long time to come.

Current BSD systems include BSD/OS (formerly called BSD/386), 386BSD, NetBSD and
FreeBSD. These were all originally ports of the BSD Net-2 tape, which was released in 1991,
to the Intel 386 architecture. These ports are interesting because they are almost pure BSD
and contain no AT&T licensed code. BSD/OS is a commercial system that costs money and
supplies support; the other three are available free of charge. It is not clear how long all three
free versions will continue to exist side-by-side. 386BSD may already be dead, and the differ-
ence between NetBSD and FreeBSD is difficult to recognize.

At the time of writing, current versions of BSD/OS and FreeBSD are based on 4.4BSD, and
NetBSD is planning to follow suit.

XENIX

XENIX is a version of UNIX developed by Microsoft for Intel architectures in the early 80s.
It was based mainly on the System III versions available at the time, though some ideas from
other versions were included and a significant amount of work was put into making it an eas-
ier system to live with. Not much effort was put into making it compatible with other versions
of UNIX, however, and so you can run into a few surprises with XENIX. SCO still markets it,

* In fact, a number of UNIX flavours, including System V and BSD, can trace their origins back to the
Sixth Edition of 1976, but they all benefitted from modifications made in the Seventh Edition.

5 February 2005 02:09

Chapter 1: Introduction 5

but dev elopment appears to have stopped about 1989.

System V

System V was derived from the 6th and 7th editions via System III, with a certain amount bor-
rowed from 4.0BSD. It has become the standard commercial UNIX, and is currently the only
flavour allowed to bear the UNIX trademark. It has evolved significantly since its introduc-
tion in 1982, with borrowings from Research UNIX and BSD at several points along the way.
Currently available versions are V.3 (SCO Open Desktop) and V.4 (almost everybody else).

System V.3 lacked a number of features available in other Unixes, with the result that almost
all V.3 ports have borrowed significantly from other versions, mainly 4.2BSD. The result is
that you can’t really be sure what you have with System V.3 — you need to consult the docu-
mentation for more information. In particular, vanilla System V.3 supports only the original
UNIX file system, with file names length limited to 14 characters and with no symbolic links.
It also does not have a standard data communications interface, though both BSD sockets and
System V STREAMS have been ported to it.

System V.3.2 is, as its name suggests, a version of System V.3. This version includes compati-
bility with XENIX system calls. As we saw above, XENIX went its own way for some time,
resulting in incompatibilities with System V. These XENIX features should be supported by
the kernel from System V.3.2 onwards. SCO UNIX is version V.3.2, and includes STREAMS
support.

System V.4 is the current version of System V. Previous versions of System V were often criti-
cized for lacking features. This cannot be said of System V.4: it incorporates System V.3.2
(which already incorporates XENIX), 4.3BSD, and SunOS. The result is an enormous system
which has three different ways to do many things. It also still has significant bugs.

Developing software under System V.4 is an interesting experience. Since the semantics of
System V.3 and BSD differ in some areas, System V.4 supplies two separate sets of libraries,
one with a System V personality and one with a BSD personality. There are no prizes for
guessing which is more reliable: unless you really need to, you should use the System V
libraries. When we discuss kernel and library differences in Part 2 of the book, the statement
“This feature is supported by System V.4” will mean that the System V library interface sup-
ports it. The statement “This feature is supported by BSD” also implies that it should be sup-
ported by the BSD library interface of System V.4.

OSF/1

OSF/1 is a comparatively recent development in the UNIX market. It was dev eloped by the
Open Systems Foundation, an industry consortium formed as a result of dissatisfaction with
AT&T’s policy on UNIX. The kernel is based on CMU’s Mach operating system, a so-called
microkernel*. The original Mach operating system was styled on Berkeley UNIX. OSF/1
attempts to offer the same functionality as System V, though inevitably some incompatibilities

* A microkernel operating system is an operating system that leaves significant operating system func-
tionality to external components, usually processes. For example, device drivers and file systems are fre-
quently implemented as separate processes. It does not imply that the complete system is any smaller or
less functional than the monolithic UNIX kernel.

5 February 2005 02:09

6

exist.

POSIX.1

POSIX is a series of emerging IEEE standards applying to operating systems, utilities, and
programming languages. The relevant standard for operating systems is IEEE 1003.1-1990,
commonly called POSIX.1. It has also been adopted by the International Standards Organiza-
tion (ISO) as standard ISO/IEC 9945.1:1990.

POSIX.1 defines the interface between application programs and the operating system, and
makes no demands on the operating system except that it should supply the POSIX.1 inter-
face. POSIX.1 looks very much like a subset of UNIX. In fact, most users wouldn’t notice
the difference. This makes it easy for UNIX operating systems to supply a POSIX.1 interface.
Other operating systems might need much more modification to become POSIX.1 compliant.
From a UNIX viewpoint, POSIX.1 does not supply as rich a set of functions as any of the
commercially available UNIX flavours, so programming to POSIX specifications can feel
somewhat restrictive. This matter is discussed in the POSIX Programmer’s Guide by Donald
Lewine.

Despite these slight disadvantages, POSIX has a great influence on operating system develop-
ment: all modern flavours of UNIX claim to be POSIX-compliant, although the degree of suc-
cess varies somewhat, and other systems are also attempting to supply a POSIX.1 interface.
The trend is clear: future UNIX-like operating systems will be POSIX-compliant, and if you
stick to POSIX features, your porting problems will be over. And I have a supply of bridges
for sale, first come, first served.

Other flavours

It doesn’t take much effort to add a new feature to a kernel, and people do it all the time. The
result is a proliferation of systems that mix various features of the leading products and addi-
tional features of their own. On top of that, the release of kernel sources to the net has caused
a proliferation of “free” operating systems. Systems that you might well run into include:

• AIX, IBM’s name for its UNIX versions. Current versions are based on System V.3, but
IBM has stated an intent to migrate to OSF/1 (IBM is a leading member of the OSF).
Compared to System V, it has a large number of extensions, some of which can cause
significant pain to the unwary.

• HP-UX, Hewlett Packard’s UNIX system. It is based on System V.3, but contains a large
number of so-called BSD extensions. Within HP, it is considered to be about 80% BSD-
compliant.

• Linux, a UNIX clone for the Intel 386 architecture written by Linus Torvalds, a student in
Helsinki. It has absolutely no direct connection with traditional UNIX flavours, which
gives it the unique advantage amongst free UNIXes of not being a potential subject for
litigation. Apart from that, it has a vaguely System V-like feeling about it. If you are
porting to Linux, you should definitely subscribe to the very active network news groups
(comp.os.linux.*).

5 February 2005 02:09

Chapter 1: Introduction 7

• SunOS is the generic name of Sun Microsystems’ operating systems. The original
SunOS was derived from 4.2BSD and 4.3BSD, and until release 4.1 it was predominantly
BSD-based with a significant System V influence. Starting with version 5.0, it is a some-
what modified version of System V.4. These later versions are frequently referred to as
Solaris, though this term properly applies to the complete system environment, including
windowing system (OpenWindows), development tools and such, and does not apply
only to the System V based versions. Solaris 1.x includes the BSD-based SunOS 4.1 as
its kernel; Solaris 2.x includes the System V.4-based SunOS 5.x as its kernel.

• Ultrix is DEC’s port of 4.1BSD and 4.2BSD to the VAX and MIPS-based workstations.
It is now obsolete and has been replaced by OSF/1.

I would have liked to go into more detail about these versions of UNIX, but doing so would
have increased the size of the book significantly, and even then it wouldn’t be possible to
guarantee the accuracy: most systems add functionality in the course of their evolution, and
information that is valid for one release may not apply to an earlier or a later release. As a
result, I’ve made a compromise: nearly all UNIX features were introduced either in BSD or
System V, so I will distinguish primarily between these two. Where significant differences
exist in other operating system—SunOS 4 is a good example — I will discuss them separately.

Where does this leave you with, say, NonStop UX version B30? NonStop UX version B is a
version of UNIX System V.4 that runs on Tandem’s Integrity series of fault-tolerant MIPS-
based UNIX systems. It includes some additional functionality to manipulate the hardware,
and some of the header files differ from the standard System V.4. In addition, it includes a
minimal carry-over of BSDisms from the System V.3 version. Obviously, you can start by
treating it as an implementation of System V.4, but occasionally you will find things that don’t
quite seem to fit in. Since it’s a MIPS-based system, you might try to consider it to be like
SGI’s IRIX operating system version 5, which is System V.4 for SGI’s MIPS-based hardware.
Indeed, most IRIX 5.x binaries will also run unchanged on NonStop UX version B, but you
will notice significant differences when you try to port packages that already run on IRIX 5.x.
These differences are typical of a port to just about every real-life system. There are very few
pure System V.4 or pure BSD systems out there—everybody has added something to their
port. Ultimately, you will need to examine each individual problem as it occurs. Here is a
strategy you can use to untangle most problems on UNIX systems:

• Interpret the error messages to figure out what feature or function call is causing the
problem. Typically, the error message will come from the compiler and will point to a
specific line in a specific file.

• Look up the feature or call in this book. Use the description to figure out what the origi-
nal programmer intended it to do.

• Figure out how to achieve the same effect on your own system. Sometimes, I recom-
mend a change which you can make and try the program again. If you’re not sure how
your system works, you can probably find a manual page for the feature or call, and this
book will help you interpret it.

5 February 2005 02:09

8

• Reconfigure or change the code as necessary, then try building again.

Where you fit in
The effort involved in porting software depends a lot on the package and the way it is main-
tained. It doesn’t make much difference whether the software is subject to a commercial
license or is freely available on the net: the people who write and maintain it can never hope
to port it to more than a fraction of the platforms available. The result is that there will always
be problems that they won’t know about. There is also a very good chance that the well-
known and well-used package you are about to port may never hav e been ported quite that
way before. This can have some important consequences:

• You may run into bugs that nobody has ever seen before in a well-known and well-used
package.

• The package that you ported in ten minutes last year and have been using ever since has
been updated, and now you can’t get the @&*(&@$(to compile or run.

This also means that if you do run into problems porting a package, your feedback is impor-
tant, whether or not you can supply a fix. If you do supply a fix, it should fit into the package
structure so that it can be included in a subsequent release.

To reiterate: it makes very little difference here whether we are talking about free or licensed
software. The players involved are different, but the problems are not. In many ways, free
software is easier, since there are fewer restrictions in talking about it (if you run into prob-
lems porting System V.4, you can’t just send the code out on the net and ask for suggestions),
and there’s a chance that more people will have ported it to more platforms already. Apart
from that, everything stays the same.

But can I do it?
Of course, maybe your concern is whether you can do it at all. If you’ve nev er ported a pro-
gram before, you might think that this is altogether too difficult, that you’ll spend days and
weeks of effort and confusion and in the end give it up because you don’t understand what is
going on, and every time you solve a problem, two new ones spring up in its place.

I’d like to say “Don’t worry, with this book nothing can go wrong”, but unfortunately things
aren’t always like that. On the other hand, it’s easy too overestimate the things that can go
wrong, or how difficult a port might be. Let’s look at the bad news first: in most cases, you
can assume that the worst thing that can happen when you try to port a package is that it won’t
work, but in some unfortunate cases you may cause your system to panic, especially if you are
porting kernel software such as device drivers. In addition, if you are porting system utilities,
and they don’t work, you could find that you can no longer perform such essential system
functions as starting or shutting down the system. These problems don’t occur very often,
though, and they should not cause any lasting damage if you religiously back up your system
(you do perform regular backups, don’t you?).

5 February 2005 02:09

Chapter 1: Introduction 9

Apart from such possible dangers, there is very little that can go wrong. If you are building a
package that has already had been ported to your platform, you should not run into any prob-
lems that this book can’t help you solve, even if you have negligible background in program-
ming and none in porting.

How to use this book
The way you approach porting depends on how difficult it is. If it’s a straightforward busi-
ness, something that has been done dozens of times before, like our example of porting bison
above, it’s just a matter of following the individual steps. This is our approach in the first part
of this book, where we look at the following topics:

• Getting the software. You might get the sources on tape, on CD-ROM, or by copying
them from the Internet. Getting them from this format into a format you can use to com-
pile them may not be as simple as you think. We’ll look at this subject in Chapter 2,
Unpacking the goodies and Chapter 3, Care and feeding of source trees.

• Configure the package for building. Although UNIX is a relatively well defined operat-
ing system, some features are less well defined. For example, there are a number of dif-
ferent ways to perform interprocess communication. Many packages contain alternative
code for a number of operating systems, but you still need to choose the correct alterna-
tive. People often underestimate this step: it seems simple enough, but in many cases it
can be more work than all the rest put together.

Configuration is a complicated subject, and various methods have evolved. In Chapter 4,
Package configuration, we’ll look at manual configuration, shell scripts, and imake, the
X11 configuration solution.

• Build the package. This is what most people understand by porting. We’ll look at prob-
lems running make in Chapter 5, Building the package, and problems running the C com-
piler in Chapter 6, Running the compiler.

• Format and print the documentation, which we’ll investigate in Chapter 7, Documenta-
tion.

• Test the results to make sure that they work. We’ll look at this in Chapter 8, Testing the
package.

• We’ll discuss how to do installation correctly, accurately and completely in Chapter 9,
Installation.

• Tidy up after the build. In Chapter 10, Where to go from here, we’ll look at what this
entails.

Fortunately, almost no package gives you trouble all the way, but it’s interesting to follow a
port through from getting the software to the finished installation, so as far as is possible I’ll
draw my examples in these chapters from a few free software packages for electronic mail and
Usenet news. Specifically, we’ll consider Taylor uucp, the electronic mail reader elm, and C
news. In addition, we’ll look at the GNU C compiler gcc, since it is one of the most

5 February 2005 02:09

10

frequently ported packages. We’ll port them to an Intel 486DX/2-66 machine running
BSD/386 Version 1.1.*

Part 2
As long as things go smoothly, you can get through the kind of port described in the first part
of this book with little or no programming knowledge. Unfortunately, things don’t always go
smoothly. If they don’t, you may need to make possibly far-reaching changes to the sources.
Part 1 doesn’t pay much attention to this kind of modification—that’s the topic of part 2 of
this book, which does expect a good understanding of programming:

• In Chapter 11, Hardware dependencies, we’ll look at problems caused by differences in
the underlying hardware platform.

• In the following five chapters, we’ll look at some of the differences in different UNIX
flavours. First we’ll look at a number of smaller differences in Chapter 12, Kernel
dependencies, then we’ll look at some of the more common problem areas in Chapter 13,
Signals, Chapter 14, File systems, Chapter 15, Terminal drivers, and Chapter 16, Time-
keeping.

• We’ll look at the surprising number of headaches caused by header files in Chapter 17,
Header files, and at system library functionality in Chapter 18, Function libraries.

• We’ll examine the differences between various flavours of the more important tools in
Chapter 19, Make, Chapter 20, Compilers, and Chapter 21, Object files and friends.

Finally, there are a number of appendixes:

• Appendix A, Comparative reference to UNIX data types, describes the plethora of data
types that have dev eloped since the advent of ANSI C.

• Appendix B, Compiler flags, giv es you a comparative reference to the compiler flags of
many common systems.

• Appendix C, Assembler directives and flags, giv es you a comparative reference to assem-
bler directives and flags.

• Appendix D, Linker flags, giv es you a comparative reference to linker flags.

• Appendix E, Where to get sources, giv es you information on where to find useful source
files, including a number of the packages we discuss in this book.

* With the exception of Taylor uucp, BSD/OS, which at the time was called BSD/386, is supplied with
all these packages, so you would only be need to port them if you wanted to modify them or port a new
version.

5 February 2005 02:09

Chapter 1: Introduction 11

Preparations
You don’t need much to port most packages. Normally everything you need—a C compiler, a
C library, make and some standard tools—should be available on your system. If you have a
system that doesn’t include some of these tools, such as a System V release where every indi-
vidual program seems to cost extra, or if the tools are so out-of-date that they are almost use-
less, such as XENIX, you may have problems.

If your tools are less than adequate, you should consider using the products of the Free Soft-
ware Foundation. In particular, the GNU C compiler gcc is better than many proprietary com-
pilers, and is the standard compiler of the Open Software Foundation. You can get many
packages directly from the Internet or on CD-ROM. If you are going to be doing any serious
porting, I recommend that you get at least the GNU software packages, 4.4BSD Lite, and
TEX, preferably on CD-ROM. In particular, the GNU software and 4.4BSD Lite contain the
sources to many library functions that may be missing from your system. In addition, many
of the GNU packages are available in precompiled binary form from a number of sources. I’ll
refer to these packages frequently in the text.

5 February 2005 02:09

2
Unpacking the goodies

Before you can start porting, you need to put the sources on disk. We use the term source tree
to refer to the directory or hierarchy of directories in which the package is stored. Unpacking
the archives may not be as trivial as it seems: software packages are supplied in many differ-
ent formats, and it is not always easy to recognize the format. In this chapter, we’ll look at
how to extract the sources to create the source tree. In Chapter 3, Care and feeding of source
trees, we’ll see how the source tree changes in the course of a port, and what you can do to
keep it in good shape.

Getting the sources
The standard way to get software sources is on some form of storage medium, such as CD-
ROM or tape. Many packages are also available online via the Internet. The choice is not as
simple as it seems:

Software from the Internet
If you have an Internet connection, and if the software is available on the net, it’s tempting to
just copy it across the net with ftp. This may not be the best choice, however. Some packages
are very big. The compressed sources of the GNU C compiler, for example, occupy about 6
MB. You can’t rely on a typical 56 kb/s line to transfer more than about 2 kilobytes per sec-
ond.* At this speed, it will take nearly an hour to copy the archives. If you’re connected via a
SLIP line, it could take sev eral hours.

Gaining access to the archive sites is not always trivial: many sites have a maximum number
of users. In particular, prep.ai.mit.edu, the prime archive site for gcc, is frequently over-
loaded, and you may need several attempts to get in.

In addition, copying software over the net is not free. It may not cost you money, but some-
body has to pay for it, and once you have the software, you need somewhere to store it, so you
don’t really save on archive media.

* Of course, it should approach 7 kilobytes per second, but network congestion can pull this figure down
to a trickle.

13

5 February 2005 02:09

14

Choice of archive medium
If you do choose to get your software on some other medium, you have the choice between
CD-ROM and tape. Many archive sites will send you tapes if you ask for them. This may
seem like a slow and old-fashioned way to get the software, but the bandwidth is high:* DAT
and Exabyte tapes can store 2 GB per tape, so a single tape could easily contain as much soft-
ware as you can duplicate in a week. In addition, you don’t need to make a backup before
you start.

Software on CD-ROM is not as up-to-date as a freshly copied tape, but it’s easy to store and
reasonably cheap. Many companies make frequent CD editions of the more widely known ar-
chive sites — for example, Walnut Creek CD-ROM has editions of most commonly known
software, frequently pre-ported, and Prime Time Freeware issues a pair of CD-ROMs twice a
year with 5 GB of compressed software including lesser-known packages. This can be worth
it just to be able to find packages that you would otherwise not even hav e known about.

If you have already ported a previous version of the package, another alternative is to use diffs
to bring the archive up to date. We’ll look at this on page 29.

Archives
You frequently get pure source trees on CD-ROM, but other media, and also many CD-ROMs,
transform the source tree several times:

• A source tree is usually supplied in an archive, a file containing a number of other files.
Like a paper bag around groceries, an archive puts a wrapper around the files so that you
can handle them more easily. It does not save any space — in fact, the wrapper makes it
slightly larger than the sum of its files.

• Archives make it easier to handle files, but they don’t do anything to save space. Much
of the information in files is redundant: each byte can have 256 different values, but typi-
cally 99% of an archive of text or program sources will consist of the 96 printable ASCII
characters, and a large proportion of these characters will be blanks. It makes sense to
encode them in a more efficient manner to save space. This is the purpose of compres-
sion programs. Modern compression programs such as gzip reduce the size of an archive
by up to 90%.

• If you want to transfer archives by electronic mail, you may also need to encode them to
comply with the allowable email character set.

• Large archives can become very unwieldy. We hav e already seen that it can take sev eral
hours to transfer gcc. If the line drops in this time, you may find that you have to start
the file again. As a result, archives are frequently split into more manageable chunks.

The most common form of archive you’ll find on the Internet or on CD-ROM is gzipped tar, a
tar archive that has been compressed with gzip. A close second is compressed tar, a tar

* To quote a fortune from the fortune program: Never underestimate the bandwidth of a station wagon
full of tapes..

5 February 2005 02:09

Chapter 2: Unpacking the goodies 15

archive that has been compressed with compress. From time to time, you’ll find a number of
others. In the following sections we’ll take a brief look at the programs that perform these
tasks and recover the data.

Archive programs
A number of archive programs are available:

• tar, the tape archive program, is the all-time favourite. The chances are about 95% that
your archive will be in tar format, even if it has nothing to do with tape.

• cpio is a newer file format that once, years ago, was intended to replace tar. cpio ar-
chives suffer from compatibility problems, however, and you don’t see them very often.

• ar is a disk archive program. It is occasionally used for source archives, though
nowadays it is almost only used for object file archives. The ar archive format has never
been completely standardized, so you get an ar archive from a different machine, you
might have a lot of trouble extracting it. We’ll look at ar formats again in , on page 383.

• shar is the shell archive program. It is unique amongst archive programs in never using
non-printing characters, so shar archives can be sent by mail. You can extract shar ar-
chives simply by feeding them to a (Bourne) shell, though it is safer to use a program
like unshar.

Living with tar
tar is a relatively easy program to use, but the consequences of mistakes can be far-reaching.
In the following sections, we’ll look at how to use tar and how to avoid trouble.

Basic use

When it comes to unpacking software, one or two tar commands can meet all your needs.
First, you often want to look at the contents before unpacking. Assuming that the archive is
named et1.3.tar, the following command lists the files in the archive:

$ tar tf et1.3.tar
et1.3/
et1.3/bell.c
pet1.3/bltgraph.c
et1.3/BLURB

The t option stands for table of contents, and the f option means “use the next parameter in
the command (et1.3.tar) as the name of the archive to list.”

To read in the files that were listed, use the command:

$ tar xfv et1.3.tar
et1.3/
et1.3/bell.c
pet1.3/bltgraph.c
et1.3/BLURB

5 February 2005 02:09

16

The list looks the same, but this time the command actually creates the directory et1.3 if nec-
essary, and then creates the contents. The x option stands for extract, and the f option has the
same meaning as before. The v option means “verbose” and is responsible for generating the
list, which gives you the assurance that the command is actually doing something.

To bundle some files into an archive, use a command like:

$ tar cvf et1.3.tar et1.3

This command packs everything in the et1.3 directory into an archive named et1.3.tar (which
is where we started). The c option stands for “create” and the v option for “verbose.” This
time, the f means “use the next parameter in the command (et1.3.tar) as the archive to create.”

Absolute pathnames

Many versions of tar have difficulties with absolute pathnames. If you back up a directory
/usr/foo, they will only be able to restore it to exactly this directory. If the directory is
/usr/bin, and you’re trying to restore programs like sh, this could give you serious problems.
Some versions of tar have an option to ignore the leading /, and others, such as GNU tar,
ignore it unless you tell them otherwise.

Symbolic links

Many versions of tar will only back up a symbolic link, not the file or directory to which it
points. This can be very embarrassing if you send somebody a tape with what should be a
complete software package, and it arrives with only a single symbolic link.

Tape block size

Many DDS (DAT) drives work better with high blocking factors, such as 65536 bytes per
block (128 “tape blocks”). You can do this with the option b (block size):

$ tar cvfb /dev/tape 128 foo-dir

Unfortunately, this can cause problems too. Some DDS drives cannot read tapes with block
sizes of more than 32768 bytes, and some versions of tar, such as SGI IRIS 5.x, cannot handle
tapes blocked larger than 20 tape blocks (10240 bytes). This is a show-stopper if you have a
tape which is really blocked at more than this size: you just won’t be able to read it directly.
You can solve this problem by installing GNU tar or piping the archive through dd:

$ dd if=/dev/rmt/ctape0 ibs=128b obs=2b | tar xvf -

File names

Most versions of tar perform filename matching based on the exact text as it appears on the
tape. If you want to extract specific files, you must use the names by which they are known in
the archive. For example, some versions of tar may end up writing absolute names with two
leading slashes (like //usr/bin/sh, for example). This doesn’t worry the operating system,
which treats multiple leading slashes the same as a single leading slash, but if you want to

5 February 2005 02:09

Chapter 2: Unpacking the goodies 17

extract this file, you need to write:

$ tar x //usr/bin/sh

File name sorting

A tar archive listing with tar tv deliberately looks very much like a listing done with ls -l.
There is one big difference, however: ls -l sorts the file names by name before displaying
them, whereas tar, being a serial archive program, displays the names in the order in which
they occur in the archive. The list may look somewhat sorted, depending on how the archive
was created, but you can’t rely on it. This means that if you are looking for a file name in an
archive, you should not be misled if it’s not where you expect to find it: use tools like grep or
sort to be sure.

tar: dir - cannot create

With System V systems, you may see things like:

$ tar xvf shellutils-1.9.4.tar
tar: shellutils-1.9.4/ - cannot create
x shellutils-1.9.4/COPYING, 17982 bytes, 36 tape blocks
x shellutils-1.9.4/COPYING.LIB, 25263 bytes, 50 tape blocks
tar: shellutils-1.9.4/lib/ - cannot create
x shellutils-1.9.4/lib/Makefile.in, 2868 bytes, 6 tape blocks
x shellutils-1.9.4/lib/getopt.h, 4412 bytes, 9 tape blocks

This “bug” has been around so long that you might suspect that it is an insider joke. In fact, it
is a benign compatibility problem. The POSIX.2 standard tar format allows archives to con-
tain both directory and file names, although the directory names are not really necessary:
assuming it has permission, tar creates all directories necessary to extract a file. The only use
of the directory names is to specify the modification time and permissions of the directory.
Older versions of tar, including System V tar, do not include the directory names in the ar-
chive, and don’t understand them when they find them. In this example, we have extracted a
POSIX.2 tar archive on a System V system, and it doesn’t understand (or need) the directory
information. The only effect is that the directories will not have the correct modification time-
stamps and possibly not the correct permissions.

Losing access to your files

Some versions of tar, notably System V versions, have another trick in store: they restore the
original owner of the files, even if that owner does not exist. That way you can lose access to
your files completely if they happen to have permissions like rw-------. You can avoid this
by using the o flag (restore ownership to current user).

It would be nice to be able to say “make a rule of always using the o flag”. Unfortunately,
other versions of tar define this flag differently — check your man pages for details.

5 February 2005 02:09

18

Multivolume archives

tar can also handle multi-volume archives, in other words archives that go over more than one
tape. The methods used are not completely portable: one version of tar may not be able to
read multivolume archives written by a different version. Some versions of tar just stop writ-
ing data at the end of one tape and continue where they left off at the beginning of the next
reel, whereas others write header information on the second tape to indicate that it is a contin-
uation volume. If possible, you should avoid writing multivolume archives unless you are
sure that the destination system can read them. If you run into problems with multivolume ar-
chives you can’t read, you might save the day with something like:

$ (dd if=$TAPE
++ echo 1>&2 Change tapes and press RET
++ read confirmation the name of the variable isn’t important
++ dd if=$TAPE
++ echo 1>&2 Change tapes and press RET
++ read confirmation
++ dd if=$TAPE) | tar xvf -

This uses dd to copy the first tape to stdout, then prints a message and waits for you to press
the enter key, copies a second tape, prompts and waits again, and then copies a third tape.
Since all the commands are in parentheses, the standard output of all three dd commands is
piped into the tar waiting outside. The echo commands need to go to stderr (that’s the 1>&2)
to get displayed on the terminal—otherwise they would be piped into the tar, which would
not appreciate it.

This only works if the version of tar you use doesn’t put any header information (like reel
number and a repeat of the file header) at the beginning of the subsequent reels. If it does, and
you can’t find a compatible tar to extract it again, the following method may help. Assuming
a user of an SCO system has given you a large program foo spread over 3 diskettes, each of
which contains header information that your tar doesn’t understand, you might enter

$ tar x foo extract first part from first floppy
$ mv foo foo.0 save the first part
$ tar x foo extract second part from second floppy
$ mv foo foo.1 save the second part
$ tar x foo extract third part from third floppy
$ mv foo foo.2 save the third part
$ cat foo.* >foo concatenate them
$ rm foo.* and remove the intermediate files

Extracting an archive with tar

Using tar to extract a file is normally pretty straightforward. You can cause a lot of confusion,
however, if you extract into the wrong directory and it already contains other files you want to
keep. Most archives contain the contents of a single directory as viewed from the parent
directory — in other words, the name of the directory is the first part of all file names. All
GNU software follows this rule:

5 February 2005 02:09

Chapter 2: Unpacking the goodies 19

$ tar tvf groff-1.09.tar
drwxr-xr-x jjc/staff 0 Feb 19 14:15 1994 groff-1.09/
drwxr-xr-x jjc/staff 0 Feb 19 14:13 1994 groff-1.09/include/
-rw-r--r-- jjc/staff 607 Sep 21 12:03 1992 groff-1.09/include/Makefile.sub
-rw-r--r-- jjc/staff 1157 Oct 30 07:38 1993 groff-1.09/include/assert.h
-rw-r--r-- jjc/staff 1377 Aug 3 12:34 1992 groff-1.09/include/cmap.h
-rw-r--r-- jjc/staff 1769 Aug 10 15:48 1992 groff-1.09/include/cset.h

Others, however, show the files from the viewpoint of the directory itself—the directory name
is missing in the archive:

$ tar tvf blaster.tar
-rw-r--r-- 400/1 5666 Feb 14 01:44 1993 README
-rw-r--r-- 400/1 3638 Feb 14 01:44 1993 INSTALL
-r--r--r-- 400/1 2117 Feb 14 01:44 1993 LICENSE
-rw-r--r-- 400/1 2420 Feb 14 15:17 1993 Makefile
-rw-r--r-- 400/1 3408 Feb 14 01:44 1993 sb_asm.s
-rw------- 400/1 10247 Feb 14 01:44 1993 stream.c
-rw-r--r-- 400/1 1722 Feb 14 04:10 1993 apps/Makefile

If you have an archive like the first example, you want to be in the parent directory when you
extract the archive; in the second case you need to first create the directory and then cd to it.
If you extract the second archive while in the parent directory, you will face a lot of cleaning
up. In addition, there is a good chance that files with names like README, INSTALL and
LICENSE may already be present in that directory, and extracting this archive would over-
write them. There are a couple of ways to avoid these problems:

• Always look at the archive contents with tar t before extracting it. Once you have looked
at the archive contents, you can change to the correct directory into which to extract it.
In the case of groff above, you might choose a directory name like ˜/mysources*. In the
case of blaster, you could create a directory ˜/mysources/blaster and extract into that
directory.

• Alternatively, you can always create a subdirectory and extract there, and then rename
the directory. In the first example, you might create a directory ˜/mysources/temp. After
extraction, you might find that the files were in a directory ˜/mysources/temp/groff-1.09,
so you could move them with

$ mv groff-1.09 ..

If they extract directly into temp, you can rename the directory:

$ cd ..
$ mv temp groff-1.09

This method may seem easier, but in fact there are a couple of problems with it:

• You need to choose a directory name that doesn’t clash with the real name. That’s
why we used the name temp in this example: otherwise it won’t be possible to
rename the directory in the first example, since you would be trying to overwrite the
directory with one of its own subdirectories.

* A number of shells use the shorthand notation ˜/ to refer to your home directory.

5 February 2005 02:09

20

• Not all flavours of UNIX allow you to move directories.

The command to extract is almost identical to the command to list the archive — a clear case
for a shell with command line editing:

$ tar tvf groff-1.09.tar list the archive
$ tar xvf groff-1.09.tar extract the archive

Frequently your tar archive will be compressed in some way. There are methods for extract-
ing files directly from compressed archives. We’ll examine these when we look at compres-
sion programs on page .

Compression programs
If the archive is compressed, you will need to uncompress it before you can extract files from
it. UNIX systems almost invariably use one of three compression formats:

• compressed files are created with the compress program and extracted with uncompress.
They can be up to 70% smaller than the original file. The zcat program will uncompress
a compressed file to the standard output.

• gzipped files are created by gzip and extracted by gunzip. They can be up to 90%
smaller than the original file. gunzip will also uncompress compressed or packed files.

• packed files are obsolete, though you still occasionally see packed man pages. They are
created by the pack program and uncompressed by the unpack program. The pcat pro-
gram will uncompress a packed file to the standard output.

Each of these programs is installed with three different names. The name determines the
behavior. For example, gzip is also known as gunzip and zcat:

$ ls -li /opt/bin/gzip /opt/bin/gunzip /opt/bin/zcat
13982 -rwxr-xr-x 3 grog wheel 77824 Nov 5 1993 /opt/bin/gunzip
13982 -rwxr-xr-x 3 grog wheel 77824 Nov 5 1993 /opt/bin/gzip
13982 -rwxr-xr-x 3 grog wheel 77824 Nov 5 1993 /opt/bin/zcat

The -i option to ls tells it to list the inode number, which uniquely identifies the file. In this
case, you will see that all three names are linked to the same file (and that the link count field
is 3 as a result). You will notice that gzip has also been installed under then name zcat,
replacing the name used by compress. This is not a problem, since gzcat can do everything
that zcat can do, but it can lead to confusion if you rely on it and one day try to extract a
gzipped file with the real zcat.

Encoded files
Most archive programs and all compression programs produce output containing non-print-
able characters. This can be a problem if you want to transfer the archive via electronic mail,
which cannot handle all binary combinations. To solve this problem, the files can be encoded:
they are transformed into a representation that contains only printable characters. This has the
disadvantage that it makes the file significantly larger, so it is used only when absolutely

5 February 2005 02:09

Chapter 2: Unpacking the goodies 21

necessary. Two programs are in common use:

• uuencode is by far the most common format. The companion program uudecode will
extract from standard input.

• btoa format is used to some extent in Europe. It does not expand the file as much as
uuencode (25% compared to 33% with uuencode), and is more resistant to errors. You
decode the file with the atob program.

Split archives
Many ftp sites split large archives into equal-sized chunks, typically between 256 kB and 1.44
MB (a floppy disk image). It’s trivial to combine them back to the original archive: cat will
do just that. For example, if you have a set of files base09.000 through base09.013 represent-
ing a gzipped tar archive, you can combine them with:

$ cat base09.* > base09.tar.gz

This will, of course, require twice the amount of storage, and it takes time. It’s easier to
extract them directly:

$ cat base09.* | gunzip | tar xvf -
drwxr-xr-x root/wheel 0 Aug 23 06:22 1993 ./sbin/
-r-xr-xr-x bin/bin 106496 Aug 23 06:21 1993 ./sbin/chown
-r-xr-xr-x bin/bin 53248 Aug 23 06:21 1993 ./sbin/mount_mfs
... etc

cat pipes all archives in alphabetical file name order to gunzip. gunzip uncompresses it and
pipes the uncompressed data to tar, which extracts the files.

Extracting a linked file

tar is clever enough to notice when it is backing up multiple copies of a file under different
names, in other words so-called hard links. When backing up, the first time it encounters a
file, it copies it to the archive, but if it encounters it again under another name, it simply cre-
ates an entry pointing to the first file. This saves space, but if you just try to extract the second
file, tar will fail: in order to extract the second name, you also need to extract the file under
the first name that tar found. Most versions of tar will tell you what the name was, but if you
are creating archives, it helps to back up the most-used name first.

What’s that archive?
All the preceding discussion assumes that you know the format of the archive. The fun begins
when you don’t. How do you extract it?

Your primary indication of the nature of the file is its filename. When archives are created,
compressed and encoded, they usually receive a file name suffix to indicate the nature of the
file. You may also have come across the term extension, which comes from the MS-DOS
world. These suffixes accumulate as various steps proceed. A distribution of gcc might come
in a file called gcc-2.5.8.tar.gz.uue. This name gives you the following information:

5 February 2005 02:09

22

• The name of the package: gcc.

• The revision level: -2.5.8. You would expect the name of the root directory for this pack-
age to be gcc-2.5.8.

• The archive format: .tar. Since this is a GNU package, you can expect the name of the
uncompressed archive to be gcc-2.5.8.tar.

• The compression format: .gz (gzip format). The name of the compressed archive would
be gcc-2.5.8.tar.gz.

• The encoding format: .uue (encoded with uuencode).

Some operating systems, notably System V.3 and Linux, still provide file systems which
restrict file names to 14 characters. This can lead to several problems.* Archives distributed
for these systems frequently use variants on these names designed to make them shorter;
gcc-2.5.8.tzue might be an alternate name for the same package.

The following table gives you an overview of archive file suffixes you might encounter. We’ll
look at source file suffixes in Chapter 20, Compilers, page

Table 2−1: Common file name suffixes

Name Format
suffix

Alternate patch reject file name.
˜ emacs backup files, also used by some versions of patch.
,v RCS file. Created by ci, extracted by co.
.a ar format. Created by and extracted with ar.
.arc Created by and extracted with arc.
.arj DOS arj format
.cpio Created by and extracted with cpio.
.diff Difference file, created by diff, can be applied by patch.
.gif Graphics Interchange Format
.gz gzip format. Created by gzip, extracted with gunzip.
.hqx HQX (Apple Macintosh)
.jpg JPEG (graphics format)
.lzh LHa, LHarc, Larc
.orig Original file after processing by patch.
.rej patch reject file.
.shar Shell archive: created by shar, extracted with any Bourne-compatible shell.
.sit Stuff-It (Apple Macintosh)
.tar tar format. Created by and extracted with tar.
.uu uuencoded file. Created by uuencode, decoded with uudecode.

* If you have one of these systems, and you have a choice of file systems, you can save yourself a lot of
trouble by installing one that allows long file names.

5 February 2005 02:09

Chapter 2: Unpacking the goodies 23

Table 2−1: Common file name suffixes (continued)

Name Format
suffix

.uue Alternative for .uu

.Z Compressed with compress, uncompressed with uncompress, zcat or gunzip.

.z Tw o different formats: either pack format, compressed by pack, extracted with
pcat, or old gzip format, compressed by gzip, extracted with gunzip.

.zip Zip (either PKZip or Zip/Unzip)

.zoo Zoo

Identifying archives
Occasionally you’ll get an archive whose name gives you no indication of the format. Under
these circumstances, finding the kind of archive can be a matter of trial and error, particularly
if it is compressed. Here are a couple of ideas that might help:

file

The UNIX file command recognizes a lot of standard file types and prints a brief description
of the format. Unfortunately, the file really needs to be a file: file performs some file system
checks, so it can’t read from standard input. For example,

$ file *
0install.txt: English text
base09.000: gzip compressed data - deflate method , original
file name , last modified: Mon Aug 23 07:53:21 1993 , max compression os:
Unix
base09.001: data
...more of same
base09.011: DOS executable (COM)
man-1.0.cpio: cpio archive
tcl7.3.tar.gz: empty
tex: directory
tk3.6.tar: POSIX tar archive

The information for base09.000 was one output line that wrapped around onto 3 output lines.

Most files have certain special values, so-called magic numbers, in specific locations in their
headers. file uses a file, usually /etc/magic, which describes these formats. Occasionally it
makes a mistake—we can be reasonably sure that the file base09.011 is not a DOS
executable, but it has the right number in the right place, and thus fools file.

This version of file (from BSD/OS) recognizes base09.000—and none of the following pieces
of the archive — as a gzip archive file, and even extracts a lot of information. Not all versions
of file do this. Frequently, it just tells you that the archive is data — in this case, the first
assumption should be that the archive is compressed in a format that your version of file
doesn’t recognize. If the file is packed, compressed or gzipped, gzip expands it, and otherwise
it prints an error message, so the next step might look something like:

5 February 2005 02:09

24

$ gunzip < mystery > /tmp/junk
$ aha! it didn’t complain
$ file /tmp/junk
/tmp/junk: POSIX tar archive

In this case, we have established that the file mystery is, in fact, a compressed tar archive,
though we don’t know what kind of compression, since gzip doesn’t tell.

If file tells you that the file is ASCII or English text, then you can safely look at it with more
or less:

$ more strange-file
Newsgroups: comp.sources.unix
From: clewis@ferret.ocunix.on.ca (Chris Lewis)
Subject: v26i014: psroff 3.0, Patch09
Sender: unix-sources-moderator@pa.dec.com
Approved: vixie@pa.dec.com

Submitted-By: clewis@ferret.ocunix.on.ca (Chris Lewis)
Posting-Number: Volume 26, Issue 14
Archive-Name: psroff3.0/patch9

This is official patch 09 for Psroff 3.0.
... intervening lines skipped

clewis@ferret.ocunix.on.ca (Chris Lewis)

Patchwrapped: 920128230528

Index: ./lib/lj3.fonts
*** /tmp/PATCHold/./lib/lj3.fonts Tue Jan 28 23:03:45 1992
--- ./lib/lj3.fonts Tue Jan 28 23:03:46 1992

This is a plain text patch file: you can pass it straight through the patch program, since patch
doesn’t worry about junk at the beginning or the end of the file. We’ll look at patch in depth
in Chapter 3, Care and feeding of source trees, page 30.

Newsgroups: comp.sources.unix From: lm@Sunburn.Stanford.EDU (Larry McVoy)
Subject: v26i020: perfmon - interface to rstatd(8)
Sender: unix-sources-moderator@pa.dec.com
Approved: vixie@pa.dec.com ... more stuff omitted
#! /bin/sh
This is a shell archive. Remove anything before this line,
then unpack it by saving it into a file and typing "sh file".

As the text tells you, this is a shell archive. To extract it, you can remove all text up to the line
starting with #!/bin/sh and extract it with the Bourne shell, or pass it through unshar as it is.

begin 666 magic.gz
M’XL("‘_!NRT‘‘V5A<W1E<@!-4KV.VS‘,WO,4W’(’N‘;:\9:B+3)T.*1HT*DH
M<+3$V+I(HB’*2?/V)14W=YMED-\OGW8HE0K0.#[![V/A!’4B<(M4_>1C>ZTS
MNW&$:<D5>!‘J9_(0\@:@C?SJ#SU@]I‘P7V’&4L6V=TOAF?Y‘[N%C#U\@D0B.
M!%/PGK+NV[)A\/!*KH)C3[:’,!<>"R9‘T<<KGZC3Z4K9*VUE&‘B.O"C?H&Q4
MA+,8C‘ˆ"(I2&&/((7&‘H?!’[;JX4O0?X]$Y)!\HR3\%U.FT(TE#I>#0YE$*M

5 February 2005 02:09

Chapter 2: Unpacking the goodies 25

MU$C>%#UPT>&L?WY\ZQKNUˆ_[‘_S</SˆN@1226061"15.!‘K);DF4#4RHFD7’
M2;/R8BI/=)5:U*1TMG\W>C=O0PJF]N:(U[L45\B’*NIIGPDN%..’4ˆ9+$T%8
MXA7>ZEWS"B;<\3+’%O3ˆ0‘(.%[%8)TK&<I/O6[6\!M>TPDM"U1+Y3%NXA#K!
M2ˆ8*%RR?MZKA6:NWI5L?&&UM7I1>8,(S05K<!(D+‘44<N&‘E$R;OKD%#7!-P
M<?’66PQR.R73X>E,D0U_"QFUP@YFCJ$&IVST=ˆ)2L0:-OH%(QNHF:MMI$>O8
I3#PH#VM<#H4>_]<O$)*>PYU)JPJE7>;*:>5!)4S]9O,/(PQ?IS4#‘‘!I
‘
end

This is a uuencoded file. The first line contains the word begin, the default security (which
you can’t change) and the name of the archive (magic.gz). The following lines usually have
the same length and begin with the same letter (usually M)—this is the encoded length specifi-
cation for the line. If they don’t, something has probably gone wrong in the transmission.
The last data line is usually shorter, and thus has a different first character. Finally, the archive
contains two end lines: the first is usually the single character ‘, and the second is the word
end on a line by itself.

To extract the file, first pass it through uudecode, which will create the file magic.gz, then gun-
zip it to create the file magic. Then you might need to use file to find out what it is.

$ uudecode < magic.uue
$ gunzip magic.gz
$ file magic
magic: English text

Don’t confuse uuencode format with this:

xbtoa5 78 puzzle.gz Begin
+,ˆC1(V%L;!!?e@F*(u6!)69ODSn.:h/s&KF-$KGlWA8mP,0BTe$‘Y<$qSODDdUZO:_0iqn&P/S%8H
[AX_&!0:k0$Nˆ5WjWlkG?U*XLRJ6"1SˆE;mJ.k’Ea#$EL9q3*Bb.c9J@t/K/’N>62BM=7Ujbp7$YHN
,m"%IZ93t15j%OV"_S#NMI4;GC_N’=%+k5LX,A*uli>IBE@i0T4cP/A#coB""‘a]![8jgS1L=p6Kit
X9EU5N%+(>-N=YU4(aeoGoFH9SqM6#c1(r;;K<’aBE/aZRX/ˆ:.cbh&9[r.ˆf3bpQJQ&fW:*S_7DW9
6No0QkC7@A0?=YtSYlAc@01eeX;bF/9%&4E627AA6GR!u]3?Zhke.l4*T=U@TF9@1Gs4\jQPjbBm\H
K24N:$HKre7#7#jG"KFmeˆdjs!<<*"N
xbtoa End N 331 14b E 5c S 75b7 R b506b514

This is a btoa encoded file, probably also gzipped like the previous example. Extract it with
btoa -a and then proceed as with uuencoded files.

What’s in that archive?
Now you have discovered the format of the archive and can extract the files from it. There’s a
possibility, though, that you don’t know what the archive is good for. This is frequently the
case if you have a tape or a CD-ROM of an ftp server, and it contains some cryptic names that
suggest the files might possibly be of interest. How do you find out what the package does?

README
By convention, many authors include a file README in the main directory of the package.
README should tell you at least:

5 February 2005 02:09

26

• The name of the package, and what it is intended to do.

• The conditions under which you may use it.

For example, the README file for GNU termcap reads:

This is the GNU termcap library -- a library of C functions that enable programs
to send control strings to terminals in a way independent of the terminal type.
Most of this package is also distributed with GNU Emacs, but it is available in
this separate distribution to make it easier to install as -ltermcap.

The GNU termcap library does not place an arbitrary limit on the size of termcap
entries, unlike most other termcap libraries.

See the file INSTALL for compilation and installation instructions.

Please report any bugs in this library to bug-gnu-emacs@prep.ai.mit.edu. You
can check which version of the library you have by using the RCS ‘ident’ command
on libtermcap.a.

In some cases, however, there doesn’t seem to be any file to tell you what the package does.
Sometimes you may be lucky and find a good man page or even documentation intended to be
printed as hardcopy—see Chapter 7, Documentation for more information. In many cases,
though, you might be justified in deciding that the package is so badly documented that you
give up.

There may also be files with names like README.BSD, README.SYSV, README.X11 and
such. If present, these will usually give specific advice to people using these platforms.

INSTALL file
There may be a separate INSTALL file, or the information it should contain might be included
in the README file. It should tell you:

• A list of the platforms on which the package has been ported. This list may or may not
include your system, but either way it should give you a first inkling of the effort that lies
in store. If you’re running System V.4, for example, and it has already been ported to
your hardware platform running System V.3, then it should be easy. If it has been ported
to V.4, and you’re running V.3, this can be a completely different matter.

• A description of how to configure the package (we’ll look at this in Chapter 4, Package
configuration).

• A description of how to build the package (see Chapter 4, Package configuration and
Chapter 19, Make for more details on this subject).

It may, in addition, offer suggestions on how to port to other platforms or architectures.

5 February 2005 02:09

Chapter 2: Unpacking the goodies 27

Other files
The package may include other information files as well. By convention, the names are writ-
ten in upper case or with an initial capital letter, so that they will be stand out in a directory
listing. The GNU project software may include some or all of the following files:

• ABOUT is an alternative name used instead of README by some authors.

• COPYING and COPYING.LIB are legal texts describing the constraints under which you
may use the software.

• ChangeLog is a list of changes to the software. This name is hard-coded into the emacs
editor macros, so it’s a good chance that a file with this name will really be an emacs-
style change log.

• MANIFEST may give you a list of the files intended to be in the package.

• PROBLEMS may help you if you run into problems.

• SERVICE is supplied by the Free Software Foundation to point you to companies and
individuals who can help you if you run into trouble.

A good example of these files is the root directory of Taylor uucp:

$ gunzip </cd0/gnu/uucp/uucp-1.05.tar.gz |tar tvf -
drwxrwxr-x 269/15 0 May 6 06:10 1994 uucp-1.05/
-r--r--r-- 269/15 17976 May 6 05:23 1994 uucp-1.05/COPYING
-r--r--r-- 269/15 163997 May 6 05:24 1994 uucp-1.05/ChangeLog
ˆC$

This archive adheres to the GNU convention of including the name of the top-level directory
in the archive. When we extract the archive, tar will create a new directory uucp-1.05 and put
all the files in it. So we continue:

$ cd /porting/src the directory in which I do my porting
$ gunzip </cd0/gnu/uucp/uucp-1.05.tar.gz |tar xf -
$

After extraction, the resultant directory contains most of the “standard” files that we discussed
above:

$ cd uucp-1.05
$ ls -l
total 1724
drwxrwxr-x 7 grog wheel 1536 May 6 06:10 .
drwxrwxrwx 44 grog wheel 3584 Aug 19 14:34 ..
-r--r--r-- 1 grog wheel 17976 May 6 05:23 COPYING
-r--r--r-- 1 grog wheel 163997 May 6 05:24 ChangeLog
-r--r--r-- 1 grog wheel 499 May 6 05:24 MANIFEST
-rw-r--r-- 1 grog wheel 14452 May 6 06:09 Makefile.in
-r--r--r-- 1 grog wheel 4283 May 6 05:24 NEWS
-r--r--r-- 1 grog wheel 7744 May 6 05:24 README
-r--r--r-- 1 grog wheel 23563 May 6 05:24 TODO
-r--r--r-- 1 grog wheel 32866 May 6 05:24 chat.c

5 February 2005 02:09

28

-r--r--r-- 1 grog wheel 19032 May 6 05:24 config.h.in
-rwxrwxr-x 1 grog wheel 87203 May 6 05:27 configure
-r--r--r-- 1 grog wheel 11359 May 6 05:24 configure.in

...etc

5 February 2005 02:09

3
Care and feeding of source trees

In Chapter 2, Unpacking the goodies, we saw how to create an initial source tree. It won’t
stay in this form for long. During a port, the source tree is constantly changing:

• Before you can even start, you may apply patches to the tree to bring it up to date.

• After unpacking and possibly patching, you may find that you have to clean out junk left
behind from a previous port.

• In order to get it to compile in your environment, you perform some form of configura-
tion, which modifies the tree to some extent. We’ll look at package configuration in
Chapter 4, Package configuration.

• During compilation, you add many new files to the tree. You may also create new subdi-
rectories.

• After installation, you remove the unneeded files, for example object files and possibly
the final installed files.

• After cleaning up, you may decide to archive the tree again to save space on disk.

Modifying the source tree brings uncertainty with it: what is original, what have I modified,
how do I remove the changes I have made and get back to a clean, well-defined starting point?
In this chapter we’ll look at how to get to a clean starting point. Usually this will be the case
after you have extracted the source archive, but frequently you need to add patches or remove
junk. We’ll also look at how to build a tree with sources on CD-ROM, how to recognize the
changes you have made and how to maintain multiple versions of your software.

Updating old archives
You don’t always need to get a complete package: another possibility is that you might
already have an older version of the package. If it is large — again, for example, the GNU C
compiler — you might find it better to get patches and update the source tree. Strictly speak-
ing, a patch is any kind of modification to a source or object file. In UNIX parlance, it’s
almost always a diff, a file that describes how to modify a source file to produce a newer ver-
sion. Diffs are almost always produced by the diff program, which we describe in Chapter 10,

29

5 February 2005 02:09

30

Where to go from here, page 144. In our case study, we hav e gcc version 2.5.6 and want to
update to 2.5.8. We discover the following files on the file server:

ftp> ls
200 PORT command successful.
150 Opening ASCII mode data connection for /bin/ls.
-rw-rw-r-- 1 117 1001 10753 Dec 12 19:15 gcc-2.5.6-2.5.7.diff.gz
-rw-rw-r-- 1 117 1001 14726 Jan 24 09:02 gcc-2.5.7-2.5.8.diff.gz
-rw-rw-r-- 1 117 1001 5955006 Dec 22 14:16 gcc-2.5.7.tar.gz
-rw-rw-r-- 1 117 1001 5997896 Jan 24 09:03 gcc-2.5.8.tar.gz
226 Transfer complete.
ftp>

In other words, we have the choice of copying the two diff files gcc-2.5.6-2.5.7.diff.gz and
gcc-2.5.7-2.5.8.diff.gz, a total of 25 kB, and applying them to your source tree, or copying the
complete 6 MB archive gcc-2.5.8.tar.gz.

Patch
diff files are reasonably understandable, and you can apply the patches by hand if you want,
but it’s obviously easier and safer to use a program to apply the changes. This is the purpose
of patch. patch takes the output of the program diff and uses it to update one or more files. To
apply the patch, it proceeds as follows:

1. First, it looks for a file header. If it finds any junk before the file header, it skips it and
prints a message to say that it has done so. It uses the file header to recognize the kind of
diff to apply.

2. It renames the old file by appending a string to its name. By default, the string is .orig,
so foo.c would become foo.c.orig.

3. It then creates a new file with the name of the old file, and copies the old file to the new
file, modifying it with the patches as it goes. Each set of changes is called a hunk.

The way patch applies the patch depends on the format. The most dangerous kind are ed style
diffs, because there is no way to be sure that the text is being replaced correctly. With context
diffs, it can check that the context is correct, and will look a couple of lines in each direction
if it doesn’t find the old text where it expects it. You can set the number of lines it will look
(the fuzz factor) with the -F flag. It defaults to 2.

If the old version of the file does not correspond exactly to the old version used to make the
diff, patch may not be able to find the correct place to insert the patch. Except for ed format
diffs, it will recognize when this happens, and will print an error message and move the corre-
sponding hunk to a file with the suffix .rej (for reject).

A typical example are the patches for X11R5. You might start with the sources supplied on
the companion CD-ROM to X Window System Administrator’s Guide by Linda Mui and Eric
Pearce. This CD-ROM includes the complete X11R5 sources to patch level 21. At the time
of writing, five further patches to X11R5 have been released. To bring the source tree up to
patch level 26, you would proceed as follows:

5 February 2005 02:09

Chapter 3: Care and feeding of source trees 31

First, read the header of the patch file. As we hav e seen, patch allows text before the first file
header, and the headers frequently contain useful information. Looking at patch 22, we see:

$ gunzip < /cd0/x11r5/fix22.gz | more
X11 R5 Public Patch #22

MIT X Consortium

To apply this patch:

cd to the top of the source tree (to the directory containing the
"mit" and "contrib" subdirectories) and do:

patch -p -s < ThisFile

Patch works silently unless an error occurs. You are likely to get the
following warning messages, which you can ignore:

In this example we have used gunzip to look at the file directly; we could just as well have
used GNU zcat. The patch header suggests the flags -s and -p. The -s flag to patch tells it
to perform its work silently—otherwise it prints out lots of information about what it is doing
and why. The -p flag is one of the most complicated to use: it specifies the pathname strip
count, how to treat the directory part of the file names in the header. We’ll look at it in more
detail in the section Can’t find file to patch on page 36.

This information is important: patch is rather like a chainsaw without a guard, and if you start
it without knowing what you are doing, you can make a real mess of its environment. In this
case, we should find that the root of our source tree looks like:

$ cd /usr/x11r5
$ ls -FC mit
Imakefile RELNOTES.ms extensions/ rgb/
LABEL bug-report fonts/ server/
Makefile clients/ hardcopy/ util/
Makefile.ini config/ include/
RELNOTES.PS demos/ lib/
RELNOTES.TXT doc/ man/
... that looks OK, we’re in the right place
$ gunzip < /cd0/x11r5/fix22.gz | patch -p -s

We’v e taken another liberty in this example: since the patch file was on CD-ROM in com-
pressed form, we would have needed to extract it to disk in order to patch the way the file
header suggests. Instead, we just gunzip directly into the patch program.

It’s easy to make mistakes when patching. If you try to apply a patch twice, patch will notice,
but you can persuade it to reapply the patch anyway. In this section, we’ll look at the havoc
that can occur as a result. In addition, we’ll disregard some of the advice in the patch header.
This is the way I prefer to do it:

$ gunzip < /cd0/x11r5/fix23.gz | patch -p &> patch.log

This invocation allows patch to say what it has to say (no -s flag), but copies both the stan-
dard output and the error output to the file patch.log, so nothing appears on the screen. You
can, of course, pipe the output through the tee program, but in practice things happen so fast

5 February 2005 02:09

32

that any error message will usually run off the screen before you can read it. It certainly
would have done so here: patch.log had a length of 930 lines. It starts with

Hmm... Looks like a new-style context diff to me...
The text leading up to this was:

| Release 5 Public Patch #23
| MIT X Consortium
... followed by the complete header
|Prereq: public-patch-22

This last line is one safeguard that patch offers to ensure that you are working with the correct
source tree. If patch finds a Prereq: line in the file header, it checks that this text appears in
the input file. For comparison, here’s the header of mit/bug-report:

To: xbugs@expo.lcs.mit.edu
Subject: [area]: [synopsis] [replace with actual area and short description]

VERSION:
R5, public-patch-22
[MIT public patches will edit this line to indicate the patch level]

In this case, patch finds the text. When it does, it prints out the corresponding message:

|
|*** /tmp/,RCSt1006225 Tue Mar 9 14:40:48 1993
--- mit/bug-report Tue Mar 9 14:37:04 1993
Good. This file appears to be the public-patch-22 version.

This message shows that it has found the text in mit/bug-report. The first hunk in any X11 diff
changes this text (in this case to public-patch-23), so that it will notice a repeated application
of the patch. Continuing,

Patching file mit/bug-report using Plan A...
Hunk #1 succeeded at 2.
Hmm... The next patch looks like a new-style context diff to me...
The text leading up to this was:

|*** /tmp/,RCSt1005203 Tue Mar 9 13:45:42 1993
--- mit/lib/X/Imakefile Tue Mar 9 13:45:45 1993
Patching file mit/lib/X/Imakefile using Plan A...
Hunk #1 succeeded at 1.
Hunk #2 succeeded at 856.
Hunk #3 succeeded at 883.
Hunk #4 succeeded at 891.
Hunk #5 succeeded at 929.
Hunk #6 succeeded at 943.
Hunk #7 succeeded at 968.
Hunk #8 succeeded at 976.
Hmm... The next patch looks like a new-style context diff to me...

This output goes on for hundreds of lines. What happens if you make a mistake and try

5 February 2005 02:09

Chapter 3: Care and feeding of source trees 33

again?

$ gunzip < /cd0/x11r5/fix23.gz | patch -p &> patch.log
This file doesn’t appear to be the public-patch-22 version--patch anyway? [n] y
bad choice...
Reversed (or previously applied) patch detected! Assume -R? [y] RETURN pressed
Reversed (or previously applied) patch detected! Assume -R? [y] RETURN pressed
Reversed (or previously applied) patch detected! Assume -R? [y] ˆC$

The first message is printed because patch didn’t find the text public-patch-22 in the file
(in the previous step, patch changed it to read public-patch-23). This message also
appears in patch.log. Of course, in any normal application you should immediately stop and
check what’s gone wrong. In this case, I make the incorrect choice and go ahead with the
patch. Worse still, I entered RETURN to the next two prompts. Finally, I came to my senses
and hit CTRL-C, the interrupt character on my machine, to stop patch.

The result of this is that patch removed the patches in the first two files (the -R flag tells patch
to behave as if the files were reversed, which has the same effect as removing already applied
patches). I now hav e the first two files patched to patch level 22, and the others patched to
patch level 23. Clearly, I can’t leave things like this.

Tw o wrongs don’t normally make a right, but in this case they do. We do it again, and what
we get this time looks pretty much the same as the time before:

$ gunzip < /cd0/x11r5/fix23.gz | patch -p &> mit/patch.log
Reversed (or previously applied) patch detected! Assume -R? [y] ˆC$

In fact, this time things went right, as we can see by looking at patch.log:

|*** /tmp/,RCSt1006225 Tue Mar 9 14:40:48 1993
--- mit/bug-report Tue Mar 9 14:37:04 1993
Good. This file appears to be the public-patch-22 version.
Patching file mit/bug-report using Plan A...
Hunk #1 succeeded at 2.
Hmm... The next patch looks like a new-style context diff to me...
The text leading up to this was:

|*** /tmp/,RCSt1005203 Tue Mar 9 13:45:42 1993
--- mit/lib/X/Imakefile Tue Mar 9 13:45:45 1993
Patching file mit/lib/X/Imakefile using Plan A...
Hunk #1 succeeded at 1.
(lots of hunks succeed)
Hmm... The next patch looks like a new-style context diff to me...
The text leading up to this was:

|*** /tmp/d03300 Tue Mar 9 09:16:46 1993
--- mit/lib/X/Ximp/XimpLCUtil.c Tue Mar 9 09:16:41 1993
Patching file mit/lib/X/Ximp/XimpLCUtil.c using Plan A...
Reversed (or previously applied) patch detected! Assume -R? [y]

This time the first two files have been patched back to patch level 23, and we stop before

5 February 2005 02:09

34

doing any further damage.

Hunk #3 failed

Patch makes an implicit assumption that the patch was created from an identical source tree.
This is not always the case—you may have changed something in the course of the port. The
differences frequently don’t cause problems if they are an area unrelated to the patch. In this
example, we’ll look at how things can go wrong. Let’s consider the following situation: dur-
ing a previous port of X11R5 pl 22,* you ran into some problems in mit/lib/Xt/Selection.c and
fixed them. The original text read:

if (XtWindow(widget) == window)
XtAddEventHandler(widget, mask, TRUE, proc, closure);

else {
Widget w = XtWindowToWidget(dpy, window);
RequestWindowRec *requestWindowRec;
if (w != NULL && w != widget) widget = w;
if (selectWindowContext == 0)

selectWindowContext = XUniqueContext();

You had problems with this section, so you commented out a couple of lines:

if (XtWindow(widget) == window)
XtAddEventHandler(widget, mask, TRUE, proc, closure);

else {
/* This doesn’t make any sense at all - ignore
* Widget w = XtWindowToWidget(dpy, window); */

RequestWindowRec *requestWindowRec;
/* if (w != NULL && w != widget) widget = w; */
if (selectWindowContext == 0)

selectWindowContext = XUniqueContext();

Back in the present, you try to apply patch 24 to this file:

$ gunzip < /cd0/x11r5/fix24.gz | patch -p &> mit/patch.log
$

So far so good. But in patch.log we find

|*** /tmp/da4854 Mon May 17 18:19:57 1993
--- mit/lib/Xt/Selection.c Mon May 17 18:19:56 1993
Patching file mit/lib/Xt/Selection.c using Plan A...
Hunk #1 succeeded at 1.
Hunk #2 succeeded at 70.
Hunk #3 failed at 361.
Hunk #4 succeeded at 1084.
Hunk #5 succeeded at 1199.
1 out of 5 hunks failed--saving rejects to mit/lib/Xt/Selection.c.rej

What does this mean? There’s nothing for it but to look at the files concerned. In fix24 we
find

* The abbreviation pl is frequently used to mean patch level.

5 February 2005 02:09

Chapter 3: Care and feeding of source trees 35

*** /tmp/da4854 Mon May 17 18:19:57 1993
--- mit/lib/Xt/Selection.c Mon May 17 18:19:56 1993

*** 1,4 ****
this must be hunk 1
! /* $XConsortium: Selection.c,v 1.74 92/11/13 17:40:46 converse Exp $ */

/***
Copyright 1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts,

--- 1,4 ----
! /* $XConsortium: Selection.c,v 1.78 93/05/13 11:09:15 converse Exp $ */

/***
Copyright 1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts,

*** 70,75 ****
--- 70,90 ----
this must be hunk 2

Widget w; /* unused */

*** 346,359 ****
and this must be hunk 3, the one that failed
{

Display *dpy = req->ctx->dpy;
Window window = req->requestor;

! Widget widget = req->widget;
... etc

*** 1068,1073 ****
--- 1084,1096 ----
hunk 4

*** 1176,1181 ****
--- 1199,1213 ----
and hunk 5--at least the count is correct

patch put the rejects in Selection.c.rej. Let’s look at it:

*** 346,359 ****
{

Display *dpy = req->ctx->dpy;
Window window = req->requestor;

! Widget widget = req->widget;

if (XtWindow(widget) == window)
! XtAddEventHandler(widget, mask, TRUE, proc, closure);

else {
- Widget w = XtWindowToWidget(dpy, window);

RequestWindowRec *requestWindowRec;
- if (w != NULL && w != widget) widget = w;

if (selectWindowContext == 0)
selectWindowContext = XUniqueContext();

if (XFindContext(dpy, window, selectWindowContext,

5 February 2005 02:09

36

--- 361,375 ----
{

Display *dpy = req->ctx->dpy;
Window window = req->requestor;

! Widget widget = XtWindowToWidget(dpy, window);

+ if (widget != NULL) req->widget = widget;
+ else widget = req->widget;
+

if (XtWindow(widget) == window)
! XtAddEventHandler(widget, mask, False, proc, closure);

else {
RequestWindowRec *requestWindowRec;
if (selectWindowContext == 0)

selectWindowContext = XUniqueContext();
if (XFindContext(dpy, window, selectWindowContext,

The characters + and - at the beginning of the lines in this hunk identify it as a unified context
diff. We’ll look at them in more detail in Chapter 10, Where to go from here, page 147. Not
surprisingly, they are the contents of hunk 3. Because of our fix, patch couldn’t find the old
text and thus couldn’t process this hunk. In this case, the easiest thing to do is to perform the
fix by hand. To do so, we need to look at the partially fixed file that patch created,
mit/lib/Xt/Selection.c. The line numbers have changed, of course, but since hunk 3 wasn’t
applied, we find exactly the same text as in mit/lib/Xt/Selection.c.orig, only now it starts at
line 366. We can effectively replace it by the “after” text in Selection.c.rej, remembering of
course to remove the indicator characters in column 1.

Can’t find file to patch

Sometimes you’ll see a message like:

$ patch -p <hotstuff.diff &>patch.log
Enter name of file to patch:

One of the weaknesses of the combination of diff and patch is that it’s easy to get the file
names out of sync. What has probably happened here is that the file names don’t agree with
your source tree. There are a number of ways for this to go wrong. The way that patch treats
the file names in diff headers depends on the -p flag, the so-called pathname strip count:

• If you omit the -p flag, patch strips all directory name information from the file names
and leaves just the filename part. Consider the following diff header:

*** config/sunos4.h˜ Wed Feb 29 07:13:57 1992
--- config/sunos4.h Mon May 17 18:19:56 1993

Relative to the top of the source tree, the file is in the directory config. If you omit the -p
flag, patch will look for the file sunos4.h, not config/sunos4.h, and will not find it.

• If you specify -p, patch keeps the complete names in the headers.

• If you specify -pn, patch will remove the first n directory name components in the path-
name. This is useful when the diffs contain incorrect base path names. For example, you

5 February 2005 02:09

Chapter 3: Care and feeding of source trees 37

may find a diff header which looks like:

*** /src/freesoft/gcc-patches/config/sunos4.h˜ Wed Feb 29 07:13:57 1992
--- /src/freesoft/gcc-patches/config/sunos4.h Mon May 17 18:19:56 1993

Unless your source tree also happens to be called /src/freesoft/gcc-patches, patch won’t
be able to find the files if you use the -p flag with no argument. Assuming that you are
in the root directory of the package (in other words, the parent directory of config), you
really don’t want to know about the /src/freesoft/gcc-patches/ component. This path-
name consists of four parts: the leading / making the pathname absolute, and the three
directory names src, freesoft and gcc-patches. In this case, you can enter

$ patch -p4 <hotstuff.diff &>patch.log

The -p4 tells patch to ignore the first four pathname components, so it would read thes
filenames just as config/sunos4.h˜ and config/sunos4.h.

In addition to the problem of synchronizing the path names, you may run into broken diffs
which don’t specify pathnames, even though the files belong to different directories. We’ll
see how easy it is to make this kind of mistake in Chapter 10, Where to go from here, page .
For example, you may find that the diff headers look like:

*** sunos4.h˜ Wed Feb 29 07:13:57 1992
--- sunos4.h Mon May 17 18:19:56 1993

This kind of diff is a real nuisance: you at least need to search for the file sunos4.h, and if
you’re unlucky you’ll find more than one and have to examine the patches to figure out which
one is intended. Then you need to give this name to the prompt, and patch should perform the
patches. Unfortunately, in a large collection of diffs, this can happen dozens of times.

I can’t seem to find a patch in there

Sometimes you will get what looks like a perfectly good unified context diff, but when you
run patch against it, you get a message:

$ patch <diffs
Hmm... I can’t seem to find a patch in there anywhere.
$

Some versions of patch don’t understand unified diffs, and since all versions skip anything
they don’t understand, this could be the result. The only thing for it is to get a newer version
of patch—see Appendix E, Where to get sources, for details.

Malformed patch

If patch finds the files and understands the headers, you could still run into problems. One of
the most common is really a problem in making the diffs:

$ patch <diffs
Hmm... Looks like a unified diff to me...
The text leading up to this was:

5 February 2005 02:09

38

|--- real-programmers.ms˜ Wed Dec 7 13:17:47 1994
+++ real-programmers.ms Wed Dec 7 14:53:19 1994
Patching file real-programmers.ms using Plan A...
Hunk #1 succeeded at 1.
Hunk #2 succeeded at 54.
patch: **** malformed patch at line 398: No newline at end of file

Well, it tells you what happened: diff will print this message if the last character in a file is not
\n. Most versions of patch don’t like the message. You need to edit the diff and remove the
offending line.

Debris left behind by patch

At the end of a session, patch leaves behind a number of files. Files of the form filename.orig
are the original versions of patched files. The corresponding filenames are the patched ver-
sions. The length of the suffix may be a problem if you are using a file system with a limited
filename length; you can change it (perhaps to the emacs standard suffix ˜) with the -b flag.
In some versions of patch, ˜ is the default.

If any patches failed, you will also have files called filename.rej (for “rejected”). These con-
tain the hunks that patch could not apply. Another common suffix for rejects is #. Again, you
can change the suffix, this time with the -r flag. If you have any .rej files, you need to look at
them and find out what went wrong. It’s a good idea to keep the .orig files until you’re sure
that the patches have all worked as indicated.

Pruning the tree
Making clean distribution directories is notoriously difficult, and there is frequently irrelevant
junk in the archive. For example, all emacs distributions for at least the last 6 years have
included a file etc/COOKIES. As you might guess from the name, this file is a recipe for
cookies, based on a story that went round Usenet years ago. This file is not just present in the
source tree: since the whole subdirectory etc gets installed when you install emacs, you end
up installing this recipe as well. This particular directory contains a surprising number of
files, some of them quite amusing, which don’t really have much to do with emacs.

This is a rather extreme case of a common problem: you don’t need some of the files on the
distribution, so you could delete them. As far as I know, emacs works just as well without the
cookie recipe, but in many cases, you can’t be as sure. In addition, you might run into other
problems: the GNU General Public License requires you to be prepared to distribute the com-
plete contents of the source tree if so requested. You may think that it’s an accident that the
cookie recipe is in the source tree, but in fact it’s a political statement*, and you are required
by the terms of the GNU General Public License to keep the file in order to give it to anybody
who might want it.

* To quote the beginning of the file: Someone sent this in from California, and we decided to extend our
campaign against information hoarding to recipes as well as software. (Recipes are the closest thing,
not involving computers, to software.)

5 February 2005 02:09

Chapter 3: Care and feeding of source trees 39

This is a rather extreme example, but you might find any of the following in overgrown trees:

• Old objects, editor backups and core dumps from previous builds. They may or may not
go away with a make clean.

• Test programs left behind by somebody trying to get the thing to work on his platform.
These probably will not go away with a make clean.

• Formatted documentation. Although the Makefile should treat documents like objects
when cleaning the tree, a surprising number of packages format and install documenta-
tion, and then forget about it when it comes to tidying it away again.

• Old mail messages, only possibly related to the package. I don’t know why this is, but
mail messages seem to be the last thing anybody wants to remove, and so they continue
to exist for years in many trees. This problem seems to be worse in proprietary packages
than in free packages.

The old objects are definitely the worst problem: make can’t tell that they don’t belong to this
configuration, and so they just prevent the correct version of the object being built. Depend-
ing on how different the architectures are, you may even find that the bogus objects fool the
linker, too, and you run into bizarre problems when you try to execute.

Save the cleaned archive
If you had to go to any trouble (patches or cleanup) to get to a clean starting point for the port,
save the cleaned archive. You won’t need it again, of course, but Murphy’s law will ensure
that if you don’t sav e it, you will need it again.

Handling trees on CD-ROM
It’s convenient to have your source tree on CD-ROM: you save disk space, and you can be
sure that you don’t accidentally change anything. Unfortunately, you also can’t deliberately
change anything. Normal Makefiles expect to put their objects in the source tree, so this com-
plicates the build process significantly.

In the next two sections, we’ll look at a couple of techniques that address this problem. Both
use symbolic links.

Link trees
You can simulate a writeable tree on disk by creating symbolic links to the sources on CD-
ROM. This way, the sources remain on the CD-ROM, but the objects get written to disk.
From your viewpoint, it looks as if all the files are in the same directory. For example, assume
you have a CD-ROM with a directory /cd0/src/find containing the sources to find:

$ ls -FC /cd0/src/find
COPYING Makefile config.status* lib/
COPYING.LIB Makefile.in configure* locate/
ChangeLog NEWS configure.in man/

5 February 2005 02:09

40

INSTALL README find/ xargs/

The / at the end of the file names indicate that these files are directories; the * indicates that
they are executables. You could create a link tree with the following commands:

$ cd /home/mysrc/find put the links here
$ for i in /cd0/src/find/*; do
> ln -s $i .
> done
$ ls -l see what we got
total 16
lrwxrwxrwx COPYING -> /cd0/src/find/COPYING
lrwxrwxrwx COPYING.LIB -> /cd0/src/find/COPYING.LIB
lrwxrwxrwx ChangeLog -> /cd0/src/find/ChangeLog
lrwxrwxrwx INSTALL -> /cd0/src/find/INSTALL
lrwxrwxrwx Makefile -> /cd0/src/find/Makefile
lrwxrwxrwx Makefile.in -> /cd0/src/find/Makefile.in
lrwxrwxrwx NEWS -> /cd0/src/find/NEWS
lrwxrwxrwx README -> /cd0/src/find/README
lrwxrwxrwx config.status -> /cd0/src/find/config.status
lrwxrwxrwx configure -> /cd0/src/find/configure
lrwxrwxrwx configure.in -> /cd0/src/find/configure.in
lrwxrwxrwx find -> /cd0/src/find/find
lrwxrwxrwx lib -> /cd0/src/find/lib
lrwxrwxrwx locate -> /cd0/src/find/locate
lrwxrwxrwx man -> /cd0/src/find/man
lrwxrwxrwx xargs -> /cd0/src/find/xargs

I omitted most of the information that is printed by ls -l in order to get the information on the
page: what interests us here is that all the files, including the directories, are symbolic links.
In some cases, this is what we want: we don’t need to create copies of the directories on the
hard disk when a single link to a directory on the CD-ROM does it just as well. In this case,
unfortunately, that’s not the way it is: our sources are in the directory find, and that’s where we
will have to write our objects. We need to do the whole thing again for the subdirectory find:

$ cd ˜mysource/find change to the source directory on disk
$ rm find get rid of the directory symlink
$ mkdir find and make a directory
$ cd find and change to it
$ for i in /cd0/src/find/find/*; do
> ln -s $i .
> done
$ ls -l
total 18
lrwxrwxrwx Makefile -> /cd0/src/find/find/Makefile
lrwxrwxrwx Makefile.in -> /cd0/src/find/find/Makefile.in
lrwxrwxrwx defs.h -> /cd0/src/find/find/defs.h
lrwxrwxrwx find -> /cd0/src/find/find/find
lrwxrwxrwx find.c -> /cd0/src/find/find/find.c
lrwxrwxrwx fstype.c -> /cd0/src/find/find/fstype.c
lrwxrwxrwx parser.c -> /cd0/src/find/find/parser.c
lrwxrwxrwx pred.c -> /cd0/src/find/find/pred.c
lrwxrwxrwx tree.c -> /cd0/src/find/find/tree.c

5 February 2005 02:09

Chapter 3: Care and feeding of source trees 41

lrwxrwxrwx util.c -> /cd0/src/find/find/util.c
lrwxrwxrwx version.c -> /cd0/src/find/find/version.c

Yes, this tree really does have a directory called find/find/find, but we don’t need to worry
about it. Our sources and our Makefile are here. We should now be able to move back to the
top-level directory and perform the make:

$ cd ..
$ make

This is a relatively simple example, but it shows two important aspects of the technique:

• You don’t need to create a symlink for every single file. Although symlinks are relatively
small — in this case, less than 100 bytes—they occupy up to 1024 bytes of disk space per
link, and you can easily find yourself taking up a megabyte of space just for the links.

• On the other hand, you do need to make all the directories where output from the build
process is stored. You need to make symlinks to the existing files in these directories.

An additional problem with this technique is that many tools don’t test whether they hav e suc-
ceeded in creating their output files. If they try to create files on CD-ROM and don’t notice
that they hav e failed, you may get some strange and misleading error messages later on.

Object links on CD-ROM
Some CD-ROMs, notably those derived from the Berkeley Net/2 release, have a much better
idea: the CD-ROM already contains a symlink to a directory where the object files are stored.
For example, the FreeBSD 1.1 CD-ROM version of find is stored on
/cd0/filesys/usr/src/usr.bin/find and contains:

total 106
drwxrwxr-x 2 bin 2048 Oct 28 1993 .
drwxrwxr-x 153 bin 18432 Nov 15 23:28 ..
-rw-rw-r-- 1 bin 168 Jul 29 1993 Makefile
-rw-rw-r-- 1 bin 3157 Jul 29 1993 extern.h
-rw-rw-r-- 1 bin 13620 Sep 7 1993 find.1
-rw-rw-r-- 1 bin 5453 Jul 29 1993 find.c
-rw-rw-r-- 1 bin 4183 Jul 29 1993 find.h
-rw-rw-r-- 1 bin 20736 Sep 7 1993 function.c
-rw-rw-r-- 1 bin 3756 Oct 17 1993 ls.c
-rw-rw-r-- 1 bin 3555 Jul 29 1993 main.c
-rw-rw-r-- 1 bin 3507 Jul 29 1993 misc.c
lrwxrwxr-x 1 root 21 Oct 28 1993 obj -> /usr/obj/usr.bin/find
-rw-rw-r-- 1 bin 7766 Jul 29 1993 operator.c
-rw-rw-r-- 1 bin 4657 Jul 29 1993 option.c
-rw-rw-r-- 1 root 2975 Oct 28 1993 tags

All you have to do in this case is to create a directory called /usr/obj/usr.bin/find. The Make-
files are set up to compile into that directory.

5 February 2005 02:09

42

Tracking changes to the tree
The most obvious modification that you make to a source tree is the process of building: the
compiler creates object files* and the loader creates executables. Documentation formatters
may produce formatted versions of the source documentation, and possibly other files are cre-
ated as well. Whatever you do with these files, you need to recognize which ones you have
created and which ones you have changed. We’ll look at these aspects in the following sec-
tions.

Timestamps
It’s easy enough to recognize files that have been added to the source tree since its creation:
since they are all newer than any file in the original source tree, the simple command ls -lt
(probably piped into more or less) will display them in the reverse order in which they were
created (newest first) and thus separate the new from the old.

Every UNIX file and directory has three timestamps. The file system represents timestamps
in the time_t format, the number of seconds elapsed since January 1, 1970 UTC. See Chap-
ter 16, Timekeeping, page 270, for more details. The timestamps are:

• The last modification timestamp, updated every time the file or directory is modified.
This is what most users think of as the file timestamp. You can display it with the ls -l
command.

• The last access timestamp, updated every time a data transfer is made to or from the file.
You can display it with the ls -lu command. This timestamp can be useful in a number of
different places.

• The status change timestamp (at least, that’s what my header files call it). This is a sort
of kludged† last modification timestamp for the inode, that part of a file which stores
information about the file. The most frequent changes which don’t affect the other time-
stamps are change in the number of links or the permissions, which normally isn’t much
use to anybody. On the other hand, the inode also contains the other timestamps, so if
this rule were enforced rigidly, a change to another timestamp would also change the sta-
tus change timestamp. This would make it almost completely useless. As a result, most
implementations suppress the change to the status change timestamp if only the other
timestamps are modified. If you want, you can display the status change timestamp with
the ls -lc command.

Whichever timestamp you choose to display with ls -l, you can cause ls to sort by it with the
-t flag. Thus, ls -lut displays and sorts by the last access timestamp.

Of these three timestamps, the last modification timestamp is by far the most important.
There are a number of reasons for this:

* To be pedantic, usually the assembler creates the object files, not the compiler.
† A kludge is a programming short cut, usually a nasty, untidy one. The New Hacker’s Dictionary goes
to a lot of detail to explain the term, including why it should be spelt kluge and not kludge.

5 February 2005 02:09

Chapter 3: Care and feeding of source trees 43

• make relies on the last modification timestamp to decide what it needs to compile. If you
move the contents of a directory with cp, it changes all the modification timestamps to
the time when the copy was performed. If you then type make, you will perform a sig-
nificant amount of needless compilation.

• It’s frequently important to establish if two files are in fact the same, in other words, if
they hav e identical content. In the next section we’ll see some programmatic tools that
help us with this, but as a first approximation we can assume that two files with the same
name, length and modification timestamp have an identical content, too. The modifica-
tion timestamp is the most important of these three: you can change the name, but if
length and timestamp are the same, there’s still a good chance it’s the same file. If you
change the timestamp, you can’t rely on the two files being the same just because they
have the same name and length.

• As we hav e seen above, the last modification timestamp is useful for sorting when you
list directories. If you’re looking for a file you made the week before last, it helps if it is
dated accordingly.

Keeping timestamps straight

Unfortunately, it’s not as easy to keep timestamps straight. Here are some of the things that
can go wrong:

• If you copy the file somewhere else, traditional versions of cp always set the modification
timestamp to the time of copying. ln does not, and neither does mv if it doesn’t need to
make a physical copy, so either of these are preferable. In addition, more modern ver-
sions of cp offer the flag -p (preserve), which preserves the modification timestamp and
the permissions.

• When extracting an archive, cpio’s default behaviour is to set the modification timestamp
to the time of extraction. You can avoid this with the -m flag to cpio.

• Editing the file changes the modification timestamp. This seems obvious, but you fre-
quently find that you make a modification to a file to see if it solves a problem. If it
doesn’t help, you edit the modification out again, leaving the file exactly as it was, except
for the modification timestamp, which points to right now. A better strategy is to save
the backup file, if the editor keeps one, or otherwise to rename the original file before
making the modifications, then to rename it back again if you decide not to keep the
modifications.

• In a network, it’s unusual for times to be exactly the same. UNIX machines are not very
good at keeping the exact time, and some gain or lose as much as 5 minutes per day.
This can cause problems if you are using NFS. You edit your files on one machine,
where the clocks are behind, and compile on another, where the clocks are ahead. The
result can be that objects created before the last edit still have a modification timestamp
that is more recent, and make is fooled into believing that it doesn’t need to recompile.
Similar problems can occur when one system is running with an incorrect time zone set-
ting.

5 February 2005 02:09

44

cmp
A modification timestamp isn’t infallible, of course: even if EOF, timestamp and name are
identical, there still can be a lingering doubt as to whether the files really are identical. This
doubt becomes more pronounced if you seee something like:

$ ls -l
total 503
-rw-rw-rw- 1 grog wheel 1326 May 1 01:00 a29k-pinsn.c
-rw-rw-rw- 1 grog wheel 28871 May 1 01:00 a29k-tdep.c
-rw-rw-rw- 1 grog wheel 4259 May 1 01:00 a68v-nat.c
-rw-rw-rw- 1 grog wheel 4515 May 1 01:00 alpha-nat.c
-rw-rw-rw- 1 grog wheel 33690 May 1 01:00 alpha-tdep.c
... etc

It’s a fairly clear bet that somebody has done a touch on all the files, and their modification
timestamps have all been set to midnight on May 1.* The cmp program can give you certainty:

$ cmp foo.c ../orig/foo.c compare with the original
$ echo $? show exit status
0 0: all OK
$ cmp bar.c ../orig/bar.c
bar.c ../orig/bar.c differ: char 1293, line 39
$ echo $? show exit status
1 1: they differ

Remember you can tell the shell to display the exit status of the previous command with the
shell variable $?. In the C shell, the corresponding variable is called $status. If the con-
tents of the files are identical, cmp says nothing and returns an exit status 0. If they are, it tells
you where they differ and returns 1. You can use the exit status in a shell script. For example,
the following Bourne shell script (it doesn’t work with csh) compares files that are in both the
current tree (which is the current working directory) and the original tree (../orig) and makes a
copy of the ones that have changed in the directory ../changed.

$ for i in *; do check all files in the directory
> if [-f ../orig/$i]; then it is present in the orig tree
> cmp $i ../orig/$i 2>&1 >/dev/null compare them
> if [$? -ne 0]; then they’re different
> cp -p $i ../changed make a copy
> fi
> fi
> done

There are a couple of points to note about this example:

• We’re not interested in where the files differ, or in even seeing the message. We just
want to copy the files. As a result, we copy both stdout and stderr of cmp to /dev/null,
the UNIX bit bucket.

* Midnight? That looks like 1 a.m. But remember that UNIX timestamps are all in UTC, and that’s 1
a.m. in my time zone. This example really was done with touch.

5 February 2005 02:09

Chapter 3: Care and feeding of source trees 45

• When copying, we use -p to ensure that the timestamps don’t get changed again.

An example — updating an existing tree
Chances are that before long you will have an old version of gcc on your system, but that you
will want to install a newer version. As we saw on page 29, the gzipped archive for gcc is
around 6 MB in size, whereas the patches run to 10 KB or 15 KB, so we opt to get diffs from
prep.ai.mit.edu to update version 2.6.1 to 2.6.3. That’s pretty straightforward if you have
enough disk space: we can duplicate the complete source tree and patch it. Before doing so,
we should check the disk space: the gcc source tree with all objects takes up 110 MB of disk
space.

$ cd /porting/srcmove to the parent directory
$ mkdir gcc-2.6.3 make a directory for the new tree
$ cd gcc-2.6.1 move to the old directory
$ tar cf - . | (cd ../gcc-2.6.3;tar xf -) and copy all files*

$ cd ../gcc-2.6.3 move to new directory
$ make clean and start off with a clean slate
$ gunzip < /C/incoming/gcc-2.6.1-2.6.2.tar.gz | patch -p | tee patch.log
Hmm... Looks like a new-style context diff to me...
The text leading up to this was:

|Changes for GCC version 2.6.2 from version 2.6.1:
|
|Before applying these diffs, go to the directory gcc-2.6.1. Remove all
|files that are not part of the distribution with the command
|
| make distclean
|
|Then use the command
|
| patch -p1
|
|feeding it the following diffs as input. Then rename the directory to
|gcc-2.6.2, re-run the configure script, and rebuild the compiler.
|
|diff -rc2P -x c-parse.y -x c-parse.c -x c-parse.h -x c-gperf.h -x cexp.c -x
bi-parser.c -x objc-parse.y -x objc-parse.c
|-x TAGS -x gcc.?? -x gcc.??s -x gcc.aux -x gcc.info* -x cpp.?? -x cpp.??s -x
cpp.aux -x cpp.info* -x cp/parse.c -x cp/pa
|rse.h gcc-2.6.1/ChangeLog gcc-2.6.2/ChangeLog
|*** gcc-2.6.1/ChangeLog Tue Nov 1 21:32:40 1994
--- gcc-2.6.2/ChangeLog Sat Nov 12 06:36:04 1994
File to patch:

Oops, these patches contain the directory name as well. As the diff header indicates, we can
solve this problem by supplying the -p1 flag to patch. We can also solve the problem by

* When moving directories with tar, it may not seem to be important whether you say tar c . or tar
c *--but it is. If you say *, you will miss out any file names starting with . (period).

5 February 2005 02:09

46

moving up one level in the directory hierarchy, since we have stuck to the same directory
names. This message also reminds us that patch is very verbose, so this time we enter:

$ gunzip < /C/incoming/gcc-2.6.1-2.6.2.tar.gz | patch -p1 -s | tee patch.log
1 out of 6 hunks failed--saving rejects to cccp.c.rej
$

What went wrong here? Let’s take a look at cccp.c.rej and cccp.c.orig. According to the
hunk, line 3281 should be

if (ip->macro != 0)

The hunk wants to change it to

if (output_marks)

However, line 3281 of cccp.orig is

if (output_marks)

In other words, we had already applied this change, probably from a message posted in
gnu.gcc.bugs. Although the patch failed, we don’t need to worry: all the patches had been
applied.

Now we hav e a gcc-2.6.2 source tree in our directory. To upgrade to 2.6.3, we need to apply
the next patch:

$ gunzip < /C/incoming/gcc-2.6.2-2.6.3.diff.gz | patch -p1 -s | tee -a patch.log

We use the -a option to patch here to keep both logs—possibly overkill in this case. This
time there are no errors.

After patching, there will be a lot of original files in the directory, along with the one .rej file.
We need to decide when to delete the .orig files: if something goes wrong compiling one of
the patched files, it’s nice to have the original around to compare. In our case, though, we
have a complete source tree of version 2.6.2 on the same disk, and it contains all the original
files, so we can remove the .orig files:

$ find . -name "*.orig" -print | xargs rm

We use xargs instead of -exec rm {} \; because it’s faster: -exec rm starts a rm process
for every file, whereas xargs will put as many file names onto the rm command line as possi-
ble. After cleaning up the tree, we back it up. It’s taken us a while to create the tree, and if
anything goes wrong, we’d like to be able to restore it to its initial condition as soon as possi-
ble.

5 February 2005 02:09

4
Package configuration

Programs don’t run in a vacuum: they interface with the outside world. The view of this out-
side world differs from location to location: things like host names, system resources, and
local conventions will be different. Theoretically, you could change the program sources
ev ery time you install a package on a new system, but besides being a pain, it’s very error-
prone. All modern packages supply a method of configuration, a simplified way of adapting
the sources to the environment in which the program will run. In this chapter, we’ll look at
common configuration conventions. We can divide system differences into one of three cate-
gories:

• The kind of hardware the package will run on. A compiler needs to generate the correct
machine instructions, and an X server needs to know how to transfer data to the display
hardware. Less well-written programs have hardware dependencies that could have been
avoided with some forethought. We’ll look at this in more detail in Chapter 11, Hard-
ware dependencies.

• The system software with which it will interact. Differences between UNIX systems are
significant enough that it will be necessary to make certain decisions depending on the
system flavour. For example, a communications program will need to know what kind of
network interface your system has. Programs that come from other systems may need
significant rewriting to conform with UNIX library calls. We’ll look at these dependen-
cies in part 2 of this book, from Chapter 12, Kernel dependencies to Chapter 21, Object
files and friends.

• The local configuration. These may include obvious things like the system name, aspects
of program behaviour, information about tools used locally, or local system conventions.

In this chapter, we’ll look at what local configuration entails, and how we tell the package
about our chosen configuration.

47

5 February 2005 02:09

48

Installation paths
Your system configuration may place constraints on where you can install the software. This
is not normally a problem for individual systems, but on a large, heterogeneous network it
could require more consideration.

Traditionally, non-system software has been installed in the hierarchy /usr/local. This is not
an æsthetically pleasing location: the hierarchy can become quite large, and in a network
many systems might share the directory.

One of the best thought-out descriptions of a modern file system structure is in the UNIX Sys-
tem V Application Binary Interface, which is also similar to structures used by SunOS and the
newer BSD variants. In brief, it specifies the following top-level directories:

/ The root directory.

/dev The directory tree containing device files.

/etc Directory for machine-specific configuration files.

/opt Directory for add-on software.

/usr This directory used to be the other file system on a UNIX machine. In the
System V ABI it has lost most of its importance. The ABI states uses only
for /usr/bin and /usr/share, and the name /usr has lost its original meaning:
the ABI specifies /usr only as a location for system files that users may wish
to access.

/usr/bin is intended for “Utility programs and commands for the use of all applica-
tions and users”. In practice, it’s better to use this directory for system pro-
grams only.

/usr/share The System V ABI states that /usr/share is intended for “architecture-inde-
pendent shareable files”. In practice, those versions of System V that still
have man pages put them in /usr/share/man, and terminfo data are stored in
/usr/share/lib/terminfo. The rest of the directory may contain a few other
odds and ends, but these two directories make up over 99% of the content.
The choice of the location /usr/share is not a happy choice: firstly, it is fre-
quently a separate file system, but it must be mounted on a non-root file sys-
tem, and secondly the man pages aren’t really architecture-independent.
The choice makes more sense from the point of view of the Unix Systems
Group, who are concerned only with pure System V: the man pages are
mainly independent of hardware architecture. However, in a real-world net
you probably have two or three different operating systems, each with their
own man pages.

/var This directory contains files that are frequently modified. Typical subdirec-
tories are /var/tmp for temporary files and /var/spool for printer output, uucp
and news.

The System V ABI does not say anything about where to store user files. The Seventh Edition
typically stored them as a subdirectory of /usr, but newer systems have tended to store them in
a directory called /home.

5 February 2005 02:09

Chapter 4: Package configuration 49

The /opt hierarchy resembles that of /usr. A typical structure is:

/opt/bin for executables.

/opt/man for man pages — not /opt/share/man, unlike the structure in /usr.

/opt/lib for additional files used by executables. In particular, this directory could
contain library archives for compilers, as well as the individual passes of the
compilers.

/opt/<pkg> This is where the System V ABI places individual package data. Not many
other systems follow it.

/opt/lib/<pkg> This is where most packages place private data.

Using the /opt hierarchy has one disadvantage: you may not want to have a separate file sys-
tem. In modern systems, the solution is simple enough: place the directory where you want it,
and create a symbolic link /opt that points to it. This works only if your system has symbolic
links, of course, so I have come to a compromise: I use /opt on systems with symbolic links,
and /usr/local on systems without symbolic links.

Many packages compile pathnames into the code, either because it’s faster that way, or
because it’s easier. As a result, you should set the path names before compilation—don’t put
off this task until you’re ready to install, or you may run into problems where the packages are
all nicely installed in the correct place and look for data in the wrong directories.

Preferred tools
Many of the most popular software packages are alternative tools. Free software such as gcc,
emacs and perl have become so popular that they are frequently supplied with proprietary sys-
tem releases, and many other systems have ported them and use them as standard tools. If
you want to use such programs, you need to tell the configuration routines about them.

Depending on the tools you use, you may also need to change the flags that you pass to them.
For example, if you compile with gcc, you may choose to include additional compiler flags
such as -fstrength-reduce, which is specific to gcc.

Conveying configuration information
The goal of configuration is to supply the configuration information to the program sources.
A good configuration mechanism will hide this from you, but it’s helpful to understand what
it’s doing. In this section, we’ll look under the covers — you can skip it if it looks too techni-
cal.

There are a number of possible ways to use configuration information: for example, the pack-
age may have separate communication modules for STREAMS and sockets, and the configu-
ration routines may decide which of the two modules to compile. More typically, howev er,
the configuration routines convey configuration information to the package by defining pre-
processor variables indicating the presence or absence of a specific feature. Many packages
provide this information in the make variable CFLAGS—for example, when you make bash,
the GNU Bourne Again Shell, you see things like

5 February 2005 02:09

50

$ make
gcc -DOS_NAME=’"FreeBSD"’ -DProgram=bash -DSYSTEM_NAME=’"i386"’ \
-DMAINTAINER=’"bug-bash@prep.ai.mit.edu"’ -O -g -DHAVE_SETLINEBUF -DHAVE_VFPRINTF \
-DHAVE_UNISTD_H -DHAVE_STDLIB_H -DHAVE_LIMITS_H -DHAVE_GETGROUPS \
-DHAVE_RESOURCE -DHAVE_SYS_PARAM -DVOID_SIGHANDLER -DOPENDIR_NOT_ROBUST \
-DINT_GROUPS_ARRAY -DHAVE_WAIT_H -DHAVE_GETWD -DHAVE_DUP2 -DHAVE_STRERROR \
-DHAVE_DIRENT -DHAVE_DIRENT_H -DHAVE_STRING_H -DHAVE_VARARGS_H -DHAVE_STRCHR \
-DHAVE_STRCASECMP -DHAVE_DEV_FD -D"i386" -D"FreeBSD" -DSHELL -DHAVE_ALLOCA \
-I. -I. -I././lib/ -c shell.c

The -D arguments pass preprocessor variables that define the configuration information.

An alternative method is to put this information in a file with a name like config.h. Taylor
uucp does it this way: in config.h you will find things like:

/* If your compiler supports prototypes, set HAVE_PROTOTYPES to 1. */
#define HAVE_PROTOTYPES 1

/* Set ECHO_PROGRAM to a program which echoes its arguments; if echo
is a shell builtin you can just use "echo". */

#define ECHO_PROGRAM "echo"

/* The following macros indicate what header files you have. Set the
macro to 1 if you have the corresponding header file, or 0 if you
do not. */

#define HAVE_STDDEF_H 1 /* <stddef.h> */
#define HAVE_STDARG_H 1 /* <stdarg.h> */
#define HAVE_STRING_H 1 /* <string.h> */

I prefer this approach: you have all the configuration information in one place, it is docu-
mented, and it’s more reliable. Assuming that the Makefile dependencies are correct, any
change to config.h will cause the programs to be recompiled on the next make. As we will see
in Chapter 5, Building the package, page 68, this usually doesn’t happen if you modify the
Makefile.

Typically, configuration information is based on the kind of operating system you run and the
kind of hardware you use. For example, if you compile for a Sparc II running SunOS 4.1.3,
you might define sparc to indicate the processor architecture used and sunos4 to indicate the
operating system. Since SunOS 4 is basically UNIX, you might also need to define unix. On
an Intel 486 running UnixWare you might need to define i386 for the processor architecture,*

and SVR4 to indicate the operating system. This information is then used in the source files as
arguments to preprocessor #ifdef commands. For example, the beginning of each source
file, or a general configuration file, might contain:

#ifdef i386
#include "m/i386.h"
#endif
#ifdef sparc
#include "m/sparc.h"
#endif

* Why not i486? The processor is an Intel 486, but the architecture is called the i386 architecture. You
also use i386 when compiling for a Pentium.

5 February 2005 02:09

Chapter 4: Package configuration 51

#ifdef sunos4
#include "s/sunos4.h"
#endif
#ifdef SVR4
#include "s/usg-4.0.h"
#endif

You can get yourself into real trouble if you define more than one machine architecture or
more than one operating system. Since configuration is usually automated to some extent, the
likelihood of this is not very great, but if you end up with lots of double definitions when
compiling, this is a possible reason.

Configuration through the preprocessor works nicely if the hardware and software both
exactly match the expectations of the person who wrote the code. In many cases, this is not
the case: looking at the example above, note that the file included for SVR4 is s/usg-4.0.h,
which suggests that it is intended for UNIX System V release 4.0. UnixWare is System V
release 4.2. Will this work? Maybe. It could be that the configuration mechanism was last
revised before System V.4.2 came out. If you find a file s/usg-4.2.h, it’s a good idea to use it
instead, but otherwise it’s a matter of trial and error.

Most software uses this approach, although it has a number of significant drawbacks:

• The choices are not very detailed: for example, most packages don’t distinguish between
Intel 386 and Intel 486, although the latter has a floating point coprocessor and the for-
mer doesn’t.

• There is no general consensus on what abbreviations to use. For UnixWare, you may
find that the correct operating system information is determined by USG (USG is the
Unix Systems Group, which, with some interruption,* is responsible for System V),
SYSV, SVR4, SYSV_4, SYSV_4_2 or even SVR3. This last can happen when the configu-
ration needed to be updated from System V.2 to System V.3, but not again for System
V.4.

• The choice of operating system is usually determined by just a couple of differences. For
example, base System V.3 does not have the system call rename, but most versions of
System V.3 that you will find today have it. System V.4 does have rename. A software
writer may use #ifdef SVR4 only to determine whether the system has the rename sys-
tem call or not. If you are porting this package to a version of System V.3.2 with
rename, it might be a better idea to define SVR4, and not SVR3.

• Many aspects attributed to the kernel are in fact properties of the system library. As we
will see in the introduction to Part 2 of this book, there is a big difference between kernel
functionality and library functionality. The assumption is that a specific kernel uses the
library with which it is supplied. The situation is changing, though: many companies sell
systems without software development tools, and alternative libraries such as the GNU C
library are becoming available. Making assumptions about the library based on the ker-
nel was never a good idea—now it’s completely untenable. For example, the GNU C

* The first USG was part of AT&T, and was superseded by UNIX Systems Laboratories (USL). After
the sale of USL to Novell, USL became Novell’s UNIX Systems Group.

5 February 2005 02:09

52

library supplies a function rename where needed, so our previous example would fail
ev en on a System V.3 kernel without a rename system call if it uses the GNU C library.
As you can imagine, many packages break when compiled with the GNU C library,
through their own fault, not that of the library.

In the example above, it would make a whole lot more sense to define a macro HAS_RENAME
which can be set if the rename function is present. Some packages use this method, and the
GNU project is gradually working towards it, but the majority of packages base their deci-
sions primarily on the combination of machine architecture and operating system.

The results of incorrect configuration can be far-reaching and subtle. In many cases, it looks
as if there is a bug in the package, and instead of reconfiguring, you can find yourself making
significant changes to the source. This can cause it to work for the environment in which it is
compiled, but to break it for anything else.

What do I need to change?
A good configuration mechanism should be able to decide the hardware and software depen-
dencies that interest the package, but only you can tell it about the local preferences. For
example, which compiler do you use? Where do you want to install the executables? If you
don’t know the answers to these questions, there’s a good chance that you’ll be happy with the
defaults chosen by the configuration routines. On the other hand, you may want to use gcc to
compile the package, and to install the package in the /opt hierarchy. In all probability, you’ll
have to tell the configuration routines about this. Some configuration routines will look for
gcc explicitly, and will take it if they find it. In this case, you may have a reason to tell the
configuration routines not to use gcc.

Some packages have a number of local preferences: for example, do you want the package to
run with X11 (and possibly fail if X isn’t running)? This sort of information should be in the
README file.

Creating configuration information
A number of configuration methods exist, none of them perfect. In most cases you don’t get a
choice: you use the method that the author of the package decided upon. The first significant
problem can arise at this point: what method does he use? This is not always easy to figure
out — it should be described in a file called README or INSTALL or some such, but occasion-
ally you just find cryptic comments in the Makefile.

In the rest of this chapter we’ll look at configuration via multiple Makefile targets, manual
configuration, shell scripts, and imake, the X11 configuration mechanism. In addition, the
new BSD make system includes a system of automatic configuration: once it is set up, you
don’t hav e to do anything, assuming you already have a suitable Makefile. We’ll look at this
method in more detail in Chapter 19, Make, page 323.

5 February 2005 02:09

Chapter 4: Package configuration 53

Multiple Makefile targets
Some packages anticipate every possibility for you and supply a customized Makefile. For
example, when building unzip, a free uncompression utility compatible with the DOS package
PK-ZIP, you would find:

$ make
If you’re not sure about the characteristics of your system, try typing "make
generic". If the compiler barfs and says something unpleasant about "timezone
redefined," try typing "make clean" followed by "make generic2". One of these
actions should produce a working copy of unzip on most Unix systems. If you
know a bit more about the machine on which you work, you might try "make list"
for a list of the specific systems supported herein. And as a last resort, feel
free to read the numerous comments within the Makefile itself. Note that to
compile the decryption version of UnZip, you must obtain the full versions of
crypt.c and crypt.h (see the "Where" file for ftp and mail-server sites). Have
an excruciatingly pleasant day.

As the comments suggest, typing make generic should work most of the time. If it doesn’t,
looking at the Makefile reveals a whole host of targets for a number of combined hard-
ware/software platforms. If one of them works for you, and you can find which one, then this
might be an easy way to go. If none does, you might find yourself faced with some serious
Makefile rewriting. This method has an additional disadvantage that it might compile with no
problems and run into subtle problems when you try to execute it—for example, if the pro-
gram expects System V sigpause and your system supplies BSD sigpause,* the build
process may complete without detecting any problems, but the program will not run correctly,
and you might have a lot of trouble finding out why.

Manual configuration
Modifying the Makefile or config.h manually is a better approach than multiple Makefile tar-
gets. This seemingly arduous method has a number of advantages:

• You get to see what is being changed. If you have problems with the resultant build, it’s
usually relatively easy to pin-point them.

• Assuming that the meanings of the parameters are well documented, it can be easier to
modify them manually than run an automated procedure that hides much of what it is
doing.

• If you find you do need to change something, you can usually do it fairly quickly. With
an automated script, you may need to go through the whole script to change a single
minor parameter.

On the down side, manual configuration requires that you understand the issues involved: you
can’t do it if you don’t understand the build process. In addition, you may need to repeat it
ev ery time you get an update of the package, and it is susceptible to error.

* See Chapter 13, Signals, pages 190 and 192 for further information.

5 February 2005 02:09

54

Configuration scripts
Neither multiple Makefile targets nor manual modification of the Makefile leave you with the
warm, fuzzy feeling that everything is going to work correctly. It would be nice to have a
more mechanized method to ensure that the package gets the correct information about the
environment in which it is to be built. One way to do this is to condense the decisions you
need to make in manual configuration into a shell script. Some of these scripts work very
well. A whole family of configuration scripts has grown up in the area of electronic mail and
news. Here’s part of the configuration script for C news, which for some reason is called
build:

$ cd conf
$ build
This interactive command will build shell files named doit.root,
doit.bin, doit.news, and again.root to do all the work. It will not
actually do anything itself, so feel free to abort and start again.

C News wants to keep most of its files under a uid which preferably
should be all its own. Its programs, however, can and probably should
be owned by another user, typically the same one who owns most of the
rest of the system. (Note that on a system running NFS, any program
not owned by "root" is a gaping security hole.)
What user id should be used for news files [news]? RETURN pressed
What group id should be used for news files [news]? RETURN pressed
What user id should be used for news programs [bin]? RETURN pressed
What group id should be used for news programs [bin]? RETURN pressed
Do the C News sources belong to bin [yes]? no
You may need to do some of the installation procedures by hand
after the software is built; doit.bin assumes that it has the
power to create files in the source directories and to update
the news programs.

It would appear that your system is among the victims of the
4.4BSD / SVR4 directory reorganization, with (e.g.) shared
data in /usr/share. Is this correct [yes]? RETURN pressed
This will affect where C News directories go. We recommend
making the directories wherever they have to go and then making
symbolic links to them under the standard names that are used
as defaults in the following questions. Should such links
be made [yes]? no

We chose not to use the symbolic links: the script doesn’t say why this method is recom-
mended, they don’t buy us anything, and symbolic links mean increased access time.

The configuration script continues with many more questions like this. We’ll pick it up at var-
ious places in the book.

The flexibility of a shell script is an advantage when checking for system features which are
immediately apparent, but most of them require that you go through the whole process from
start to finish if you need to modify anything. This can take up to 10 minutes on each occa-
sion, and they are often interactive, so you can’t just go away and let it do its thing.

5 February 2005 02:09

Chapter 4: Package configuration 55

GNU package configuration
Most GNU project packages supply another variety of configuration script. For more details,
see Programming with GNU Software, by Mike Loukides. GNU configuration scripts some-
times expect you to know the machine architecture and the operating system, but they often
attempt to guess if you don’t tell them. The main intention of the configuration utility is to
figure out which features are present in your particular operating system port, thus avoiding
the problems with functions like rename discussed on page 51. Taylor uucp uses this method:

$ sh configure
checking how to run the C preprocessor
checking whether -traditional is needed see page 351
checking for install the install program, page 128
checking for ranlib see page
checking for POSIXized ISC Interactive POSIX extensions?
checking for minix/config.h MINIX specific
checking for AIX IBM UNIX
checking for -lseq libseq.a needed?
checking for -lsun libsun.a?
checking whether cross-compiling
checking for lack of working const see page 339
checking for prototypes does the compiler understand function prototypes?
checking if ‘#!’ works in shell scripts
checking for echo program is echo a program or a builtin?
checking for ln -s do we have symbolic links? (page 218)

This method makes life a whole lot easier if the package has already been ported to your par-
ticular platform, and if you are prepared to accept the default assumptions that it makes, but
can be a real pain if not:

• You may end up having to modify the configuration scripts, which are not trivial.

• It’s not always easy to configure things you want. In the example above, we accepted the
default compiler flags. If you want maximum optimization, and the executables should
be installed in /opt/bin instead of the default /usr/local/bin, running configure becomes
significantly more complicated:*

$ CFLAGS="-O3 -g" sh configure --prefix=/opt

• The scripts aren’t perfect. You should really check the resultant Makefiles, and you will
often find that you need to modify them. For example, the configuration scripts of many
packages, including the GNU debugger, gdb, do not allow you to override the preset
value of CFLAGS. In other cases, you can run into a lot of trouble if you do things that
the script didn’t expect. I once spent a couple of hours trying to figure out the behaviour
of the GNU make configuration script when porting to Solaris 2.4:

* This example uses the feature of modern shells of specifying environment variables at the beginning of
the command. The program being run is sh, and the definition of CFLAGS is exported only to the pro-
gram being started.

5 February 2005 02:09

56

$ CFLAGS="O3 -g" configure --prefix=/opt
creating cache ./config.cache
checking for gcc... gcc
checking whether we are using GNU C... yes
checking how to run the C preprocessor... gcc -E
checking whether cross-compiling... yes

Although this was a normal port, it claimed I was trying to cross-compile. After a lot of
experimentation, I discovered that the configuration script checks for cross-compilation
by compiling a simple program. If this compilation fails for any reason, the script
assumes that it should set up a cross-compilation environment. In this case, I had mis-
takenly set my CFLAGS to O3 -g—of course, I had meant to write -O3 -g. The com-
piler looked for a file O3 and couldn’t find it, so it failed. The configuration script saw
this failure and assumed I was cross-compiling.

• In most cases, you need to re-run the configuration script every time a package is
updated. If the script runs correctly, this is not a problem, but if you need to modify the
Makefile manually, it can be a pain. For example, gdb creates 12 Makefiles. If you want
to change the CFLAGS, you will need to modify each of them every time you run config-
ure.

• Like all configuration scripts, the GNU scripts have the disadvantage of only configuring
things they know about. If your man program requires pre-formatted man pages, you
may find that there is no way to configure the package to do what you want, and you end
up modifying the Makefile after you have built it.

Modifying automatically build Makefiles is a pain. An alternative is to modify Makefile.in,
the raw Makefile used by configure. That way, you will not have to redo the modifications
after each run of configure.

imake
imake is the X11 solution to package configuration. It uses the C preprocessor to convert a
number of configuration files into a Makefile. Here are the standard files for X11R6:

• Imake.tmpl is the main configuration file that is passed to the C preprocessor. It is
responsible for including all the other configuration files via the preprocessor #include
directive.

• Imake.cf determines the kind of system upon that imake is running. This may be based
on preprocessor variables supplied by default to the preprocessor, or on variables com-
piled in to imake.

• site.def describes local preferences. This is one of the few files that you should normally
consider modifying.

• As its name implies, <vendor>.cf has a different name for each platform. Imake.tmpl
decides which file to include based on the information returned by Imake.cf. For exam-
ple, on BSD/OS the file bsdi.cf will be included, whereas under SunOS 4 or Solaris 2 the
file sun.cf will be included.

5 February 2005 02:09

Chapter 4: Package configuration 57

• Imake.rules contains preprocessor macros used to define the individual Makefile targets.

• Imakefile is part of the package, not the imake configuration, and describes the package
to imake.

You don’t normally run imake directly, since it needs a couple of pathname parameters:
instead you have two possibilities:

• Run xmkmf, which is a one-line script that supplies the parameters to imake.

• Run make Makefile. This assumes that some kind of functinoal Makefile is already
present in the package.

Strangely, make Makefile is the recommended way to create a new Makefile. I don’t agree:
one of the most frequent reasons to make a new Makefile is because the old one doesn’t work,
or because it just plain isn’t there. If your imake configuration is messed up, you can easily
remove all traces of a functional Makefile and have to restore the original version from tape.
xmkmf always works, and anyway, it’s less effort to type.

Once you have a Makefile, you may not be finished with configuration. If your package con-
tains subdirectories, you may need to create Makefiles in the subdirectories as well. In gen-
eral, the following sequence will build most packages:

$ xmkmf run imake against the Imakefile
$ make Makefiles create subordinate Makefiles
$ make depend run makedepend against all Makefiles
$ make make the packages
$ make install install the packages

These commands include no package-dependent parameters—the whole sequence can be run
as a shell script. Well, yes, there are minor variations: make Makefiles fails if there are no
subordinate Makefiles to be made, and sometimes you have targets like a make World instead
of make or make all, but in general it’s very straightforward.

If your imake configuration files are set up correctly, and the package that you are porting con-
tains no obscenities, this is all you need to know about imake, which saves a lot of time and is
good for your state of mind. Otherwise, check Software Portability with imake, by Paul
DuBois, for the gory details.

5 February 2005 02:09

5
Building the package

Now we hav e configured our package and we’re ready to build. This is the Big Moment: at
the end of the build process we should have a complete, functioning software product in our
source tree. In this chapter, we’ll look at the surprises that make can have in store for you.
You can find the corresponding theoretical material in Chapter 19, Make.

Preparation
If you’re unlucky, a port can go seriously wrong. The first time that error messages appear
thick and fast and scroll off the screen before you can read them, you could get the impression
that the packages were built this way deliberately to annoy you.

A little bit of preparation can go a long way towards keeping you in control of what’s going
on. Here are some suggestions:

Make sure you have enough space
One of the most frequent reasons of failure of a build is that the file system fills up. If possi-
ble, ensure that you have enough space before you start. The trouble is, how much is enough?
Hardly any package will tell you how much space you need, and if it does it will probably be
wrong, since the size depends greatly on the platform. If you are short on space, consider
compiling without debugging symbols (which take up a lot of space). If you do run out of
space in the middle of a build, you might be able to save the day by stripping the objects with
strip, in other words removing the symbols from the file.

Use a windowing system
The sheer size of a complicated port can be a problem. Like program development, porting
tends to be an iterative activity. You edit a file, compile, link, test, go back to edit the file, and
so on. It’s not uncommon to find yourself having to compare and modify up to 20 different
files in 5 different directories, not to mention running make and the debugger. In adddition, a
single line of output from make can easily be 5000 or 10000 characters long, many times the
screen capacity of a conventional terminal.

59

5 February 2005 02:09

60

All of these facts speak in favour of a windowing system such as X11, preferably with a high-
resolution monitor. You can keep your editor (or editors, if they don’t easily handle multiple
files) open all the time, and run the compiler and debugger in other windows. If multiple
directories are involved, it’s easier to maintain multiple xterms, one per directory, than to con-
tinually change directories. A correctly set up xterm will allow you to scroll back as far as
you want — I find that 250 lines is adequate.

Keep a log file
Sooner or later, you’re going to run into a bug that you can’t fix immediately: you will have to
experiment a bit before you can fix the problem. Like finding your way through a labyrinth,
the first time through you will probably not take the most direct route, and it’s nice to be able
to find your way back again. In the original labyrinth, Theseus used a ball of string to find his
way both in and out. The log file, a text file describing what you’ve done, is the computer
equivalent of the ball of string, so you should remember to roll it up again. If you’re running
an editor like emacs, which can handle multiple files at a time, you can keep the log in the edi-
tor buffer and remove the notes again when you back out the changes.

In addition to helping you find your way out of the labyrinth, the log will also be of use later
when you come to install an updated version of the software. To be of use like this, it helps to
keep additional information. For example, here are some extracts from a log file for the gcc:

Platform: SCO UNIX System V.3.2.2.0
Revision: 2.6.0
Date ported: 25 August 1994
Ported by: Greg Lehey, LEMIS
Compiler used: rcc, gcc-2.6.0
Library: SCO

0. configure i386-unknown-sco --prefix=/opt. It sets local_prefix to
/usr/local anyway, and won’t listen to --local_prefix. For some
reason, config decides that it should be cross-compiling.

1. function.c fails to compile with the message function.c: 59: no
space. Compile this function with ISC gcc-2.5.8.

2. libgcc.a was not built because config decided to cross-compile.
Re-run config with configure i386-*-sco --prefix=/opt, and do an
explicit make libgcc.a.

3. crtbegin.o and crtend.o were not built. Fix configure:

--- configure˜ Tue Jul 12 01:25:53 1994
+++ configure Sat Aug 27 13:09:27 1994
@@ -742,6 +742,7 @@

else
tm_file=i386/sco.h
tmake_file=i386/t-sco

+ extra_parts="crtbegin.o crtend.o"

5 February 2005 02:09

Chapter 5: Building the package 61

fi
truncate_target=yes
;;

Keeping notes about problems you have with older versions helps a lot: this example repre-
sents the results of a considerable time spent debugging the make procedure. If you didn’t
have the log, you’d risk tripping over this problem every time.

Save make output
Typically, to build a package, after you have configured it, you simply type

$ make

Then the fireworks start. You can sit and watch, but it gets rather boring to watch a package
compile for hours on end, so you usually leave it alone once you have a reasonable expecta-
tion that it will not die as soon as you turn your back. The problem is, of course, that you may
come back and find a lot of gobbldegook on the screen, such as:

make[5]: execve: ../../config/makedepend/makedepend: No such file or directory
make[5]: *** [depend] Error 127
make[5]: Leaving directory ‘/cdcopy/SOURCE/X11/X11R6/xc/programs/xsetroot’
depending in programs/xstdcmap...
make[5]: Entering directory ‘/cdcopy/SOURCE/X11/X11R6/xc/programs/xstdcmap’
checking ../../config/makedepend/makedepend over in ../../config/makedepend first...
make[6]: Entering directory ‘/cdcopy/SOURCE/X11/X11R6/xc/config/makedepend’
gcc -DNO_ASM -fstrength-reduce -fpcc-struct-return -fwritable-strings -O \
-I../../config/imake -I../.. OSDefines -DSYSV -DSYSV386 -c include.c
gcc: OSDefines: No such file or directory
In file included from include.c:30:
def.h:133: conflicting types for ‘getline’
/opt/include/stdio.h:505: previous declaration of ‘getline’
Broken pipe

This is from a real life attempt to compile X11R6, normally a fairly docile port. The target
makedepend failed to compile, but why? The reason has long since scrolled off the screen.*

You can have your cake and eat it too if you use tee to save your output:

$ make 2>&1 | tee -a Make.log

This performs the following actions:

• It copies error output (file descriptor 2) to standard output (file descriptor 1) with the
expression 2>&1.

• It pipes the combined standard output to the program tee, which echos it to its standard
output and also copies it to the file Make.log.

* Well, there is a clue, but it’s very difficult to see unless you have been hacking X11 configurations
longer than is good for your health. OSDefines is a symbol used in X11 configuration. It should have
been replaced by a series of compiler flags used to define the operating system to the package. In this
case, the X11 configuration was messed up, and nothing defined OSDefines, so it found its way to the
surface.

5 February 2005 02:09

62

• In this case, I specified the -a option, which tells tee to append to any existing Make.log.
If I don’t supply this flag, it will erase any previous contents. Depending on what you’re
doing, you may or may not want to use this flag.

If you’re not sure what your make is going to do, and especially if the Makefile is complicated,
consider using the -n option. This option tells make to perform a “dry run”: it prints out the
commands that it would execute, but doesn’t actually execute them.

These comparatively simple conventions can save a lot of pain. I use a primitive script called
Make which contains just the single line:

make 2>&1 $* | tee -a Make.log

It’s a good idea to always use the same name for the log files so that you can find them easily.

Standard targets
Building packages consists of more than just compiling and linking, and by convention many
Makefiles contain a number of targets with specific meanings. In the following sections we’ll
look at some of the most common ones.

make depend
make depend creates a list of dependencies for your source tree, and usually appends it to the
Makefile. Usually it will perform this task with makedepend, but sometimes you will see a
depend target that uses gcc with the -M flag or cpp. depend should be the first target to run,
since it influences which other commands need to be executed. Unfortunately, most Makefiles
don’t hav e a depend target. It’s not difficult to write one, and it pays off in the reduction of
strange, unaccountable bugs after a rebuild of the package. Here’s a starting point:

depend:
makedepend *.[ch]

This will work most of the time, but to do it correctly you need to analyze the structure of the
package: it might contain files from other languages, or some files might be created by shell
scripts or special configuration programs. Hopefully, if the package is this complicated, it will
also have a depend target.

Even if you have a depend target, it does not always work as well as you would hope. If you
make some really far-reaching changes, and things don’t work the way you expect, it’s worth
starting from scratch with a make clean to be sure that the make still works.

make all
make all is the normal way to perform the build. Frequently, it is the default target (the first
target in the Makefile), and you just need to enter make. This target typically rebuilds the
package but does not install it.

5 February 2005 02:09

Chapter 5: Building the package 63

make install
make install installs the compiled package into the local system environment. The usage
varies considerably; we’ll look at this target in more detail in Chapter 9, Installation, page
126.

make clean
make clean normally removes everything that make all has made—the objects, executables
and possibly auxiliary files. You use it after deciding to change a compiler, for example, or to
save space after you have finished an installation. Be careful with make clean: there is no
complete agreement about exactly what it removes, and frequently you will find that it doesn’t
remove everything it should, or it is too eager and removes lots of things it shouldn’t. make
clean should remove everything that make all can make again — the intermediate and instal-
lable files, but not the configuration information that you may have taken days to get right.

make stamp-halfway
Occasionally you see a target like make stamp-halfway. The commands perform a lot of other
things, and at the end just create an empty file called stamp-halfway. This is a short cut to
save lots of complicated dependency checking: the presence of this file is intended to indicate
that the first half of the build is complete, and that a restart of make can proceed directly to the
second half. Good examples of this technique can be found in the Makefile for the GNU C
compiler, and in the X11 source tree, which uses the name DONE for the stamp file.

Problems running make
Ideally, running make should be simple:

$ make all
lots of good messages from make

Things don’t always go this smoothly. You may encounter a number of problems:

• You may not be able to find a Makefile, or the targets don’t work the way you expect.

• make may not be able to make any sense of the Makefile.

• The Makefile may refer to non-existent files or directories.

• make seems to run, but it doesn’t rebuild things it should, or it rebuilds things it
shouldn’t.

• You can’t find anything that’s wrong, but make still produces obscure error messages.

In the following sections we’ll look at each of these problems. Here’s an overview of the

5 February 2005 02:09

64

types of error message we’ll consider:

Table 5−1: Problems running make

Problem page

Argument list too long 74
"$! nulled, predecessor circle" 71
"Circular dependency dropped" 71
"Commands commence before first target" 70
Comments in command lists 69
"Graph cycles through target 71
Incorrect continuation lines 73
Incorrect dependencies 68
make forgets the current directory 70
"Missing separator - stop" 70
Missing targets 66
No dependency on Makefile 68
No Makefile 64
Nonsensical targets 71
Problems with make clean 72
Problems with subordinate makes 68
Prompts in Makefiles 74
Subordinate makes 72
Syntax errors from the shell 71
Tr ailing blanks in variables 69
Unable to stop make 71
Wrong flavour of make 66
Wrong Makefile 66

Missing Makefile or targets
Sometimes make won’t even let you in the door—it prints a message like:

$ make all
Don’t know how to make all. Stop.

The first thing to check here is whether there is a Makefile. If you don’t find Makefile or
makefile, check for one under a different name. If this is the case, the author should have doc-
umented where the Makefile comes from—check the README files and other documentation
that came with the package. You may find that the package uses separate Makefiles for differ-
ent architectures. For example, Makefile may be correct only if you are compiling in a BSD
environment. If you want to compile for a System V machine, you may need to specify a dif-
ferent Makefile:

5 February 2005 02:09

Chapter 5: Building the package 65

$ make -f Makefile.sysv

This is a pain because it’s so easy to make a mistake. In extreme cases the compiler will suc-
cessfully create objects, but they will fail to link.

Other possibilities include:

• The Makefile is created by the configuration process, and you haven’t configured yet.
This would be the case if you find an Imakefile (from which you create a Makefile with
xmkmf—see Chapter 4, Package configuration, page 57), or Makefile.in (GNU config-
ure—see page 55).

• The directory you are looking at doesn’t need a Makefile. The Makefile in the parent
directory, also part of the source tree, could contain rules like:

foo/foo: foo/*.c
${CC} foo/*.c -o foo/foo

In other words, the executable is made automatically when you execute make foo/foo in
the parent directory. As a rule, you start building in the root directory of a package, and
perform explicit builds in subdirectories only if something is obviously wrong.

• The author of the package doesn’t believe in Makefiles, and has provided a shell script
instead. You often see this with programs that originated on platforms that don’t hav e a
make program.

• There is really nothing to build the package: the author is used to doing the compilation
manually. In this case, your best bet is to write a Makefile from scratch. The skeleton in
Example 5-1 will get you a surprisingly long way. The empty targets are to remind you
what you need to fill in:

Example 5−1:

SRCS = list of C source files
OBJS = ${SRCS:.c=.o} corresponding object files
CC=gcc file name of compiler
CFLAGS=-g -O3 flags for compiler
LDFLAGS=-g flags for linker
BINDIR=/opt/bin
LIBDIR=/opt/lib
MANDIR=/opt/man
MAN1DIR=man1
INFODIR=/opt/info
PROGRAM= name of finished program

all: $(PROGRAM)
${CC} ${LDFLAGS} -o ${PROGRAM} ${OBJS}

man:

doc:

install: all

5 February 2005 02:09

66

Example 5−1: (continued)

depend:
makedepend ${SRCS}

clean:
rm -f \#* *˜ core $(PROGRAM) *.o

Missing targets
Another obvious reason for the error message might be that the target all doesn’t exist: some
Makefiles have a different target name for each kind of system to which the Makefile has been
adapted. The README file should tell you if this is the case. One of the more unusual exam-
ples is gnuplot. You need to enter

$ make All
$ make x11 TARGET=Install

The better ones at least warn you—see Chapter 4, Package configuration, page 53, for an
example. I personally don’t like these solutions: it’s so much easier to add the following line
at the top of the Makefile:

BUILD-TARGET = build-bsd

The first target would then be:

all: ${BUILD-TARGET}

If you then want to build the package for another architecture, you need only change the sin-
gle line defining BUILD-TARGET.

make doesn’t understand the Makefile
Sometimes make produces messages that make no sense at all: the compiler tries to compile
the same file multiple times, each time giving it a different object name, or it claims not to be
able to find files that exist. One possible explanation is that various flavours of make have
somewhat different understandings of default rules. In particular, as we will see in Chapter
19, Make, there are a number of incompatibilities between BSD make and GNU make.

Alternatively, make may not even be tryining to interpret the Makefile. Somebody could have
hidden a file called makefile in the source tree. Most people today use the name Makefile for
make’s description file, probably because it’s easier to see in an ls listing, but make always
looks for a file called makefile (with lower case m) first. If you are using GNU make, it first
looks for a file called GNUmakefile before checking for makefile and Makefile.

5 February 2005 02:09

Chapter 5: Building the package 67

make refers to non-existent files
Building a package refers to a large number of files, and one of the most frequent sources of
confusion is a file that can’t be found. There are various flavours of this, and occasionally the
opposite happens, and you have trouble with a file that make finds, but you can’t find.

To analyse this kind of problem, it’s helpful to know how make is referring to a file. Here are
some possibilities:

• make may be looking for a dependent file, but it can’t find it, and it can’t find a rule to
build it. In this case you get a message like:

$ make
make: *** No rule to make target ‘config.h’. Stop.

• make may not be able to locate a program specified in a command. You get a message
like:

$ make foo.o
/bin/cc -c foo.o -o foo.c
make: execve: /bin/cc: No such file or directory
make: *** [foo.o] Error 127

• The compilers and other programs started by make also access files specified in the
source. If they don’t find them, you’ll see a message like

$ make foo.o
gcc -c foo.c -o foo.o
foo.c:1: bar.h: No such file or directory
make: *** [foo.o] Error 1

No matter where the file is missing, the most frequent reasons why it is not found are:

• The package has been configured incorrectly. This is particularly likely if you find that
the package is missing a file like config.h.

• The search paths are incorrect. This could be because you configured incorrectly, but it
also could be that the configuration programs don’t understand your environment. For
example, it’s quite common to find Makefiles with contents like:

AR = /bin/ar
AS = /bin/as
CC = /bin/cc
LD = /bin/cc

Some older versions of make need this, since they don’t look at the PATH environment
variable. Most modern versions of make do look at PATH, so the easiest way to fix such a
Makefile is to remove the directory component of the definitions.

5 February 2005 02:09

68

Problems with subordinate makes
Occasionally while building, the compiler complains about a file that doesn’t seem to be there.
This can be because the make is running in a subdirectory: large projects are frequently split
up into multiple subdirectories, and all the top level Makefile does is to run a number of subor-
dinate makes. If it is friendly, it also echos some indication of where it is at the moment, and
if it dies you can find the file. Newer versions of GNU make print messages on entering and
leaving a directory, for example:

make[1]: Entering directory ‘/cdcopy/SOURCE/Core/glibc-1.08.8/assert’
make[1]: Nothing to be done for ‘subdir_lib’.
make[1]: Leaving directory ‘/cdcopy/SOURCE/Core/glibc-1.08.8/assert’

If neither of these methods work, you have the option of searching for the file:

$ find . -name foo.c -print

or modifying the Makefile to tell you what’s going on.

make doesn’t rebuild correctly
One of the most insidious problems rebuilding programs occurs when make doesn’t rebuild
programs correctly: there’s no easy way to know that a module has been omitted, and the
results can be far-reaching and time-consuming. Let’s look at some possible causes of this
kind of problem.

Incorrect dependencies
One weakness of make is that you have to tell it the interdependencies between the source
files. Unfortunately, the dependency specifications are very frequently incorrect. Even if they
were correct in the source tree as delivered, changing configuration flags frequently causes
other header files to be included, and as a result the dependencies change. Make it a matter of
course to run a make depend after reconfiguring, if this target is supplied—see page 62 for
details on how to make one.

No dependency on Makefile
What happens if you change the Makefile? If you decide to change a rule, for example, this
could require recompilation of a program. To put it in make terms: all generated files depend
on the Makefile. The Makefile itself is not typically included in the dependency list. It really
should be, but that would mean rebuilding everything every time you change the Makefile, and
in most cases it’s not needed. On the other hand, if you do change your Makefile in the course
of a port, it’s a good idea to save your files, do a make clean and start all over again. If ev ery-
thing is OK, it will build correctly without intervention.

5 February 2005 02:09

Chapter 5: Building the package 69

Other errors from make
The categories we have seen above account for a large proportion of the error messages you
will see from make, but there are many others as well. In this section, we’ll look at other fre-
quent problems.

Trailing blanks in variables
You define a make variable with the syntax:

NAME = Definition # optional comment

The exact Definition starts at the first non-space character after the = and continues to the end
of the line or the start of the comment, if there is one. You can occasionally run into problems
with things like:

MAKE = /opt/bin/make # in case something else is in the path

When starting subsidiary makes, make uses the value of the variable MAKE as the name of the
program to start. In this case it is “/opt/bin/make ”— it has trailing blanks, and the exec call
fails. If you’re lucky, you get:

$ make
make: don’t know how to make make . stop.

This message does give you a clue: there shouldn’t be any white space between the name of
the target and the following period. On the other hand, GNU make is “friendly” and tidies up
trailing blanks, so it says:

$ make
/opt/bin/make subdir note the space before the target name "subdir"
make: execve: /opt/bin/make: No such file or directory
make: *** [suball] Error 127

The only clue you have here is the length of the space on the first line.

It’s relatively easy to avoid this sort of problem: avoid comments at the end of definition lines.

Comments in command lists
Some versions of make, notably XENIX, can’t handle rules of the form

doc.dvi: doc.tex
tex doc.tex

do it again to get the references right
tex doc.tex # same thing again

The first comment causes make to think that the rule is completed, and it stops. When you fix
this problem by removing the comment, you run into a second one: it doesn’t understand the
second comment either. This time it produces an error message. Again, you need to remove
the comment.

5 February 2005 02:09

70

make forgets the current directory
Occasionally, it looks as if make has forgotten what you tell it. Consider the following rule:

docs:
cd doc
${ROFF} ${RFLAGS} doc.ms > doc.ps

When you run it, you get:

$ make docs
cd doc
groff -ms doc.ms >doc.ps
gtroff: fatal error: can’t open ‘doc.ms’: No such file or directory
make: *** [docs] Error 1

So you look for doc.ms in doc, and it’s there. What’s going on? Each command is run by a
new shell. The first one executes the cd doc and then exits. The second one tries to execute
the groff command. Since the cd command doesn’t affect the parent environment, it has no
further effect, and you’re still in the original directory. To do this correctly, you need to write
the rule as:

docs:
cd doc; \
${ROFF} ${RFLAGS} doc.ms > doc.ps

This causes make to consider both lines as a single line, which is then passed to a single shell.
The semicolon after the cd is necessary, since the shell sees the command as a single line.

Missing separator - stop
This strange message is usually made more complicated because it refers to a line that looks
perfectly normal. In all probability it is trying to tell you that you have put leading spaces
instead of a tab on a command line. BSD make expects tabs, too, but it recovers from the
problem, and the message it prints if they are missing is much more intelligible:

"Makefile", line 21: warning: Shell command needs a leading tab

Commands commence before first target
This message, from System V make, is trying to tell you that you have used a tab character
instead of spaces at the beginning of the definition of a variable. GNU make does not have a
problem with this—it doesn’t even mention the fact — so you might see this in a Makefile
written for GNU make when you try to run it with System V make. BSD make cannot handle
tabs at the beginning of definitions either, and produces the message:

"Makefile", line 3: Unassociated shell command "CC=gcc"
Fatal errors encountered -- cannot continue

5 February 2005 02:09

Chapter 5: Building the package 71

Syntax errors from the shell
Many Makefiles contain relatively complicated shell script fragments. As we have seen, these
are constrained to be on one line, and most shells have rather strange relationship between
new line characters and semicolons. Here’s a typical example:

if test -d $(texpooldir); then exit 0; else mkdir -p $(texpooldir); fi

This example is all on one line, but you can break it anywhere if you end each partial line with
a backslash (\). The important thing here is the placement of the semicolons: a rule of thumb
is to put a semicolon where you would otherwise put a newline, but not after then or else.
For more details, check your shell documentation.

Circular dependency dropped
This message comes from GNU make. In System V make, it is even more obscure:

$! nulled, predecessor circle

BSD make isn’t much more help:

Graph cycles through docs

In each case, the message is trying to tell you that your dependencies are looping. This partic-
ular example was caused by the dependencies:

docs: man-pages

man-pages: docs

In order to resolve the dependency docs, make first needs to resolve man-pages. But in order
to resolve man-pages, it first needs to resolve docs—a real Catch 22 situation. Real-life loops
are, of course, usually more complex.

Nonsensical targets
Sometimes the first target in the Makefile does nothing useful: you need to explicitly enter
make all in order to make the package. There is no good reason for this, and every reason to
fix it—send the mods back to the original author if possible (and be polite).

Unable to stop make
Some Makefiles start a number of second and third level Makefiles with the -k option, which
tells make to continue if the subsidiary Makefile dies. This is quite convenient if you want to
leave it running overnight and collect all the information about numerous failures the next
morning. It also makes it almost impossible to stop the make if you want to: hitting the QUIT
key (CTRL-C or DEL on most systems) kills the currently running make, but the top-level
make just starts the next subsidiary make. The only thing to do here is to identify the top-level
make and stop it first, not an easy thing to do if you have only a single screen.

5 February 2005 02:09

72

Problems with make clean
make clean is supposed to put you back to square one with a build. It should remove all the
files you created since you first typed make. Frequently, it doesn’t achieve this result very
accurately:

• It goes back further than that, and removes files that the Makefile doesn’t know how to
make.*

• Other Makefiles remove configuration information when you do a make clean. This isn’t
quite as catastrophic, but you still will not appreciate it if this happens to you after you
have spent 20 minutes answering configuration questions and fixing incorrect assump-
tions on the part of the configuration script. Either way: before running a make clean for
the first time, make sure that you have a backup.

• make clean can also start off by doing just the opposite: in early versions of the GNU C
library, for example, it first compiled some things in order to determine what to clean up.
This may work most of the time, but is still a Bad Idea: make clean is frequently used to
clean up after some catastrophic mess, or when restarting the port on a different platform,
and it should not be able to rely on being able to compile anything.

• Yet another problem with make clean is that some Makefiles hav e varying degrees of
cleanliness, from clean via realclean all the way to squeakyclean. There may be a need
for this, but it’s confusing for casual users.

Subordinate makes
Some subordinate makes use a different target name for the subsidiary makes: you might
write make all, but make might start the subsidiary makes with make subdirs. Although this
cannot always be avoided, it makes it difficult to debug the Makefile. When modifying Make-
files, you may frequently come across a situation where you need to modify the behaviour of
only one subsidiary make. For example, in many versions of System V, the man pages need to
be formatted before installation. It’s easy to tell if this applies to your system: if you install
BSD-style unformatted man pages, the man program will just display a lot of hard-to-read
nroff source. Frequently, fixing the Makefile is more work than you expect. A typical Make-
file may contain a target install that looks like:

install:
for dir in ${SUBDIRS}; do \
echo making $@ in $$dir; \
cd $$dir; ${MAKE} ${MDEFINES} $@; \
cd ..; \

done

make $@ expands to make install. One of these subdirectories is the subdirectory doc,

* If this does happen to you, don’t despair just yet. Check first whether this is just simple-mindedness
on the part of the Makefile—maybe there is a relatively simple way to recreate the files. If not, and you
forgot to make a backup of your source tree before you started, then you can despair.

5 February 2005 02:09

Chapter 5: Building the package 73

which contains the documentation and requires special treatment for the catman pages: they
need to be formatted before installation, whereas the man pages are not formatted until the
first time they are referenced—see Chapter 7, Documentation, page 99 for further informa-
tion. The simplest solution is a different target that singles out the doc and makes a different
target, say install-catman. This is untidy and requires some modifications to the variable
SUBDIRS to exclude doc. A simpler way is to create a new target, install-catman, and modify
all Makefiles to recognize it:

install-catman install-manman:
for dir in ${SUBDIRS}; do \
echo making $@ in $$dir; \
cd $$dir; ${MAKE} ${MDEFINES} $@; \
cd ..; \

done

In the Makefiles in the subdirectories, you might then find targets like

install-catman: ${MANPAGES}
for i in $<; do ${NROFF} -man $$i > ${CATMAN}/$i; done

install-manman: ${MANPAGES}
for i in $<; do cp $$i > ${MANMAN}/$i; done

The rule in the top-level Makefile is the same for both targets: you just need to know the name
to invoke it with. In this example we have also renamed the original install target so that it
doesn’t get invoked accidentally. By removing the install target altogether, you need to
make a conscious decision about what kind of man pages that your system wants.

We’re not done yet: we now hav e exactly the situation we were complaining about on page
66: it is still a nuisance to have to remember make install-catman or make install-manman.
We can get round this problem, too, with

INSTALL_TYPE=install-catman

install: ${INSTALL_TYPE}

After this, you can just enter make install, and the target install performs the type of installa-
tion specified in the variable INSTALL_TYPE. This variable needs to be modified from time to
time, but it makes it easier to avoid mistakes while porting.

Incorrect continuation lines
Makefiles frequently contain numerous continuation lines ending with \. This works only if it
is the very last character on the line. A blank or a tab following the backslash is invisible to
you, but it really confuses make.

Alternatively, you might continue something you don’t want to. Consider the following
Makefile fragment, taken from an early version of the Makefile for this book:

PART1 = part1.ms config.ms imake.ms make.ms tools.ms compiler.ms obj.ms \
documentation.ms testing.ms install.ms epilogue.ms

5 February 2005 02:09

74

At some point I decided to change the sequence of chapters, and removed the file tools.ms. I
was not completely sure I wanted to do this, so rather than just changing the Makefile, I com-
mented out the first line and repeated it in the new form:

PART1 = part1.ms config.ms imake.ms make.ms tools.ms compiler.ms obj.ms \
PART1 = part1.ms config.ms imake.ms make.ms compiler.ms obj.ms \

documentation.ms testing.ms install.ms epilogue.ms

This works just fine—at first. In fact, it turns out that make treats all three lines as a com-
ment, since the comment finished with a \ character. As a result, the variable PART1
remained undefined. If you comment out a line that ends in \, you should also remove the \.

Prompts in Makefiles
If you do the Right Thing and copy your make output to a log file, you may find that make just
hangs. The following kind of Makefile can cause this problem:

all: checkclean prog

checkclean:
@echo -n "Make clean first? "
@read reply; if ["$$reply" = ’y’]; then make clean; fi

If you run make interactively, you will see:

$ make
Make clean first?

If you copy the output to a file, of course, you don’t see the prompt, and it looks as if make is
hanging. This doesn’t mean it’s a bad idea to save your make output: it’s generally a bad idea
to put prompts into Makefiles. There are some exceptions, of course. The Linux configura-
tion program is a Makefile, and to interactively configure the system you enter make config.

Arg list too long
Sometimes make fails with this message, especially if you are running a System V system.
Many versions of System V limit the argument list to 5120 bytes—we’ll look at this in more
detail in Chapter 12, Kernel dependencies, page 169. Modern versions of System V allow
you to rebuild the kernel with a larger parameter list: modify the tuneable parameter ARG_MAX
to a value in the order of 20000. If you can’t do this, there are a couple of workarounds:

• The total storage requirement is the sum of the length of the argument strings and the
environment strings. It’s very possible that you have environment variables that aren’t
needed in this particular situation (in fact, if you’re like me, you probably have environ-
ment variables that you will never need again). If you remove some of these from your
shell startup file, you may get down below the limit.

• You might be able to simplify expressions. For example, if your Makefile contains a line
like

5 February 2005 02:09

Chapter 5: Building the package 75

clean:
rm -rf *.o *.a *.depend *˜ core ${INTERMEDIATES}

you can split it into

clean:
rm -rf *.o
rm -rf *.a *.depend *˜ core ${INTERMEDIATES}

In most large trees, the *.o filenames constitute the majority of the arguments, so you
don’t need more than two lines.

• Even after the previous example, you might find that the length of the *.o parameters is
too long. In this case, you could try naming the objects explicitly:

clean:
rm -rf [a-f]*.o
rm -rf [g-p]*.o
rm -rf [r-z]*.o
rm -rf *.a *.depend *˜ core ${INTERMEDIATES}

• Alternatively, you could specify the names explicitly in the Makefile:

OBJ1S = absalom.o arthur.o ... fernand.o
OBJ2S = gerard.o guillaume.o ... pierre.o
OBJ3S = rene.o roland.o ... zygyszmund.o
OBJS = ${OBJ1S} ${OBJ2S} ${OBJ3S}

clean:
rm -rf ${OBJ1S}
rm -rf ${OBJ2S}
rm -rf ${OBJ3S}

• Yet another method involves the use of the xargs program. This has the advantage of not
breaking after new files have been added to the lists:

clean:
find . -name "*.o" -print | xargs rm -f

This chops up the parameter list into chunks that won’t overflow the system limits.

Creating executable files

The xargs method is not much help if you want to build an executable file. If the command
that fails looks like

${PROG}:
${CC} ${ALLOBJS} -o ${PROG}

there are some other possibilities. You might be able to shorten the pathnames. If you are
building in a directory /next-release/SOURCE/sysv/SCO/gcc-2.6.0, and every file name in
ALLOBJS is absolute, it’s much easier to exceed the limit than if the directory name was, say,
/S. You could use a symbolic link to solve this problem, but most systems that don’t support
ARG_MAX also don’t hav e symbolic links.*

5 February 2005 02:09

76

If this doesn’t work, you could place the files in a library, possibly using xargs:

${PROG}:
rm libkludge.a
echo ${ALLOBJS} | xargs ar cruv libkludge.a
${CC} libkludge.a -o ${PROG}

This looks strange, since there’s no object file, but it works: by the time it finds the name
libkludge.a, the linker has already loaded the object file crt0.o (see Chapter 21, Object files
and friends, page 368), and is looking for a symbol main. It doesn’t care whether it finds it in
an object file or a library file.

Modifying Makefiles
Frequently enough, you find that the Makefile is inadequate. Targets are missing, or some
error occurs that is almost untraceable: you need to fix the Makefile. Before you do this, you
should check whether you are changing the correct Makefile. Some packages build a new
Makefile ev ery time you run make. In particular, you frequently see Makefiles that start with
text like

Makefile generated by imake - do not edit!

You can follow this advice or not: it depends on you and what you are doing: If you are just
trying to figure out what the Makefile is trying (and presumably failing) to do, it’s nice to
know that you can subsequently delete your modified Makefile and have it automatically
remade.

Once you have found out why the Makefile is doing what it is, you need to fix the source of
the Makefile. This is not usually too difficult: the input files to the Makefile generation phase
typically don’t look too different from the finished Makefile. For example, Makefile.in in the
GNU packages is a skeleton that is processed by m4, and except for the m4 parameters Make-
file.in looks very similar to the finished Makefile. Finding the way back to the Imakefile from
the Makefile requires a little more understanding of the imake process, but with a little practice
it’s not that difficult.

* If you are on a network with other machines with more modern file systems, you could work around
this problem by placing the files on the other system and accessing them via NFS.

5 February 2005 02:09

6
Running the compiler

In the previous chapter, we looked at building from the viewpoint of make. The other central
program in the build process is the compiler, which in UNIX is almost always a C compiler.
Like make, the compiler can discover a surprising number of problems in what ostensibly
debugged source code. In this chapter, we’ll look at these problems and how to solve them.
In we’ll look at how the compiler works and how the various flavours of C differ. Although
we restrict our attention to the C compiler, much of what we discuss relates to other compilers
as well, particularly of course to C++. This chapter expects a certain understanding of the C
language, of course, but don’t be put of if you’re still a beginner: this is more about living
with C than writing it.

Information from the compiler can come in a number of forms:

• The compiler may issue warnings, which are informational messages intended to draw
attention to possible program errors. Their reliability and their value varies significantly:
some are a sure-fire indication that something is wrong, while others should be taken
with a pinch of salt.

• The compiler may issue error messages, indicating its conviction that it cannot produce a
valid output module. This also usually means that the compiler will not create any out-
put files, though you can’t always rely on this.

• The compiler may fail completely, either because of an internal bug or because it realizes
that it no longer understands the input sufficiently to continue.

Compiler warnings
It’s easy to make mistakes when writing programs, but it used to be even easier: nowadays,
ev en the worst compilers attempt to catch dubious constructs and warn you about them. In
this section, we’ll look at what they can and can’t do.

Before compilers worried about coding quality, the program lint performed this task. lint is
still around, but hardly anybody uses it any more, since it doesn’t always match the compiler
being used. This is a pity, because lint can catch a number of dubious situations that evade
most compilers.

77

5 February 2005 02:09

78

Modern compilers can recognize two kinds of potential problems:

• Problems related to dubious program text, like

if (a = 1)
return;

The first line of this example is almost superfluous: if I allocate the value 1 to a, I don’t
need an if to tell me what the result will be. This is probably a typo, and the text should
have been

if (a == 1)
return;

• Problems related to program flow. These are detected by the flow analysis pass of the
optimizer. For example:

int a;
b = a;

The second line uses the value of a before it has been assigned a value. The optimizer
notices this omission and may print a warning.

In the following sections, we’ll examine typical warning messages, how they are detected and
how reliable they are. I’ll base the sections on the warning messages from the GNU C com-
piler, since the it has a particularly large choice of warning messages, and since it is also
widely used. Other compilers will warn about the same kind of problems, but the messages
may be different. Table 6-1 gives an overview of the warnings we’ll see.

Table 6−1: Overview of warning messages

5 February 2005 02:09

Chapter 6: Running the compiler 79

Table 6−1: Overview of warning messages (continued)

Kind of warning page

Changing non-volatile automatic variables 82
Character subscripts to arrays 80
Dequalifying types 81
Functions with embedded extern definitions 84
Implicit conversions between enums 82
Implicit return type 79
Incomplete switch statements 82
Inconsistent function returns 79
Increasing alignment requirements 81
Invalid keyword sequences in declarations 83
Long indices for switch 82
Missing parentheses 83
Nested comments 83
Signed comparisons of unsigned values 80
Trigraphs 83
Uninitialized variables 80

Implicit return type
K&R C allowed programs like

main ()
{
printf ("Hello, World!\n");
}

ANSI C has two problems with this program:

• The function name main does not specify a return type. It defaults to int.

• Since main is implicitly an int function, it should return a value. This one does not.

Both of these situations can be caught by specifying the -Wreturn-type option to gcc. This
causes the following messages:

$ gcc -c hello.c -Wreturn-type
hello.c:2: warning: return-type defaults to ‘int’
hello.c: In function ‘main’:
hello.c:4: warning: control reaches end of non-void function

Inconsistent function returns
The following function does not always return a defined value:

5 February 2005 02:09

80

foo (int x)
{
if (x > 3)
return x - 1;

}

If x is greater than 3, this function returns x - 1. Otherwise it returns with some uninitial-
ized value, since there is no explicit return statement for this case. This problem is particu-
larly insidious, since the return value will be the same for every invocation on a particular
architecture (possibly the value of x), but this is a by-product of the way the compiler works,
and may be completely different if you compile it with a different compiler or on some other
architecture.

Uninitialized variables
Consider the following code:

void foo (int x)
{
int a;
if (x > 5)
a = x - 3;

bar (a);
... etc

Depending on the value of x, a may or may not be initialized when you call bar. If you select
the -Wuninitialized compiler option, it warns you when this situation occurs. Some com-
pilers, including current versions of gcc place some limitations on this test.

Signed comparisons of unsigned values
Occasionally you see code of the form

int foo (unsigned x)
{
if (x >= 0)

... etc

Since x is unsigned, its value is always >= 0, so the if is superfluous. This kind of problem is
surprisingly common: system header files may differ in opinion as to whether a value is
signed or unsigned. The option -W causes the compiler to issue warnings for this and a whole
lot of other situations.

Character subscripts to arrays
Frequently, the subscript to an array is a character. Consider the following code:

char iso_translate [256] = /* translate table for ISO 8859-1 to LaserJet */
{
codes for the first 160 characters

5 February 2005 02:09

Chapter 6: Running the compiler 81

0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,

... etc
};

#define xlate(x) iso_translate [x];

char *s; /* pointer in buf */
for (*s = buf; *s; s++)
*s = xlate (*s);

The intention of xlate is to translate text to a form used by older model HP LaserJet printers.
This code works only if the char *s is unsigned. By default, the C char type is a signed
value, and so the characters 0x80 to 0xff represent a negative array offset, and the program
attempts (maybe successfully) to access a byte outside the table iso_translate. gcc warns
about this if you set the option -Wchar-subscripts.

Dequalifying types
The following code fragment can cause problems:

char *profane;
void foo (const char *holy)
{
profane = holy;

The assignment of holy to profane loses the qualifier const, and the compiler complains
about the fact. On the other hand, this is valid:

profane = (char *) holy;

This doesn’t make it a better idea: holy is supposed to be unchangeable, and here you are
removing this qualifier. If you specify the -Wcast-qual option to gcc, it complains if you
use a cast to remove a type qualifier such as const.

Increasing alignment requirements
Many processors require that specific data types be aligned on specific boundaries, and the
results can be spectacular if they are not—see Chapter 11, Hardware dependencies, page 158,
for more details. We can easily outsmart the C compiler with code like:

void foo (char *x)
{
int *ip = (int *) x;

In this case, there is a good chance that the int * pointer ip requires a specific alignment and
is not allowed to point at any address in memory the way the char pointer x is allowed to do.
If you specify the -Wcast-align option to gcc, it warns you of such assignments.

5 February 2005 02:09

82

Implicit conversions between enums
One of the advantages of enums is that they make type checking easier—we’ll look at that in
more detail in Chapter 20, Compilers, page 339. If you specify the -Wenum-clash option to
gcc, and you’re compiling C++, it warns about sloppy use of enums.

Incomplete switch statements
A frequent cause of error in a switch statement is that the index variable (the variable that
decides which case is chosen) may assume a value for which no case has been specified. If
the index variable is an int of some kind, there is not much you can do except include a
default clause. If the index variable is an enum, the compiler can check that case clauses
exist for all the possible values of the variable, and warns if they do not. It also warns if case
clauses exist for values that are not defined for the type of the index variable. Specify the
-Wswitch option for these warnings.

long indices for switch
In some dialects of pre-ANSI C, you could write things like

foo (x)
long x;
{
switch (x)
{

... etc

This is no longer allowed in ANSI C: indices for switch must evaluate to an int, even if int
and long have the same length. gcc issues a warning about long indices in switch unless
you specify the -traditional option.

Changing non-volatile automatic variables
Under certain circumstances, a signal handler might modify a local automatic variable if the
function has called setjmp—see Chapter 13, Signals, page 200 for more details. gcc options
this situation as a warning if you specify the -W option. This is a complicated problem:

• It can occur only during an optimizing compilation, since the keyword volatile has mean-
ing only in these circumstances. In addition, the situation is recognized only by the opti-
mizer.

• The optimizer cannot recognize when a longjmp could be performed. This depends on
semantics outside the scope of the optimizer. As a result, it could issue this warning
when there is, in fact, no danger.

5 February 2005 02:09

Chapter 6: Running the compiler 83

Invalid keyword sequences in declarations
Currently, it is permissible to write declarations like

int static bad_usage;

Here the storage class specifier static comes after the type specifier int. The ANSI Standard
still permits this, but declares the usage to be obsolescent. gcc issues a warning when it
encounters this and the option -W has been set.

Trigraphs
Trigraphs (see Chapter 20, Compilers, page 342) are no error, at least according to the ANSI
Standard. The Free Software Foundation makes no bones about their opinion of them, and so
gcc supplies the option -Wtrigraphs, which prints a warning if any trigraphs occur in the
source code. Since this works only if the option -trigraphs is used to enable them, it is not
clear that this is of any real use.

Nested comments
Occasionally you see code like

void foo (int x)
{
int y; /* state information
y = bar (); /* initialize y */
if (y == 4)

... etc

The code looks reasonable, and it is syntactically correct C, but in fact the comment after the
declaration of y is not terminated, so it includes the whole of the next line, which is almost
certainly not the intention. gcc recognizes this if it finds the sequence /* in a comment, and
warns of this situation if you specify the -Wcomment option.

Missing parentheses
What value does the following code return?

int a = 11 << 4 & 7 << 2 > 4;

The result is 0, but the real question is: in what order does the compiler evaluate the expres-
sion? You can find the real answer on page 53 of K&R, but you don’t want to do that all the
time. We can re-write the code as

int a = (11 << 4) & ((7 << 2) > 4);

This makes it a lot clearer what is intended. gcc warns about what it considers to be missing
parentheses if you select the -Wparentheses option. By its nature, this option is subjective,
and you may find that it complains about things that look fine to you.

5 February 2005 02:09

84

Functions with embedded extern definitions
K&R C allowed you to write things like

int datafile;
foo (x)
{
extern open ();
datafile = open ("foo", 0777);
}

The extern declaration was then valid until the end of the source file. In ANSI C, the scope of
open would be the scope of foo: outside of foo, it would no longer be known. gcc issues a
warning about extern statements inside a function definition unless you supply the -tradi-
tional option. If you are using -traditional and want these messages, you can supply
the -Wnested-externs option as well.

Compiler errors
Of course, apart from warnings, you frequently see error messages from the compiler—they
are the most common reason for a build to fail. In this section, we’ll look at some of the more
common ones.

Undefined symbols
This is one of the most frequent compiler error messages you see during porting. At first
sight, it seems strange that the compiler should find undefined symbols in a program that has
already been installed on another platform: if there are such primitive errors in it, how could it
have worked?

In almost every case, you will find one of the following problems:

• The definition you need may have been #ifdef’ed out. For example, in a manually con-
figured package, if you forget to specify a processor architecture, the package may try to
compile with no processor definitions, which is sure to give rise to this kind of problem.

• The symbol may have been defined in a header file on the system where it was devel-
oped. This header file is different on your system, and the symbol you need is never
defined.

• You may be looking at the wrong header files. Some versions of gcc install “fixed”
copies of the system header files in their own private directory. For example, under
BSD/386 version 1.1, gcc version 2.6.3 creates a version of unistd.h and hides it in a pri-
vate directory. This file omits a number of definitions supplied in the BSDI version of
unistd.h. You can confirm which header files have been included by running gcc with the
-H option. In addition, on page 86 we look at a way to check exactly what the preproces-
sor did.

The second problem is surprisingly common, even on supposedly identical systems. For

5 February 2005 02:09

Chapter 6: Running the compiler 85

example, in most versions of UNIX System V.4.2, the system header file link.h defines infor-
mation and structures used by debuggers. In UnixWare 1.0, it defines information used by
some Novell-specific communications protocols. If you try to compile gdb under UnixWare
1.0, you will have problems as a result: the system simply does not contain the definitions you
need.

Something similar happens on newer System V systems with POSIX.1 compatibility. A pro-
gram that seems formally correct may fail to compile with an undefined symbol O_NDELAY.
O_NDELAY is a flag to open, which specifies that the call to open should not wait for comple-
tion of the request. This can be very useful, for example, when the open is on a serial line
and will not complete until an incoming call occurs. The flag is supported by almost all mod-
ern UNIX ports, but it is not defined in POSIX.1. The result is that the definition is carefully
removed if you compile defining -D_POSIX_SOURCE.

You might think that this isn’t a problem, and that you can replace O_NDELAY with the
POSIX.1 flag O_NONBLOCK. Unfortunately, the semantics of O_NONBLOCK vary from those of
O_NDELAY: if no data is available, O_NONBLOCK returns -1, and O_NDELAY returns 0. You can
make the change, of course, but this requires more modifications to the program, and you have
a strraighforward alternative: #undef _POSIX_SOURCE. If you do this, you may find that
suddenly other macros are undefined, for example O_NOCTTY. System V.4 only defines this
variable if _POSIX_SOURCE is set.

There’s no simple solution to this problem. It is caused by messy programming style: the pro-
grammer has mixed symbols defined only by POSIX.1 with those that are not defined in
POSIX.1. The program may run on your current system, but may stop doing so at the next
release.

Conflicts between preprocessor and compiler variables
Occasionally you’ll see things that seem to make absolutely no sense at all. For example,
porting gcc, I once ran into this problem:

gcc -c -DIN_GCC -g -O3 -I. -I. -I./config \
-DGCC_INCLUDE_DIR=\"/opt/lib/gcc-lib/i386--sysv/2.6.0/include\" \

-DGPLUSPLUS_INCLUDE_DIR=\"/opt/lib/g++-include\" \
-DCROSS_INCLUDE_DIR=\"/opt/lib/gcc-lib/i386--sysv/2.6.0/sys-include\" \

-DTOOL_INCLUDE_DIR=\"/opt/i386--sysv/include\" \
-DLOCAL_INCLUDE_DIR=\"/usr/local/include\" \
-DSTD_PROTO_DIR=\"/opt/lib/gcc-lib/i386--sysv/2.6.0\" \
./protoize.c

./protoize.c:156: macro ‘puts’ used without args

Looking at this part of protoize.c, I found lots of external definitions:

extern int fflush ();
extern int atoi ();
extern int puts ();
extern int fputs ();
extern int fputc ();
extern int link ();
extern int unlink ();

5 February 2005 02:09

86

Line 156 is, not surprisingly, the definition of puts. But this is a definition, not a call, and
certainly not a macro. And why didn’t it complain about all the other definitions? There were
many more than shown here.

In cases like this, it’s good to understand the way the compiler works — we’ll look at this in
more detail in Chapter 20, Compilers, on page 348. At the moment, we just need to recall that
programs are compiled in two stages: first, the preprocessor expands all preprocessor defini-
tions and macros, and then the compiler itself compiles the resultant output, which can look
quite different.

If you encounter this kind of problem, there’s a good chance that the compiler is not seeing
what you expect it to see. You can frequently solve this kind of riddle by examining the view
of the source that the compiler sees, the output of the preprocessor. In this section, we’ll look
at the technique I used to solve this particular problem.

All compilers will allow you to run the preprocessor separately from the compiler, usually by
specifying the -E option — see your compiler documentation for more details. In this case, I
was running the compiler in an xterm*, so I was able to cut and paste the complete 8-line com-
piler invocation as a command to the shell, and all I needed to type was the text in bold face:

$ gcc -c -DIN_GCC -g -O3 -I. -I. -I./config \
-DGCC_INCLUDE_DIR=\"/opt/lib/gcc-lib/i386--sysv/2.6.0/include\" \

-DGPLUSPLUS_INCLUDE_DIR=\"/opt/lib/g++-include\" \
-DCROSS_INCLUDE_DIR=\"/opt/lib/gcc-lib/i386--sysv/2.6.0/sys-include\" \

-DTOOL_INCLUDE_DIR=\"/opt/i386--sysv/include\" \
-DLOCAL_INCLUDE_DIR=\"/usr/local/include\" \
-DSTD_PROTO_DIR=\"/opt/lib/gcc-lib/i386--sysv/2.6.0\" \
./protoize.c -E -o junk.c

$

If you don’t hav e xterm, you can do the same sort of thing by editing the make log (see Chap-
ter 5, Building the package, page 60), which will contain the invocation as well.

junk.c starts with:

1 "./config.h" 1

1 "./config/i386/xm-i386.h" 1
40 empty lines
1 "./tm.h" 1
19 empty lines
1 "./config/i386/gas.h" 1
22 empty lines

This file seems to consist mainly of empty lines, and the lines that aren’t empty don’t seem to
be C! In fact, the # lines are C (see the line directive in Chapter 20, Compilers, page 344),
except that in this case the keyword line has been omitted. The empty lines are where com-
ments and preprocessor directives used to be. The error message referred to line 156 of pro-
toize.c, so I searched for lines with protoize.c on them. I found a number of them:

* xterm is a terminal emulator program that runs under X11. If you don’t use X11, you should—for
example, it makes this particular technique much easier.

5 February 2005 02:09

Chapter 6: Running the compiler 87

$ grep protoize.c junk.c
1 "./protoize.c"
39 "./protoize.c" 2
59 "./protoize.c" 2
62 "./protoize.c" 2
63 "./protoize.c" 2
... etc
78 "./protoize.c" 2
222 "./protoize.c"

Clearly, the text was between lines 78 and 222. I positioned on the line after the marker for
line 78 and moved down (156 - 78) or 78 lines. There I found:

extern int fflush ();
extern int atoi ();
extern int ((fputs((), stdout) || ((stdout)->__bufp < (stdout)->__put_limit
? (int) (unsigned char) (*(stdout)->__bufp++ = (unsigned char) (’0))
:__flshfp ((stdout), (unsigned char) (’0))) == (-1)) ? (-1) : 0) ;
extern int fputs ();
extern int fputc ();
extern int link ();
extern int unlink ();

Well, at any rate this made it clear why the compiler was complaining. But where did this
junk come from? It can be difficult to figure this out. With gcc you can use the -dD option to
keep the preprocessor definitions—unfortunately, the compiler still removes the other pre-
processor directives. I used -dD as well, and found in junk.c:

491 "/opt/include/stdio.h" 2
25 lines missing
extern int fputs (__const char *__s, FILE *__stream) ;
/* Write a string, followed by a newline, to stdout. */
extern int puts (__const char *__s) ;

#define puts(s) ((fputs((s), stdout) || __putc(’0, stdout) == EOF) ? EOF : 0)

This looks strange: first it declares puts as an external function, then it defines it as a macro.
Looking at the original source of stdio.h, I found:

/* Write a string, followed by a newline, to stdout. */
extern int puts __P ((__const char *__s));

#ifdef __OPTIMIZE__
#define puts(s) ((fputs((s), stdout) || __putc(’0, stdout) == EOF) ? EOF : 0)
#endif /* Optimizing. */

No, this doesn’t make sense — it’s a real live bug in the header file. At the very least, the dec-
laration of puts () should have been in an #else clause. But that’s not the real problem: it
doesn’t worry the preprocessor, and the compiler doesn’t see it. The real problem is that pro-
toize.c is trying to do the work of the header files and define puts again. There are many pro-
grams that try to out-guess header files: this kind of definition breaks them all.

There are at least two ways to fix this problem, both of them simple. The real question is,
what is the Right Thing? System or library header files should be allowed to define macros

5 February 2005 02:09

88

instead of functions if they want, and an application program has no business trying to do the
work of the header files, so it would make sense to fix protoize.c by removing all these exter-
nal definitions: apart from this problem, they’re also incompatible with ANSI C, since they
don’t describe the parameters. In fact, I chose to remove the definition from the header file,
since that way I only had to do the work once, and in any case, it’s not clear that the definition
really would run any faster.

Preprocessor output usually looks even more illegible than this, particularly if lots of clever
nested #defines hav e been performed. In addition, you’ll frequently see references to non-
existant line numbers. Here are a couple of ways to make it more legible:

• Use an editor to put comments around all the #line directives in the preprocessor out-
put, and then recompile. This will make it easier to find the line in the preprocessor out-
put to which the compiler or debugger is referring; then you can use the comments to fol-
low it back to the original source.

• Run the preprocessor output through a program like indent, which improves legibility
considerably. This is especially useful if you find yourself in the unenviable position of
having to modify the generated sources. indent is not guaranteed to maintain the same
number of lines, so after indenting you should recompile.

Other preprocessors
There are many other cases in which the source file you use is not the source file that the com-
piler gets. For example, yacc and bison take a grammar file and make a (more or less illegi-
ble) .c file out of it; other examples are database preprocessors like Informix ESQL, which
takes C source with embedded SQL statements and converts it into a form that the C compiler
can compile. The preprocessor’s output is intended to be read by a compiler, not by humans.

All of these preprocessors use lines beginning with # to insert information about the original
line numbers and source files into their output. Not all of them do it correctly: if the pre-
processor inserts extra lines into the source, they can become ambiguous, and you can run into
problems when using symbolic debuggers, where you normally specify code locations by line
number.

Syntax errors
Syntax errors in previously functional programs usually have the same causes as undefined
symbols, but they show their faces in a different way. A favourite one results from omitting
/usr/include/sys/types.h. For example, consider bar.c:

#include <stdio.h>
#ifdef USG
#include <sys/types.h>
#endif

ushort num;
int main (int argc, char *argv [])
{

5 February 2005 02:09

Chapter 6: Running the compiler 89

num = atoi (argv [1]);
printf ("First argument: %d\n", num);
}

If you compile this under BSD/OS, you get:

$ gcc -o bar bar.c
bar.c:6: parse error before ‘num’
bar.c:6: warning: data definition has no type or storage class

There’s an error because ushort hasn’t been defined. The compiler expected a type specifier,
so it reported a syntax error, not an undefined symbol. To fix it, you need to define the type
specified — see Appendix A, Comparative reference to UNIX data types for a list of the more
common type specifiers.

Virtual memory exhausted
You occasionally see this message, particularly when you’re using gcc, which has a particular
hunger for memory. This may be due to unrealistically low virtual memory limits for your
system — by default, some systems limit total virtual memory per process to 6 MB, but gcc
frequently requires 16 or 20 MB of memory space, and on occasion it can use up to 32 MB
for a single compilation. If your system has less than this available, increase the limit accord-
ingly. Don’t forget to ensure that you have enough swap space! Modern systems can require
over 100 MB of swap space.

Sometimes this doesn’t help. gcc seems to have particular difficulties with large data defini-
tions; bit map definitions in X11 programs are the sort of things that cause problems. xphoon,
which displays a picture of the current phase of the moon on the root window, is a good exam-
ple of a gcc-breaker.

Compiler limits exceeded
Some compilers have difficulties with complicated expressions. This can cause cc1, the com-
piler itself, to fail with messages like “expression too complicated” or “out of tree space.” Fix-
ing such problems can be tricky. Straightforward code shouldn’t giv e the compiler indiges-
tion, but some nested #defines can cause remarkable increases in the complexity of expres-
sions: in some cases, a single line can expand to over 16K of text. One way to get around the
problem is to preprocess the code and then break the preprocessed code into simpler expres-
sions. The indent program is invaluable here: preprocessor output is not intended to be
human-readable, and most of the time it isn’t.

Running compiler passes individually
Typical compilers run four distinct passes to compile and link a program—see Chapter 20,
Compilers, page 348, for more details. Sometimes running the passes separately can be useful
for debugging a compilation:

5 February 2005 02:09

90

• If you find yourself with header files that confuse your preprocessor, you can run a differ-
ent preprocessor, collect the output and feed it to your compiler. Since the output of the
preprocessor is not machine-dependent, you could even do this on a different machine
with different architecture, as long as you ensure that you use the correct system header
files. By convention, the preprocessor output for foo.c would be called foo.i—see Chap-
ter 20, Compilers, page 348 for a list of intermediate file suffixes — though it usually
does no harm if you call it foo.c and pass it through the preprocessor again, since there
should no longer be anything for the second preprocessor to do.

• If you want to report a compiler bug, it’s frequently a good idea to supply the preproces-
sor output: the bug might be dependent on some header file conflict that doesn’t exist on
the system where the compiler development takes place.

• If you suspect the compiler of generating incorrect code, you can stop compilation after
the compiler pass and collect the generated assembler output.

Incorrect code from compiler
Compilers sometimes generate incorrect code. Incorrect code is frequently difficult to debug
because the source code looks (and might be) perfect. For example, a compiler might gener-
ate an instruction with an incorrect operand address, or it might assign two variables to a sin-
gle location. About the only thing you can do here is to analyze the assembler output.

One kind of compiler bug is immediately apparent: if the code is so bad that the assembler
can’t assemble it, you get messages from the assembler. Unfortunately, the message doesn’t
usually tell you that it comes from the assembler, but the line numbers change between the
compiler and the assembler. If the line number seems completely improbable, either because
it is larger than the number of lines in your source file, or because it seems to have nothing to
do with the context of that line, there is a chance that the assembler produced the message.
There are various ways to confirm which pass of the compiler produced the message. If
you’re using gcc, the simplest one is to use the -v option for the compiler, which “announces”
each pass of compilation as it starts, together with the version numbers and parameters passed
to the pass. This makes it relatively easy to figure out which pass is printing the error mes-
sages. Otherwise you can run the passes individually — see Chapter 20, Compilers, page 348
for more details.

5 February 2005 02:09

7
Documentation

Ask any real guru a question, so the saying goes, and he will reply with a cryptic “RTFM”.*

Cynics claim this is even the answer to the question “Where can I find the manual?” All too
often, programmers consider documentation a necessary (or even unnecessary) evil, and if it
gets done at all, it’s usually the last thing that gets done. This is particularly evident when you
look at the quality of documentation supplied with some free software packages (though many
free packages, such as most of those from the Free Software Foundation, are very well docu-
mented). The quality and kind of the documentation in source packages varies wildly. In
Chapter 2, Unpacking the goodies, page 25, we looked at the documentation that should be
automatically supplied with the package to describe what it is and how to install it. In this
chapter, we’ll look at documentation that is intended for use after you have installed the pack-
age.

The documentation you get with a package is usually in one of the following formats:

• man pages, the traditional on-line documentation for UNIX, which are formatted with
nroff.

• info files, used with the GNU project’s info on-line documentation reader.

• Unformatted roff, TEX, or texinfo hardcopy documentation.

• Preformatted documentation in PostScript or .dvi format, or occasionally in other formats
such as HP LaserJet.

We know where we want to get to—the formatted documentation—but we don’t always
know where to start, so it’s easier to look at documentation in reverse order: first, we’ll look at
the end result, then at the formatters, and finally at the input files.

Preformatted documentation
Occasionally you get documentation that has been formatted so that you can print it on just
about any printer, but this doesn’t happen very much: in order to achieve this, the text must be
free of any frills and formatted so that any typewriter can print it. Nearly any printer

* “Read The Manual”—the F is usually silent.

91

5 February 2005 02:09

92

nowadays is capable of better results, so preformatted files are usually supplied in a format
that can print high quality printout on a laser printer. The following three are about the only
ones you will come across:

• PostScript is a specialized programming language for printers, and the printed data are in
fact embedded in the program. This makes it an extremely flexible format.

• .dvi is the format that is output by TEX. In order to print it, you need a TEX driver.

• Unlike PostScript and .dvi, the Hewlett-Packard LaserJet format is not portable: you
need a LaserJet-compatible printer to print it. The LaserJet format is obsolescent: even
many LaserJet printers made today also support PostScript, and there are programmatic
ways to print PostScript on other laser printers, so there is little motivation for using the
much more restrictive LaserJet format.

PostScript
PostScript is the current format of choice. Because it is a programming language, it is much
more flexible than conventional data formats. For example, it is easily scalable. You can take
a file intended for a phototypesetter with a resolution of 2540 bpi and print it on a laser
printer, and it will come out correctly.* In addition, better quality printers perform the format-
ting themselves, resulting in a considerable load reduction for the computer. A large number
of printers and all modern phototypesetters can process PostScript directly.

If your printer doesn’t handle PostScript, you can use programs like ghostscript, which inter-
pret PostScript programs and output in a multitude of other formats, including LaserJet, so
ev en if you have a LaserJet, it can be a better idea to use PostScript format. ghostscript is dis-
tributed by the Free Software Foundation — see Appendix E, Where to get sources.
ghostscript can also display PostScript files on X displays.

Most PostScript files are encoded in plain ASCII without any control characters except new-
line (though that doesn’t make them easy to read). Even when you include special characters
in your text, they appear in the PostScript document as plain ASCII sequences. It’s usually
pretty easy to recognize PostScript, even without the file program. Here’s the start of a draft
version of this chapter:

%!PS-Adobe-3.0
%%Creator: groff version 1.09
%%CreationDate: Thu Aug 18 17:34:24 1994
%%DocumentNeededResources: font Times-Bold

The data itself is embedded in parentheses between the commands. Looking at a draft of this
text, we see things like

(It’)79.8 273.6 Q 2.613(su)-.55 G .113
(sually pretty easy to recognize a PostScript program, e)-2.613 F -.15
(ve)-.25 G 2.614(nw).15 G .114(ithout the)-2.614 F F2(\214le)2.614 E F1
(program--here’)79.8 285.6 Q 2.5(st)-.55 G(he start of a draft v)-2.5 E

* You may have to wait a while before a few meg abytes of font information are transferred and pro-
cessed, but eventually you get your document.

5 February 2005 02:09

Chapter 7: Documentation 93

Problems with PostScript

PostScript doesn’t pose too many problems, but occasionally you might see one of these:

Missing fonts
PostScript documents include information about the fonts they require. Many fonts are
built in to printers and PostScript display software, but if the fonts are not present, the
system chooses a default value which may have little in common with the font which
the document requested. The default font is typically Courier, which is fixed-width,
and the results look terrible. If this happens, you can find the list of required fonts with
the following:

$ grep ’%%.* font ’ mumble.ps
%%DocumentNeededResources: font Garamond-BookItalic
%%+ font Times-Roman
%%+ font Garamond-Light
%%+ font Garamond-LightItalic
%%+ font Courier
%%+ font Garamond-Book
%%+ font Courier-Bold
%%IncludeResource: font Garamond-BookItalic
%%IncludeResource: font Times-Roman
%%IncludeResource: font Garamond-Light
%%IncludeResource: font Garamond-LightItalic
%%IncludeResource: font Courier
%%IncludeResource: font Garamond-Book
%%IncludeResource: font Courier-Bold
(%%DocumentNeededResources: font Times-Bold)131.711 327.378 S F1 1.281

This extracts the font requests from the PostScript file: in this case, the document
requires Times Roman, Courier and Garamond fonts. Just about every printer and soft-
ware package supplies Times Roman and Courier, but Garamond (the font in which this
book is written) is less common. In addition, most fonts are copyrighted, so you proba-
bly won’t be able to find them on the net. If you have a document like this in PostScript
format, your choices are:

• Reformat it with a different font if you have the source.

• Get the Garamond fonts.

• Edit the file and change the name of the font to a font with similar metrics (in other
words, with similar size characters). The results won’t be as good, but if the font
you find is similar enough, they might be acceptable. For example, you might
change the text Garamond to Times Roman.

Wrong font type
Most PostScript fonts are in plain ASCII. You may also come across Type 2 PostScript
and display PostScript, both of which include binary data. Many printers can’t under-
stand the binary format, and they may react to it in an unfriendly way. For example, my
National KX-P 4455 printer just hangs if I copy display PostScript to it. See the section
format conversion below for ways to solve this dilemma.

5 February 2005 02:09

94

.dvi format
One of the goals of TEX was to be able to create output for just about any printer. As we will
see, old versions of troff, the main competitor, were able to produce output only for a very
limited number of phototypesetters. Even if you have one of them in your office, it’s unlikely
that you will want to use it for printing out a draft of a 30-page paper.

The TEX solution, which was later adopted by troff in ditroff (device independent troff), was to
output the formatted data in a device-independent format, .dvi, and leave it to another pro-
gram, a so-called driver, to format the files in a format appropriate to the output device.
Unlike PostScript, .dvi contains large numbers of control characters and characters with the
sign bit set, and is not even remotely legible. Most versions of file know about .dvi format.

Format conversion
Not so long ago your choice of documentation software determined your output format. For
example, if you used TEX, you would get .dvi output, and you would need a TEX driver to print
it. Nowadays, it’s becoming easier to handle file formats. GNU troff will output in .dvi for-
mat if you wish, and programs are available to convert from .dvi to PostScript and back again.
Here’s a list of conversions you might like to perform — see Appendix E, Where to get sources
for how to get software to perform them.

• A number of programs convert from .dvi to PostScript—for example, dvips.

• There’s no good reason to want to convert from PostScript to .dvi, so there are no pro-
grams available. .dvi is not much use in itself—it needs to be tranformed to a final
printer form, and if you have PostScript output, you can do that directly with ghostscript
(see below) without going via .dvi.

• To display .dvi files on an X display, use SeeTeX.

• To convert from .dvi to a printer output format, use one of the dvi2xxx programs.

• To convert from PostScript to a printer format, use ghostscript.

• To display PostScript on an X display, you can also use ghostscript, but ghostview gives
you a better interface.

• To convert PostScript with binary data into ASCII, use t1ascii.

roff and friends
The original UNIX formatting program was called roff (for run-off). It is now completely
obsolete, but it has a number of descendents:

• nroff is a comparatively simple formatter designed to produce output for plain ASCII dis-
plays and printers.

• troff is a more sophisticated formatter designed to produce output for phototypesetters.
Many versions create output only for the obsolete APS-5 phototypesetter, and you need

5 February 2005 02:09

Chapter 7: Documentation 95

postprocessing software to convert this output to something that modern typesetters or
laser printers understand. Fortunately, versions of troff that produce PostScript output are
now available.

• ditroff (device independent troff) is a newer version of troff that produces output in a
device-independent intermediate form that can then be converted into the final form by a
conversion program. This moves the problem of correct output format from troff to the
conversion program. Despite the terminology, this device-independent format is not the
same as .dvi format.

• groff is the GNU project troff and nroff replacement. In troff mode it can produce output
in PostScript and .dvi format.

All versions of roff share the same source file syntax, though nroff is more restricted in its
functionality than troff. If you have a usable version of troff, you can use it to produce prop-
erly formatted hardcopy versions of the man pages, for example. This is also what xman (the
X11 manual browser) does.

formatting with nroff or troff
troff input bears a certain resemblance to the traces left behind when a fly falls into an inkwell
and then walks across a desk. The first time you run troff against a file intended for troff, the
results may be less than heartening. For example, consider the following passage from the
documentation of the Revision Control System RCS. When correctly formatted, the output is:

Besides the operations ci and co, RCS provides the following commands:

ident extract identification markers
rcs change RCS file attributes
rcsclean remove unchanged working files (optional)
rcsdiff compare revisions
rcsfreeze record a configuration (optional)
rcsmerge merge revisions
rlog read log messages and other information in RCS files

A synopsis of these commands appears in the Appendix.

2.1 Automatic Identification

RCS can stamp source and object code with special identification strings, similar to product
and serial numbers. To obtain such identification, place the marker

Id

into the text of a revision, for instance inside a comment. The check-out operation will replace
this marker with a string of the form

$Id: filename revisionnumber date time author state locker $

To format it, you can try

$ troff rcs.ms >rcs.ps

This assumes the use of groff or another flavour of troff that creates PostScript output (thus the

5 February 2005 02:09

96

name rcs.ps for the output file). If you do this, you get an output that looks like:

Besides the operations ci and co, RCS provides the following commands: tab(%); li l.
ident%extract identification markers rcs%change RCS file attributes rcsclean%remove
unchanged working files (optional) rcsdiff%compare revisions rcsfreeze%record a configura-
tion (optional) rcsmerge%merge revisions rlog%read log messages and other information in
RCS files A synopsis of these commands appears in the Appendix. Automatic Identification
RCS can stamp source and object code with special identification strings, similar to product
and serial numbers. To obtain such identification, place the marker Id into the text of a revi-
sion, for instance inside a comment. The check-out operation will replace this marker with a
string of the form Id: filename revisionnumber date time author state locker

Most of the text seems to be there, but it hasn’t been formatted at all (well, it has been right
justified). What happened?

Almost every troff or roff input document uses some set of macros. You can define your own
macros in the source, of course, but over time a number of standard macro packages have
ev olved. They are stored in a directory called tmac. In the days of no confusion, this was
/usr/lib/tmac, but nowadays it might equally well be /usr/share/tmac (for systems close to the
System V.4 ABI—see Chapter 4, Package configuration, page 48, for more details) or
/usr/local/groff/tmac for GNU roff. The name is known to troff either by environment vari-
ables or by instinct (the path name is compiled into the program). troff loads specific macros
if you specify the name of the file as an argument to the -m flag. For example, to specify the
man page macros /usr/lib/tmac/an, you would supply troff with the parameter -man. man
makes more sense than an, so these macros are called the man macros. The names of other
macro packages also usually grow an m at the beginning. Some systems change the base
name of the macros from, say, /usr/lib/tmac/an to /usr/lib/tmac/tmac.an.

Most versions of troff supply the following macro packages:

• The man (tmac/an) and mandoc (tmac/andoc) packages are used to format man pages.

• The mdoc (tmac/doc) package is used to format hardcopy documents, including some
man pages.

• The mm (tmac/m) macros, the so-called memorandum macros, are described in the docu-
mentation as macros to “format letters, reports, memoranda, papers, manuals and books”.
It doesn’t describe what you shouldn’t use them for.

• The ms (tmac/s) macros were the original macros supplied with the Seventh Edition.
They are now claimed to be obsolescent, but you will see them again and again. This
book was formatted with a modified version of the ms macros.

• The me (tmac/e) macros are another, more recent set of macros which originated in
Berkeley.

There is no sure-fire way to tell which macros a file needs. Here are a couple of possibilities:

• The file name suffix might give a hint. For example, our file is called rcs.ms, so there is a
very good chance that it wants to be formatted with -ms.

5 February 2005 02:09

Chapter 7: Documentation 97

• The program grog, which is part of groff, examines the source and guesses the kind of
macro set. It is frequently wrong.

• The only other way is trial and error. There aren’t that many different macro sets, so this
might be a good solution.

In this case, our file name suggests that it should be formatted with the ms macros. Let’s try
that:

$ troff rcs.ms >rcs.ps

Now we get:

Besides the operations ci and co, RCS provides the following commands:
tab(%); li l. ident%extract identification markers rcs%change RCS file attributes
rcsclean%remove unchanged working files (optional) rcsdiff%compare revisions rcs-
freeze%record a configuration (optional) rcsmerge%merge revisions rlog%read log messages
and other information in RCS files A synopsis of these commands appears in the Appendix.

2.1 Automatic Identification

RCS can stamp source and object code with special identification strings, similar to product
and serial numbers. To obtain such identification, place the marker

Id

into the text of a revision, for instance inside a comment. The check-out operation will replace
this marker with a string of the form

$Id: filename revisionnumber date time author state locker $

Well, it doesn’t look quite as bad, but it’s still not where we want to be. What happened to
that list of program names?

troff does not do all the work by itself. The tabular layout of the program names in this exam-
ple is done by the preprocessor tbl, which handles tables. Before we let troff at the document,
we need to pass it through tbl, which replaces the code

.TS
tab(%);
li l.
ident%extract identification markers
rcs%change RCS file attributes
rcsclean%remove unchanged working files (optional)
rcsdiff%compare revisions
rcsfreeze%record a configuration (optional)
rcsmerge%merge revisions
rlog%read log messages and other information in RCS files
.TE

with a couple of hundred lines of complicated and illegible troff instructions to build the table.
To get the desired results, we need to enter:

$ tbl rcs.ms | troff -ms >rcs.ps

nroff, troff and groff use a number of preprocessors to perform special functions. They are:

5 February 2005 02:09

98

• soelim replaces .so statements (which correspond to C #include statements) with the con-
tents of the file to which the line refers. The roff programs do this too, of course, but the
other preprocessors don’t, so if the contents of one of the files is of interest to another
preprocessor, you need to run soelim first.

• refer processes references.

• pic draws simple pictures.

• tbl formats data in tabular form.

• eqn formats equations.

Unless you know that the document you’re formatting doesn’t use any of these preprocessors,
or formatting takes a very long time, it’s easier to use them all. There are two possible ways
to do this:

• You can pipe from one processor to the next. This is the standard way:

$ soelim rcs.ms | refer | pic | tbl | eqn | troff -ms

The soelim preprocessor reads in the document, and replaces any .so commands by the
contents of the file to which they refer. It then passes the output to refer, which pro-
cesses any textual references and passes it to pic, which processes any pictures it may
find, and passes the result to tbl. tbl processes any tables and passes its result to eqn,
which processes any equations before passing the result to troff.

• Some versions of troff invoke the preprocessors themselves if passed appropriate flags.
For example, with groff:

Table 7−1: Starting preprocessors from groff

Flag Processor

-e eqn
-t tbl
-p pic
-s soelim
-R refer

Starting the preprocessors from troff not only has the advantage of involving less typing—it
also ensures that the preprocessors are started in the correct sequence. Problems can arise if
you run eqn before tbl, for example, when there are equations within tables. See Typesetting
tables with tbl by Henry McGilton and Mary McNabb for further details.

Other roff-related programs
As you can see, the troff system uses a large number of programs. Once they were relatively
small, and this was the UNIX way. Now they are large, but there are still a lot of them. Apart
from the programs we have already seen, you could encounter the GNU variants, which can

5 February 2005 02:09

Chapter 7: Documentation 99

optionally be installed with a name beginning in g—for example, GNU eqn may be installed
as geqn if the system already has a different version of eqn. indxbib and lookbib (sometimes
called lkbib) process bibliographic references, and are available in the groff package if you
don’t hav e them. groff also includes a number of other programs, such as grops, and grotty,
which you don’t normally need to invoke directly.

Man pages
Almost from the beginning, UNIX had an on-line manual, traditionally called man pages.
You can peruse man pages with the man program, or you can print them out as hardcopy doc-
umentation.

Traditionally, man pages are cryptic and formalized: they were introduced at a time when disk
storage was expensive, so they are short, and they were intended as a reference for people who
already understand the product. More and more, unfortunately, they are taking on the respon-
sibility of being the sole source of documentation. They don’t perform this task very well.

man history
The UNIX man facility has had a long and varying history, and knowing it helps understand
some of the strangenesses. The Seventh Edition of the Unix Programmer’s Manual was
divided into nine sections. Section 9, which contained the quick reference cards, has since
atrophied. Traditionally, you refer to man pages by the name of the item to which they refer,
followed by the section number in parentheses, so the man page for the C compiler would be
called cc(1). BSD systems have substantially retained the Seventh Edition structure, but Sys-
tem V has reorganized them. There are also differences of opinion about where individual
man pages belong, so Table 7-2 can only be a guide:

Table 7−2: UNIX manual sections

Seventh Contents System V
Edition Section
Section

1 Commands (programs) 1

2 System Calls (direct kernel interface) 2

3 Subroutines (library functions in user space) 3

4 Special files 7, 4

5 File Formats and Conventions 4, 5

6 Games 6

7 Macro Packages and Language Conventions 7

8 Maintenance 1m

9 Quick Reference cards

What distinguished the UNIX manual from that of other systems was that it was designed to

5 February 2005 02:09

100

be kept online. Each of these sections, except for the quick reference cards, was stored in
nroff format in a directory called /usr/man/man<section>, where <section> was the section
number. Each entry was (and is) called a man page, although nowadays some can run on for
100 pages or more.

The manual was stored in nroff format in order to be independent of the display hardware, and
because formatting the whole manual took such a long time. For these reasons it was chosen
to format pages on an individual basis when they were accessed, which made access to the
manual slower and thus less attractive to use.

The speed problem was solved by saving the formatted copy of the man page in a second
directory hierarchy, /usr/man/cat<section>, the first time that the page was formatted. Subse-
quent accesses would then find the formatted page and display that more quickly.

This basic hierarchy has survived more or less intact to the present day. People have, of
course, thought of ways to confuse it:

• As the manual got larger, it seemed reasonable to subdivide it further. Most users
weren’t interested in system administration functions, so some systems put them into a
separate directory, such as /usr/man/cat1m, or gav e them a filename suffix such as m, so
that the manual page for shutdown might end up being called /usr/man/cat1/shut-
down.1m or /usr/man/man1m/shutdown.1m or something similar.

• Various commercial implementations reorganized the sequence of the sections in the
printed manual, and reorganized the directories to coincide. For example, in System V
the description of the file /etc/group is in section 4, but in the Seventh Edition and BSD it
is in section 5.

• Even without the uncertainty of which section to search for a command, it was evident
that section numbers were not very informative. Some implementations, such as XENIX
and some versions of System V, chose to replace the uninformative numbers with unin-
formative letters. For example, ls(1) becomes ls(C) in XENIX.

• Some man programs have lost the ability to format the man pages, so you need to format
them before installation. You’ll find this problem on systems where nroff is an add-on
component.

• There is no longer a single directory where you can expect to put man pages: some Sys-
tem V versions put formatted man pages for users in a directory /usr/catman/u_man, and
man pages for programmers in /usr/catman/p_man. Since most programmers are users,
and the distinction between the use of the man pages is not always as clear as you would
like, this means that man has to search two separate directory hierarchies for the man
pages.

• As we saw in Chapter 4, Package configuration, page 48, System V.4 puts its man pages
in /usr/share/man. Many System V.4 systems require formatted man pages, and some,
such as UnixWare, don’t provide a man program at all.

• Many man programs accept compressed input, either formatted or non-formatted. For
some reason, the pack program still survives here, but other versions of man also under-
stand man pages compressed with compress or gzip. We looked at all of these programs

5 February 2005 02:09

Chapter 7: Documentation 101

in Chapter 2, Unpacking the goodies, page 20.

• Different man programs place different interpretations on the suffix of the man page file-
name. They seldom document the meanings of the suffix.

• To keep up the tradition of incompatible man pages, BSD has changed the default macro
set from man to mdoc. This means that older man page readers can’t make any sense of
unformatted BSD man pages.

This combination of affairs makes life difficult. For example, on my system I have a number
of different man pages in different directories. The file names for the man pages for printf,
which is both a command and a library function, are:

BSD printf command, formatted:
/usr/share/man/cat1/printf.0

Solaris printf command, nroff:
/pub/man/solaris-2.2/man1/printf.1

SVR4.2 printf command, formatted, compressed:
/pub/man/svr4.2/cat1/printf.1.Z

BSD printf function, formatted:
/usr/share/man/cat3/printf.0

Solaris 2.2 printf function, nroff, standard:
/pub/man/solaris-2.2/man3/printf.3s

Solaris 2.2 printf function, nroff, BSD version:
/pub/man/solaris-2.2/man3/printf.3b

SunOS 4.1.3 printf function, nroff:
/pub/man/sunos-4.1.3/man3/printf.3v

SVR3 printf function, formatted, packed:
/pub/man/catman/p_man/man3/printf.3s.z

SVR4.2 printf function, formatted, compressed:
/pub/man/svr4.2/cat3/printf.3s.Z

SVR4.2 printf function, formatted, compressed, BSD version:
/pub/man/svr4.2/cat3/printf.3b.Z

XENIX printf function, nroff, packed:
/pub/man/xenix-2.3.2/man.S/printf.S.z

Most packages assume that unformatted man pages will be installed in /usr/man. They usu-
ally accept that the path may be different, and some allow you to change the subdirectory and
the file name suffix, but this is as far as they normally go.

This lack of standardization can cause such problems that many people just give up and don’t
bother to install the man pages. This is a pity—instead, why not install a man program that
isn’t as fussy? A number of alternatives are available, including one for System V.4 from
Walnut Creek and a number on various Linux distributions.

TeX
TEX is Donald Knuth’s monument to the triumph of logic over convention. To quote Knuth’s
The TEX book,

Insiders pronounce the χ of TEX as a Greek chi, not as an ’x’, so that TEX rhymes with the word
blecchhh. It’s the ’ch’ sound in Scottish words like loch or German words like ach; it’s a

5 February 2005 02:09

102

Spanish ’j’ and a Russian ’kh’. When you say it correctly to your computer, the terminal may
become slightly moist.

This is one of the more informative parts of The TEX book. It is, unfortunately, not a manual
but a textbook, and most of the essential parts are hidden in exercises flagged “very difficult”.
If you just want to figure out how to format a TEX document, Making TEX work, by Norman
Walsh, is a much better option.

If troff input looks like a fly having left an inkwell, TEX input resembles more the attempts of a
drunken spider. Here’s part of the file plain.tex which defines some of the things that any TEX
macro package should be able to do:

\def\cases#1{\left\{\,\vcenter{\normalbaselines\m@th
\ialign{$##\hfil$&\quad##\hfil\crcr#1\crcr}}\right.}

\def\matrix#1{\null\,\vcenter{\normalbaselines\m@th
\ialign{\hfil$##$\hfil&&\quad\hfil$##$\hfil\crcr
\mathstrut\crcr\noalign{\kern-\baselineskip}
#1\crcr\mathstrut\crcr\noalign{\kern-\baselineskip}}}\,}

More than anywhere else in porting, it is good for your state of mind to steer clear of TEX
internals. The assumptions on which the syntax is based differ markedly from those of other
programming languages. For example, identifiers may not contain digits, and spaces are
required only when the meaning would otherwise be ambiguous (to TEX, not to you), so the
sequence fontsize300 is in fact the identifier fontsize followed by the number 300. On
the other hand, it is almost impossible to find any good solid information in the documenta-
tion, so you could spend hours trying to solve a minor problem. I hav e been using TEX fre-
quently for years, and I still find it the most frustrating program I have ever seen.*

Along with TEX, there are a couple of macro packages that have become so important that they
are almost text processors in their own right:

• LATEX is a macro package that is not quite as painful as plain TEX, but also not as power-
ful. It is normally built as a separate program when installing TEX, using a technique of
dumping a running program to an object file that we will examine in Chapter 21, Object
files and friends, page 376.

• BIBTEX is an auxiliary program which, in conjuntion with LATEX, creates bibliographic
references. Read all about it in Making TEX work. It usually takes three runs through the
source files to create the correct auxiliary files and format the document correctly.

• texinfo is a GNU package that supplies both online and hardcopy documentation. It uses
TEX to format the hardcopy documentation. We’ll look at it along with GNU info in the
next section.

* When I wrote this sentence, I wondered if I wasn’t overstating the case. Mike Loukides, the author of
Programming with GNU Software, reviewed the final draft and added a single word: Amen.

5 February 2005 02:09

Chapter 7: Documentation 103

GNU Info and Texinfo
It’s unlikely that you’ll break out in storms of enthusiasm about the documentation techniques
we’ve looked at so far. The GNU project didn’t, either, when they started, though their con-
cerns were somewhat different:

• Man pages are straightforward, but the man program is relatively primitive. In particular,
man does not provide a way to follow up on references in the man page.

• Man pages are intended to be stored on-line and thus tend to be cryptic. This makes
them unsuited as hardcopy documentation. Making them longer and more detailed
makes them less suited for online documentation.

• There is almost no link between man pages and hardcopy documentation, unless they
happen to be the same thing for a particular package.

• Maintaining man pages and hardcopy documentation is double the work and opens you
to the danger of omissions in one or the other document.

As in other areas, the GNU project started from scratch and came up with a third solution,
info. This is a combined system of online and hardcopy documentation. Both forms of docu-
mentation are contained in the source file: you use makeinfo program to create info docu-
ments, which you read with the on-line browser info, and you use TEX and the texinfo macro
set are used to format the documentation for printing.

info is a menu-driven, tree-structured online browser. You can follow in-text references and
then return to the original text. info is available both as a stand-alone program and as an
emacs macro.

If you have a package that supplies documentation in info format, you should use it. Even if
some GNU programs, such as gcc and emacs, hav e both info and man pages, the info is much
more detailled.

Running texinfo is straightforward: run TEX. The document reads in the file texinfo.tex, and
about the only problem you are likely to encounter is if it doesn’t find this file.

The World-Wide Web
The World-Wide Web (WWW) is not primarily a program documentation system, but it has a
number of properties which make it suitable as a manual browser: as a result of the prolifera-
tion of the Internet, it is well known and generally available, it supplies a transparent cross-
reference system, and the user interface is easier to understand. It’s likely that it will gain
importance in the years to come. Hopefully it will do this without causing as much confusion
as its predecessors.

5 February 2005 02:09

8
Testing the results

Finally make has run through to the end and has not reported errors. Your source tree now
contains all the objects and executables. You’re done!

After a brief moment of euphoria, you sit down at the keyboard and start the program:

$ xterm
Segmentation fault - core dumped

Well, maybe you’re not quite done after all. Occasionally the program does not work as
advertised. What you do now depends on how much programming experience you have. If
you are a complete beginner, you could be in trouble—about the only thing you can do (apart
from asking somebody else) is to go back and check that you really did configure the package
correctly.

On the other hand, if you have even a slight understanding of programming, you should try to
analyze the cause of the error—it’s easier than you think. Hold on, and try not to look down.

There are thousands of possible reasons for the problems you encounter when you try to run a
buggy executable, and lots of good books explain debugging techniques. In this chapter, we
will touch only on aspects of debugging that relate to porting. First we’ll attack a typical, if
somewhat involved, real-life bug, and solve it, discussing the pros and cons on the way. Then
we’ll look at alternatives to traditional debuggers: kernel and network tracing.

Before you even start your program, of course, you should check if any test programs are
available. Some packages include their own tests, and separate test suites are available for
others. For other packages there may be test suites that were not designed for the package,
but that can be used with it. If there are any tests, you should obviously run them. You might
also consider writing some tests and including them as a target test in the Makefile.

What makes ported programs fail?
Ported programs don’t normally fail for the same reasons as programs under development. A
program under development still has bugs that prevent it from running correctly on any plat-
form, while a ported program has already run reasonably well on some other platform. If it
doesn’t run on your platform, the reasons are usually:

105

5 February 2005 02:09

106

• A latent bug has found more fertile feeding ground. For example, a program may read
from a null pointer. This frequently doesn’t get noticed if the data at address 0 doesn’t
cause the program to do anything unusual. On the other hand, if the new platform does
not have any memory mapped at address 0, it will cause a segmentation violation or a
bus error.

• Differences in the implementation of library functions or kernel functionality cause the
program to behave differently in the new environment. For example, the function setp-
grp has completely different semantics under System V and under BSD. See Chapter
12, Kernel dependencies, page 171, for more details.

• The configuration scripts have nev er been adequately tested for your platform. As a
result, the program contains bugs that were not in the original versions.

A strategy for testing
When you write your own program with its own bugs, it helps to understand exactly what the
program is trying to do: if you sit back and think about it, you can usually shorten the debug-
ging process. When debugging software that you have just ported, the situation is different:
you don’t understand the package, and learning its internals could take months. You need to
find a way to track down the bug without getting bogged down with the specifics of how the
package works.

You can overdo this approach, of course. It still helps to know what the program is trying to
do. For example, when xterm dies, it’s nice to know roughly how xterm works: it opens a
window on an X server and emulates a terminal in this window. If you know something about
the internals of X11, this will also be of use to you. But it’s not time-effective to try to fight
your way through the source code of xterm.

In the rest of this chapter, we’ll use this bug (yes, it was a real live bug in X11R6) to look at
various techniques that you can use to localize and finally pinpoint the problem. The princi-
ple we use is the old GIGO principle — garbage in, garbage out. We’ll subdivide the program
into pieces which we can conveniently observe, and check which of them does not produce
the expected output. After we find the piece with the error, we subdivide it further and repeat
the process until we find the bug. The emphasis in this method is on convenient: it doesn’t
necessarily have to make sense. As long as you can continue to divide your problem area into
between two and five parts and localize the problem in one of the parts, it won’t take long to
find the bug.

So what’s a convenient way to look at the problems? That depends on the tools you have at
your disposal:

• If you have a symbolic debugger, you can divide your problem into the individual func-
tions and examine what goes in and what goes out.

• If you have a system call trace program, such as ktrace or truss, you can monitor what
the program says to the system and what the system replies.

5 February 2005 02:09

Chapter 8: Testing 107

• If you have a communications line trace program, you can try to divide your program
into pieces that communicate across this line, so you can see what they are saying to each
other.

Of course, we have all these things. In the following sections we’ll look at each of them in
more detail.

Symbolic debuggers
If you don’t hav e a symbolic debugger, get one. Now. Many people still claim to be able to
get by without a debugger, and it’s horrifying how many people don’t even know how to use
one. Of course you can debug just about anything without a symbolic debugger. Historians
tell us that you can build pyramids without wheels—that’s a comparable level of technology
to testing without a debugger. The GNU debugger, gdb, is available on just about every plat-
form you’re likely to encounter, and though it’s not perfect, it runs rings around techniques
like putting printf statements in your programs.

In UNIX, a debugger is a process that takes control of the execution of another process. Most
versions of UNIX allow only one way for the debugger to take control: it must start the
process that it debugs. Some versions, notably SunOS 4, but not Solaris 2, also allow the
debugger to attach to a running process.

Whichever debugger you use, there are a surprisingly small number of commands that you
need. In the following discussion, we’ll look at the command set of gdb, since it is widely
used. The commands for other symbolic debuggers vary considerably, but they normally have
similar purposes.

• A stack trace command answers the question, “Where am I, and how did I get here?”,
and is almost the most useful of all commands. It’s certainly the first thing you should
do when examining a core dump or after getting a signal while debugging the program.
gdb implements this function with the backtrace command.

• Displaying data is the most obvious requirement: what is the current value of the vari-
able bar? In gdb, you do this with the print command.

• Displaying register contents is really the same thing as displaying program data. In gdb,
you display individual registers with the print command, or all registers with the info
registers command.

• Modifying data and register contents is an obvious way of modifying program execution.
In gdb, you do this with the set command.

• breakpoints stop execution of the process when the process attempts to execute an
instruction at a certain address. gdb sets breakpoints with the break command.

• Many modern machines have hardware support for more sophisticated breakpoint mech-
anisms. For example, the i386 architecture can support four hardware breakpoints on
instruction fetch (in other words, traditional breakpoints), memory read or memory write.
These features are invaluable in systems that support them; unfortunately, UNIX usually

5 February 2005 02:09

108

does not. gdb simulates this kind of breakpoint with a so-called watchpoint. When
watchpoints are set, gdb simulates program execution by single-stepping through the pro-
gram. When the condition (for example, writing to the global variable foo) is fulfilled,
the debugger stops the program. This slows down the execution speed by several orders
of magnitude, whereas a real hardware breakpoint has no impact on the execution speed.*

• Jumping (changing the address from which the next instruction will be read) is really a
special case of modifying register contents, in this case the program counter (the register
that contains the address of the next instruction). This register is also sometimes called
the instruction pointer, which makes more sense. In gdb, use the jump command to do
this. Use this instruction with care: if the compiler expects the stack to look different at
the source and at the destination, this can easily cause incorrect execution.

• Single stepping in its original form is supported in hardware by many architectures: after
executing a single instruction, the machine automatically generates a hardware interrupt
that ultimately causes a SIGTRAP signal to the debugger. gdb performs this function with
the stepi command.

• You won’t want to execute individual machine instructions until you are in deep trouble.
Instead, you will execute a single line instruction, which effectively single steps until you
leave the current line of source code. To add to the confusion, this is also frequently
called single stepping. This command comes in two flavours, depending on how it treats
function calls. One form will execute the function and stop the program at the next line
after the call. The other, more thorough form will stop execution at the first executable
line of the function. It’s important to notice the difference between these two functions:
both are extremely useful, but for different things. gdb performs single line execution
omitting calls with the next command, and includes calls with the step command.

There are two possible approaches when using a debugger. The easier one is to wait until
something goes wrong, then find out where it happened. This is appropriate when the process
gets a signal and does not overwrite the stack: the backtrace command will show you how it
got there.

Sometimes this method doesn’t work well: the process may end up in no-man’s-land, and you
see something like:

Program received signal SIGSEGV, Segmentation fault.
0x0 in ?? ()
(gdb) bt abbreviation for backtrace
#0 0x0 in ?? () nowhere
(gdb)

Before dying, the process has mutilated itself beyond recognition. Clearly, the first approach
won’t work here. In this case, we can start by conceptually dividing the program into a num-
ber of parts: initially we take the function main and the set of functions which main calls. By
single stepping over the function calls until something blows up, we can localize the function
in which the problem occurs. Then we can restart the program and single step through this

* Some architectures slow the overall execution speed slightly in order to test the hardware registers.
This effect is negligible.

5 February 2005 02:09

Chapter 8: Testing 109

function until we find what it calls before dying. This iterative approach sounds slow and tir-
ing, but in fact it works surprisingly well.

Libraries and debugging information
Let’s come back to our xterm program and use gdb to figure out what is going on. We could,
of course, look at the core dump, but in this case we can repeat the problem at will, so we’re
better off looking at the live program. We enter:

$ gdb xterm
(political statement for the FSF omitted)
(gdb) r -display allegro:0 run the program
Starting program: /X/X11/X11R6/xc/programs/xterm/xterm -display allegro:0

Program received signal SIGBUS, Bus error.
0x3b0bc in _XtMemmove ()
(gdb) bt look back down the stack
#0 0x3b0bc in _XtMemmove () all these functions come from the X toolkit
#1 0x34dcd in XtScreenDatabase ()
#2 0x35107 in _XtPreparseCommandLine ()
#3 0x4e2ef in XtOpenDisplay ()
#4 0x4e4a1 in _XtAppInit ()
#5 0x35700 in XtOpenApplication ()
#6 0x357b5 in XtAppInitialize ()
#7 0x535 in main ()
(gdb)

The stack trace shows that the main program called XtAppInitialize, and the rest of the
stack shows the program deep in the X Toolkit, one of the central X11 libraries. If this were a
program that you had just written, you could expect it to be a bug in your program. In this
case, where we have just built the complete X11 core system, there’s also every possibility
that it is a library bug. As usual, the library was compiled without debug information, and
without that you hardly have a hope of finding it.

Apart from size constraints, there is no reason why you can’t include debugging information
in a library. The object files in libraries are just the same as any others — we discuss them in
detail on page 369. If you want, you can build libraries with debugging information, or you
can take individual library routines and compile them separately.

Unfortunately, the size constraints are significant: without debugging information, the file
libXt.a is about 330 kB long and contains 53 object files. With debugging information, it
might easily reach 20 MB, since all the myriad X11 global symbols would be included with
each object file in the archive. It’s not just a question of disk space: you also need virtual
memory during the link phase to accommodate all these symbols. Most of these files don’t
interest us anyway: the first one that does is the one that contains _XtMemmove. So we find
where it is and compile it alone with debugging information.

That’s not as simple as it sounds: first we need to find the source file, and to do that we need
to find the source directory. We could read the documentation, but to do that we need to know
that the Xt functions are in fact the X toolkit. If we’re using GNU make, or if our Makefile

5 February 2005 02:09

110

documents directory changes, an alternative would be to go back to our make log and look for
the text Xt. If we do this, we quickly find

make[4]: Leaving directory ‘/X/X11R6/xc/lib/Xext’
making Makefiles in lib/Xt...

mv Makefile Makefile.bak
make[4]: Entering directory ‘/X/X11R6/xc/lib/Xt’
make[4]: Nothing to be done for ‘Makefiles’.
make[4]: Leaving directory ‘/X/X11R6/xc/lib/Xt’

So the directory is /X/X11R6/xc/lib/Xt. The next step is to find the file that contains XtMem-
move. There is a possibility that it is called XtMemmove.c, but in this case there is no such
file. We’ll have to grep for it. Some versions of grep have an option to descend recursively
into subdirectories, which can be very useful if you have one available. Another useful tool is
cscope, which is supplied with System V.

$ grep XtMemmove *.c
Alloc.c:void _XtMemmove(dst, src, length)
Convert.c: XtMemmove(&p->from.addr, from->addr, from->size);
... many more references to XtMemmove

So XtMemmove is in Alloc.c. By the same method, we look for the other functions mentioned
in the stack trace and discover that we also need to recompile Initialize.c and Display.c.

In order to compile debugging information, we add the compiler option -g. At the same time,
we remove -O. gcc doesn’t require this, but it’s usually easier to debug a non-optimized pro-
gram. We hav e three choices of how to set the options:

• We can modify the Makefile (make World, the main make target for X11, rebuilds the
Makefiles from the corresponding Imakefiles, so this is not overly dangerous).

• If we hav e a working version of xterm, we can use its facilities: first we start the compila-
tion with make, but we don’t need to wait for the compilation to complete: as soon as the
compiler invocation appears on the screen, we abort the build with CTRL-C. Using the
xterm copy function, we copy the compiler invocation to the command line and add the
options we want:

$ rm Alloc.o Initialize.o Display.o remove the old objects
$ make and start make normally
rm -f Alloc.o
gcc -DNO_ASM -fstrength-reduce -fpcc-struct-return -c -I../.. \
-DNO_AF_UNIX -DSYSV -DSYSV386 -DUSE_POLL Alloc.c
ˆC interrupt make with CTRL-C
make: *** [Alloc.o] Interrupt
copy the invocation lines above with the mouse, and paste below, then
modify as shown in bold print
$ gcc -DNO_ASM -fstrength-reduce -fpcc-struct-return -c -I../.. \
-DNO_AF_UNIX -DSYSV -DSYSV386 -DUSE_POLL Alloc.c -g

You can also use make -n, which just shows the commands that make would execute,
rather than aborting the make, but you frequently find that make -n prints out a whole
lot of stuff you don’t expect. When you have made Alloc.o, you can repeat the process

5 February 2005 02:09

Chapter 8: Testing 111

for the other two object files.

• We could change CFLAGS from the make command line. Our first attempt doesn’t work
too well, though. If you compare the following line with the invocation above, you’ll see
that a whole lot of options are missing. They were all in CFLAGS; by redefining CFLAGS,
we lose them all:

$ make CFLAGS=-g
rm -f Alloc.o
gcc -DNO_ASM -fstrength-reduce -fpcc-struct-return -c -g Alloc.c

CFLAGS included all the compiler options starting from -I/../.., so we need to write:

$ make CFLAGS=’-g -c -I../.. -DNO_AF_UNIX -DSYSV -DSYSV386 -DUSE_POLL’

When we have created all three new object files, we can let make complete the library for us.
It will not try to remake these object files, since now they are newer than any of their depen-
dencies:

$ make run make to build a new library
rm -f libXt.a
ar clq libXt.a ActionHook.o Alloc.o ArgList.o Callback.o ClickTime.o Composite.o \
Constraint.o Convert.o Converters.o Core.o Create.o Destroy.o Display.o Error.o \
Event.o EventUtil.o Functions.o GCManager.o Geometry.o GetActKey.o GetResList.o \
GetValues.o HookObj.o Hooks.o Initialize.o Intrinsic.o Keyboard.o Manage.o \
NextEvent.o Object.o PassivGrab.o Pointer.o Popup.o PopupCB.o RectObj.o \
Resources.o Selection.o SetSens.o SetValues.o SetWMCW.o Shell.o StringDefs.o \
Threads.o TMaction.o TMgrab.o TMkey.o TMparse.o TMprint.o TMstate.o VarCreate.o \
VarGet.o Varargs.o Vendor.o
ranlib libXt.a
rm -f ../../usrlib/libXt.a
cd ../../usrlib; ln ../lib/Xt/libXt.a .
$

Now we hav e a copy of the X Toolkit in which these three files have been compiled with sym-
bols. Next, we need to rebuild xterm. That’s straightforward enough:

$ cd ../../programs/xterm/
$ pwd
/X/X11R6/xc/programs/xterm
$ make
rm -f xterm
gcc -DNO_ASM -fstrength-reduce -fpcc-struct-return -fwritable-strings -o xterm \
-L../../usrlib main.o input.o charproc.o cursor.o util.o tabs.o screen.o \
scrollbar.o button.o Tekproc.o misc.o VTPrsTbl.o TekPrsTbl.o data.o menu.o -lXaw \
-lXmu -lXt -lSM -lICE -lXext -lX11 -L/usr/X11R6/lib -lpt -ltermlib

Finally, we try again. Since the library is not in the current directory, we use the dir com-
mand to tell gdb where to find the sources. Now we get:

$ gdb xterm
(gdb) dir ../../lib/X11 set source paths
Source directories searched:
/X/X11/X11R6/xc/programs/xterm/../../lib/X11:$cdir:$cwd
(gdb) dir ../../lib/Xt

5 February 2005 02:09

112

Source directories searched:
/X/X11/X11R6/xc/programs/xterm/../../lib/Xt/X/X11/X11R6/xc/programs/xterm/../..\
/lib/X11:$cdir:$cwd
(gdb) r and run the program
Starting program: /X/X11/X11R6/xc/programs/xterm/xterm

Program received signal SIGBUS, Bus error.
0x3ced6 in _XtMemmove (dst=0x342d8 "ÐE 03", src=0x41c800 "", length=383) \
at Alloc.c:101
101 *dst++ = *src++;
(gdb)

This shows a typical byte for byte memory move. About the only thing that could cause a bus
error on that statement would be an invalid address, but the parameters show that they appear
to be valid.

There are at two possible gotchas here:

• The debugger may be lying. The parameters it shows are the parameters on the stack. If
the code has been optimized, there is a very good chance that the source and destination
addresses are stored in registers, and thus the value of dst on the stack is not up to date.

• The destination address may be in the text segment, in which case an attempt to write to
it will cause some kind of error. Depending on the system it could be a segmentation
violation or a bus error.

The most reliable way to find out what is really going on is to look at the machine instructions
being executed. First we tell the debugger to look at current instruction and the following five
instructions:

(gdb) x/6i $eip list the next 6 instructions
0x3ced6 <_XtMemmove+74>: movb %al,(%edx)
0x3ced8 <_XtMemmove+76>: incl 0xc(%ebp)
0x3cedb <_XtMemmove+79>: incl 0x8(%ebp)
0x3cede <_XtMemmove+82>: jmp 0x3cec2 <_XtMemmove+54>
0x3cee0 <_XtMemmove+84>: leave
0x3cee1 <_XtMemmove+85>: ret

The first instruction is a byte move, from register al to the address stored in register edx.
Let’s look at the address in edx:

(gdb) p/x $edx
$9 = 0x342d8

Well, this is our dst address alright—why can’t it store there? It would be nice to be able to
try to set values in memory and see if the debugger can do it:

(gdb) set *dst = ’X’b
(gdb) p *dst
$13 = 88 ’X’

That looks writable enough. Unfortunately, you can’t rely on the debugger to tell the truth.
Debuggers must be able to write to the text segment. If the write had failed, you could have
been sure that the address was not writable, but if the write succeeds, you can’t be sure. What

5 February 2005 02:09

Chapter 8: Testing 113

we need to know are the exact segment limits. Some debuggers show you the segment limits,
but current versions of gdb do not. An alternative is the size command:

$ size xterm
text data bss dec hex filename
846204 56680 23844 926728 e2408 xterm

The text segment is 846204 decimal bytes long (0xce97c), and on this system (SCO UNIX) it
starts at address 0, so the address is, indeed, in the text segment. But where did it come from?
To find an answer to that question, we need to look at the calling function. In gdb, we do this
with the frame command:

(gdb) f 1 look at the calling function (frame 1)
#1 0x35129 in _MergeOptionTables (src1=0x342d8, num_src1=24,

src2=0x400ffe, num_src2=64, dst=0x7ffff9c0, num_dst=0x7ffff9bc)
at Initialize.c:602

602 (void) memmove(table, src1, sizeof(XrmOptionDescRec) * num_src1);

That’s funny—last time it died, the function was called from XtScreenDatabase,* not from
_MergeOptionTables. Why? At the moment it’s difficult to say for sure, but it’s possible
that this difference happened because we removed optimization. In any case, we still have a
problem, so we should fix this one first and then go back and look for the other one if solving
this problem isn’t enough.

In this case, the frame command doesn’t help much, but it does tell us that the destination
variable is called table, and implicitly that memmove has been defined as _XtMemmove in this
source file. We could now look at the source file in an editor in a different X window, but it’s
easier to list the instructions around the current line with the list command:

(gdb) l
597 enum {Check, NotSorted, IsSorted} sort_order = Check;
598
599 *dst = table = (XrmOptionDescRec*)
600 XtMalloc(sizeof(XrmOptionDescRec) * (num_src1 + num_src2));
601
602 (void) memmove(table, src1, sizeof(XrmOptionDescRec) * num_src1);
603 if (num_src2 == 0) {
604 *num_dst = num_src1;
605 return;
606 }

So, the address is returned by the function XtMalloc—it seems to be allocating storage in the
text segment. At this point, we could examine it more carefully, but let’s first be sure that
we’re looking at the right problem. The address in table should be the same as the address
in the parameter dst of XtMemmove. We’re currently examining the environment of _Mer-
geOptionTables, so we can look at it directly:

(gdb) p table
$29 = (XrmOptionDescRec *) 0x41c800

That looks just fine. Where did this strange dst address come from? Let’s set a breakpoint

* See frame 1 in the stack trace on page 109.

5 February 2005 02:09

114

on the call to memmove on line 602, and then restart the program:

Example 8−1:

(gdb) b 602
Breakpoint 8 at 0x35111: file Initialize.c, line 602.
(gdb) r
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /X/X11/X11R6/xc/programs/xterm/xterm

Breakpoint 8, _MergeOptionTables (src1=0x342d8, num_src1=24,
src2=0x400ffe, num_src2=64, dst=0x7ffff9c0, num_dst=0x7ffff9bc)
at Initialize.c:602

602 (void) memmove(table, src1, sizeof(XrmOptionDe
(gdb) p table look again, to be sure
$31 = (XrmOptionDescRec *) 0x41c800
(gdb) s single step into memmove
_XtMemmove (dst=0x342d8 "ÐE 03", src=0x41c800 "", length=384)

at Alloc.c:94
94 if (src < dst) {

This is really strange! table has a valid address in the data segment, but the address we pass
to _XtMemmove is in the text segment and seems unrelated. It’s not clear what we should look
at next:

• The source of the function calls memmove, but after preprocessing it ends up calling
_XtMemmove. memmove might simply be defined as _XtMemmove, but it might also be
defined with parameters, in which case some subtle type conversions might result in our
problem.

• If you understand the assembler of the system, it might be instructive to look at the actual
instructions that the compiler produces.

It’s definitely quicker to look at the assembler instructions than to fight your way through the
thick undergrowth in the X11 source tree:

(gdb) x/8i $eip look at the next 8 instructions
0x35111 <_MergeOptionTables+63>: movl 0xc(%ebp),%edx
0x35114 <_MergeOptionTables+66>: movl %edx,0xffffffd8(%ebp)
0x35117 <_MergeOptionTables+69>: movl 0xffffffd8(%ebp),%edx
0x3511a <_MergeOptionTables+72>: shll $0x4,%edx
0x3511d <_MergeOptionTables+75>: pushl %edx
0x3511e <_MergeOptionTables+76>: pushl 0xfffffffc(%ebp)
0x35121 <_MergeOptionTables+79>: pushl 0x8(%ebp)
0x35124 <_MergeOptionTables+82>: call 0x3ce8c <_XtMemmove>

This isn’t easy stuff to handle, but it’s worth understanding, so we’ll pull it apart, instruction
for instruction. It’s easier to understand this discussion if you refer to the diagrams of stack
structure in Chapter 21, Object files and friends, page 377.

• movl 0xc(%ebp),%edx takes the content of the stack word offset 12 in the current stack
frame and places it in register edx. As we hav e seen, this is num_src1, the second

5 February 2005 02:09

Chapter 8: Testing 115

parameter passed to _MergeOptionTables.

• movl %edx,0xffffffd8(%ebp) stores the value of edx at offset -40 in the current
stack frame. This is for temporary storage.

• movl 0xffffffd8(%ebp),%edx does exactly the opposite: it loads register edx from
the location where it just stored it. These two instructions are completely redundant.
They are also a sure sign that the function was compiled without optimization.

• shll $0x4,%edx shifts the contents of register edx left by 4 bits, multiplying it by 16.
If we compare this to the source, it’s evident that the value of XrmOptionDescRec is 16,
and that the compiler has taken a short cut to evaluate the third parameter of the call.

• pushl %edx pushes the contents of edx onto the stack.

• pushl 0xfffffffc(%ebp) pushes the value of the word at offset -4 in the current stack
frame onto the stack. This is the value of table, as we can confirm by looking at the
instructions generated for the previous line.

• pushl 0x8(%ebp) pushes the value of the first parameter, src1, onto the stack.

• Finally, call _XtMemmove calls the function. Expressed in C, we now know that it
calls

memmove (src1, table, num_src1 << 4);

This is, of course, wrong: the parameter sequence of source and destination has been reversed.
Let’s look at _XtMemmove more carefully:

(gdb) l _XtMemmove
89 #ifdef _XNEEDBCOPYFUNC
90 void _XtMemmove(dst, src, length)
91 char *dst, *src;
92 int length;
93 {
94 if (src < dst) {
95 dst += length;
96 src += length;
97 while (length--)
98 *--dst = *--src;
99 } else {
100 while (length--)
101 *dst++ = *src++;
102 }
103 }
104 #endif

Clearly the function parameters are the same as those of memmove, but the calling sequence
has reversed them. We’v e found the problem, but we haven’t found what’s causing it.

Aside: Debugging is not an exact science. We’v e found our problem, though we still don’t
know what’s causing it. But looking back at Example 8-1, we see that the address for src on
entering _XtMemmove was the same as the address of table. That tells us as much as analyz-
ing the machine code did. This will happen again and again: after you find a problem, you

5 February 2005 02:09

116

discover you did it the hard way.

The next thing we need to figure out is why the compiler reversed the sequence of the parame-
ters. Can this be a compiler bug? Theoretically, yes, but it’s very unlikely that such a primi-
tive bug should go undiscovered up to now.

Remember that the compiler does not compile the sources you see: it compiles whatever the
preprocessor hands to it. It makes a lot of sense to look at the preprocessor output. To do
this, we go back to the library directory. Since we used pushd, this is easy—just enter
pushd. In the library, we use the same trick as before in order to run the compiler with differ-
ent options, only this time we use the options -E (stop after running the preprocessor), -dD
(retain the text of the definitions in the preprocessor output), and -C (retain comments in the
preprocessor output). In addition, we output to a file junk.c:

$ pushd
$ rm Initialize.o
$ make Initialize.o
rm -f Initialize.o
gcc -DNO_ASM -fstrength-reduce -fpcc-struct-return -c -g -I../.. \

-D_SVID -DNO_AF_UNIX -DSYSV -DSYSV386 -DUSE_POLL Initialize.c
make: *** [Initialize.o] Interrupt hit CTRL-C
... copy the command into the command line, and extend:
$ gcc -DNO_ASM -fstrength-reduce -fpcc-struct-return -c -g -I../.. \
-D_SVID -DNO_AF_UNIX -DSYSV -DSYSV386 -DUSE_POLL Initialize.c \
-E -dD -C >junk.c

$

As you might have guessed, we now look at the file junk.c with an editor. We’re looking for
memmove, of course. We find a definition in /usr/include/string.h, then later on we find, in
/X/X11/X11R6/xc/X11/Xfuncs.h,

#define memmove(dst,src,len) bcopy((char *)(src),(char *)(dst),(int)(len))

#define memmove(dst,src,len) _XBCOPYFUNC((char *)(src),(char *)(dst),(int)(len))
#define _XNEEDBCOPYFUNC

For some reason, the configuration files have decided that memmove is not defined on this sys-
tem, and have replaced it with bcopy (which is really not defined on this system). Then they
replace it with the substitute function _XBCOPYFUNC, almost certainly a preprocessor defini-
tion. It also defines the preprocessor variable _XNEEDBCOPYFUNC to indicate that _XtMem-
move should be compiled.

Unfortunately, we don’t see what happens with _XNEEDBCOPYFUNC. The preprocessor dis-
cards all #ifdef lines. It does include #defines, however, so we can look for where
_XBCOPYFUNC is defined—it’s in IntrinsicI.h, as the last #line directive before the definition
indicates.

#define _XBCOPYFUNC _XtMemmove

IntrinsicI.h also contains a number of definitions for XtMemmove, none of which are used in
the current environment, but all of which have the parameter sequence (dst, src, count).
bcopy has the parameter sequence (src, dst, count). Clearly, somebody has confused

5 February 2005 02:09

Chapter 8: Testing 117

something in this header file, and under certain rare circumstances the call is defined with the
incorrect parameter sequence.

Somewhere in here is a lesson to be learnt: this is a real bug that occurred in X11R6, patch
level 3, one of the most reliable and most portable software packages available, yet here we
have a really primitive bug. The real problem lies in the configuration mechanism: automated
configuration can save a lot of time in normal circumstances, but it can also cause lots of pain
if it makes incorrect assumptions. In this case, the environment was unusual: the kernel plat-
form was SCO UNIX, which has an old-fashioned library, but the library was GNU libc. This
caused the assumptions of the configuration mechanism to break down.

Let’s look more carefully at the part of Xfuncs.h where we found the definitions:

/* the new Xfuncs.h */

#if !defined(X_NOT_STDC_ENV) && (!defined(sun) || defined(SVR4))
/* the ANSI C way */
#ifndef _XFUNCS_H_INCLUDED_STRING_H
#include <string.h>
#endif
#undef bzero
#define bzero(b,len) memset(b,0,len)
#else /* else X_NOT_STDC_ENV or SunOS 4 */
#if defined(SYSV) || defined(luna) || defined(sun) || defined(__sxg__)
#include <memory.h>
#define memmove(dst,src,len) bcopy((char *)(src),(char *)(dst),(int)(len))
#if defined(SYSV) && defined(_XBCOPYFUNC)
#undef memmove
#define memmove(dst,src,len) _XBCOPYFUNC((char *)(src),(char *)(dst),(int)(len))
#define _XNEEDBCOPYFUNC
#endif
#else /* else vanilla BSD */
#define memmove(dst,src,len) bcopy((char *)(src),(char *)(dst),(int)(len))
#define memcpy(dst,src,len) bcopy((char *)(src),(char *)(dst),(int)(len))
#define memcmp(b1,b2,len) bcmp((char *)(b1),(char *)(b2),(int)(len))
#endif /* SYSV else */
#endif /* ! X_NOT_STDC_ENV else */

This is hairy (and incorrect) stuff. It makes its decisions based on the variables
X_NOT_STDC_ENV, sun, SVR4, SYSV, luna, __sxg__ and _XBCOPYFUNC. These are the deci-
sions:

• If the variable is not defined, it assumes ANSI C, unless this is a pre-SVR4 Sun machine.

• Otherwise it checks the variables SYSV (for System V.3), luna, sun or __sxg__. If any
of these are set, it includes the file memory.h and defines memmove in terms of bcopy. If
_XBCOPYFUNC is defined, it redefines memmove as _XBCOPYFUNC, rev ersing the parame-
ters as it goes.

• If none of these conditions apply, it assumes a vanilla BSD machine and defines the func-
tions memmove, memcpy and memcmp in terms of the BSD functions bcopy and bcmp.

There are two errors here:

5 February 2005 02:09

118

• The only way that _XBCOPYFUNC is ever defined is as _XtMemmove, which does not have
the same parameter sequence as bcopy—instead, it has the same parameter sequence as
memmove. We can fix this part of the header by changing the definition line to

#define memmove(dst,src,len) _XBCOPYFUNC((char *)(dst),(char *)(src),(int)(len))

or even to

#define memmove _XBCOPYFUNC

• There is no reason to assume that this system does not use ANSI C: it’s using gcc and
GNU libc.a, both of them very much standard compliant. We need to examine this point
in more detail:

Going back to our junk.c, we search for X_NOT_STDC_ENV and find it defined at line 85 of
/X/X11/X11R6/xc/X11/Xosdefs.h:

#ifdef SYSV386
#ifdef SYSV
#define X_NOT_POSIX
#define X_NOT_STDC_ENV
#endif
#endif

In other words, this bug is likely to occur only with System V.3 implementations on Intel
architecture. This is a fairly typical way to make decisions about the system, but it is wrong:
X_NOT_STDC_ENV relates to a compiler, not an operating system, but both SYSV386 and SYSV
define operating system characteristics. At first sight it would seem logical to modify the defi-
nitions like this:

#ifdef SYSV386
#ifdef SYSV
#ifndef __GNU_LIBRARY__
#define X_NOT_POSIX
#endif
#ifndef __GNUC__
#define X_NOT_STDC_ENV
#endif
#endif
#endif

This would only define the variables if the library is not GNU libc or the compiler is not gcc.
This is still not correct: the relationship between __GNUC__ and X_NOT_STDC_ENV or
__GNU_LIBRARY__ and X_NOT_POSIX is not related to System V or the Intel architecture.
Instead, it makes more sense to backtrack at the end of the file:

#ifdef __GNU_LIBRARY__
#undef X_NOT_POSIX
#endif
#ifdef __GNUC__
#undef X_NOT_STDC_ENV
#endif

Whichever way we look at it, this is a mess. We’re applying cosmetic patches to a

5 February 2005 02:09

Chapter 8: Testing 119

configuration mechanism which is based in incorrect assumptions. Until some better configu-
ration mechanism comes along, unfortunately, we’re stuck with this situation.

Limitations of debuggers
Debuggers are useful tools, but they hav e their limitations. Here are a couple which could
cause you problems:

Can’t breakpoint beyond fork

UNIX packages frequently start multiple processes to do the work on hand. Frequently
enough, the program that you start does nothing more than to spawn a number of other pro-
cesses and wait for them to stop. Unfortunately, the ptrace interface which debuggers use
requires the process to be started by the debugger. Even in SunOS 4, where you can attach the
debugger to a process that is already running, there is no way to monitor it from the start.
Other systems don’t offer even this facility. In some cases you can determine how the process
was started and start it with the debugger in the same manner. This is not always possi-
ble — for example, many child processes communicate with their parent.

Unfortunately, SunOS trace doesn’t support tracing through fork. truss does it better than
ktrace. In extreme cases (like debugging a program of this nature on SunOS 4, where there is
no support for trace through fork), you might find it an advantage to port to a different
machine running an operating system such as Solaris 2 in order to be able to test with truss.
Of course, Murphy’s law says that the bug won’t show up under Solaris 2.

Terminal logs out

The debugger usually shares a terminal with the program being tested. If the program
changes the driver configuration, the debugger should change it back again when it gains con-
trol (for example, on hitting a breakpoint), and set it back to the way the program set it before
continuing. In some cases, however, it can’t: if the process has taken ownership of the termi-
nal with a system call like setsid (see Chapter 12, Kernel dependencies, page 171), it will no
longer have access to the terminal. Under these circumstances, most debuggers crawl into a
corner and die. Then the shell in control of the terminal awakes and dies too. If you’re run-
ning in an xterm, the xterm then stops; if you’re running on a glass tty, you will be logged out.

The best way out of this dilemma is to start the child process on a different terminal, if your
debugger and your hardware configuration support it. To do this with an xterm requires start-
ing a program which just sleeps, so that the window stays open until you can start your test
program:

$ xterm -e sleep 100000&
[1] 27013
$ ps aux|grep sleep
grog 27025 3.0 0.0 264 132 p6 S+ 1:13PM 0:00.03 grep sleep
root 27013 0.0 0.0 1144 740 p6 I 1:12PM 0:00.37 xterm -e sleep 100000
grog 27014 0.0 0.0 100 36 p8 Is+ 1:12PM 0:00.06 sleep 100000
$ gdb myprog
(gdb) r < /dev/ttyp8 > /dev/ttyp8

5 February 2005 02:09

120

This example was done on a BSD machine. On a System V machine you will need to use ps
-ef instead of ps aux. First, you start an xterm with sleep as controlling shell (so that it will
stay there). With ps you grep for the controlling terminal of the sleep process (the third line in
the example), and then you start your program with stdin and stdout redirected to this termi-
nal.

Can’t interrupt process

The ptrace interface uses the signal SIGTRAP to communicate with the process being
debugged. What happens if you block this signal, or ignore it? Nothing — the debugger
doesn’t work any more. It’s bad practice to block SIGTRAP, of course, but it can be done.
More frequently, though, you’ll encounter this problem when a process gets stuck in a signal
processing loop and doesn’t get round to processing the SIGTRAP—precisely one of the times
when you would want to interrupt it. My favourite one is the program which had a SIGSEGV
handler which went and retried the instruction. Unfortunately, the only signal to which a
process in this state will still respond is SIGKILL, which doesn’t help you much in finding out
what’s going on.

Tracing system calls
An alternative approach is to divide the program between system code and user code. Most
systems have the ability to trace the parameters supplied to each system call and the results
that they return. This is not nearly as good as using a debugger, but it works with all object
files, even if they don’t hav e symbols, and it can be very useful when you’re trying to figure
out why a program doesn’t open a specific file.

Tracing is a very system-dependent function, and there are a number of different programs to
perform the trace: truss runs on System V.4, ktrace runs on BSD NET/2 and 4.4BSD derived
systems, and trace runs on SunOS 4. They vary significantly in their features. We’ll look
briefly at each. Other systems supply still other programs—for example, SGI’s IRIX operat-
ing system supplies the program par, which offers similar functionality.

trace
trace is a relatively primitive tool supplied with SunOS 4 systems. It can either start a process
or attach to an existing process, and it can print summary information or a detailed trace. In
particular, it cannot trace the child of a fork call, which is a great disadvantage. Here’s an
example of trace output with a possibly recognizable program:

$ trace hello
open ("/usr/lib/ld.so", 0, 040250) = 3
read (3, "".., 32) = 32
mmap (0, 40960, 0x5, 0x80000002, 3, 0) = 0xf77e0000
mmap (0xf77e8000, 8192, 0x7, 0x80000012, 3, 32768) = 0xf77e8000
open ("/dev/zero", 0, 07) = 4
getrlimit (3, 0xf7fff488) = 0
mmap (0xf7800000, 8192, 0x3, 0x80000012, 4, 0) = 0xf7800000

5 February 2005 02:09

Chapter 8: Testing 121

close (3) = 0
getuid () = 1004
getgid () = 1000
open ("/etc/ld.so.cache", 0, 05000100021) = 3
fstat (3, 0xf7fff328) = 0
mmap (0, 4096, 0x1, 0x80000001, 3, 0) = 0xf77c0000
close (3) = 0
open ("/opt/lib/gcc-lib/sparc-sun-sunos".., 0, 01010525) = 3
fstat (3, 0xf7fff328) = 0
getdents (3, 0xf7800108, 4096) = 212
getdents (3, 0xf7800108, 4096) = 0
close (3) = 0
open ("/opt/lib", 0, 056) = 3
getdents (3, 0xf7800108, 4096) = 264
getdents (3, 0xf7800108, 4096) = 0
close (3) = 0
open ("/usr/lib/libc.so.1.9", 0, 023170) = 3
read (3, "".., 32) = 32
mmap (0, 458764, 0x5, 0x80000002, 3, 0) = 0xf7730000
mmap (0xf779c000, 16384, 0x7, 0x80000012, 3, 442368) = 0xf779c000
close (3) = 0
open ("/usr/lib/libdl.so.1.0", 0, 023210) = 3
read (3, "".., 32) = 32
mmap (0, 16396, 0x5, 0x80000002, 3, 0) = 0xf7710000
mmap (0xf7712000, 8192, 0x7, 0x80000012, 3, 8192) = 0xf7712000
close (3) = 0
close (4) = 0
getpagesize () = 4096
brk (0x60d8) = 0
brk (0x70d8) = 0
ioctl (1, 0x40125401, 0xf7ffea8c) = 0
write (1, "Hello, World!0, 14) = Hello, World!
14
close (0) = 0
close (1) = 0
close (2) = 0
exit (1) = ?

What’s all this output? All we did was a simple write, but we have performed a total of 43
system calls. This shows in some detail how much the viewpoint of the world differs when
you’re on the other side of the system library. This program, which was run on a SparcStation
2 with SunOS 4.1.3, first sets up the shared libraries (the sequences of open, read, mmap, and
close), then initializes the stdio library (the calls to getpagesize, brk, ioctl, and
fstat), and finally writes to stdout and exits. It also looks strange that it closed stdin before
writing the output text: again, this is a matter of perspective. The stdio routines buffer the
text, and it didn’t actually get written until the process exited, just before closing stdout.

5 February 2005 02:09

122

ktrace
ktrace is supplied with newer BSD systems. Unlike the other trace programs, it writes unfor-
matted data to a log file (by default, ktrace.out), and you need to run another program, kdump,
to display the log file. It has the following options:

• It can trace the descendents of the process it is tracing. This is particularly useful when
the bug occurs in large complexes of processes, and you don’t even know which process
is causing the problem.

• It can attach to processes that are already running. Optionally, it can also attach to exist-
ing children of the processes to which it attaches.

• It can specify broad subsets of system calls to trace: system calls, namei translations
(translation of file name to inode number), I/O, and signal processing.

Here’s an example of ktrace running against the same program:

$ ktrace hello
Hello, World!
$ kdump
20748 ktrace RET ktrace 0
20748 ktrace CALL getpagesize
20748 ktrace RET getpagesize 4096/0x1000
20748 ktrace CALL break(0xadfc)
20748 ktrace RET break 0
20748 ktrace CALL break(0xaffc)
20748 ktrace RET break 0
20748 ktrace CALL break(0xbffc)
20748 ktrace RET break 0
20748 ktrace CALL execve(0xefbfd148,0xefbfd5a8,0xefbfd5b0)
20748 ktrace NAMI "./hello"
20748 hello RET execve 0
20748 hello CALL fstat(0x1,0xefbfd2a4)
20748 hello RET fstat 0
20748 hello CALL getpagesize
20748 hello RET getpagesize 4096/0x1000
20748 hello CALL break(0x7de4)
20748 hello RET break 0
20748 hello CALL break(0x7ffc)
20748 hello RET break 0
20748 hello CALL break(0xaffc)
20748 hello RET break 0
20748 hello CALL ioctl(0x1,TIOCGETA,0xefbfd2e0)
20748 hello RET ioctl 0
20748 hello CALL write(0x1,0x8000,0xe)
20748 hello GIO fd 1 wrote 14 bytes

"Hello, World!
"

20748 hello RET write 14/0xe
20748 hello CALL exit(0xe)

This display contains the following information in columnar format:

5 February 2005 02:09

Chapter 8: Testing 123

1. The process ID of the process.

2. The name of the program from which the process was started. We can see that the name
changes after the call to execve.

3. The kind of event. CALL is a system call, RET is a return value from a system call, NAMI
is a system internal call to the function namei, which determines the inode number for a
pathname, and GIO is a system internal I/O call.

4. The parameters to the call.

In this trace, run on an Intel 486 with BSD/OS 1.1, we can see a significant difference from
SunOS: there are no shared libraries. Even though each system call produces two lines of out-
put (the call and the return value), the output is much shorter.

truss
truss, the System V.4 trace facility, offers the most features:

• It can print statistical information instead of a trace.

• It can display the argument and environment strings passed to each call to exec.

• It can trace the descendents of the process it is tracing.

• Like ktrace, it can attach to processes which are already running and optionally attach to
existing children of the processes to which it attaches.

• It can trace specific system calls, signals, and interrupts (called faults in System V termi-
nology). This is a very useful feature: as we saw in the ktrace example above, the C
library may issue a surprising number of system calls.

Here’s an example of truss output:

$ truss -f hello
511: execve("./hello", 0x08047834, 0x0804783C) argc = 1
511: getuid() = 1004 [1004]
511: getuid() = 1004 [1004]
511: getgid() = 1000 [1000]
511: getgid() = 1000 [1000]
511: sysi86(SI86FPHW, 0x80036058, 0x80035424, 0x8000E255) = 0x00000000
511: ioctl(1, TCGETA, 0x08046262) = 0
Hello, World!
511: write(1, " H e l l o , W o r l d".., 14) = 14
511: _exit(14)

truss offers a lot of choice in the amount of detail it can display. For example, you can select
a verbose parameter display of individual system calls. If we’re interested in the parameters
to the ioctl call, we can enter:

$ truss -f -v ioctl hello
...
516: ioctl(1, TCGETA, 0x08046262) = 0

5 February 2005 02:09

124

516: iflag=0004402 oflag=0000005 cflag=0002675 lflag=0000073 line=0
516: cc: 177 003 010 030 004 000 000 000

In this case, truss shows the contents of the termio structure associated with the TCGETA
request — see Chapter 15, Terminal drivers, pages 241 and 258, for the interpretation of this
information.

Tracing through fork
We’v e seen that ktrace and truss can both trace the child of a fork system call. This is
invaluable: as we saw on page 119, debuggers can’t do this.

Unfortunately, SunOS trace doesn’t support tracing through fork. truss does it better than
ktrace. In extreme cases (like debugging a program of this nature on SunOS 4, where there is
no support for trace through fork), you might find it an advantage to port to a different
machine running an operating system such as Solaris 2 in order to be able to test with truss.
Of course, Murphy’s law says that the bug won’t show up under Solaris 2.

Tracing network traffic
Another place where we can trace is at the network interface. Many processes communicate
across the network, and if we have tools to look at this communication, they may help us iso-
late the part of the package that is causing the problem.

Tw o programs trace message flow across a network:

• On BSD systems, tcpdump and the Berkeley Packet Filter provide a flexible means of
tracing traffic across Internet domain sockets. See Appendix E, Where to get sources, for
availability.

• trpt will print a trace from a socket marked for debugging. This function is available on
System V.4 as well, though it is not clear what use it is under these circumstances, since
System V.4 emulates sockets in a library module. On BSD systems, it comes in a poor
second to tcpdump.

Tracing net traffic is an unusual approach, and we won’t consider it here, but in certain cir-
cumstances it is an invaluable tool. You can find all you need to know about tcpdump in
TCP/IP Illustrated, Volume 1, by Richard Stevens.

5 February 2005 02:09

9
Installation

Finally the package has been built and tested, and it works. Up to this point, everything in the
package has been in the private source tree where it has been built. Most packages are not
intended to be executed from the source directory: before we can use them, we need to move
the component parts to their intended directories. In particular:

• We need to put executables where a normal PATH environment variable will find them.

• We need to place on-line documentation in the correct directories in a form that the docu-
ment browser understands.

• The installed software needs to be given the correct permissions to do what it has to do:
all executables need to have their execute permissions set, and some programs may need
setuid or setgid bits set (see Chapter 12, Kernel dependencies, page). In addition, soft-
ware will frequently be installed in directories to which normal users have no access. In
these cases, the install must be done by root.

• Library routines and configuration files need to be installed where the package expects
them: the location could be compiled into the programs, or an environment variable
could point to the location.

• If the package uses environment variables, you may also need to update .profile and
.cshrc files to add or modify environment variables.

• Many packages — for example, news transfer programs—create data in specific directo-
ries. Although initially there may be no data to install, the install process may need to
create the directories.

• At some future date, you may want to remove the package again, or to install an updated
version. The installation routines should make some provision for removing the package
when you no longer want it.

Real-life packages differ significantly in their ability to perform these tasks. Some Makefiles
consider that their job is done when the package has been compiled, and leave it to you do
install the files manually. In some cases, as when there is only a single program, this is no
hardship, but it does require that you understand exactly what you need to install. On the
other hand, very few packages supply an uninstall target.

125

5 February 2005 02:09

126

In this chapter, we’ll look at the following subjects:

• The way Makefiles typically install software.

• Alternatives if the Makefile doesn’t do everything it should do.

• How to install documentation.

• How to keep track of installed software.

• How to remove installed software.

Installation is an untidy area. At the end of this chapter, you’ll probably be left with a feeling
of dissatisfaction — this area has been sadly neglected, and there just aren’t enough good
answers.

make install
The traditional way to install a pre-compiled package is with make install. Typically, it per-
forms the following functions:

• It creates the necessary directories if they are not there.

• It copies all necessary files to their run-time locations.

• It sets the permissions of the files to their correct values. This frequently requires you to
be root when you install the package. If you don’t hav e root access, you should at least
arrange for access to the directories into which you want to install.

• It may strip debug information from executables.

Some other aspects of make install are less unified:

• make install may imply a make all: you can’t install until you have made the package,
and you’ll frequently see an install target that starts with

install: all
installation commands

• On the other hand, make install may not only expect the make all to be completed—and
fail if it is not—but remove the executables after installation. Sometimes this is due to
the use of BSD install without the -c option — see the section on the install program
below—but it means that if you want to make a change to the program after installation,
you effectively have to repeat the whole build. Removing files from the tree should be
left to make clean (see Chapter 5, Building the package, page 63).

• Some install targets install man pages or other on-line documentation, others leave it to a
separate target with a name like install-man, and yet other Makefiles completely
ignore online documentation, even if the package supplies it.

5 February 2005 02:09

Chapter 9: Installation 127

Configuring the installed package
Some packages have run-time configuration files that need to be set up before the package
will run. Also, it’s not always enough just to install the files in the correct place and with the
correct permissions: you may need to modify the individual user’s environment before they
can use the package. Here are some examples:

• sendmail, the Internet mail transport agent, has an extremely complicated configuration
file sendmail.cf which needs to be set up to reflect your network topology. A description
of how to set up this file takes up hundreds of pages in sendmail, by Bryan Costales, Eric
Allman and Neil Rickert.

• Many X11 clients have supplementary files that define application defaults, which may
or may not be suitable for your environment. They are intended to be installed in a direc-
tory like /usr/X11/lib/X11/app-defaults. Not all Imakefiles perform this task.

• The path where the executables are installed should be in your PATH environment vari-
able.

• If you install man pages, the path should be in your MANPATH environment variable.

• Many packages define their own environment variables. For example, TEX defines the
environment variables TEXCONFIG, TEXFONTS, TEXFORMATS, TEXINPUTS, and TEXPOOL
to locate its data files.

• Some programs require a setup file in the home directory of each user who uses the pro-
gram. Others do not require it, but will read it if it is present.

• Some programs will create links with other names. For example, if you install pax, the
portable archive exchange program, you have the opportunity of creating links called tar
and cpio. This is really a configuration option, but the Makefile for pax does not account
for it.

Typical Makefiles are content with moving the files to where they belong, and leave such
details to the user. We’ll see an alternative on page 138.

Installing the correct files
At first, installation seems straightforward enough: you copy the files to where they belong,
and that’s that. In practice, a number of subtle problems can occur. There’s no hard and fast
solution to them, but if you run into trouble it helps to understand the problem.

To replace or not to replace?
Throughout the build process, we have used make to decide whether to rebuild a target or not:
if the target exists, and is newer than any of its dependencies, it will not be rebuilt. Tradition-
ally, installation is different: the files are installed anyway, even if newer files are already
present in the destination directory.

5 February 2005 02:09

128

The reasons for this behaviour are shrouded in time, but may be related to the fact that both
install (which we will discuss below) and cp traditionally modify the time stamps of the files,
so that the following scenario could occur:

1. Build version 1 of a package, and install it.

2. Start building version 2, but don’t complete it.

3. Make a modification to version 1, and re-install it.

4. Complete version 2, and install it. Some of the file in version 2 were compiled before
version 1 was re-installed, and are thus older than the installed files. As a result, they
will not be installed, and the installed software will be inconsistent.

It’s obviously safer to replace everything. But is that enough? We’ll look at the opposite prob-
lem in the next section.

Updating
Frequently you will install several versions of software over a period of time, as the package
ev olves. Simply installing the new version on top of the old version will work cleanly only if
you can be sure that you install a new version of every file that was present in the old version:
otherwise some files from the old version will remain after installation. For example, version
1.07.6 of the GNU libc included a file include/sys/bitypes.h, which is no longer present in ver-
sion 1.08.6. After installing version 1.08.6, include/sys/bitypes.h is still present from the ear-
lier installation.

The correct way to handle this problem is to uninstall the old package before installation. For
reasons we will investigate on page 133, this seldom happens.

install
install is a program that is used in installing software. It performs the tasks of creating any
necessary directories, copying files, stripping executables, and setting permissions.

install originated in Berkeley, and older System V systems don’t support it. It’s a fairly trivial
program, of course, and many packages supply a script with a name like install.sh which per-
forms substantially the same functions. The source is available in the 4.4BSD Lite distribu-
tion — see Appendix E, Where to get sources.

Although install is a relatively simple program, it seems that implementors have done their
best to make it differ from one system to the next. The result is a whole lot of incompatible
and just downright confusing options. System V.4 even supplies two different versions with
conflicting options, a BSD compatible one and a native one — the one you get depends on
your other preferences, as laid down in your PATH environment variable.

System V.4 native install is sufficiently different from the others that we need to look at it sep-
arately — it can install only a single file. The syntax is:

5 February 2005 02:09

Chapter 9: Installation 129

install options file [dir dir ...]

If the dirs are specified, they are appended to the fixed list of directories /bin, /usr/bin, /etc,
/lib, and /usr/lib. install will search the resultant list of directories sequentially for a file with
the name file. If it finds one, it will replace it and print a message stating in which directory it
has installed the file. The -i option tells install to omit the standard directories and take only
the list specified on the command line.

Other versions of install have a syntax similar to mv and cp, except that they take a number of
supplementary options:

install options file1 file2
install options file1 ... fileN dir

The first form installs file1 as file2, the second form installs file1 through fileN in the directory
dir.

Table 9-1 contains an overview of install options:

Table 9−1: install options

option Purpose

-c In BSD, copy the file. If this option is not specified, the file is moved (the origi-
nal file is deleted after copying).

In GNU and System V.4 (BSD compatibility), this option is ignored. Files are
always copied.

-c dir System V.4 native: install the file in directory dir only if the file does not already
exist. If the file exists already, exit with an error message.

-d In GNU and SunOS, create all necessary directories if the target directory does
not exist. Not available in BSD. This lets you create the directory with the com-
mand

install -d [-g group] [-m perm] [-o owner] dir

-f flags In 4.4BSD, specify the target’s file flags. This relates to the chflags program in-
troduced with 4.4BSD—see the man page usr.bin/chflags/chflags.1 in the
4.4BSD Lite distribution.

-f dir System V.4 native: force the file to be installed in dir. This is the default for oth-
er versions.

-g group Set the group ownership to group.

-i System V.4 native: ignore the default directory list (see below). This is not ap-
plicable with the -c or -f options.

-m perm Set the file permissions to perm. perm may be in octal or symbolic form, as de-
fined for chmod(1). By default, perm is 0755 (rwxr-xr-x).

5 February 2005 02:09

130

Table 9−1: install options (continued)

option Purpose

-n dir System V.4 native: if file is not found in any of the directories, install it in dir.

-o System V.4 native: if file is already present at the destination, rename the old
version by prepending the letters OLD to the filename. The old file remains in the
same directory.

-o owner All except System V.4 native: change the owner to owner.

-s System V.4 native: suppress error messages.

-s All except System V.4 native: strip the final binary.

-u owner System V.4 native: change the owner to owner.

Other points to note are:

• install attempts to prevent you from moving a file onto itself.

• Installing /dev/null creates an empty file.

• install exits with a return code of 0 if successful and 1 if unsuccessful.

System V.4 install is definitely the odd man out: if you can avoid it, do. Even Solaris 2 sup-
plies only the BSD version of install. On the other hand, pure BSD install also has its prob-
lems, since it requires the -c option to avoid removing the original files.

Installing documentation
Installing man pages would seem to be a trivial exercise. In fact, a number of problems can
occur. In this section, we’ll look at problems you might encounter installing man pages and
GNU info.

Man pages.
As we saw in Chapter 7, Documentation, page 99, there is not much agreement about naming,
placing, or format of man pages. In order to install man pages correctly you need to know the
following things:

• The name of the man directory.

• The naming convention for man files. As we saw, these are many and varied.

• Whether the man pages should be formatted or not.

• If the man pages should be formatted, which formatter should be used? Which macros
should be used? This may seem like a decision to be made when building the package,
but many Makefiles put off this operation to the install phase.

• Whether the man pages should be packed, compressed or zipped.

5 February 2005 02:09

Chapter 9: Installation 131

Typically, this information is supplied in the Makefile like this example from the electronic
mail reader elm, which is one of the better ones:

FORMATTER = /usr/ucb/nroff
MAN = /opt/man/man1
MANEXT = .1
CATMAN = /opt/man/cat1
CATMANEXT = .1
TBL = /usr/ucb/tbl
MANROFF = /usr/ucb/nroff
SUFFIX = .Z
PACKED = y
PACKER = /bin/compress

List of installed man pages (except for wnemail.1 - handled differently)
MAN_LIST = $(MAN)/answer$(MANEXT) \

$(MAN)/autoreply$(MANEXT) \
...etc
List of installed catman pages (except for wnemail.1 - handled differently)
CATMAN_LIST = $(CATMAN)/answer$(CATMANEXT)$(SUFFIX) \

$(CATMAN)/autoreply$(CATMANEXT)$(SUFFIX) \
...etc

List of formatted pages for catman
FORMATTED_PAGES_LIST = catman/answer$(CATMANEXT)$(SUFFIX) \

catman/autoreply$(CATMANEXT)$(SUFFIX) \
...etc

Targets
all:

@if $(TEST) ’$(CATMAN)’ != none; then $(MAKE) formatted_pages ; \
else true ; fi

formatted_pages: catman $(FORMATTED_PAGES_LIST)

catman:
mkdir catman

install: $(LIB_LIST)
@if $(TEST) ’$(MAN)’ != none; then $(MAKE) install_man ; \

else true ; fi
@if $(TEST) ’$(CATMAN)’ != none; then $(MAKE) install_catman ; \

else true ; fi

install_man: $(MAN_LIST) $(MAN)/wnewmail$(MANEXT)

install_catman: $(CATMAN_LIST) $(CATMAN)/wnewmail$(CATMANEXT)$(SUFFIX)

Dependencies and rules for installing man pages and lib files
$(MAN)/answer$(MANEXT): answer.1

$(CP) $? $@
$(CHMOD) u=rw,go=r $@

5 February 2005 02:09

132

$(MAN)/autoreply$(MANEXT): autoreply.1
$(CP) $? $@
$(CHMOD) u=rw,go=r $@

This Makefile is in the subdirectory doc, which is concerned only with documentation, so all
the targets relate to the man pages. The target all makes the decision whether to format the
pages or not based on the value of the make variable CATMAN. If this is set to the special value
none, the Makefile does not format the pages.

The target install uses the same technique to decide which man pages to install: if the vari-
able MAN is not set to none, the sources of the man pages are copied there, and if CATMAN is
not set to none, the formatted pages are installed there. This Makefile does not use install: it
performs the operations with cp and chmod instead.

GNU info
Installing GNU info is somewhat more straightforward, but it is also not as clean as it could
be:

• info is always formatted, so you need the formatter, a program called makeinfo, which is
part of the texinfo package. Before you can run makeinfo, you need to port texinfo. It’s
not that big a job, but it needs to be done. Of course, in order to completely install tex-
info, you need to format the documentation with makeinfo—a vicious circle. The solu-
tion is to port the texinfo executables, then port makeinfo, and then format the texinfo
documentation.

• All info files are stored in a single directory with an index file called dir. This looks like:

-*- Text -*-
This is the file /opt/info/dir, which contains the topmost node of the
Info hierarchy. The first time you invoke Info you start off
looking at that node, which is (dir)Top.

File: dir Node: Top This is the top of the INFO tree
This (the Directory node) gives a menu of major topics.
Typing "d" returns here, "q" exits, "?" lists all INFO commands, "h"
gives a primer for first-timers, "mTexinfo<Return>" visits Texinfo topic,
etc.

Note that the presence of a name in this list does not necessarily
mean that the documentation is available. It is installed with the
package in question. If you get error messages when trying to access
documentation, make sure that the package has been installed.
--- PLEASE ADD DOCUMENTATION TO THIS TREE. (See INFO topic first.) ---

* Menu: The list of major topics begins on the next line.

* Bash: (bash). The GNU Bourne Again SHell.
* Bfd: (bfd). The Binary File Descriptor Library.
* Bison: (bison). The Bison parser generator.
* CL: (cl). Partial Common Lisp support for Emacs Lisp.

5 February 2005 02:09

Chapter 9: Installation 133

...etc

The lines at the bottom of the example are menu entries for each package. They hav e a
syntax which isn’t immediately apparent—in particular, the sequence * item: has a
special significance in emacs info mode. Programs that supply info documentation
should supply such an entry, but many of them do not, and none of them install the line
in dir—you need to do this by hand.

Removing installed software
For a number of reasons, you may want to remove software that you have already installed:

• You may decide you don’t need the software.

• You may want to replace it with a newer version, and you want to be sure that the old
version is gone.

• You may want to install it in a different tree.

If you look for a remove or uninstall target in the Makefile, chances are that you won’t find
one. Packages that supply a remove target are very rare. If you want to remove software, and
you didn’t take any precautions when you installed it, you have to do it manually with the
computer equivalent of an axe and a spear: ls and rm.

Removing software manually
In fact, it’s frequently not that difficult to remove software manually. The modification time-
stamps of all components are usually within a minute or two of each other, so ls with the -lt
options will list them all together. For example, let’s consider the removal of ghostscript.

The first step is to go back to the Makefile and see what it installed:

prefix = /opt
exec_prefix = $(prefix)
bindir = $(exec_prefix)/bin
datadir = $(prefix)/lib
gsdatadir = $(datadir)/ghostscript
mandir = $(prefix)/man/man1
...skipping
install: $(GS)

-mkdir $(bindir)
for f in $(GS) gsbj gsdj gslj gslp gsnd bdftops font2c \

ps2ascii ps2epsi; \
do $(INSTALL_PROGRAM) $$f $(bindir)/$$f ; done
-mkdir $(datadir)
-mkdir $(gsdatadir)

for f in README gslp.ps gs_init.ps gs_dps1.ps gs_fonts.ps gs_lev2.ps \
gs_statd.ps gs_type0.ps gs_dbt_e.ps gs_sym_e.ps quit.ps Fontmap \
uglyr.gsf bdftops.ps decrypt.ps font2c.ps impath.ps landscap.ps \
level1.ps prfont.ps ps2ascii.ps ps2epsi.ps ps2image.ps pstoppm.ps\

5 February 2005 02:09

134

showpage.ps type1ops.ps wrfont.ps ; \
do $(INSTALL_DATA) $$f $(gsdatadir)/$$f ; done

-mkdir $(docdir)
for f in NEWS devices.doc drivers.doc fonts.doc hershey.doc \
history.doc humor.doc language.doc lib.doc make.doc ps2epsi.doc \
psfiles.doc readme.doc use.doc xfonts.doc ; \
do $(INSTALL_DATA) $$f $(docdir)/$$f ; done

-mkdir $(mandir)
for f in ansi2knr.1 gs.1 ; do $(INSTALL_DATA) $$f $(mandir)/$$f ; done
-mkdir $(exdir)
for f in chess.ps cheq.ps colorcir.ps golfer.ps escher.ps \
snowflak.ps tiger.ps ; \
do $(INSTALL_DATA) $$f $(exdir)/$$f ; done

One alternative is to make a remove target for this Makefile, which isn’t too difficult in this
case:

• First, copy the install target and call it remove.

• Move the mkdir lines to the bottom and change them to rmdir. You’ll notice that this
Makefile accepts the fact that mkdir can fail because the directory already exists (the - in
front of mkdir). We’ll do the same with rmdir: if the directory isn’t empty, rmdir fails,
but that’s OK.

• We replace $(INSTALL_PROGRAM) $$f and $(INSTALL_DATA) $$f with rm -f.

The result looks like:

remove: $(GS)
for f in $(GS) gsbj gsdj gslj gslp gsnd bdftops font2c \

ps2ascii ps2epsi; \
do rm -f $(bindir)/$$f ; done

for f in README gslp.ps gs_init.ps gs_dps1.ps gs_fonts.ps gs_lev2.ps \
gs_statd.ps gs_type0.ps gs_dbt_e.ps gs_sym_e.ps quit.ps Fontmap \
uglyr.gsf bdftops.ps decrypt.ps font2c.ps impath.ps landscap.ps \
level1.ps prfont.ps ps2ascii.ps ps2epsi.ps ps2image.ps pstoppm.ps\
showpage.ps type1ops.ps wrfont.ps ; \
do rm -f $(gsdatadir)/$$f ; done

for f in NEWS devices.doc drivers.doc fonts.doc hershey.doc \
history.doc humor.doc language.doc lib.doc make.doc ps2epsi.doc \
psfiles.doc readme.doc use.doc xfonts.doc ; \
do rm -f $(docdir)/$$f ; done

for f in ansi2knr.1 gs.1 ; do $(INSTALL_DATA) $$f $(mandir)/$$f ; done
for f in chess.ps cheq.ps colorcir.ps golfer.ps escher.ps \
snowflak.ps tiger.ps ;
do rm -f $(exdir)/$$f ; done

-rmdir $(bindir)
-rmdir $(datadir)
-rmdir $(gsdatadir)
-rmdir $(docdir)
-rmdir $(mandir)

5 February 2005 02:09

Chapter 9: Installation 135

-rmdir $(exdir)

More frequently, howev er, you can’t use this approach: the Makefile isn’t as easy to find, or
you have long since discarded the source tree. In this case, we’ll have to do it differently.
First, we find the directory where the executable gs, the main ghostscript program, is stored:

$ which gs
/opt/bin/gs

Then we look at the last modification timestamp of /opt/bin/gs:

$ ls -l /opt/bin/gs
-rwxrwxr-x 1 root wheel 3168884 Jun 18 14:29 /opt/bin/gs

This is to help us to know where to look in the next step: we list the directory /opt/bin sorted
by modification timestamp. It’s a lot easier to find what we’re looking for if we know the
date. If you don’t hav e which, or possibly even if you do, you can use the following script,
called wh:

for j in $*; do
for i in ‘echo $PATH|sed ’s/:/ /g’‘; do
if [-f $i/$j]; then
ls -l $i/$j

fi
done

done

wh searches the directories in the current environment variable PATH for a specific file and
lists all occurrences in the order in which they appear in PATH in ls -l format, so you could
also have entered:

$ wh gs
-rwxrwxr-x 1 root wheel 3168884 Jun 18 14:29 /opt/bin/gs

Once we know the date we are looking for, it’s easy to list the directory, page it through more
and find the time frame we are looking for.

$ ls -lt /opt/bin|more
total 51068
-rw------- 1 root bin 294912 Sep 6 15:08 trn.old
-rwxr-xr-x 1 grog lemis 106496 Sep 6 15:08 man
...skipping lots of stuff
-rw-rw-rw- 1 grog bin 370 Jun 21 17:24 prab˜
-rw-rw-rw- 1 grog bin 370 Jun 21 17:22 parb
-rw-rw-rw- 1 grog bin 196 Jun 21 17:22 parb˜
-rwxrwxrwx 1 grog wheel 469 Jun 18 15:19 tep
-rwxrwxr-x 1 root wheel 52 Jun 18 14:29 font2c
-rwxrwxr-x 1 root wheel 807 Jun 18 14:29 ps2epsi
-rwxrwxr-x 1 root wheel 35 Jun 18 14:29 bdftops
-rwxrwxr-x 1 root wheel 563 Jun 18 14:29 ps2ascii
-rwxrwxr-x 1 root wheel 50 Jun 18 14:29 gslp
-rwxrwxr-x 1 root wheel 3168884 Jun 18 14:29 gs
-rwxrwxr-x 1 root wheel 53 Jun 18 14:29 gsdj
-rwxrwxr-x 1 root wheel 51 Jun 18 14:29 gsbj

5 February 2005 02:09

136

-rwxrwxr-x 1 root wheel 18 Jun 18 14:29 gsnd
-rwxrwxr-x 1 root wheel 54 Jun 18 14:29 gslj
-rwxr-xr-x 1 root bin 81165 Jun 18 12:41 faxaddmodem
-r-xr-xr-x 1 bin bin 249856 Jun 17 17:18 faxinfo
-r-xr-xr-x 1 bin bin 106496 Jun 17 15:50 dialtest
...more stuff follows

It’s easy to recognize the programs in this format: they were all installed in the same minute,
and the next older file (faxaddmodem) is more than 90 minutes older, the next newer file (tep)
is 50 minutes newer. The files we want to remove are, in sequence, font2c, ps2epsi, bdftops,
ps2ascii, gslp, gs, gsdj, gsbj, gsnd and gslj.

We’re not done yet, of course: ghostscript also installs a lot of fonts and PostScript files, as we
saw in the Makefile. How do we find and remove them? It helps, of course, to have the Make-
file, from which we can see that the files are installed in the directories /opt/bin,
/opt/lib/ghostscript and /opt/man/man1 (see the Makefile excerpt on page 133). If you don’t
have the Makefile, all is not lost, but things get a little more complicated. You can search the
complete directory tree for files modified between Jun 18 14:00 and Jun 18 14:59 with:

$ find /opt -follow -type f -print|xargs ls -l|grep "Jun 18 14:"
-rwxrwxr-x 1 root wheel 35 Jun 18 14:29 /opt/bin/bdftops
...etc
-rw-rw-r-- 1 root wheel 910 Jun 18 14:29 /opt/man/man1/ansi2knr.1
-rw-rw-r-- 1 root wheel 10005 Jun 18 14:29 /opt/man/man1/gs.1
-rw-rw-r-- 1 root wheel 11272 Jun 18 14:29 /opt/lib/ghostscript/Fontmap
-rw-rw-r-- 1 root wheel 22789 Jun 18 14:29 /opt/lib/ghostscript/bdftops.ps
-rw-rw-r-- 1 root wheel 295 Jun 18 14:29 /opt/lib/ghostscript/decrypt.ps
-rw-rw-r-- 1 root wheel 74791 Jun 18 14:29 /opt/lib/ghostscript/doc/NEWS
-rw-rw-r-- 1 root wheel 13974 Jun 18 14:29 /opt/lib/ghostscript/doc/devices.doc
...many more files

There are a couple of points to note here:

• We used GNU find, which uses the -follow option to follow symbolic links. If your
/opt hierarchy contains symbolic links, find would otherwise not search the subdirecto-
ries. Other versions of find may require different options.

• You can’t use ls -lR here because ls -lR does not show the full pathnames: you would find
the files, but the name at the end of the line would just be the name of the file, and you
wouldn’t know the name of the directory.

• If the file is more than six months old, ls -l will list it in the form

-rwxrwxrwx 1 grog wheel 22 Feb 10 1994 xyzzy

This may be enough to differentiate between the files, but it’s less certain. GNU ls (in
the fileutils package) includes a option -−full-time (note the two leading hyphens).
This will always print the full time, regardless of the age of the file. With this option, the
file above will list as:

$ ls --full-time -l xyzzy
-rwxrwxrwx 1 grog wheel 22 Thu Feb 10 16:00:24 1994 xyzzy

5 February 2005 02:09

Chapter 9: Installation 137

Removing too much
None of these methods for removing installed software can handle one remaining serious
problem: some programs install a modified version of a standard program, and if you remove
the package, you remove all trace of this standard program. For example, GNU tar and GNU
cpio both include the remote tape protocol program rmt. If you install both of these packages,
and then decide to remove cpio, tar will not work properly either. It’s not always enough to
keep track of which packages depend on which programs: in some cases, a modified version
of a program is installed by a package, and if you remove the package, you need to re-install
the old version of the program.

Keeping track of installed software
All the methods we’ve seen so far smell strongly of kludge:

• They inv olve significant manual intervention, which is prone to error.

• The remove or uninstall targets of a Makefile are based on names not contents. If you
stop using a package, and install a new one with some names that overlap the names of
the old package, and then remove the old package, the files from your new package will
go too.

• The manual method based on the dates does not discover configuration or data files—if
you remove net news from a system, you will have to remember to remove the news
spool area as well, because that certainly won’t hav e the same modification timestamp as
the installed software.

• It’s almost impossible to safely and automatically remove modifications to environment
variables in .cshrc and .profile files.

We can come closer to our goal if we have a method to keep track of the files that were actu-
ally installed. This requires the maintenance of some kind of database with information about
the relationship between packages and files. Ideally,

• It would contain a list of the files installed, including their sizes and modification time-
stamps.

• It would prevent modification to the package except by well-defined procedures.

• It would contain a list of the files that were modified, including diffs to be able to reverse
them.

• It would keep track of the modifications to the package as time went by: which files were
created by the package, which files were modified.

This is an ideal, but the System V.4 pkgadd system comes reasonably close, and the concept is
simple enough that we can represent the most important features as shell scripts. We’ll look
at it in the next section.

5 February 2005 02:09

138

System V pkgadd
UNIX System V.4 is supplied as a number of binary packages*—you can choose which to
install and which not to install. You can even choose whether or not to install such seemingly
essential components as networking support and man pages.

Packages can be created in two formats: stream format for installation from serial data media
like tapes, and file system format for installation from file systems. In many cases, such as
diskettes, either form may be used. The program pkgtrans transforms one format into the
other. In the following discussion, we’ll assume file system format.

The package tools offer a bewildering number of options, most of which are not very useful.
We’ll limit our discussion to standard cases: in particular, we won’t discuss classes and multi-
part packages. If you are using System V.4 and want to use other features, you should read
the documentation supplied with the system. In the following sections we’ll look at the indi-
vidual components of the packages.

pkginfo
The file pkginfo, in the root directory of the package, contains general information about the
package, some of which may be used to decide whether or not to install the package. For
example, the pkginfo file for an installable emacs package might look like:

ARCH=i386 the architecture for which the package is intended
PKG=emacs the name of the package
VERSION=19.22 the version number
NAME=Emacs text editor a brief description
CATEGORY=utilities the kind of package
CLASSES=none class information
VENDOR=Free Software Foundation the name of the owner
HOTLINE=LEMIS, +49-6637-919123, Fax +49-6637-919122 who to call if you have trouble
EMAIL=lemis@lemis.de mail for HOTLINE

This information is displayed by pkgadd as information to the user before installation.

pkgmap
The file pkgmap is also in the root directory of the package. It contains information about the
destination of the individual files. For example, from the same emacs package,

: 1 37986
1 d none /opt 0755 bin bin
1 d none /opt/README 0755 bin bin
1 f none /opt/README/emacs-19.22 0644 root sys 1518 59165 760094611
1 d none /opt/bin 0755 bin bin
1 f none /opt/bin/emacs 0755 root sys 1452488 11331 760577316
1 f none /opt/bin/etags 0755 root sys 37200 20417 760577318

* As used here, the term package is a collection of precompiled programs and data and information nec-
essary to install them—this isn’t the same thing as the kind of package we have been talking about in
the rest of this book.

5 February 2005 02:09

Chapter 9: Installation 139

1 d none /opt/info 0755 bin bin
1 f none /opt/info/cl.info 0644 root sys 3019 62141 760094526
1 f none /opt/info/dir 0644 root sys 2847 23009 760559075
1 f none /opt/info/emacs 0644 root sys 10616 65512 760094528
1 d none /opt/lib 0755 bin bin
1 d none /opt/lib/emacs 0755 bin bin
1 d none /opt/lib/emacs/19.22 0755 bin bin
1 d none /opt/lib/emacs/19.22/etc 0755 bin bin
1 f none /opt/lib/emacs/19.22/etc/3B-MAXMEM 0644 root sys 1913 18744 574746032

The first line specifies that the package consists of a single part, and that it consists of 37986
512 byte blocks. The other lines describe files or directories:

• The first parameter is the part to which the file belongs.

• The next parameter specifies whether the file is a plain file (f), a directory (d), a link (l)
or a symbolic link (s). A number of other abbreviations are also used.

• The next parameter is the class of the file. Like most packages, this package does not
use classes, so the class is always set to none.

• The following four parameters specify the name of the installed object, its permissions,
the owner and the group.

• After this come the size of the file, a checksum and the modification time in naked
time_t format. The checksum ensures that the package is relatively protected against
data corruption or deliberate modification.

Package subdirectories
In addition to the files in the main directory, packages contain two subdirectories root and
install:

• root contains the files that are to be installed. All the files described in pkgmap are
present under the same names in root (for example, /opt/bin/emacs is called
root/opt/bin/emacs in the package).

• The file install/copyright contains a brief copyright notice that is displayed on installa-
tion. pkgadd does not wait for you to read this, so it should really be brief.

• Optionally, there may be scripts with names like install/preinstall and install/postinstall
which are executed before and after copying the files, respectively. preinstall might, for
example, set up the directory structure /opt if it does not already exist. postinstall might
update .cshrc and .profile files. In some cases, it may need to do more. For example, the
ISO 9660 directory standard for CD-ROMs limits allows only eight nested directories (in
other words, the directory /a/b/c/d/e/f/g/h/i is nested too deeply). gcc on a CD-ROM
would violate this limitation, so some of the package has to be stored as a tar file, and the
postinstall script extracts it to the correct position.

5 February 2005 02:09

140

pkgadd
With this structure, adding a package is almost child’s play: you just have to enter

$ pkgadd emacs

Well, almost. The name emacs is the name of the package and not a file name. By default,
pkgadd expects to find it in /var/spool/pkg. If your package is elsewhere, you can’t tell
pkgadd simply by prepending the name—instead, you need to specify it with the -d option:

$ pkgadd -d /cdrom emacs

This will install emacs from the directory cdrom.

Removing packages
One really nice thing about the System V.4 package system is the ease with which you can
remove a package. Assuming that you have decided that vi is a better choice than emacs, or
you just don’t hav e the 19 MB that the emacs package takes up, you just have to type:

$ pkgrm emacs

and all the files will be removed.

Making installable packages
The discussion of pkgadd assumes that you already have an installable package. This is
appropriate for System V.4, but if you have just ported a software package, you first need to
create an installable binary package from it. This is the purpose of pkgmk. It takes a number
of input files, the most important of which is prototype: it describes which files should be
installed. It is almost identical in format to the pkgmap file we discussed above. For example,
the prototype file for the emacs example above looks like:

Prototype file created by /cdcopy/ETC/tools/mkmkpk on Wed Jan 19 18:24:41 WET 1994
i pkginfo
i preinstall
i postinstall
i copyright
Required directories
d none /opt 755 bin bin
d none /opt/bin 755 bin bin
d none /opt/README 755 bin bin
d none /opt/man 755 bin bin
d none /opt/lib 755 bin bin
d none /opt/lib/emacs 755 bin bin
d none /opt/lib/emacs/19.22 755 bin bin
d none /opt/lib/emacs/19.22/etc 755 bin bin
d none /opt/info 755 bin bin
Required files
f none /opt/lib/emacs/19.22/etc/3B-MAXMEM 644 root sys
f none /opt/bin/emacs 755 root sys

5 February 2005 02:09

Chapter 9: Installation 141

f none /opt/info/emacs 644 root sys
f none /opt/info/dir 644 root sys

This looks rather different from pkgmap:

• There are comment lines starting with #. The first line indicates that this file was created
by a script. Later on we’ll see the kind of function mkmkpk might perform.

• The first column (part number) and the last three columns (size, checksum and modifica-
tion timestamp) are missing.

• Some lines start with the keyletter i. These describe installation files: we recognize the
names from the discussion above. pkgmk copies these files into the directory tree as dis-
cussed above. What is not so immediately obvious is that pkginfo is placed in the main
directory of the package, and the others are placed in the subdirectory install. It is also
not obvious that some of these files are required: if they are not specified, pkgmk dies.

Making a prototype file
There’s still a gap between the original make install and building an installable package. We
need a prototype file, but make install just installs software. The packaging tools include a
program called pkgproto that purports to build prototype files. It searches a directory recur-
sively and creates prototype entries for every file it finds. If you have just installed emacs, say,
in your /opt directory, pkgproto will give you a prototype including every file in /opt, includ-
ing all the packages which are already installed there—not what you want. There are a num-
ber of alternatives to solve this problem:

• You can install into a different directory. pkgproto supports this idea: you can invoke it
with

$ pkgproto /tmp-opt=/opt

which will tell it to search the directory /tmp-opt and generate entries for /opt. The dis-
advantage of this approach is that you may end up building programs with the path /tmp-
opt hard coded into the executables, and though it may test just fine on your system, the
executable files will not work on the target system—definitely a situation to avoid.

• You rename /opt temporarily and install emacs in a new directory, which you can then
rename. This virtually requires you to be the only user on the system.

• Before installing emacs, you create a dummy file stamp-emacs just about anywhere on
the system. Then you install emacs, and make a list of the files you have just installed:

$ find /opt -follow -cnewer stamp-emacs -type f -print | xargs ls -l >info

This requires you to be the only person on the system who can write to the directory at
the time. This is more not as simple as you might think. Mail and news can come in
ev en if nobody else is using the system. Of course, they won’t usually write in the same
directories that you’re looking in. Nevertheless, you should be prepared for a few sur-
prises. For example, you might find a file like this in your list:

5 February 2005 02:09

142

/opt/lib/emacs/lock/!cdcopy!SOURCE!Core!glibc-1.07!version.c

This is an emacs lock file: it is created by emacs when somebody modifies a buffer (in
this case, a file called /cdcopy/SOURCE/Core/glibc-1.07/version.c: emacs replaces the
slashes in the file name by exclamation marks), and causes another emacs to warn the
user before it, too, tries to modify the same file. It contains the pid of the emacs process
that has the modified buffer. Obviously you don’t want to include this file in your instal-
lable package.

Once you have tidied up your list of files, you can generate a prototype file with the aid
of a shell script or an editor.

Running pkgmk
Once you have a prototype file, you’re nearly home. All you have to do is run pkgmk. We run
into terminology problems here: throughout this book, we have been using the term package
to refer to the software we are building. More properly, this is the software package. pkgmk
refers to its output as a package too—here, we’ll refer to it as the installable package.

Unfortunately, pkgmk handles some pathnames strangely. You can read the man page (prefer-
ably several times), or use this method, which works:

• Before building the installable package, change to the root directory of the software
package.

• Ignore path specifications in the prototype file and specify the root path as the root file
system: -r /.

• Specify the base directory as the root directory of the package: since that’s the directory
we’re in, just add -b ‘pwd‘.

• Choose to overwrite any existing package: -o.

• Specify the destination path explicitly: -d /usr/pkg. pkgmk creates packages will as
subdirectories in this directory: the package gcc would create a directory hierarchy
/usr/pkg/gcc.

The resultant call doesn’t change from one package to the next: it is

pkgmk -r / -b ‘pwd‘ -o -d /usr/pkg

There is a whole lot more to using pkgmk, of course, but if you have pkgmk, you will also
have the man pages, and that’s the best source of further information.

5 February 2005 02:09

Where to go from here

Finally it’s all over. The package is ported, you’ve installed the software, and it really does
work. This time, we’re done!

Well, we said that once before, before we started testing, and we were wrong. We’re wrong
here, too:

• In the course of the port, you may find a bug or a misfeature and fix it. If you do so, you
have effectively created a new version of the package. You should send in information
about these changes to the author. If this is a popular package, you might consider
reporting the changes to the Usenet group that exists for the package.

• You no longer need the space on disk, so you can clean up the archive and write it to
tape. It’s a good idea to maintain enough documentation to be able to retrieve it again.

• Sometime, maybe very soon, somebody will come out with a fix for a bug that will prob-
ably bite you some time, or with a feature that could really be of use to you. Your expe-
rience with this port will help you to port the new version.

None of this is much work now, and it will save you grief later on. Let’s look at it in a little
more detail.

Reporting modifications
Once you have the software running, you should report any changes to the author or main-
tainer of the software. In order for this to be of any use, you need to supply the following
information:

• A description of the problems you ran into. Don’t spare details here: remember the pain
you went to to figure out what was going wrong, and you had an interest in solving the
problem. If you’re the first person to run into the problem, it probably hasn’t hurt any-
body else, least of all the author. He probably gets lots of mail saying “xfoo is broke”,
and he may not believe what you have to say until you prove it to him.

• How you fixed them. Again, lots of detail. The author probably understands the package
better than you do. If you explain the problem properly, he may come up with a better

143

5 February 2005 02:09

144

fix.

• The fixes themselves. diffs, lists of differences between the previous version and your
versions, are the method of choice. We’ll look at them in the rest of this section.

diff
diff is a program that compares two related source files and outputs information about how to
create the second file from the first. You typically use it after making modifications to a file in
order to describe how the modified file differs from the original. The resultant output file is
also called a diff. We saw the application of diffs in Chapter 3, Care and feeding of source
trees, page 29. Here we’ll look at how to make them.

It’s useful to recognize and understand diff formats, since you occasionally have to apply
them manually. diff compares two source files and attempts to output a reasonably succinct
list of the differences between them. In diff terminology, the output is grouped into hunks,
information about a relatively local groups of differences.

Like most useful programs, diff has grown in the course of time, and modern versions can out-
put in a bewildering number of formats. Fortunately, almost all diffs nowadays use the con-
text format. We’ll look at some others anyway so that you can recognize them.

In the following examples, we compare the files eden.1:

A doctor, an architect, and a computer scientist
were arguing about whose profession was the oldest. In the
course of their arguments, they got all the way back to the
Garden of Eden, whereupon the doctor said, "The medical
profession is clearly the oldest, because Eve was made from
Adam’s rib, as the story goes, and that was a simply
incredible surgical feat."

The architect did not agree. He said, "But if you
look at the Garden itself, in the beginning there was chaos
and void, and out of that, the Garden and the world were
created. So God must have been an architect."

The computer scientist, who had listened to all of
this said, "Yes, but where do you think the chaos came
from?"

and eden.2:

A doctor, an architect, and a computer scientist
were arguing about whose profession was the oldest. In the
course of their arguments, they came to discuss the Garden
of Eden, whereupon the doctor said, "The medical profession
is clearly the oldest, because Eve was made from Adam’s rib,
as the story goes, and that was a simply incredible surgical
feat."

The architect did not agree. He said, "But if you
look at the Garden itself, in the beginning there was chaos
and void, and out of that, the Garden and the world were
created. So God must have been an architect."

The computer scientist, who had listened to all of

5 February 2005 02:09

Chapter 10: Where to go from here 145

this, said, "Yes, but where do you think the chaos came
from?"

normal format diffs

As the name implies, the normal format is the default. You don’t need to specify any format
flags:

$ diff eden.1 eden.2
3,7c3,7
< course of their arguments, they got all the way back to the
< Garden of Eden, whereupon the doctor said, "The medical
< profession is clearly the oldest, because Eve was made from
< Adam’s rib, as the story goes, and that was a simply
< incredible surgical feat."

> course of their arguments, they came to discuss the Garden
> of Eden, whereupon the doctor said, "The medical profession
> is clearly the oldest, because Eve was made from Adam’s rib,
> as the story goes, and that was a simply incredible surgical
> feat."
13c13
< this said, "Yes, but where do you think the chaos came

> this, said, "Yes, but where do you think the chaos came

The first line of each hunk specifies the line range: 3,7c3,7 means “lines 3 to 7 of the first
file, lines 3 to 7 of the second file”. 13c13 means “line 13 of the first file, line 13 of the sec-
ond file, has changed (c)”. Instead of c you will also see d (lines deleted) and a (lines added).

After this header line come the lines of the first file, with a leading < character, then a divider
(---) and the lines of the second file with a leading > character. This example has two hunks.

ed format diffs

ed format diffs have the dubious advantage that the program ed can process them. You can
create them with the -e flag. In this example, we also use shell syntax to shorten the input
line. Writing eden.[12] is completely equivalent to writing eden.1 eden.2.

$ diff -e eden.[12]
13c
this, said, "Yes, but where do you think the chaos came
.
3,7c
course of their arguments, they came to discuss the Garden
of Eden, whereupon the doctor said, "The medical profession
is clearly the oldest, because Eve was made from Adam’s rib,
as the story goes, and that was a simply incredible surgical
feat."
.

Just about everybody who has diff also has patch, and nowadays not everybody has ed. In
addition, this format is extremely dangerous, since there is no information about the old

5 February 2005 02:09

146

content of the file: you can’t be sure if the patch will be applied in the right place. As a result,
you almost never see this form.

context diffs

You select a context diff with the flag -c:

$ diff -c eden.[12]
*** eden.1 Tue May 10 14:21:47 1994
--- eden.2 Tue May 10 14:22:38 1994

*** 1,14 ****

A doctor, an architect, and a computer scientist
were arguing about whose profession was the oldest. In the

! course of their arguments, they got all the way back to the
! Garden of Eden, whereupon the doctor said, "The medical
! profession is clearly the oldest, because Eve was made from
! Adam’s rib, as the story goes, and that was a simply
! incredible surgical feat."

The architect did not agree. He said, "But if you
look at the Garden itself, in the beginning there was chaos
and void, and out of that, the Garden and the world were
created. So God must have been an architect."

The computer scientist, who had listened to all of
! this said, "Yes, but where do you think the chaos came
from?"

--- 1,14 ----
A doctor, an architect, and a computer scientist

were arguing about whose profession was the oldest. In the
! course of their arguments, they came to discuss the Garden
! of Eden, whereupon the doctor said, "The medical profession
! is clearly the oldest, because Eve was made from Adam’s rib,
! as the story goes, and that was a simply incredible surgical
! feat."

The architect did not agree. He said, "But if you
look at the Garden itself, in the beginning there was chaos
and void, and out of that, the Garden and the world were
created. So God must have been an architect."

The computer scientist, who had listened to all of
! this, said, "Yes, but where do you think the chaos came

The output here gives us significantly more information: the first two line gives the name and
modification timestamp of the files. Then the hunks start, with a row of * as a leader. The
next line is line number information for the first file (lines 1 to 14), after which come the lines
themselves, surrounded by a number of lines of context, unchanged information. You can
specify the number of lines of context, but by default diff includes 2 lines either side of the
changes. The lines that have been modified are flagged with an exclamation mark (!) at the
beginning of the line. In this case, the file is so small that the two modifications have been
merged into one large one, and the whole file gets repeated, but in a larger file diff would
include only the information immediately surrounding the changes. This format is more reli-
able than normal diffs: if the original source file has changed since the diff, the context

5 February 2005 02:09

Chapter 10: Where to go from here 147

information helps establish the correct location to apply the patch.

unified context diffs

unified diffs are similar to normal context diffs. They are created with the -u flag:

$ diff -u eden.[12]
--- eden.1 Tue May 10 14:21:47 1994
+++ eden.2 Tue May 10 14:22:38 1994
@@ -1,14 +1,14 @@

A doctor, an architect, and a computer scientist
were arguing about whose profession was the oldest. In the
-course of their arguments, they got all the way back to the
-Garden of Eden, whereupon the doctor said, "The medical
-profession is clearly the oldest, because Eve was made from
-Adam’s rib, as the story goes, and that was a simply
-incredible surgical feat."
+course of their arguments, they came to discuss the Garden
+of Eden, whereupon the doctor said, "The medical profession
+is clearly the oldest, because Eve was made from Adam’s rib,
+as the story goes, and that was a simply incredible surgical
+feat."

The architect did not agree. He said, "But if you
look at the Garden itself, in the beginning there was chaos
and void, and out of that, the Garden and the world were
created. So God must have been an architect."

The computer scientist, who had listened to all of
-this said, "Yes, but where do you think the chaos came
+this, said, "Yes, but where do you think the chaos came
from?"

As with context diffs, there is a header with information about the two files, followed by a
hunk header specifying the line number range in each of the two files. Unlike a normal con-
text diff, the following hunk contains the old text mingled with the new text. The lines pre-
fixed with the character - belong to the first file, those prefixed with + belong to the second
file — in other words, to convert the old file to the new file you remove the lines prefixed with
- and insert the lines prefixed with +.

There are still other formats offered by various flavours of diff, but these are the only impor-
tant ones.

What kind of diff?

As we’ve seen, ed style diffs are out of the question. You still have the choice between regular
diffs, context diffs and unified context diffs. It’s not that important which kind of diff you
choose, but context diffs are easier to apply manually. Unified context diffs take up less space
than regular context diffs, but there are still versions of patch out there that don’t understand
unified diffs. Until that changes, it’s probably best to settle for regular context diffs. You may
have noticed that all the examples in Chapter 3, Care and feeding of source trees, were regular
context diffs.

5 February 2005 02:09

148

Living with diff

Diff is a straightforward enough program, but you might run into a couple of problems:

• After a large port, it makes sense to make diffs of the whole directory hierarchy. This
requires that you have copies of all the original files. You can use rcsdiff, part of the
RCS package, but it only does diffs one at a time. I find it easier to maintain a copy of
the complete original source tree, and then run diff with the option -r (descend recur-
sively into directories):

$ diff -ru /S/SCO/Base/gcc-2.6.3 /S/Base/Core/gcc-2.6.3 >SCO.diffs

This command will create a single file with all the diffs and a list of files which only exist
in the first directory. This can be important if you have added files, but it also means that
you should do a make clean before running diff, or you will have entries of this kind for
all the object files you create.

• Another problem that may occur is that one of the files does not have a newline character
at the end of the last line. This does not normally worry compilers, but diff sees fit to
complain. This is particularly insidious, because patch doesn’t like the message, and it
causes patch to fail.

Saving the archive
Most of us have had the message Don’t forget to make backups drummed into us since we
were in elementary school, but nowhere does it make more sense than at the end of a port.
Don’t forget where you put it! After archiving your port of xfoo, you may not look at it again
for three years. When the new version comes out, you try to port it, but all sorts of things go
wrong. Now is the time to get out the old version and read your notes—but where is it?

It’s beyond the scope of this book to go into backup strategies, but you should do some think-
ing about the subject. One good idea is to keep separate (DAT or Exabyte) tapes of old ports,
and just add additional archives at the end. That way you don’t hav e to worry about overwrit-
ing them accidentally: the tapes are small and cheap enough that you can afford to keep their
contents almost indefinitely. If you don’t choose this method (maybe because the media don’t
fit into your QIC-150 tape drive), you need to think carefully about how to track the archives
and when they are no longer needed.

Not done after all?
Of course, it may be that this optimistic finish is completely out of place. After what seems
like months of frustration, you finally decide that you are never going to get this &%%$@# to
work, and you give up. You can never rule out this possibility—as I said in Chapter 1, Intro-
duction, I hope this book made it easier, but it’s not a magic scroll.

Even if you do give up, you have some tidying up to do: you obviously can’t send the author
your bug fixes, but you can at least report the bugs. What he does with them depends on his
interest and his contractual obligations, but even with free software, which is free of obliga-
tions of this nature, the author may be interested enough to fix the problem. One way or

5 February 2005 02:09

Chapter 10: Where to go from here 149

another, you should go to the trouble to report problems you experience, even if you can’t fix
them and there is no support obligation.

A final word: if you give up on a port after getting this far, this book has failed for you. I
don’t want that to happen. Please contact me, too (grog@lemis.de, or via O’Reilly and As-
sociates) and explain the problem. Like the authors of the software, I don’t guarantee to do
anything about it, but I might, and your experience might help to make the next edition of this
book more useful.

5 February 2005 02:09

Platform dependencies

In the first part of this book, we looked at the various activities needed to port and install soft-
ware on a UNIX system. We carefully avoided getting too involved with the nitty-gritty of
why we should need to go to so much trouble. In this part of the book, we’ll look at those dif-
ferences between platforms which require us to modify software.

As we saw in Chapter 4, Package configuration, configuration can be required for local prefer-
ences, software dependencies and hardware dependencies. We looked at local preferences in
Chapter 4. In this part of the book, we’ll look at differences in hardware and software plat-
forms.

Software Dependencies
Probably the biggest problem you will have with configuration will be with the underlying
software platform. Even if you limit your scope to the various UNIX versions, 25 years of
continuing (and mainly uncoordinated) evolution have left behind a plethora of marginally
compatible versions. The only good thing about the situation is that porting between UNIX
versions is still an order of magnitude easier than porting to or from a non-UNIX environ-
ment.

It’s easy to misjudge the effort required to port to a different platform. It helps to make the
following very clear distinctions between the following kinds of functionality:

• Functionality that relies on system calls (section 2 of the UNIX manual). These calls
interface directly with the kernel. If the kernel doesn’t supply the functionality, you may
have serious difficulty in porting the product. Good examples are the System V function
shmget, which allocates an area of shared memory, or the BSD system call symlink,
which creates a symbolic link.

• Functionality dependent on system library calls (section 3 of the UNIX manual). If these
do not rely on system calls, you may be able to port a corresponding call from another
library. A good example of this is the function strcasecmp, which compares strings
ignoring case. This function is supplied with later versions of the BSD library and also
with GNU libc, but not with System V libraries. If you don’t hav e it, it’s trivial to port.

151

5 February 2005 02:09

152

• Functionality contained totally inside the package, like math routines that don’t call
external libraries. This should work on any platform.

Some systems, such as OSF, hav e merged sections 2 and 3 of the manual pages. While that
has some advantages (if you know a function name, you don’t hav e to go to two different
places to look for them), it doesn’t mean that there is no longer a difference.

Kernel dependencies are significantly more difficult to handle than library dependencies, since
there’s relatively little you can do about them. We’ll look at kernel-related problems in Chap-
ter 12, Kernel dependencies, Chapter 13, Signals, Chapter 14, File systems, Chapter 15, Ter-
minal drivers, and Chapter 16, Timekeeping. In Chapter 17 we’ll look at header files, and in
Chapter 18 we’ll look at libraries.

In addition to these program dependencies, two tools can differ significantly: the make pro-
gram and the C compiler. We’ll look at these aspects in Chapter 19, Make, and Chapter 20,
Compilers. Finally, in Chapter 21, Object files and friends, we’ll look at some of the more
esoteric aspects of object files.

When discussing differences between kernels and libraries, the big difference is usually
between System V and BSD, with other systems such as SunOS taking a midfield position.
System V.4 incorporates nearly everything in BSD. When programming, you have the choice
between using the native System V development tools or the BSD tools. Some admixture is
possible, but it can cause problems.

When using BSD development tools, everything that is supported by BSD should also be sup-
ported by System V.4. On the other hand, System V.4 also includes some functionality that no
other system provides. When, in the following chapters, I say that a function is supported by
System V.4, I mean that it is supported by System V.4 using the standard development tools
and libraries. If I state that it is supported by BSD, it also implies that it is supported by Sys-
tem V.4 using the BSD libraries.

5 February 2005 02:09

Hardware dependencies

The days are gone when moving a package from one hardware platform to another meant
rewriting the package, but there are still a number of points that could cause you problems. In
this chapter, we’ll look at the most common causes.

Data types
All computers have at least two basic data types, characters and integers. While European
languages can get by with a character width of 8 bits, integers must be at least 16 bits wide to
be of any use, and most UNIX systems use 32 bit integers, as much storage as four characters.
Problems can obviously arise if you port a package to a system whose int size is less than the
author of the package expected.

Integer sizes
Data sizes aren’t the problem they used to be—times were when a machine word could be 8,
12, 16, 18, 24, 30, 32, 36, 48, 60, 64 or 72 bits long, and so were the primary integer data
objects. Nowadays you can expect nearly every machine to have an int of 16, 32 or 64 bits,
and the vast majority of these have a 32 bit int. Still, one of the biggest problems in ANSI C
is the lack of an exact definition of data sizes. int is the most used simple data type, but
depending on implementation it can vary between 16 and 64 bits long. short and long can be
the same size as int, or they can be shorter or longer, respectively. There are advantages to
this approach: the C compiler will normally choose an int which results in the fastest pro-
cessing time for the processor on which the program will run. This is not always the smallest
data size: most 32-bit machines handle 32 bit arithmetic operations faster than 16 bit opera-
tions. Problems don’t arise until the choice of int is too small to hold the data that the pro-
gram tries to store in it. If this situation arises, you have a number of options:

• You can go through the sources with an editor and replace all occurrences of the word
int with long (and possibly short with int).*

* If you do this, be sure to check that you don’t replace short int with int int!

153

5 February 2005 02:09

154

• You can simplify this matter a little by inserting the following definition in a common
header file:

#define int long

This has the disadvantage that you can’t define short as int, because preprocessor
macros are recursive, and you will end up with both int and short defined as long.

• Some compilers, particularly those with 16-bit native ints, offer compiler flags to gener-
ate longer standard ints.

All these “solutions” have the problem that they do not affect library functions. If your sys-
tem library expects 16-bit integers, and you write

int x = 123456;
printf ("x is %d\n", x);

the library routine printf still assumes that the parameter x is 16 bits long, and prints out the
value as a signed 16-bit value (-7616), not what you want. To get it to work, you need to
either specify an alternate library, or change the format specification to printf:

int x = 123456;
printf ("x is %l\n", x);

There are a few other things to note about the size of an int:

• Portable software doesn’t usually rely on the size of an int. The software from the Free
Software Foundation is an exception: one of the explicit design goals is a 32-bit target
machine.

• The only 64-bit machine that is currently of any significance is the DEC Alpha. You
don’t need to expect too many problems there.

• 16 bit machines—including the 8086 architecture, which is still in use under MS-
DOS — are a different matter, and you may experience significant pain porting, say, a
GNU program to MS-DOS. If you really want to do this, you should look at the way gcc
has been adapted to MS-DOS: it continues to run in 32-bit protected mode and has a
library wrapper* to allow it to run under MS-DOS.

Floating point types
Floating point data types have the same problems that integer types do: they can be of differ-
ent lengths, and they can be big-endian or little-endian. I don’t know of any system where
ints are big-endian and floats are little-endian, or vice-versa.

Apart from these problems, floats have a number of different structures, which are as good as
completely incompatible. Fortunately, you don’t normally need to look under the covers: as
long as a float handles roughly the same range of values as the system for which the program
was written, you shouldn’t hav e any problems. If you do need to look more carefully, for
example if the programmer was making assumptions, say, about the position of the sign bit of

* A library wrapper is a library that insulates the program (in this case, a UNIX-like application) from
the harsh realities of the outside world (in this case, MS-DOS).

5 February 2005 02:09

Chapter 11: Hardware dependencies 155

the mantissa, then you should prepare for some serious re-writing.

Pointer size
For years, people assumed that pointers and ints were the same size. The lax syntax of early
C compilers didn’t even raise an eyebrow when people assigned ints to pointers or vice-versa.
Nowadays, a number of machines have pointers that are not the same size as ints. If you are
using such a machine, you should pay particular attention to compiler warnings that ints are
assigned to pointers without a cast. For example, if you have 16-bit ints and 32-bit pointers,
sloppy pointer arithmetic can result in the loss of the high-order bits of the address, with obvi-
ous consequences.

Address space
All modern UNIX variants offer virtual memory, though the exact terminology varies. If you
read the documentation for System V.4, you will discover that it offers virtual memory,
whereas System V.3 only offered demand paging. This is more marketspeak than technology:
System V.2, System V.3, and System V.4 each have very different memory management, but
we can define virtual memory to mean any kind of addressing scheme where a process address
space can be larger than real memory (the hardware memory installed in the system). With
this definition, all versions of System V and all the other versions of UNIX you are likely to
come across have virtual memory.

Virtual memory makes you a lot less dependent on the actual size of physical memory. The
software from the Free Software Foundation makes liberal use of the fact: programs from the
GNU project make no attempt to economize on memory usage. Linking the gcc C++ com-
piler cc1plus with GNU ld uses about 23 MB of virtual address space on System V.3 on an
Intel architecture. This works with just about any memory configuration, as long as

• Your processes are allowed as much address space as they need (if you run into trouble,
you should reconfigure your kernel for at least 32 MB maximum process address space,
more if the system allows it).

• You have enough swap space.

• You can wait for the virtual memory manager to do its thing.

From a configuration viewpoint, we have different worries:

• Is the address space large enough for the program to run?

• How long are pointers? A 16 bit pointer can address only 64 kilobytes, a 32 bit pointer
can address 4 GB.

• How do we address memory? Machines with 16 bit pointers need some kind of addi-
tional hardware support to access more than 64 kilobytes. 32 bit pointers are adequate
for a “flat” addressing scheme, where the address contained in the pointer can address the
entire virtual address space.

5 February 2005 02:09

156

Modern UNIX systems run on hardware with 32 bit pointers, even if some machines have ints
with only 16 bits, so you don’t need to worry much about these problems. Operating systems
such MS-DOS, which runs on machines with 16 bit pointers, have significant problems as a
result, and porting 32 bit software to them can be an adventure. We’ll touch on these prob-
lems in Chapter 20, Compilers, page 346.

Character order
The biggest headache you are likely to encounter in the field of hardware dependencies is the
differing relationship between int and character strings from one architecture to the next.
Nowadays, all machines have integers large enough to hold more than one character. In the
old days, characters in memory weren’t directly addressable, and various tricks were
employed to access individual characters. The concept of byte addressing, introduced with
the IBM System/360, solved that problem, but introduced another: two different ways of look-
ing at bytes within a word arose. One camp decided to number the bytes in a register or a
machine word from left to right, the other from right to left. For hardware reasons, text was
always stored from low byte address to high byte address.

A couple of examples will make this more intelligible. As we saw above, text is always
stored low byte to high byte, so in any architecture, the text “UNIX” would be stored as

0 1 2 3

U N I X

Some architectures, such Sparc and Motorola 68000, number the bytes in a binary data word
from left to right. This arrangement is called big-endian. On a big-endian machine, the bytes
are numbered from left to right, so the number 0x12345678 would be stored like

0 1 2 3

12 34 56 78

Others, notably older Digital Equipment machines and all Intel machines, number the bytes
the other way round: byte 0 in a binary data word is on the right, byte 3 is on the left. This
arrangement is called little-endian.* The same example on a little-endian machine would look
like:

3 2 1 0

12 34 56 78

This may look just the same as before, but the byte numbers are now numbered from right to
left, so the text now reads:

* The names big-endian and little-endian are derived from Jonathan Swift’s “Gulliver’s Travels”, where
they were a satirical reference to the conflicts between the Catholics and the Church of England in the
18th Century.

5 February 2005 02:09

Chapter 11: Hardware dependencies 157

3 2 1 0

X I N U

As a result, this phenomenon is sometimes called the NUXI* syndrome. This is only one way
to look at it, of course: from a memory point of view, where the bytes are numbered left to
right, it looks like

0 1 2 3

78 56 34 12

and

0 1 2 3

U N I X

It’s rather confusing to look at the number 0x12345678 as 78563412, so the NUXI (or XINU)
view predominates. It’s easier to grasp the concepts if you remember that this is all a matter
of the mapping between bytes and words, and that text is always stored correctly from low
byte to high byte.

An alternative term for big-endian and little-endian is the term byte sex. To make matters
ev en more confusing, machines based on the MIPS chips are veritable hermaphrodites—all
have configurable byte sex, and the newer machines can even run different processes with dif-
ferent byte sex.

The problem of byte sex may seem like a storm in a teacup, but it crops up in the most
unlikely situation. Consider the following code, originally written on a VAX, a little-endian
machine:

int c = 0;

read (fd, &c, 1);
if (c == ’q’)
exit (0);

On a little-endian machine, the single character is input to the low-order byte of the word, so
the comparison is correct, and entering the character q causes the program to stop. On a
32-bit big-endian machine, entering the character q sets c to the value 0x71000000, not the
same value as the character q. Any good or even mediocre compiler will of course warn you
if you hand the address of an int to read, but only if you remember to include the correct
header files: it happens anyway.

* Why not XINU? Because the term arose when words were 16 bits long. The PDP-11, for example,
stored ints (16 bit quantities) in a little-endian format, so pairs of bytes were swapped. The PDP-11
also had 32 bit long quantities that were stored with their component words in a big-endian format.
This arrangement has been called mixed-endian, just to add to the general confusion.

5 February 2005 02:09

158

This discussion has concentrated on how characters are ordered within words, but the same
considerations also affect bit fields within a word. Most hardware platforms don’t support bit
fields directly: they’re an idea in the mind of the compiler. Nonetheless, all architectures
define a bit order: some number from left to right, some from right to left. Well-written pro-
grams don’t rely on the order of bit fields in ints, but occasionally you see register definitions
as bit fields. For example, the 4.4BSD sources for the HP300 include the following definition:

struct ac_restatdb
{
short ac_eaddr; /* element address */
u_int ac_res1:2,

ac_ie:1, /* import enabled (IEE only) */
ac_ee:1, /* export enabled (IEE only) */
ac_acc:1, /* accessible from MTE */
ac_exc:1, /* element in abnormal state */
ac_imp:1, /* 1 == user inserted medium (IEE only) */
ac_full:1; /* element contains media */

};

This definition defines individual bits in a hardware register. If the board in question fits in
machines that number the bits differently, then the code will need to be modified to suit.

Data alignment
Most architectures address memory at the byte level, but that doesn’t mean that the underlying
hardware treats all bytes the same. In the interests of efficiency, the processor accesses mem-
ory several bytes at a time. A 32-bit machine, for example, normally accesses data 4 bytes at
a time — this is one of the most frequent meanings of the term “32-bit machine”. It’s the com-
bined responsibility of the hardware and the software to make it look as if every byte is
accessed in the same way.

Conflicts can arise as soon as you access more than a byte at a time: if you access 2 bytes
starting in the last byte of a machine word, you are effectively asking the machine to fetch a
word from memory, throw away all of it except the last byte, then fetch another word, throw
aw ay all except the first, and make a 16 bit value out of the two remaining bytes. This is obvi-
ously a lot more work than accessing 2 bytes at an even address. The hardware can hide a lot
of this overhead, but in most architectures there is no way to avoid the two memory accesses
if the address spans two bus words.

Hardware designers have followed various philosophies in addressing data alignment. Some
machines, such as the Intel 486, allow unaligned access, but performance is reduced. Others,
typically RISC machines, were designed to consider this to be a Bad Thing and don’t even try:
if you attempt to access unaligned data, the processor generates a trap. It’s then up to the soft-
ware to decide whether to signal a bus error or simulate the transfer—in either case it’s unde-
sirable.

Compilers know about alignment problems and “solve” them by moving data to the next
address that matches the machine’s data access restrictions, leaving empty space, so-called
padding in between. Since the C language doesn’t hav e any provision for specifying

5 February 2005 02:09

Chapter 11: Hardware dependencies 159

alignment information, you’re usually stuck with the solution supplied by the compiler writer:
the compiler automatically aligns data of specific types to certain boundaries. This doesn’t do
much harm with scalars, but can be a real pain with structs when you transfer them to disk.
Consider the following program excerpt:

struct emmental
{
char flag;
int count;
short choice;
int date;
short weekday;
double amount;
}

emmental;
read_disk (struct emmental *rec)
{
if (read (disk, rec, sizeof (rec)) < sizeof (rec))
report_bad_error (disk);

}

On just about any system, emmental looks like a Swiss cheese: on an i386 architecture,
shorts need to be on a 2-byte boundary and ints and doubles need to be on a 4-byte boundary.
This information allows us to put in the offsets:

struct emmental
{
char flag; /* offset 0 */
/* 3 bytes empty space */
int count; /* offset 4 */
short choice; /* offset 8 */
/* 2 bytes empty space */
int date; /* offset 12 */
short weekday; /* offset 16 */
/* 2 bytes empty space */
double amount; /* offset 20 */
}

emmental;

As if this weren’t bad enough, on a Sparc doubles must be on an 8-byte boundary, so on a
Sparc we have 6 bytes of empty space after weekday, to bring the offset up to 24. As a result,
emmental has 21 useful bytes of information and up to 13 of wasted space.

This is, of course, a contrived example, and good programmers would take care to lay the
struct out better. But there are still valid reasons why you encounter this kind of alignment
problem:

• If flag, count and choice are a key in a database record, they need to be stored in this
sequence.

• A few years ago, even most good programmers didn’t expect to have to align a double on
an 8-byte boundary.

5 February 2005 02:09

160

• A lot of the software you get looks as if it has never seen a good programmer.

Apart from the waste of space, alignment brings a host of other problems. If the first three
fields really are a database key, somebody (probably the database manager) has to ensure that
the gaps are set to a known value. If this database is shared between different machines, our
read_disk routine is going to be in trouble. If you write the record on an i386, it is 28 bytes
long. If you try to read it in on a Sparc, read_disk expects 32 bytes and fails. Even if you
fix that, amount is in the wrong place.

A further problem in this example is that Sparcs are big-endian and i386s are little-endian:
after reading the record, you don’t just need to compact it, you also need to flip the bytes in
the shorts, ints and doubles.

Good portable software has accounted for these problems, of course. On the other hand, if
your program compiles just fine and then falls flat on its face when you try to run it, this is one
of the first things to check.

Instruction alignment
The part of the processor that performs memory access usually doesn’t distinguish between
fetching instructions from memory and fetching data from memory: the only difference is
what happens to the information after it has reached the CPU. As a result, instruction align-
ment is be subject to the same considerations as data alignment. Some CPUs require all
instructions to be on a 32 bit boundary—this is typically the case for RISC CPUs, and it
implies that all instructions should be the same length—and other CPUs allow instructions to
start at any address, which is virtually a requirement for machines with variable length
instructions.* As with data access, being allowed to make this kind of access doesn’t make it a
good idea. For example, the Intel 486 and Pentium processors execute instructions aligned on
any address, but they run significantly faster if the target address of a jump instruction is
aligned at the beginning of a processor word — the alignment of other instructions is not
important. Many compilers take a flag to tell them to align instructions for the i486.

* Some machines with variable length instructions do have a requirement that an instruction fit in a sin-
gle machine word. This was the case with the Control Data 6600 and successors, which had a 60 bit
word and 15 or 30 bit instructions. If a 30 bit instruction would have started at the 45 bit position inside
a word, it had to be moved to the next word, and the last 15 bits of the previous instruction word were
filled with a nop, a “no-operation” instruction.

5 February 2005 02:09

Kernel dependencies

The biggest single problem in porting software is the operating system. The operating system
services play a large part in determining how a program must be written. UNIX versions dif-
fer enough in some areas to require significant modifications to programs to adapt them to a
different version. In this and the following chapters, we’ll look at what has happened to
UNIX since it was essentially a single system, round the time of the Seventh Edition.

Many books have been written on the internals of the various UNIX flavours, for example The
Design of the UNIX System by Maurice Bach for System V.2, The Design and the Implemen-
tation of the 4.3BSD UNIX Operating System by Sam Leffler, Kirk McKusick, Mike Karels,
and John Quarterman for 4.3BSD, and The Magic Garden explained: The Internals of UNIX
System V Release 4 by Berny Goodheart and James Cox for System V.4. In addition, a num-
ber of books have been written about programming in these environments —Advanced Pro-
gramming in the UNIX environment by Richard Stevens gives an excellent introduction to
System V.4 and “4.3+BSD"* for programmers. In this chapter and the ones following it, we’ll
restrict our view to brief descriptions of aspects that can cause problems when porting soft-
ware from one UNIX platform to another. We’ll look at specific areas in Chapter 12, Kernel
dependencies, Chapter 13, Signals, Chapter 14, File systems and Chapter 15, Terminal drivers.
In the rest of this chapter, we’ll look at:

• Interprocess communication

• Non-blocking I/O

• Miscellaneous aspects of kernel functionality

The descriptions are not enough to help you use the functionality in writing programs: they
are intended to help you understand existing programs and rewrite them in terms of functions
available to you. If you need more information, you may find it in the 4.4BSD man pages
(see Appendix E, Where to get sources), or in Advanced Programming in the UNIX environ-
ment, by Richard Stevens.

* 4.3BSD was released in 1987, 4.4BSD in 1994. In the time in between, releases had names like
4.3BSD Tahoe, 4.3BSD Reno, and NET/2. For want of a better term, Stevens refers to systems roughly
corresponding to NET/2 as 4.3+BSD.

161

5 February 2005 02:09

162

Interprocess communication
interprocess communication (frequently written as the abbreviation IPC), the ability to trans-
fer data between processes, was one of the important original concepts of UNIX. The original
methods were what you might expect of a concept that, at the time, was revolutionary and still
under development: there were more than a few limitations. Even today there is no agreement
on how interprocess communication should take place.

In this section we’ll look very briefly at the various kinds of interprocess communication, and
what to do if the package you are porting uses a method your kernel doesn’t support. To start
with the bad news: if you find your kernel doesn’t support the IPC model that the package
expects, you will probably need to make significant modifications to adapt it to a different
model.

Interprocess communication was originally limited to a single processor, but of course net-
work communication is also a form of interprocess communication. We’ll touch briefly on
network communication in the following discussion.

UNIX systems offer a bewildering number of different forms of interprocess communication:

• Pipes are the original form of communication and are found in all versions of UNIX.
They hav e the disadvantages that they transfer data in one direction only, and that they
can only connect two processes that have a common ancestor.

• Sockets are the BSD interprocess communication mechanism: they are by far the most
powerful mechanism, offering unidirectional, bidirectional and network communication.
In BSD systems, they are even used to implement the pipe system call.

• STREAMS* is a generalized I/O concept available in newer System V systems and their
derivatives. It was originally intended to replace character device drivers, but its flexibil-
ity makes it useful for interprocess communication as well. Like sockets, it can be used
both for local and remote communication. UNIX Network Programming, by Richard
Stevens, describes STREAMS in some detail, and The Magic Garden Explained
describes the implementation. We won’t consider them further here.

• Stream pipes differ from normal pipes by being able to transfer data in both directions.
They hav e no particular connection with STREAMS.

• FIFOs, also called named pipes, are like pipes, but they hav e a name in the file system
hierarchy.

• Named stream pipes are stream pipes with names. They bear the same relationship to
stream pipes that FIFOs do to normal pipes.

• System V IPC is a bundle that offers message queues, yet another form of message pass-
ing, shared memory, which enables processes to pass data directly, and semaphores,
which synchronize processes.

* Why the shouting? STREAMS was derived from the Eighth Edition Streams concept (see S Stream
Input-Output System, by Dennis Ritchie). System V always spells it in upper case, so this is a con-
venient way of distinguishing between the implementations.

5 February 2005 02:09

Chapter 12: Kernel dependencies 163

In the following sections, we’ll look at these features in a little more detail.

Pipes
The original UNIX interprocess communication facility was pipes. Pipes are created by the
pipe function call:

#include <unistd.h>

int pipe (int *fildes);

This call creates a pipe with two file descriptors, a read descriptor and a write descriptor. It
returns the value of the read descriptor to fildes [0] and the value of the write descriptor to
fildes [1]. At this point, only the creating process can use the pipe, which is not very use-
ful. After calling fork, howev er, both of the resultant processes can use the pipe. Depending
on their purpose, the processes may decide to close one direction of the pipe: for example, if
you write output to the more program, you don’t expect any reply from more, so you can close
the read file descriptor.

A fair amount of code is involved in opening a pipe, starting a new process with fork and
exec and possibly waiting for it terminate with wait. The standard library functions popen
and pclose make this job easier:

#include <stdio.h>

FILE *popen(const char *command, const char *type);
int pclose(FILE *stream);

popen creates a pipe, then forks and execs a shell with command as its parameter. type speci-
fies whether the pipe should be open for reading (“r”) or writing (“w”). Since pipes are unidi-
rectional, they cannot be opened both for reading and for writing.

After opening the command, you can write to the process with normal write commands. On
completion, pclose waits for the child process to terminate and closes the file descriptors.

Sockets
Sockets were originally developed at Berkeley as part of the TCP/IP networking implementa-
tion introduced with 4.2BSD, but they are in fact a general interprocess communication facil-
ity. In BSD systems, the other interprocess communication facilities are based on sockets.

Most of the features of sockets are related to networking, which we don’t discuss here. The
call is:

#include <sys/types.h>
#include <sys/socket.h>

int socket (int domain, int type, int protocol);

• domain specifies the communications domain. Common domains are AF_UNIX (UNIX

5 February 2005 02:09

164

domain),* used for local communication, AF_INET (Internet domain), and AF_ISO (ISO
protocol domain).

• type specifies the type of socket. For local interprocess communication, you would use
SOCK_STREAM, which supplies a reliable two-way communication channel.

• protocol specifies the communications protocol to use. In the UNIX domain, this
parameter is not used and should be set to 0.

As we shall see in the next section, the way that pipes are implemented means that you need
two sockets to simulate a pipe. You can do this with the socketpair system call, which creates
a pair of file descriptors with identical properties.

#include <sys/types.h>
#include <sys/socket.h>

int socketpair (int domain, int type, int protocol, int *sv);

Currently, socketpair works only in the UNIX domain, so you don’t hav e much choice in
the parameters: domain must be AF_UNIX, type must be SOCK_STREAM, and protocol is
meaningless in the UNIX domain. The only important parameter is sv, which is where the
socket descriptors are returned—exactly the same thing as the fildes parameter to pipe.

Most systems have some kind of socket support, but sometimes it is just an emulation library
that omits significant functionality, such as the UNIX domain and the socketpair call.
Many older System V sockets emulation libraries also have a bad reputation regarding perfor-
mance and reliability. On the other hand, many System V.3 ports included the original Berke-
ley socket implementation in the kernel.

Other kinds of pipe
Pipes have two main restrictions:

• They are unidirectional: you write to one descriptor, you read from the other. It would be
a nice idea to be able to read from and write to the same descriptor.

• They are anonymous: you don’t open an existing pipe, you create a new one, and only
you and your descendents can use it. It would be nice to be able to use pipes like regular
files.

In fact, you can get all combinations of these properties. We’v e seen regular pipes—the oth-
ers are stream pipes, FIFOs and named stream pipes. We’ll look at them in the following sec-
tions:

* Not all UNIX implementations support UNIX domain sockets. In particular, some System V systems
support only the Internet domain. People with a System V background often place the emphasis on the
word “domain”, and some even refer to UNIX domain sockets as “domain sockets”. As you can see
from the above, this is incorrect.

5 February 2005 02:09

Chapter 12: Kernel dependencies 165

Stream pipes

Most systems allow you to create bidirectional pipes. For some reason, they’re generally
called stream pipes, which is not a good name at all.

• In System V.4, regular pipes are bi-directional, so you don’t need to do anything special.

• In 4.4BSD, the socketpair system call, which we have already seen, creates stream pipes,
so you’d expect regular pipes to be bidirectional in 4.4BSD as well. In fact, before
returning, the library function pipe closes one descriptor in each direction, so 4.4BSD
pipes really are unidirectional. If you want a stream pipe, just use the socketpair sys-
tem call.

• In System V.3 systems with STREAMS, bidirectional pipes are possible too, but things
are more difficult: you have to connect two streams back to back. See UNIX Network
Programming for a discussion of how to do this.

FIFOs

FIFOs are pipes with file names, which allow unrelated processes to communicate with each
other. To create a FIFO, you use the function mkfifo:

#include <sys/stat.h>

int mkfifo (const char *path, mode_t mode);

This call corresponds exactly to mkdir, except that it creates a FIFO instead of a directory.
BSD implements mkfifo as a system call, while System V.4 implements it as a library func-
tion that calls mknod to do the work. System V.3 systems frequently implemented it as a sys-
tem call. Once you have created a FIFO, you can use it just like a file: typically, one process,
the listener process, opens the FIFO for reading, and one or more open it for writing to the lis-
tener process.

Named stream pipes

Stream pipes are bidirectional, but they don’t normally have names. FIFOs have names, but
they’re usually not bidirectional. To get both of these properties, we need a new kind of con-
nection, a named stream pipe. In 4.4BSD, this can be done by binding a name to a stream
socket — see the man pages for bind for further details. In System V.4, you can create a
named stream pipe with the connld STREAMS module. See Advanced Programming in the
UNIX environment for more details.

System V IPC
System V supplies an alternative form of interprocess communication consisting of three fea-
tures: shared memory, message queues and semaphores. SunOS 4 also supports System V
IPC, but pure BSD systems do not. In the industry there is a significant amount of aversion to
this implementation, which is sometimes called The Three Ugly Sisters.

5 February 2005 02:09

166

System V IPC is overly complicated and sensitive to programming bugs, which are two of the
main reasons why it has not been implemented on other systems. Converting programs writ-
ten for System V IPC to other methods of interprocess communication is non-trivial. If you
have a BSD system with kernel sources, it might be easier to implement Daniel Boulet’s free
software implementation (see Appendix E, Where to get sources).

Shared memory

An alternative form of interprocess communication involves sharing data between processes.
Instead of sending a message, you just write it into a buffer that is also mapped into the
address space of the other process. There are two forms of shared memory that you may
encounter on UNIX systems—System V shared memory and mmap, which is more commonly
used for mapping files to memory. We’ll look at mmap in Chapter 14, File systems, page 232.

System V shared memory is implemented with four system calls:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (key_t key, int size, int shmflg);
int shmctl (int shmid, int cmd, ... /* struct shmid_ds *buf */);
void *shmat (int shmid, void *shmaddr, int shmflg);
int shmdt (void *shmaddr);

• shmget allocates a shared memory segment or adds the process to the list of processes
sharing the segment. The shared memory segment identifier is conceptually like a file
name or an identifier, but for some reason they are called keys when talking about Sys-
tem V shared memory. It returns a segment identifier, conceptually like a file number.

• shmctl performs control operations on shared memory segments. It can set ownerships
and permissions, retrieve status information, or remove shared memory segments. Like
files, shared memory segments remain on the system until explicitly removed, even if
they are currently not assigned to any process.

• shmat attaches the shared memory segment shmid to the calling process.

• shmdt detaches a shared memory segment from the calling process.

With some limitations, you can use mmap to replace System V shared memory. The limita-
tions are that mmap on non-System V platforms normally maintains separate data pages for
each process, so if you write to a page in one process, other processes will not see the new
data. You need to call msync in order to update the segments used by other processes.
Between the time when you modify the segment and when you call msync, the data is incon-
sistent. msync is not a fast call, so this could also cripple performance.

5 February 2005 02:09

Chapter 12: Kernel dependencies 167

Message queues

As if there weren’t enough ways of passing data between processes already, System V IPC
includes message queues. Message queues are rather like FIFOs, but there are two differ-
ences:

• A FIFO transmits a byte stream, but a message queue is record oriented.

• Messages can have different priorities, which determine the sequence in which they are
received, if the receiving process allows them to queue up.

The system calls to handle message queues are analogous to the shared memory calls:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key_t key, int msgflg);
int msgsnd (int msqid, const void *msgp, size_t msgsz, int msgflg);
int msgrcv (int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg);
int msgctl (int msqid, int cmd, .../* struct msqid_ds *buf */);

• msgget opens an existing queue or creates a new queue.

• msgsnd sends a message.

• msgrcv receives a message.

• msgctl performs control functions on message queues.

Message queues were originally intended to offer fast interprocess communication.
Nowadays they hav e little to offer that a FIFO couldn’t handle. If you run into problems with
message queues, you might prefer to replace them with FIFOs.

Semaphores

One disadvantage with shared memory implementations is that one process doesn’t know
when another process has done something. This can have a number of consequences:

• Two processes may modify the same area at the same time.

• One process may be waiting for the other process to do something, and needs to know
when it has finished.

There are two possible solutions: send a signal, or use semaphores.

A semaphore is a means of voluntary process synchronization, similar to advisory locking. To
use the facility, a process requests access to the semaphore. If access is currently not possible,
the process blocks until access is permitted. Unlike locking, semaphores allow more than one
process access to the semaphore at any one point. They do this by maintaining a counter, a
small positive integer, in the semaphore. When a process accesses the semaphore, it decre-
ments the counter. If the value of the counter is still non-negative, the process has access, oth-
erwise it is blocked. This could be used to gain access to a limited number of resources.

5 February 2005 02:09

168

System V semaphores look superficially similar to System V shared memory. There are three
functions:

int semctl (int semid, int semnum, int cmd, ... /* union semun arg */);
int semget (key_t key, int nsems, int semflg);
int semop (int semid, struct sembuf *sops, size_t nsops);

The implementation is less than perfect. In particular, it is overly complex, and it almost
encourages deadlocks, situations where no process can continue:

• Instead of a single counter, a System V semaphore declares an array of counters. The
size of the array is determined by the nsems parameter of the semget system call.

• It takes two calls (semget and semctl) to create and initialize a semaphore. Theoreti-
cally, this creates an opportunity for another process to come and initialize the sema-
phore differently.

• It’s possible for semaphores to remain locked after a process ends, which means that a
reboot is necessary to unlock the semaphore again. A flag is provided to specify that a
semaphore should be removed on exit, but you can’t rely upon it completely.

• The implementation is not very fast.

Miscellaneous system functionality
The rest of this chapter describes miscellaneous system calls that can occasionally cause prob-
lems when porting.

exec
exec is one of the original system calls at the heart of the UNIX system, so it may come as a
surprise to discover that exec is no longer a system call on modern systems—instead, it is
implemented as a library function in terms of new system calls such as execve. Even the
Seventh Edition man pages stated

Plain exec is obsoleted by exece, but remains for historical reasons.

Nowadays, there are a large number of alternatives. Your system probably has most of the
following calls:

#include <unistd.h>
extern char **environ;

int exec (char *path, char *argv []);
int exece (char *path, char *argv [], char *envp []);
int execl (char *path, char *arg, ..., NULL);
int execle (char *path, char *arg, ..., NULL, char *envp []);
int execlp (char *file, char *arg, ..., NULL);
int execlpe (char *file, char *arg, ..., NULL, char *envp []);
int exect (char *path, char *argv [], char *envp []);

5 February 2005 02:09

Chapter 12: Kernel dependencies 169

int execv (char *path, char *argv []);
int execve (char *path, char *argv [], char *envp []);
int execvp (char *file, char *argv []);
int execvpe (char *file, char *argv [], char *envp []);

All these functions do exactly the same thing: they replace the process image with a process
image from the absolute executable whose file name is specified in the first argument (path or
file). They differ only in the manner in which they supply the parameters:

• The parameter path specifies an absolute pathname. If this file does not exist, the call
fails.

• Alternatively, the parameter file specifies a file to be searched via the PATH environ-
ment variable, the way the shell does when a file name is specified.

• The parameter argv is a pointer to a NULL terminated list of parameters.

• Alternatively, you can place the arguments, including the terminating NULL, in the call as
a series of args.

• If the parameter envp is specified, it is a pointer to a NULL-terminated list of environment
variables. This is typically used when the child process should be given a different envi-
ronment from the parent process.

• If envp is not specified, the environment variables are taken from the parent’s environ-
ment (via the global pointer environ).

One further function deserves mention: exect, which is supplied only in newer BSD systems,
takes the same parameters as execve, but enables program tracing facilities.

The total storage available for the argument list and the enviroment varies from system to sys-
tem. System V traditionally has only 5120 characters. POSIX.1 requires at least 20480 char-
acters, and this is the standard value for newer BSD systems. Many Makefiles take advantage
of these large parameter lists, and frequently a package fails to build under System V because
the parameter lists are too long: you get the message

make: execve: /bin/sh: Arg list too long

We looked at what we can do to solve these problems in Chapter 5, Building the package,
page 74.

getrlimit and setrlimit
The Seventh Edition made a number of arbitrary choices about kernel limits. For example,
each process was allowed to have 50 files open at any one time. In the course of time, a num-
ber of these kernel limits were made configurable, and some systems allowed the process to
modify them directly, up to a “hard” limit. SunOS, BSD and System V.4 supply the system
calls getrlimit and setrlimit in order to manipulate this configuration information:

#include <sys/time.h>
#include <sys/resource.h>
struct rlimit

5 February 2005 02:09

170

{
int rlim_cur; /* current (soft) limit */
int rlim_max; /* hard limit */
};

int getrlimit (int resource, struct rlimit *rlp);
int setrlimit (int resource, struct rlimit *rlp);

The rlimit structure defines two values for each resource, the current value and the maxi-
mum value. getrlimit returns this information, setrlimit sets a new current value. Table
12-1 shows which limits can be set:

Table 12−1: getrlimit and setrlimit resources

resource System Description

RLIMIT_CORE all The maximum size, in bytes, of a core image file.

RLIMIT_CPU all The maximum amount of CPU time that a process may
consume.

RLIMIT_DATA all The maximum size, in bytes, of the process data segment.

RLIMIT_FSIZE all The largest size, in bytes, that any file may attain.

RLIMIT_MEMLOCK 4.4BSD The maximum size, in bytes, which a process may lock
into memory using the mlock function.

RLIMIT_NOFILE all The maximum number of files that a process may open at
one time. This is also one more than the highest file num-
ber that the process may use.

RLIMIT_NPROC 4.4BSD The maximum number of simultaneous processes for the
current user id.

RLIMIT_RSS 4.4BSD,
SunOS 4

The maximum size, in bytes, that the resident set of a pro-
cesses may attain. This limits the amount of physical
memory that a process can occupy.

RLIMIT_STACK all The maximum size, in bytes, that the stack segment of a
processes may attain.

RLIMIT_VMEM System V.4 The maximum size, in bytes, that the mapped address
space of a processes may attain.

If your system doesn’t hav e these functions, there’s not much you can do except guess. In
some cases, header files will contain similar information declared as constants, but it’s not a
very satisfactory alternative.

5 February 2005 02:09

Chapter 12: Kernel dependencies 171

Process groups
Where other operating systems use a single program to perform an operation, UNIX fre-
quently uses a group of cooperating processes. It’s useful to be able to define such a group,
particularly when they access terminals. Advanced Programming in the UNIX environment,
by Richard Stevens, describes all you will want to know about process groups. Here, we’ll
look at some minor differences in implementations.

setpgid

setpgid adds a process to a process group:

#include <unistd.h>

int setpgid (pid_t pid, pid_t pgrp);

pid is the process ID of the process that is to be added to the process group, and pgrp is the
process group to which it should be added. It returns 0 on success and -1 with an error code
in errno on failure.

Normally you will see setpgid used to add the calling process to a group; this can be done
by setting pid to 0. System V versions also allow pgrp to be 0: this specifies that the process
id should be the same as pid, and that this process will become a process group leader.

setpgrp

setpgrp is obsolescent. There are two different implementations, both of which duplicate
functionality supplied by other functions:

• In more modern BSD systems, it is the same thing as setpgid:

int setpgrp (pid_t pid, pid_t pgrp); BSD versions

• In System V, it creates a new process group with the calling process as group leader, and
adds the calling process to the group. It also releases the controlling terminal of the call-
ing process. This is the same thing as setsid:

int setpgrp (); System V versions

If you run into trouble with this function, it’s best to replace it with setpgid or setsid,
depending on the functionality that was intended.

setsid

setsid creates a new process group with the calling process as group leader, and adds the
calling process to the group. It also releases the calling process from its controlling terminal:

#include <unistd.h>

int setsid ();

5 February 2005 02:09

172

Real and effective user IDs
Occasionally the UNIX security system causes unintended problems: a trusted program may
require access to facilities to which the user should not have unlimited access. For example,
the program ps requires access to /dev/kmem, kernel memory, which is normally accessible
only to the super user. Serial communication programs such as uucp require access to the
serial ports, but in order to avoid conflicts, only trusted users have access to the ports.

UNIX solves this problem by allowing the programs always to run as a specific user or group.
If you execute a program that has the setuid bit set in the file permissions, it runs as if its
owner had execed it, no matter who really started it. Similarly, the setgid bit causes the pro-
gram to run as if it had been executed in the group to which the file belongs. These user and
group ids are called effective user ID and effective group ID, and they are the only permissions
that are relevant when a process accesses a file.

Similar considerations apply to group IDs. In the following discussion, we’ll consider user
IDs, but unless mentioned otherwise, everything I say about user IDs also applies to group
IDs.

A number of subtle problems arise from this scheme. One of the most obvious ones is that
programs frequently also need to be able to access your files. There’s no guarantee that this
will always work. For example, uucp needs to be setuid to user uucp in order to access the
communication ports, but it also frequently needs to transfer data to your home directory. If
your permissions are set so that uucp can’t access your home directory, it will not be able to
perform the transfer. This is obviously not the intention: somehow, uucp needs access both to
the serial ports and to your files.

This means that we need to maintain at least two user IDs, the effective user ID and the real
user ID. Modern systems also supply a saved set user ID. On System V.4, it’s a configuration
option (set the configuration constant _POSIX_SAVED_IDS). BSD uses the saved set user ID
in a different way from System V, as we will see below.

The system manipulates user IDs in the following ways:

• If you execute a program that is not setuid, it sets all IDs to the effective user ID of the
process that executes it.

• If you execute a program that has the setuid permission set, it sets the effective user ID to
the owner of the program, and the real user ID to the effective ID of the process that
executes it. If there is a saved set user ID, it also sets it to the owner of the program.

• At run time you can change between IDs with the system call setuid. There are also a
number of alternative calls. We’ll look at them in the following sections.

setuid

setuid changes the effective user ID. If your current effective user ID is root, you can set it
to any valid user ID. There, unfortunately, the similarity ends:

• In systems without a saved set user ID, including SunOS 4 and System V.3, setuid sets
the effective user ID and the real user ID if the current effective user ID is root, otherwise

5 February 2005 02:09

Chapter 12: Kernel dependencies 173

it sets only the effective user ID. The function call succeeds if the argument to setuid is
the real user ID or the effective user ID, or if the effective user ID is root. Once you have
changed away from the old effective user ID and root, there is no way to change back.

• On System V systems with saved set user ID, setuid sets the effective user ID and the
real user ID if the current effective user ID is root, otherwise it sets only the effective
user ID. It does not change the saved set user ID. The function call succeeds if the argu-
ment to setuid is the real user ID, the effective user ID, or the saved set user ID, or if
the effective user ID is root. This means that you can switch back and forth between the
ID of the program owner and the ID of the process which started it.

• On BSD systems with saved set user ID, setuid sets the real, effective, and saved set
user IDs. The function call succeeds if the argument to setuid is the real user ID, or if
the effective user ID is root. Unlike System V.4, non-root users cannot use setuid to set
the user ID to the saved set user ID. The saved set user ID is of no use to BSD
setuid—instead, BSD systems use seteuid, which sets only the effective user ID to
either the real user ID or the saved set user ID.

setreuid

BSD versions since 4.2BSD have the system call setreuid, which takes two parameters:

int setreuid (int ruid, int euid);

You can use it to swap the effective and real user IDs, so you don’t really need a saved set user
ID. For non-privileged users, ruid and euid can be either the current real user ID or the cur-
rent effective user ID, or -1 to indicate no change. This function was needed in BSD up to
and including 4.3BSD, since these versions did not support the concept of a saved set user ID.
On non-BSD systems only, you can replace this function with setuid if your system supports
saved set user IDs.

seteuid

As we noted above, BSD setuid cannot change to the saved set user ID. The BSD solution
to this problem, which has been proposed for adoption in a new revision of POSIX.1, is the
function seteuid. It sets the effective user ID to euid if euid corresponds either to the real
user ID or the saved set user ID. Unlike setuid, it sets only the effective user ID.

setruid

In addition to seteuid, BSD systems provide the call setruid, which sets the real user ID to
the effective or real user ID. setruid is considered non-portable. Future BSD releases plan
to drop it.

5 February 2005 02:09

174

Comparison of user ID calls

User IDs are much more complicated than they should be. In fact, there are only two things
you’ll want to do, and for non-root users they work only with programs which have setuid
permissions: change from the initial effective user ID to the real user ID, and change back
again. Changing from effective to real user ID is simple: in all systems, you can use the
setuid system call, though in 4.3BSD and SunOS 4 this will mean that you can’t change
back. In these systems, it’s better to use code like

int euid = geteuid (); /* get current effective user ID */
int ruid = getuid (); /* and real user ID */
setreuid (euid, ruid); /* and swap them */

Changing back again is more complicated:

• On older systems, including XENIX and System V.3, and on System V.4 systems without
_POSIX_SAVED_IDS, you can’t do it. For the older systems, about the only workaround
is not to change away from the initial effective user ID—you might be able to spawn a
process which does the necessary work under the real user ID.

• On BSD systems up to and including 4.3BSD, and under SunOS 4, you can do it only if
you changed with setreuid, as in the example above. In this case, you just need to con-
tinue with

setreuid (ruid, euid);

• On System V.4 systems with _POSIX_SAVED_IDS, use setuid (ssuid), where ssuid
is the saved set user ID. You can get the value of ssuid by calling geteuid before
changing the initial effective user ID, since they’re the same at program start.

• On BSD systems which support saved set user IDs, use seteuid (ssuid). As with
System V.4, you can get the value of ssuid by calling geteuid before changing the ini-
tial effective user ID.

vfork
vfork was introduced in 3BSD as a more efficient version of fork: in those days, fork
copied each data area page of the parent process for the child process, which could take a con-
siderable time. Typically, the first thing a child does is to call exec to run a new program,
which discards the data pages, so this was effectively wasted time. vfork modified this be-
haviour so that the pages were shared and not copied.

This is inherently very dangerous: very frequently the parent waits until the child has done
something before continuing. During this time, the child can modify the parent’s data, since it
is shared. More modern techniques, such as copy on write*, hav e eliminated the need for this
function. You should be able to replace it with fork (the semantics are identical). Unfortu-
nately, some obscene programs rely on the fact that they can manipulate the parent’s data

* With copy on write, the data pages are set to be write-protected. The first write causes an interrupt,
effectively a bus error, which the system intercepts. The system makes a copy of the single page and
resets write protection for both the original and the copy, allowing the write to proceed.

5 February 2005 02:09

Chapter 12: Kernel dependencies 175

before the parent continues. These programs need to be fixed.

wait and friends
wait has been in UNIX as long as anybody can remember:

#include <sys/types.h>
#include <sys/wait.h>

pid_t wait (int *status);

Unfortunately, various flavours define the value of the status return differently. This is a cos-
metic difference, not a real difference: the status information consists of a number of bit fields
that depend on the kind of status:

• The low-order 7 bits contain the number of the signal that terminated the process, or 0 if
the process called exit.

• The bit 0x80 is set if a core dump was taken.

• The next 8 bits are the return code if the process called exit.

If the process is stopped (if it can be restarted), the low-order 8 bits are set to 127 (0x7f), and
the next byte contains the number of the signal that stopped the process.

This information is the same on all versions of UNIX, but there is no agreement on how to
represent this information. Older BSD systems defined a union to represent it:

union __wait
{
int w_status; /* status as int */
struct
{
unsigned short w_Termsig:7; /* termination signal */
unsigned short w_Coredump:1; /* core dump indicator */
unsigned short w_Retcode:8; /* exit code if w_termsig==0 */
}

w_T;
struct
{
unsigned short w_Stopval:8; /* == W_STOPPED if stopped */
unsigned short w_Stopsig:8; /* signal that stopped us */
}
w_S;

};

Modern systems define macros:

• WIFEXITED (status) is true if the process terminated via a call to exit. If this is true,
WEXITSTATUS (status) returns the low order 8 bits of the process’ exit value.

• WIFSIGNALED (status) is true if the process was terminated by receiving a signal. If
this is true, the following macros apply:

5 February 2005 02:09

176

− WTERMSIG (status) evaluates to the number of the signal that caused the termina-
tion of the process.

− WCOREDUMP (status) is true if a core dump was created.

• WIFSTOPPED (status) is true if the process is stopped and can be restarted. This
macro can be true only if the waitpid call specified the WUNTRACED option or if the
child process is being traced. If this is true, WSTOPSIG (status) returns the number of
the signal that caused the process to stop.

Some systems offer both of these options, sometimes incompletely. For example, SunOS 4
defines w_Coredump in the union __wait, but does not define the corresponding WCORE-
DUMP macro.

These varying differences cause problems out of all proportion to the importance of the infor-
mation contained. In particular, the newer macros do not allow you to change the status, you
can only read it. Some programs, for example BSD make, modify the status. This makes it
difficult to port it to System V or another system which does not understand union wait.

waitpid
waitpid is a variant of wait that waits for a specific process to terminate. It is part of all
modern UNIX implementations:

#include <sys/wait.h>

pid_t waitpid (pid_t wpid, int *status, int options);

waitpid waits for process pid to terminate. Its behaviour is governed by a number of bit-
mapped options:

• Set WNOHANG to specify to return immediately, even if no status is available. If the status
is not available, the functions return the process number 0. Not all systems support this
behaviour.

• Specify WUNTRACED if you want the status of stopped processes as well as processes that
have terminated. Some systems do not return complete status information for stopped
processes.

• Under System V.4, use WCONTINUED to report the status of any process that has contin-
ued (in other words, one that is no longer stopped) since the last status report.

• Also under System V.4 you can set the option WNOWAIT to specify that the process should
not terminate (it remains a zombie). This means that you can call waitpid again and get
the same information.

The value of status is the same as with wait—see the previous section for further details.

If you run into problems with waitpid, it may be a bug: some versions of System V.3,
including most current versions of SCO UNIX, return a process ID if a process is waiting, and
an error number such as ECHILD (10) if nothing is waiting, so if your freshly ported program
keeps reporting the demise of process 10, this could be the problem. It’s almost impossible to

5 February 2005 02:09

Chapter 12: Kernel dependencies 177

work around this bug — about the only thing you can do is to use some other system call.

wait3 and wait4
Newer BSD implementations supply the functions wait3 and wait4 as alternatives to wait.
They correspond to wait and waitpid respectively, but return an additional parameter
rusage with accounting information for the terminated process:

pid_t wait3 (int *status, int options, struct rusage *rusage);
pid_t wait4 (pid_t wpid, int *status, int options, struct rusage *rusage);

Not all implementations return usage information to rusage when the process is stopped (and
not terminated). The definition of struct rusage is implementation-dependent and defined
in sys/resource.h. See the file sys/sys/resource.h in the 4.4BSD Lite distribution for further
details.

5 February 2005 02:09

Signals

Signals are another area in UNIX where the initial implementation was inadequate, and multi-
ple implementations have dev eloped in the course of the time. If you try to port software
which assumes the presence of one implementation, and your system doesn’t support this
implementation, you could be in for a significant amount of rewriting. The situation isn’t
improved by the fact that there are a number of subtle differences between the various imple-
mentations and even between different systems with the same implementation. In this chap-
ter, we’ll look at those aspects of signal implementation which are of interest to porting.

There have been four different implementations in the course of UNIX history:

• The Seventh Edition had so-called unreliable signals. and handled them with the signal
system call. System V still supplies them with the signal system call. As we will see
on page 188, the use of the signal function does not automatically imply unreliable sig-
nals.

• 4.2BSD introduced the first implementation of reliable signals. It uses the functions
signal, sigvec, sigblock, sigsetmask and sigpause.

• System V introduced an alternative implementation of reliable signals. It uses the func-
tions sigset, sighold, sigrelse, sigignore and sigpause.

• Finally, POSIX.1 defined a third implementation of reliable signals. These are based on
the BSD signals and use the functions sigaction, sigprocmask, sigpending and
sigsuspend.

Most people think of signals as the way the operating system or an outside user stops a pro-
gram that is misbehaving. More generally, they are a means to cause execution of functions
out of sequence, and have thus been called software interrupts. Hardware interrupts cause the
system to interrupt normal processing and perform a specific sequence of instructions. Sig-
nals do the same thing in software: when a process receives a signal, the kernel simulates a
call to a pre-defined routine.* The routine, called a signal handler, handles the signal and pos-
sibly returns to the “caller”. It would be a significant overhead for every program to supply a

* This is not a real call: when the kernel delivers the signal, it modifies the process stack and registers so
that it looks as if the signal handler has just been called. When the process continues executing, it is in
the signal handler. Nobody ever really calls the signal handler.

179

5 February 2005 02:09

180

signal handler for every conceivable signal, so the kernel supplies two default methods of han-
dling the signal. The choice of a signal handler or one of the two defaults is called the dispo-
sition of the signal. Initially, each signal’s disposition is set either to ignore the signal or to
terminate the process if the signal occurs. In some cases, the system writes a core file, a copy
of the state of the process, when the process is terminated.

Signals may come from a number of different sources:

• External events. For example, pressing CTRL-C or DEL on most systems causes the ter-
minal driver to send a SIGINT signal to the foreground process group of the terminal.

• Internal events. For example, alarm causes a SIGALRM signal after the specified time-
out.

• Hardware interrupts. For example, if a process attempts to access a page that is not part
of its address space, it will receive a SIGSEGV or SIGBUS signal.

• As the result of another process calling kill.

In this chapter, we’ll consider which signals are supported by which operating systems, and
how signals are implemented in different operating systems.

Supported signals
The Seventh Edition had 15 signals, and current implementations allow up to 31, though not
all are used. In the course of time, the meanings have also diverged somewhat. Table 13-1
gives an overview of which signals are present in which implementations.

Table 13−1: Signal usage

Signal V S S B P action purpose
7 V V S O

R R D S
3 4 I

X

SIGABRT • • • core abort call2

SIGALRM • • • • • kill real-time timer expired
SIGBUS • • • • core bus error
SIGCHLD • • • ignore child status has changed
SIGCLD • • ignore child status has changed
SIGCONT • • • • ignore continue after stop
SIGEMT • • • • core emulate instruction executed
SIGFPE • • • • • core floating-point exception
SIGHUP • • • • • kill line hangup
SIGILL • • • • • core illegal instruction
SIGINFO • • ignore status request from keyboard

5 February 2005 02:09

Chapter 13: Signals 181

Table 13−1: Signal usage (continued)

Signal V S S B P action purpose
7 V V S O

R R D S
3 4 I

X

SIGINT • • • • • kill interrupt program (usually from termi-
nal driver)

SIGIO • • ignore I/O completion outstanding1

SIGIOT • • core IOT instruction2

SIGKILL • • • • • kill kill program4

SIGPIPE • • • • • kill write on a pipe with no reader
SIGPROF • • kill profiling timer alarm
SIGPWR • • • ignore power fail/restart
SIGQUIT • • • • • core quit program (usually from terminal

driver)
SIGSEGV • • • • • core segmentation violation
SIGSTOP • • • • stop stop4

SIGSYS • • • • core invalid system call
SIGTERM • • • • • kill software termination signal
SIGTRAP • • • • core trace trap
SIGTSTP • • • • stop stop signal generated from keyboard
SIGTTIN • • • • stop background read from control terminal
SIGTTOU • • • • stop background write to control terminal
SIGURG • • ignore urgent condition present on socket
SIGUSR1 • • • • kill User defined signal 1
SIGUSR2 • • • • kill User defined signal 2
SIGVTALRM • kill virtual time alarm
SIGWINCH •3 • • ignore Window size change
SIGXCPU • • • core cpu time limit exceeded
SIGXFSZ • • • core file size limit exceeded

1 Sometimes called SIGPOLL in System V.
2 SIGIOT and SIGABRT usually have the same signal number.
3 Not available in all versions.
4 This signal cannot be caught or ignored.

Unreliable and reliable signals
The terms unreliable signals and reliable signals need explaining. The problem relates to
what happens when a signal handler is active: if another signal occurs during this time, and it
is allowed to be delivered to the process, the signal handler will be entered again. Now it’s
not difficult to write reentrant* signal handlers—in fact, it’s a very good idea, because it

* A reentrant function is one which can be called by functions which it has called—in other words, it

5 February 2005 02:09

182

means that you can use one signal handler to handle multiple signals—but if the same signal
reoccurs before the signal handler has finished handling the previous instance, it could happen
again and again, and the result can be a stack overflow with repeated signal handler calls.

The original signal implementation, which we call unreliable signals, had a simplistic attitude
to this problem: it reset the signal dispostion to the default, which meant that if another signal
occurred while the previous one was being processed, the system would either ignore the sig-
nal (so it would lose the signal) or terminate the process (which is probably not what you
want). It was up to the signal handler to reinstate the signal disposition, and this couldn’t be
done immediately without running the risk of stack overflow.

All newer signal implementations provide so-called reliable signals. The signal disposition is
not changed on entry to the signal handler, but a new signal will not be delivered until the sig-
nal handler returns. This concept is called blocking the signal: the system notes that the signal
is pending, but doesn’t deliver it until it is unblocked.

There are a number of things that the term reliable signal does not mean:

• It doesn’t imply that the underlying kernel implementation is bug-free. Depending on
the implementation, there is still a slight chance that the kernel will lose the signal.

• It doesn’t imply that a signal cannot get lost. The method used to queue signals is to set
a bit in a bit mask. If multiple signals of the same kind occur while the signal is blocked,
only one will be delivered.

• It doesn’t imply that you don’t need reentrant signal handlers. The system blocks only
the signal that is currently being handled. If you have a single handler for multiple sig-
nals, it will need to be reentrant. In particular, this means that you should at least be very
careful with static variables and preferably use few local variables (since they take up
stack space). You should also be careful with the functions you call—we’ll take another
look at this on page 187.

The semantics of each implementation differ in subtle ways, so changing to a different set of
signal calls involves more than just changing the function calls and parameters. Here’s a brief
overview of the differences you might encounter:

• With unreliable signals, after a signal occurs, the signal disposition is reset to default, so
the signal handler must reinstate itself before returning. If a second signal occurs before
the disposition is reinstated, the process may be terminated (if the default disposition is
terminate) or the signal may be completely forgotten (if the default disposition is ignore).

• The names and purposes of the signals differ significantly from one implementation to
the next. See Table 13-2 for an overview.

• In modern implementations, the function call signal varies in its meaning. In System
V, it uses the old, unreliable Seventh Edition signal semantics, while in BSD it is an
interface to the sigaction system call, which provides reliable signals. If you’re port-
ing BSD signal to System V, you should modify the code use sigaction instead.

can be entered again before it has returned. This places a number of restrictions on the function. In par-
ticular, it cannot rely on external values, and may not use static storage.

5 February 2005 02:09

Chapter 13: Signals 183

• The first parameter to a signal handler is always the number of the signal. Both System
V.4 and BSD can supply additional parameters to the signal handlers. We’ll look at the
additional parameters in more detail on page 183.

• The handling of interrupted system calls varies from one system to the next. We’ll look
into this topic in more detail on page 186.

• The difference between the signals SIGBUS and SIGSEGV is purely historical: it relates to
the PDP-11 hardware interrupt that detected the problem. In modern systems, it depends
on the whim of the implementor when you get which signal. POSIX.1 defines only
SIGSEGV, but this doesn’t help much if the processor generates SIGBUS anyway. It’s best
to treat them as being equivalent.

• SIGCLD is a System V version of SIGCHLD. A number of hairy problems can arise with
SIGCLD; we’ll look at them in more detail on page 186.

• SIGILL was generated by the abort function in early BSD implementations. Early Sys-
tem V used SIGIOT instead. All modern implementations generate SIGABRT. Fre-
quently you’ll find that these two signals are in fact defined to have the same number; if
you run into troubles where one or the other is undefined, you could possibly do just this:

#define SIGIOT SIGABRT

Signal handlers
Modern versions of UNIX define signal handlers to be of type

void (*signal (int signum, void (*handler))) (int hsignum)

This is probably one of the most confusing definitions you are likely to come across. To
understand it, it helps to remember that we are talking about two functions:

• The signal handler, called handler in this declaration, takes an int parameter hsignum
and returns a void pointer to the old signal handler function, which is of the same type
as itself.

• The function signal, which takes two parameters. The first is signum, the number of
the signal to be handled, of type int, and the second is a pointer to a signal handler func-
tion handler. It also returns a void pointer to a signal handler function.

In fact, in many implementations the signal handler function takes additional parameters, and
you may find that your program takes advantage of them. We’ll look at these in the following
sections.

System V.4 signal handlers
The System V.4 signal handler interface offers additional functionality in certain circum-
stances: if you use the sigaction interface and you set the flag SA_SIGINFO in sa_flags,
the signal handler is invoked as if it were defined

5 February 2005 02:09

184

void handler (int signum,
struct siginfo *info,
struct ucontext *context);

siginfo is an enormous structure, defined in /usr/include/siginfo.h, which starts with

struct siginfo
{
int si_signo; /* signal from signal.h */
int si_code; /* code from above */
int si_errno; /* error from errno.h */

... more stuff, including space for further growth
}

ucontext is defined in /usr/include/ucontext.h and contains information about the user con-
text at the time of the signal application. It includes the following fields:

• uc_sigmask is the blocked signal mask.

• us_stack points to the top of stack at the time the signal was delivered.

• uc_mcontext contains the processor registers and any implementation specific context
data.

For example, assume you had set the signal handler for SIGFPE with the call in Example 13-1.

Example 13−1:

void bombout_handler (int signum,
struct siginfo *info,
struct ucontext *context);

sigset_t bombout_mask;
struct sigaction bad_error = {&bombout_handler, handler for the signal

&bombout_mask, signals to mask
SA_SIGINFO}; we want additional info

sigemptyset (&bombout_mask); no signals in mask
sigaction (SIGFPE, &bad_error, NULL);

On receipt of a SIGFPE,

• signal will be set to SIGFPE.

• info->si_signo will also be set to SIGFPE.

• On an i386 machine, info->si_code might be, for example, FPE_INTDIV (indicating
an integer divide by zero) or FPE_FLTUND (indicating floating point underflow).

• The value of info->si_errno can’t be relied on to have any particular value.

• context->uc_sigmask contains the current signal mask.

• context->uc_stack will point to the stack in use at the time the signal was delivered.

5 February 2005 02:09

Chapter 13: Signals 185

• context->uc_mcontext will contain the contents of the processor registers at the time
of the interrupt. This can be useful for debugging.

BSD signal handlers
BSD signal handlers do not use the flag SA_SIGINFO for sa_flags. Signal handlers always
receive three parameters:

void handler (int signum, int code, struct sigcontext *context);

code gives additional information about certain signals—you can find this information in the
header file /usr/include/machine/trap.h. This file also contains information about how hard-
ware interrupts are mapped to signals. context is hardware-dependent context information
that can be used to restore process state under some circumstances. For example, for a Sparc
architecture it is defined as

struct sigcontext
{
int sc_onstack; /* sigstack state to restore */
int sc_mask; /* signal mask to restore */
/* begin machine dependent portion */
int sc_sp; /* %sp to restore */
int sc_pc; /* pc to restore */
int sc_npc; /* npc to restore */
int sc_psr; /* psr to restore */
int sc_g1; /* %g1 to restore */
int sc_o0; /* %o0 to restore */
};

The program of Example 13-1 won’t compile under BSD, since BSD doesn’t define SA_SIG-
INFO, and the parameters for bombout_handler are different. We need to modify it a little:

void bombout_handler (int signum,
int code,
struct sigcontext *context);

sigset_t bombout_mask;
struct sigaction bad_error = {&bombout_handler, handler for the signal

&bombout_mask, signals to mask
0};

... the rest stays the same

If you enter this signal handler because of a SIGFPE, you might find:

• signum will be set to SIGFPE.

• On an i386 machine, code might be, for example, FPE_INTOVF_TRAP (indicating an
integer divide by zero) or FPE_FLTUND_TRAP (indicating floating point underflow).

• The value of sc_onstack would be the previous sigstack state.

• context->sc_mask contains the current blocked signal mask, like context->uc_sig-
mask in the System V.4 example.

5 February 2005 02:09

186

• The rest of the context structure shows the same kind of register information that Sys-
tem V.4 stores in context->uc_mcontext.

SIGCLD and SIGCHLD
System V treats the death of a child differently from other implementations: The System V
signal SIGCLD differs from the BSD and POSIX.1 signal SIGCHLD and from all other signals
by remaining active until you call wait. This can cause infinite recursion in the signal han-
dler if you reinstate the signal via signal or sigset before calling wait. If you use the
POSIX.1 sigaction call, you don’t hav e to worry about this problem.

When a child dies, it becomes a zombie. As all voodoo fans know, a zombie is one of the Liv-
ing Dead, neither alive nor dead. In UNIX terminology, when a child process dies it becomes
a zombie: the text and data segments are freed, and the files are closed, but the process table
entry and some other information remain until it is exorcized by the parent process, which is
done by calling wait. By default, System V ignores SIGCLD and SIGCHLD, but the system
creates zombies, so you can find out about child status by calling wait. If, however, you
change the default to explicitly ignore the signal, the system ignores SIGCHLD and SIGCLD,
but it also no longer creates zombie processes. If you set the disposition of SIGCHLD and
SIGCLD to ignore, but you call wait anyway, it waits until all child processes have termi-
nated, and then returns -1 (error), with errno set to ECHILD. You can achieve the same effect
with sigaction by specifying the SA_NOCLDWAIT flag in sa_flags. There is no way to
achieve this behaviour in other versions of UNIX: if you find your ported program is collect-
ing zombies (which you will see with the ps program), it might be that the program uses this
feature to avoid having to call wait. If you experience this problem, you can solve it by
adding a signal handler for SIGCLD that just calls wait and returns.

The signal number for SIGCLD is the same as for SIGCHLD. The semantics depend on how
you enable it: if you enable it with signal, you get SIGCLD semantics (and unreliable sig-
nals), and if you enable it with sigaction you get SIGCHLD and reliable signals. Don’t rely
on this, however. Some versions of System V have special coding to ensure that a separate
SIGCLD signal is delivered for each child that dies.

Interrupted system calls
Traditional UNIX kernels differentiate between fast and slow system calls. Fast calls are han-
dled directly by the kernel, while slow calls require the cooperation of other processes or
device drivers. While the call is being executed, the calling process is suspended.

If a signal for a process occurs while the process is suspended, the behaviour depends both on
whether the call is fast or slow, and on the signal implementation. On traditional systems, if
the priority is numerically less than (of a higher priority than) the constant PZERO, the signal
is slow and remains pending until the priority rises above PZERO. Otherwise it is fast, and the
system call is interrupted. Typically, this means that disk and network operations are not
interrupted, since they run at a priority below PZERO, whereas terminal and serial line opera-
tions can be interrupted. Some newer systems treat the relationship between priority and
delivering signals more flexibly.

5 February 2005 02:09

Chapter 13: Signals 187

In the Seventh Edition, if a system call was interrupted, it returned an error, and errno was
sent to EINTR. It was up to the process to decide whether to repeat the call or not. This added
a significant coding overhead to just about every program; the result was that programs usu-
ally did not provide for interrupted system calls, and died when it happened.

Later signal implementations improved on this state of affairs:

• In 4.2BSD, signals automatically restarted the system calls ioctl, read, readv, wait,
waitpid, write and writev.

• In 4.3BSD, the 4.2BSD signal implementation was modified so that the user could elect
not to restart specific system calls after interruption. The default remained to restart the
system call.

• In POSIX.1, when you call sigaction you can specify that system calls interrupted by
specific signals should be restarted. This is done with the SA_RESTART flag in the field
sa_flags. If this flag is not set, the calls will not be restarted.

• SunOS 4 does not have SA_RESTART, but it has SA_INTERRUPT instead, which is effec-
tively the reverse of SA_RESTART: system calls will be restarted unless SA_INTERRUPT is
set,

On modern systems, the action taken depends on the system calls you have used and the sys-
tem you are using:

• With System V, you have the choice of no restart (unreliable signal or System V
sigset and friends) or POSIX.1 selective restart based on the signal (SA_RESTART with
sigaction).

• With BSD, you have the choice of no restart (reliable signal based on sigaction),
default restart based on system calls (sigvec and friends) or again the POSIX.1 selective
restart based on the signal (SA_RESTART with sigaction).

Calling functions from signal handlers
By definition, signals interrupt the normal flow of program execution. This can cause prob-
lems if they call a function that has already been invoked, and which has saved some local
state. The function needs to be written specially to avoid such problems—it should block
either all signals during execution, or, preferably, it should be written reentrantly. Either solu-
tion is difficult, and typically system libraries do not support this kind of reentrancy. On the
other hand, there’s not much you can do without calling some library routine. POSIX.1
defines “safe” routines that you can call from a signal handler. They are:

_exit access alarm cfgetispeed cfgetospeed

cfsetispeed cfsetospeed chdir chmod chown

close creat dup dup2 execle

execve fcntl fork fstat getegid

geteuid getgid getgroups getpgrp getpid

5 February 2005 02:09

188

getppid getuid kill link lseek

mkdir mkfifo open pathconf pause

pipe read rename rmdir setgid

setpgid setsid setuid sigaction sigaddset

sigdelset sigemptyset sigfillset sigismember sigpending

sigprocmask sigsuspend sleep stat sysconf

tcdrain tcflow tcflush tcgetattr tcgetpgrp

tcsendbreak tcsetattr tcsetpgrp time times

umask uname unlink utime wait

waitpid write

In addition, System V.4 allows abort, exit, longjmp, and signal.

Current signal implementations
In this section, we’ll look at the differences between individual signal implementations. We’ll
concentrate on what you need to do to convert from one to another. If you do need to convert
signal code, you should use the POSIX.1 signal implementation whenever practical.

Seventh Edition signal function
The Seventh Edition provided only one signal function, signal, which is the granddaddy of
them all. All systems supply signal, though on some systems, such as newer BSD systems,
it is a library function that calls sigaction. This also means that you can’t rely on specific
semantics if you use signal—avoid it if at all possible. Older UNIX systems (specifically,
those that did not expect function prototypes to be used) implicitly defined the return type of
signal to be an int. This does not change the meaning of the return value, but it can con-
fuse more pedantic compilers. About the only system still on the market that returns an int
from signal is XENIX.

BSD signal functions
The BSD signal functions were the first attempt at reliable signals, and they form the basis of
the POSIX.1 implementation. All modern systems offer the POSIX.1 implementation as well,
and on many BSD systems the functions described in this section are just an interface to the
POSIX.1 functions.

Signal sets

A central difference between the Seventh Edition and System V implementations, on the one
side, and the BSD and POSIX.1 implementations, on the other side, is the way signals can be
specified. The Seventh Edition functions treat individual signals, which are specified by their
number. The BSD routines introduced the concept of the signal set, a bit map of type sigset_t,
that specifies any number of signals, as illustrated in Figure 13-1:

5 February 2005 02:09

Chapter 13: Signals 189

31 30 29 11 10 9 1 0

1 1 0 ... 0 0 0 ... 1

SIGUSR2 SIGUSR1 SIGINFO SIGSEGV SIGBUS SIGKILL SIGHUP (none)

Figure 13−1. BSD and POSIX.1 signal sets

For each signal, if the corresponding bit in the bit map is set, the signal is said to be included
in the set. In this example, the signals specified are SIGUSR2, SIGUSR1 and SIGHUP. This
method enables any number of signals to be specified as the parameter of one call.

The kernel maintains two special signal sets for each process: the signal mask and the pending
signal set. The signal mask specifies which signals should currently not be delivered to the
process — these signals are said to be blocked. This does not mean that they will be ignored:
if a signal occurs while it is blocked, the kernel notes that it has occurred and sets its bit in the
pending signal set. When a subesequent call to sigsetmask resets the bit for this signal in
the signal mask, the kernel delivers the signal to the process and clears the bit in the pending
signal set.

sigsetmask

sigsetmask sets the process signal mask:

#include <sys/signal.h>
int sigsetmask (int mask);

sigsetmask can be defined in terms of the POSIX.1 function sigprocmask using the
SIG_SETMASK flag — see page 194 for more details.

sigblock

sigblock modifies the process signal mask. Unlike sigsetmask, it performs a logical OR
of the specified mask with the current signal mask, so it can only block signals and not enable
them.

#include <sys/signal.h>
int sigblock (int mask);

sigblock can be defined in terms of the POSIX.1 function sigprocmask using the
SIG_BLOCK flag — see page 194 for more details.

5 February 2005 02:09

190

sigvec

sigvec corresponds to the Seventh Edition signal: it sets the disposition of a signal. In addi-
tion, it can block other signals during the processing of a signal.

#include <signal.h>
... in signal.h is the definition
struct sigvec
{
void (*sv_handler) ();
sigset_t sv_mask;
int sv_flags;
};

sigvec (int signum, struct sigvec *vec, struct sigvec *ovec);

signum is the signal whose disposition is to be changed. vec specifies the new disposition of
the signal, and the function returns the old disposition to ovec.

If vec->sv_mask is non-zero, it specifies the signals to block while the signal handler is run-
ning. This is logically ored with the current signal mask, so it works like an implicit sig-
block on entering the signal handler. On exit from the signal handler, the kernel reinstates
the previous signal mask.

flags can consist of:

• SV_ONSTACK specifies to take the signal on alternate signal stack, if one has been
defined.

• SV_INTERRUPT specifies that system calls should not be restarted after the signal handler
has completed.

sigvec is almost identical to the POSIX.1 function sigaction described on page
193 — only the names of the sigvec structure and its members are different. Note, however,
that the flag SV_INTERRUPT has the opposite meaning from the POSIX.1 flag SA_RESTART,
which frequently has the same numeric value.

sigpause

sigpause combines the functionality of sigmask and pause: it first sets the signal mask and
then calls pause to wait for a signal to occur.

#include <sys/signal.h>
int sigpause (sigset_t sigmask);

Typical use of BSD signal functions

Most signal coding consists of initialization. Typical programs set the disposition of the sig-
nals in which they are interested during program initialization, and don’t change them much
after that. For example, with BSD signals you might see code like that in Example 13-2.

Example 13−2:

5 February 2005 02:09

Chapter 13: Signals 191

Example 13−2: (continued)

struct sigvec hupvec = {&hup_handler, 0, 0}; /* disposition of SIGHUP */
struct sigvec iovec = {&io_handler, 1 << SIGHUP, 0}; /* disposition of SIGIO */
sigvec (SIGHUP, &hupvec, NULL); /* instate handlers for SIGHUP, */
sigvec (SIGIO, &iovec, NULL); /* SIGIO, */
sigvec (SIGURG, &iovec, NULL); /* and SIGURG */

Occasionally a process will use sigpause, usually to wait for I/O. In Example 13-3, it blocks
the signals SIGINT and SIGQUIT:

Example 13−3:

sigpause ((1 << SIGINT) | (1 << SIGQUIT)); /* wait for a signal */

System V signal functions
The following signal functions were implemented in System V and are effectively obsolete:
the POSIX.1 functions have replaced them even in System V.3. The syntax of the function
calls is more like the Seventh Edition than POSIX.1. In particular, they do not support the
concept of a signal set. If you do find it necessary to replace System V signals with POSIX.1
signals, there is considerable scope for simplification by merging multiple System V calls
(one per signal) into a single POSIX.1 call.

sigset

sigset is the System V reliable equivalent of signal:

#include <signal.h>
void (*sigset (int sig, void (*disp) (int))) (int);

Unlike signal, the signal is not disabled when the signal handler is executing — instead it is
blocked until the signal handler terminates.

sighold

sighold blocks the delivery of signal sig by setting the corresponding bit in the process sig-
nal mask. Semantically this corresponds to the POSIX.1 function sigprocmask with the
SIG_BLOCK flag, but it can block only one signal per call.

#include <signal.h>
int sighold (int sig);

sigrelse

sigrelse allows the delivery of signal sig by resetting the corresponding bit in the process
signal mask. Semantically this corresponds to the POSIX.1 function sigprocmask with the
SIG_UNBLOCK flag, but it can release only one signal per call.

5 February 2005 02:09

192

#include <signal.h>
int sigrelse (int sig);

sigignore

sigignore sets the disposition of signal sig to SIG_IGN—the kernel ignores the signal.

#include <signal.h>
int sigignore (int sig);

sigpause

#include <signal.h>
int sigpause (int sig);

sigpause enables the delivery of signal sig and then waits for delivery of any signal.

CAUTION This is not the same as the BSD function sigpause described on page 190. BSD
sigpause takes a signal mask as an argument, System V sigpause takes a single signal
number. In addition, BSD sigpause only resets the mask temporarily—until the function
return — whereas System V sigpause leaves it in this condition.

Example of System V signal functions

On page 190, we looked at what typical BSD code might look like. The System V equivalent
of this program might perform the initialization in Example 13-4. System V doesn’t supply
the functionality associated with SIGIO and SIGURG—it uses SIGPOLL instead. See Chapter
14, File systems, pages 209 and 225, for more details of SIGIO and SIGPOLL respectively.

Example 13−4:

sigset (SIGHUP, &hup_handler); /* instate handlers for SIGHUP */
sigset (SIGPOLL, &io_handler); /* and SIGPOLL */

System V sigpause has a different syntax, so we need to set the signal mask explicitly with
calls to sighold, and also to release them explicitly with sigrelse

Example 13−5:

sighold (SIGINT); /* block SIGINT */
sighold (SIGQUIT); /* and SIGQUIT */
sigpause (0); /* wait for something to happen */
sigrelse (SIGINT); /* unblock SIGINT */
sigrelse (SIGQUIT); /* and SIGQUIT */

POSIX.1 signal functions
All modern UNIX implementations claim to support POSIX.1 signals. These are the func-
tions to use if you need to rewrite signal code. They are similar enough to the BSD functions
to be confusing. In particular, the BSD functions pass signal masks as longs, whereas the
POSIX.1 functions pass pointers to the signal mask—this enables the number of signals to
exceed the number of bits in a long.

5 February 2005 02:09

Chapter 13: Signals 193

sigaction

sigaction is the POSIX.1 equivalent of signal. It specifies the disposition of a signal. In
addition, it can specify a mask of signals to be blocked during the processing of a signal, and
a number of flags whose meaning varies significantly from system to system.

#include <signal.h>
struct sigaction
{
void (*sa_handler)(); /* handler */
sigset_t sa_mask; /* signals to block during processing */
int sa_flags;
};

void sigaction (int sig,
const struct sigaction *act,
struct sigaction *oact);

signum is the signal whose disposition is to be changed. act specifies the new disposition of
the signal, and the function returns the old disposition to oact.

If act->sa_mask is non-zero, it specifies which signals to block while the signal handler is
running. This is logically ored with the current signal mask, so it works like an implicit sig-
block on entering the signal handler.

Here’s an overview of the flags:

Table 13−2: sigaction flags

Parameter supported meaning
by

SA_ONSTACK BSD, Sys-
tem V

Take the signal on the alternate signal stack, if one has
been defined. POSIX.1 does not define the concept of
an alternate signal stack—see page 196 for more de-
tails. Linux plans similar functionality with the
SA_STACK flag, but at the time of writing it has not
been implemented.

SA_RESETHAND System V Reset the disposition of this signal to SIG_DFL when
the handler is entered (simulating Seventh Edition se-
mantics). This is the same as the Linux SA_ONESHOT
flag.

SA_ONESHOT Linux Reset the disposition of this signal to SIG_DFL when
the handler is entered (simulating Seventh Edition se-
mantics). This is the same as the System V SA_RE-
SETHAND flag.

5 February 2005 02:09

194

Table 13−2: sigaction flags (continued)

Parameter supported meaning
by

SA_RESTART BSD, Lin-
ux, System
V

Restart system calls after the signal handler has com-
pleted (see page 186).

SA_SIGINFO System V Provide additional parameters to signal handler (see
page 183).

SA_NODEFER System V Don’t block this signal while its signal handler is ac-
tive. This means that the signal handler can be called
from a function which it calls, and thus needs to be
reentrant.

SA_NOCLDWAIT System V Don’t create zombie children on SIGCLD (see page
186).

SA_NOCLDSTOP Linux, Sys-
tem V

Don’t generate SIGCHLD when a child stops, only
when it terminates.

SA_NOMASK Linux Disable the signal mask (allow all signals) during the
execution of the signal handler.

SA_INTERRUPT Linux Disable automatic restart of signals. This corresponds
to the SunOS 4 flag SV_INTERRUPT to sigvec (see
page 190). Currently not implemented.

sigprocmask

sigprocmask manipulates the process signal mask. It includes functional modes that corre-
spond to both of the BSD functions sigblock and sigsetmask:

#include <signal.h>
int sigprocmask (int how, const sigset_t *set, sigset_t *oset)

The parameter how determines how the mask is to be manipulated. It can have the following
values:

Table 13−3: sigprocmask functional modes

Parameter meaning

SIG_BLOCK Create a new signal mask by logically oring the current mask with the speci-
fied set.

SIG_UNBLOCK Reset the bits in the current signal mask specified in set.

SIG_SETMASK Replace the current signal mask by set.

5 February 2005 02:09

Chapter 13: Signals 195

sigpending

#include <signal.h>
int sigpending (sigset_t *set);

sigpending returns the pending signal mask to set. These are the signals pending delivery
but currently blocked, which will be delivered as soon as the signal mask allows. The return
value is an error indication and not the signal mask. This function does not have an equivalent
in any other signal implementation

sigsuspend

#include <sys/signal.h>
int sigsuspend (const sigset_t *sigmask);

sigsuspend temporarily sets the process signal mask to sigmask, and then waits for a sig-
nal. When the signal is received, the previous signal mask is restored on exit from sigsus-
pend. It always returns -1 (error), with errno set to EINTR (interrupted system call).

Example of POSIX.1 signal functions

On page 190, we looked at a simple example of signal setup, and on page 192 we changed it
for System V. Changing it from BSD to POSIX.1 is mainly a matter of changing the names.
We change the calls to sigvec to sigaction, and their parameters are now also of type
struct sigaction instead of struct sigvec.

Unfortunately, there is a problem with this example: POSIX.1 does not define any of the I/O
signals to which this example refers. This is not as bad as it sounds, since there are no pure
POSIX.1 systems, and all systems offer either SIGIO/SIGURG or SIGPOLL. In Example 13-6,
we’ll stick with the BSD signals SIGIO and SIGURG:

Example 13−6:

struct sigaction hupvec = {&hup_handler, 0, 0}; /* disposition of SIGHUP */
struct sigaction iovec = {&io_handler, 1 << SIGHUP, 0}; /* disposition of SIGIO */
sigaction (SIGHUP, &hupvec, NULL); /* instate handlers for SIGHUP, */
sigaction (SIGIO, &iovec, NULL); /* SIGIO, */
sigaction (SIGURG, &iovec, NULL); /* and SIGURG */
sigset_t blockmask; /* create a mask */
sigemptyset (&blockmask); /* clear signal mask */
sigaddset (&blockmask, SIGINT); /* add SIGINT to the mask */
sigaddset (&blockmask, SIGQUIT); /* add SIGQUIT to the mask */

Example 13-7 shows the corresponding call to sigsuspend:

Example 13−7:

sigsuspend (&blockmask); /* let the action begin */

We’ll look at sigemptyset and sigaddset in the next section. It’s unfortunate that this part
of the initialization looks so complicated—it’s just part of the explicit programming style that
POSIX.1 desires. On most systems, you could get the same effect without the calls to
sigemptyset and sigaddset by just defining

5 February 2005 02:09

196

int blockmask = (1 << SIGINT) | (1 << SIGQUIT);
sigpause ((sigset_t *) &blockmask); /* let the action begin */

The only problem with this approach (and it’s a showstopper) is that it’s not portable: on a dif-
ferent system, sigset_t might not map to int.

Signals under Linux
Linux signals are an implementation of POSIX.1 signals, and we discussed some of the
details in the previous section. In addition, it’s good to know that:

• For compatibility, SIGIOT is defined as SIGABRT. POSIX.1 does not define SIGIOT.

• As we saw, POSIX.1 does not supply the signals SIOPOLL, SIGIO and SIGURG. Linux
does, but they it maps all three signals to the same numerical value.

• If you really want to, you can simulate unreliable signals under Linux with sigaction
and the SA_ONESHOT flag.

Other signal-related functions
A significant advantage of the BSD and POSIX.1 signal functions over the Seventh Edition
and System V versions is that they hav e signal set parameters. The down side of signal sets is
that you need to calculate the values of the bits. The following functions are intended to make
manipulating these structures easier. They are usually implemented as macros:

• sigemptyset (sigset_t *set) sets set to the “empty” signal set—in other words,
it excludes all signals.

• sigfillset (sigset_t *set) sets all valid signals in set.

• sigaddset (sigset_t *set, int signum) adds signal signum to set.

• sigdelset (sigset_t *set, int signum) removes signal signum from set.

• sigismember (sigset_t *set, int signum) returns 1 if signum is set in set and
0 otherwise.

sigstack and sigaltstack
As we have already discussed, a signal is like a forced function call. On modern processors
with stack-oriented hardware, the call uses stack space. In some cases, a signal that arrives at
the wrong time could cause a stack overflow. To avoid this problem, both System V and BSD
(but not POSIX.1) allow you to define a specific signal stack. On receipt of a signal, the stack
is switched to the alternate stack, and on return the original stack is reinstated. This can also
occasionally be of interest in debugging: if a program gets a signal because of a reference
beyond the top of the stack, it’s not much help if the signal destroys the evidence.

BSD supplies the sigstack system call:

5 February 2005 02:09

Chapter 13: Signals 197

#include <sys/signal.h>
struct sigstack
{
caddr_t ss_sp; /* Stack address */
int ss_onstack; /* Flag, set if currently

* executing on this stack */
};

int sigstack (const struct sigstack *ss, struct sigstack *oss);

• ss may be NULL. If it is not, the process signal stack is set to ss->ss_sp.

• ss->ss_onstack tells sigstack whether the process is currently executing on the
stack.

• oss may also be NULL. If it is not, information about the current signal stack is returned
to it.

System V supplies the function sigaltstack:

#include <signal.h>
typedef struct
{
char *ss_sp; /* Stack address */
int ss_size; /* Stack size */
int ss_flags; /* Flags, see below */
}

stack_t;
int sigaltstack (const stack_t *ss, stack_t *oss);

• ss may be NULL. If it is not, the process signal stack is set to ss->ss_sp, and its size is
set to ss->ss_size.

• oss may also be NULL. If it is not, information about the current signal stack is returned
to it.

• The structure element ss_flags may contain the following flags:

• SS_DISABLE specifies that the alternate stack is to be disabled. ss_sp and
ss_size are ignored. This flag is also returned in oss when the alternate stack is
disabled.

• SS_ONSTACK (returned) indicates that the process is currently executing on the alter-
nate stack. If this is the case, a modification of the stack is not possible.

setjmp and longjmp
When you return from a function, C language syntax does not give you a choice of where to
return to: you return to the instruction after the call. Occasionally, deep in a series of nested
function calls, you will discover you need to return several levels down the stack—effectively,
you want to perform multiple returns. Standard “structured programming” techniques do not
handle this requirement well, and you can’t just perform a goto to the location, because that
would leave the stack in a mess. The library functions setjmp and longjmp provide this
non-local return.

5 February 2005 02:09

198

What does this have to do with signals? Nothing, really, except that the receipt of a signal is
one of the most common reasons to want to perform a non-local return: a signal can interrupt
processing anywhere where the process signal mask allows it. In many cases, the result of the
signal processing is not related to the processing that was interrupted, and it may be necessary
to abort the processing and perform a non-local return. For example, if you are redisplaying
data in an X window and the size of the window changes, you will get a SIGWINCH signal.
This requires a complete recalculation of what needs to be displayed, so there is no point in
continuing the current redisplay operation.

Non-local returns are implemented with the functions setjmp, longjmp, and friends.
setjmp saves the process context and longjmp restores it—in other words, it returns to the
point in the program where setjmp was called. Unlike a normal function return, a longjmp
return may involve discarding a significant part of the stack. There are a number of related
functions:

#include <setjmp.h>

int setjmp (jmp_buf env);
void longjmp (jmp_buf env, int val);
int _setjmp (jmp_buf env);
void _longjmp (jmp_buf env, int val);
void longjmperror (void);
int sigsetjmp (sigjmp_buf env, int savemask);
void siglongjmp (sigjmp_buf env, int val);

The definitions of jmp_buf and sigjmp_buf are less than illuminating: they are just defined
as an array of ints long enough to contain the information that the system saves. In fact, they
contain the contents of the registers that define the process context — stack pointer, frame
pointer, program counter, and usually a number of other registers.

From the user point of view, setjmp is unusual in that it can return more often than you call
it. Initially, you call setjmp and it returns the value 0. If it returns again, it’s because the
program called longjmp, and this time it returns the value parameter passed to longjmp,
which normally should not be 0. The caller can then use this value to determine whether this
is a direct return from setjmp, or whether it returned via longjmp:

int return_code = setjmp (env);
if (return_code)
{ /* non-0 return code: return from longjmp */
printf ("longjmp returned %d\n", return_code);
}

These functions are confusing enough in their own right, but they also have less obvious fea-
tures:

• It doesn’t make any sense for longjmp to return 0, and System V.4 longjmp will never
return 0, even if you tell it to—it will return 1 instead. BSD longjmp will return what-
ev er you tell it to.

• The setjmp functions save information about the state of the function that called them.
Once this function returns, this information is no longer valid. For example, the

5 February 2005 02:09

Chapter 13: Signals 199

following code will not work:

jmp_buf env; /* save area for setjmp */

int mysetjmp ()
{
int a = 0;
if (a = setjmp (env))
printf ("Bombed out\n");

return a;
}

foo ()
{
...
mysetjmp (); /* catch bad errors */
...
}

The return instruction from mysetjmp to foo frees its local environment. The memory
which it occupies, and which the call to setjump saved, will be overwritten by the next
function call, so a longjmp cannot restore it.

• BSD attempts to determine whether the parameter env to the longjmp functions is
invalid (such as in the example above). If it detects such an error, it will call longjm-
perror, which is intended to inform that the longjmp has failed. If longjmperror
returns, the process is aborted.

If longjmp does not recognize the error, or if the system is not BSD, the resulting
process state is indeterminate. To quote the System V.4 man page: If longjmp is called
even though env was never primed by a call to setjmp, or when the last such call was in a
function that has since returned, absolute chaos is guaranteed. In fact, the system will
probably generate a SIGSEGV or a SIGBUS, but the core dump will probably show noth-
ing recognizable.

• When longjmp returns to the calling function, automatic variables reflect the last modifi-
cations made to them in the function. For example:

int foo ()
{
int a = 3;
if (setjmp (env))
{
printf ("a: %d\n", a);
return a;
}

a = 2;
longjmp (env, 4);
}

At the point where longjmp is called, the variable a has the value 2, so this function will
print a:2.

5 February 2005 02:09

200

• When longjmp returns to the calling function, register variables will normally have the
values they had at the time of the call to setjmp, since they hav e been saved in the jump
buffer. Since optimizers may reassign automatic variables to registers, this can have con-
fusing results. If you compile the example above with gcc and optimize it, it will print
a: 3. This is clearly an unsuitable situation: the solution is to declare a to be volatile
(see Chapter 20, Compilers, page 340 for more information). If we do this, a will always
have the value 2 after the longjmp.

• BSD setjmp includes the signal mask in the state information it saves, but System V.4
setjmp does not save the signal mask. If you want to simulate System V.4 semantics
under BSD, you need to use _setjmp and _longjmp, which do not save the signal mask.
In either system, you can use sigsetjmp, which saves the signal mask only if save is
non-zero. Except for the type of its first parameter, the corresponding siglongjmp is
used in exactly the same manner as longjmp.

• The functions must be paired correctly: if you _setjmp, you must _longjmp, and if you
setjmp you must longjmp.

kill
kill is one of the most badly named system calls in the UNIX system. Its function is to send
a signal:

#include <signal.h>
int kill (pid_t pid, int sig);

Normally, pid is the process ID of the process that should receive the signal sig. There are a
couple of additional tricks, however:

• If pid is 0, the kernel sends sig to all processes whose process group ID is the same as
the group ID of the calling process.

• If pid is -1, most implementations broadcast the signal to all user processes if the signal
is sent by root. Otherwise the signal is sent to all processes with the same effective user
ID. BSD does not broadcast the signal to the calling process, System V does. POSIX.1
does not define this case.

• If pid is < -1, System V and BSD broadcast the signal to all processes whose process
group ID is abs (pid) (abs is the absolute value function). Again, non-root processes
are limited to sending signals to processes with the same effective user ID. BSD can also
perform this function with the call killpg.

Another frequent use of kill is to check whether a process exists: kill (pid, 0) will not
actually send a signal, but it will return success if the process exists and an error indication
otherwise.

5 February 2005 02:09

Chapter 13: Signals 201

killpg
killpg broadcasts a signal to all processes whose process group ID is abs (pid). It is sup-
plied with BSD systems:

#include <sys/signal.h>

int killpg (pid_t pgrp, int sig);

This function sends the signal to the process group of the specified process, assuming that you
have the same effective user ID as the recipient process, or you are super-user. You can use
pid 0 to indicate your own process group. If you don’t hav e this function, you can possibly
replace it with kill(-pgid)—see the section on kill above.

raise
raise is an ANSI C function that enables a process to send a signal to itself. It is defined as

int raise (int signum);

Older systems don’t hav e raise. You can fake it in terms of kill and getpid:

kill (getpid (), signum);

sys_siglist and psignal
At the name implies, sys_siglist is a list and not a function. More exactly, it is an array of
signal names, indexed by signal number, and is typically supplied with BSD-derived systems.
For example,

printf ("Signal %d (%s)\n", SIGSEGV, sys_siglist [SIGSEGV]);

returns

Signal 11 (Segmentation fault)

Some systems supply the function psignal instead of sys_siglist. It prints the text corre-
sponding to a signal. You can get almost the same effect as the printf above by writing

char msg [80];
sprintf (msg, "Signal %d", SIGSEGV);
psignal (SIGSEGV, msg);

This gives the output:

Signal 11: Segmentation fault

5 February 2005 02:09

File systems

UNIX owes much of its success to the simplicity and flexibility of the facilities it offers for
file handling, generally called the file system. This term can have two different meanings:

1. It can be a part of a disk or floppy which can be accessed as a collection of files. It
includes regular files and directories. A floppy is usually a single file system, whereas a
hard disk can be partitioned into several file systems and possibly also non-file system
parts, such as swap space and bad track areas.

2. It can be the software in the kernel which accesses the file systems above.

UNIX has a single file hierarchy, unlike MS-DOS, which uses a separate letter for each file
system (A: and B: for floppies, C: to Z: for local and network accessible disks). MS-DOS
determines the drive letter for the file systems at boot time, whereas UNIX only determines
the location of the root file system / at boot time. You add the other file systems to the direc-
tory tree by mounting them:

$ mount /dev/usr /usr

This mounts the file system on the disk partition /dev/usr onto the directory /usr, so if the root
directory of /dev/usr contains a file called foo, after mounting you can access it as /usr/foo.

Anything useful is bound to attract people who want to make it more useful, so it should come
as no surprise that a large number of “improvements” have been made to the file system in the
course of time. In the rest of this chapter, we’ll look at the following aspects in more detail:

• File systems introduced since the Seventh Edition.

• Differences in function calls, starting on page 206.

• Non-blocking I/O, starting on page 220.

• File locking, starting on page 226.

• Memory-mapped files, starting on page 232.

203

5 February 2005 02:09

204

File system structures
The original Seventh Edition file system is—at least in spirit—the basis for all current file
system implementations. All UNIX file systems differ in one important point from almost all
non-UNIX file systems:

• At the lowest level, the file system refers to files by numbers, so-called inodes. These are
in fact indices in the inode table, a part of the file system reserved for describing files.

• At a higher level, the directory system enables a file to be referred to by a name. This
relationship between a name and an inode is called a link, and it enables a single file to
have multiple names.

One consequence of this scheme is that it is normally not possible to determine the file name
of an open file.

The Seventh Edition file system is no longer in use in modern systems, though the System V
file system is quite similar. Since the Seventh Edition, a number of new file systems have
addressed weaknesses of the old file system:

• New file types were introduced, such as symbolic links, fifos and sockets.

• The performance was improved.

• The reliability was increased significantly.

• The length of the file names was increased.

We’ll look briefly at some of the differences in the next few sections.

The Berkeley Fast File System
The first alternative file system to appear was the Berkeley Fast File System, (FFS), now
called the Unix File System (ufs).* It is described in detail in A Fast File System for UNIX, by
Kirk McKusick, Bill Joy, Sam Leffler and Robert Fabry, and The Design and the Implementa-
tion of the 4.3BSD UNIX Operating System by Sam Leffler, Kirk McKusick, Mike Karels, and
John Quarterman. Its main purpose was to increase speed and storage efficiency. Compared
to the Seventh Edition file system, the following differences are relevant to porting software:

• The maximum file name size was increased from 14 to 255 characters.

• The size of the inode number was increased from 16 to 32 bits, thus allowing an effec-
tively unlimited number of files.

• Symbolic links were introduced.

A symbolic link differs from a normal link in that it points to another file name, and not an
inode number.

* Don’t confuse the Berkeley FFS with SCO’s afs, which is sometimes referred to as a Fast File System.
In fact, afs is very similar to s5fs, though later versions have symbolic links and longer file names.

5 February 2005 02:09

Chapter 14: File systems 205

Symbolic links

A symbolic link is a file whose complete contents are the name of another file. To access via
a symbolic link, you first need to find the directory entry to which it is pointing, then resolve
the link to the inode. By contrast, a traditional link (sometimes called hard link) links a file
name to an inode. Several names can point to the same inode, but it only takes one step to
find the file. This seemingly minor difference has a number of consequences:

• A definite relationship exists between the original file and the symbolic link. In a normal
link, each of the file names have the same relationship to the inode; in a symbolic link,
the symbolic link name refers to the main file name. This difference is particularly obvi-
ous if you remove the original file: with a normal link, the other name still works per-
fectly. With a symbolic link, you lose the file.

• There’s nothing to stop a symbolic link from pointing to another symbolic link—in fact,
it’s quite common, and is moderately useful. It also opens the possibility of looping: if
the second symbolic link points back to the first, the system will give up after a few itera-
tions with the error code ELOOP.

• Symbolic links have two file permissions. In practice, the permission of the link itself is
of little consequence—normally it is set to allow reading, writing and execution for all
users (on an ls -l listing you see lrwxrwxrwx). The permission that counts is still the
permission of the original file.

• Symbolic links allow links to different file systems, even (via NFS) to a file system on a
different machine. This is particularly useful when using read-only media, such as CD-
ROMs. See Chapter 3, Care and feeding of source trees, page 39, for some examples.

• Symbolic links open up a whole new area of possible errors. It’s possible for a symbolic
link to point to a file that doesn’t exist, so you can’t access the file, even if you have a
name and the correct permissions.

Other file systems
Other file systems have emerged since ufs, including:

• The System V file system, s5fs, a minor evolution of the Seventh Edition File system with
some performance and stability modifications, and without multiplexed files. Even in
System V, ufs has replaced it. For all practical purposes, you can consider it to be obso-
lete.

• The Veritas File System, vxfs and the Veritas Journalling File system, vjfs. From the
point of view of porting, they are effectively compatible with ufs.

• The Network File System, NFS,* a method of sharing file systems across networks. It
allows a system to mount file systems connected to a different machine. NFS runs on

* People just don’t seem to be able to agree whether to write file system names in upper case (as befits
an abbreviation), or in lower case (the way most mount commands want to see them). It appears that
NFS is written in upper case more frequently than the other names.

5 February 2005 02:09

206

just about any system, including System V.3 and DOS, but unfortunately not XENIX. It
can offer a partial escape from the “14 character file limit, no symlinks” syndrome. It is
reasonably transparent, but unfortunately does not support device files.

• Remote File Sharing, rfs. This is AT&T’s answer to NFS. Although it has a number of
advantages over NFS, it is not widely used.

Along with new file systems, new file types have evolved. We hav e already looked at sym-
bolic links, which we can think of as a new file type. Others include FIFOs (First In First
Out) and sockets, means of interprocess communications that we looked at in Chapter 12, Ker-
nel dependencies.

In practice, you run into problems only when you port software developed under ufs, vjfs or
vxfs to a s5fs system. If you can, you should change your file system. If you can’t do that,
here are some of the things that could give you headaches:

• File name length. There’s very little you can do about this: if the file names are longer
than your kernel can understand, you have to change them. There are some subtle prob-
lems here: some 14-character file systems accept longer names and just silently truncate
them, others, notably SCO, signal an error. It should be fairly evident what your file sys-
tem does when you try to do it. If your system has the pathconf system call, you can
also interrogate this programmatically (see page 212).

• Lack of symbolic links is another big problem. You may need far-reaching source
changes to get around this problem, which could bite you early on in the port: you may
have an archive containing symbolic links, or the configuration routines might try to cre-
ate them.

Another, more subtle difference is that BSD and System V do not agree on the question of
group ownership. In particular, when creating a file, the group ownership may be that of the
directory, or it may be that of the process that creates the file. BSD always gives the file the
group of the directory; in System V.4, it is the group of the process, unless the “set group ID”
bit is set in the directory permissions, in which case the file will belong to the same group as
the directory.

Function calls
The Seventh Edition left a surprising amount of functionality up to the system library. For
example, the kernel supplied no method to create a directory or rename a file. The methods
that were used to make up for these deficiencies were not always reliable, and in the course of
the time these functions have been implemented as system calls. Current systems offer the
following functions, some of them system calls:

chsize
chsize changes the end of file of an open file.

5 February 2005 02:09

Chapter 14: File systems 207

int chsize (int fd, long size);

It originated in XENIX and has been inherited by System V.3.2 and System V.4. It corre-
sponds both in function and in parameters to the System V version of ftruncate: if the new
end-of-file pointer is larger than the current end-of-file pointer, it will extend the file to the
new size.

dup2
All systems offer the system call dup, which creates a copy of a file descriptor:

int dup (int oldd);

oldd is an open file descriptor; dup returns another file descriptor pointing to the same file.
The problem with dup is that you don’t hav e any control over the number you get back: it’s
the numerically smallest file descriptor currently not in use. In many cases, you want a spe-
cific number. This is what dup2 does:

int dup2 (int oldd, int newd);

With newd you specify the number of the new descriptor. If it’s currently allocated, dup2
closes it first. You can fake this with dup, but it’s painful. The F_DUPFD subfunction of
fcntl does the same thing as dup2, so you can use it if it is available (see page 208). dup2 is
available on nearly every UNIX system, including the Seventh Edition. Somehow some ear-
lier versions of System V don’t hav e it, however—recall that System V derived from the
Sixth Edition, not the Seventh Edition. See Chapter 1, Introduction, page 4.

fchdir and friends
Various systems offer functions with names like fchdir, fchmod, fchown, and fchroot.
These are effectively the same as the corresponding functions chdir, chmod, chown, and
chroot, except they take the number of an open file instead of its name. For example:

#include <sys/stat.h>

int chmod (const char *path, mode_t mode);
int fchmod (int fd, mode_t mode);

You can replace them with a corresponding call to ch* if you know the name of the file asso-
ciated with the file descriptor; otherwise you could be in trouble.

fcntl
All modern versions of UNIX supply a function called fcntl, which is rather like an ioctl
for disk files:

#include <sys/fcntl.h>

int fcntl (int fd, int cmd, union anything arg);

5 February 2005 02:09

208

Table 14-1 shows common command values.

Table 14−1: fcntl commands

Command System Meaning

F_DUPFD all Duplicate a file descriptor, like dup. Return the lowest num-
bered descriptor that is higher than the int value arg.

F_GETFD all Get the close-on-exec flag associated with fd.

F_SETFD all Set the close-on-exec flag associated with fd.

F_FREESP SVR4,
Solaris
2.X

Free storage space associated with a section of the file fd. See
the section on file locking on page 230 for more details.

F_GETFL all Get descriptor status flags (see below).

F_SETFL all Set descriptor status flags to arg.

F_GETOWN BSD Get the process ID or the complement of the process group cur-
rently receiving SIGIO and SIGURG signals.

F_GETOWN SVR4 Get the user ID of the owner of the file. This function is not
documented for Solaris 2.X.

F_SETOWN BSD Set the process or process group to receive SIGIO and SIGURG
signals. If arg is negative, it is the complement of the process
group. If it is positive, it is a process ID.

F_SETOWN SVR4 Set the user ID of the owner of the file. This function is not doc-
umented for Solaris 2.X.

F_GETLK all Get file record lock information. See the section on locking on
page 226, for more details.

F_SETLK all Set or clear a file record lock.

F_SETLKW all Set or clear a file record lock, waiting if necessary until it be-
comes available.

F_CHKFL SVR3 Check legality of file flag changes.

F_RSETLK SVR4 Used by lockd to handle NFS locks.

F_RSETLKW SVR4 Used by lockd to handle NFS locks.

F_RGETLK SVR4 Used by lockd to handle NFS locks.

As you can see from the table, arg is not always supplied, and when it is, its meaning and
type vary depending on the call.

A couple of these functions deserve closer examination:

5 February 2005 02:09

Chapter 14: File systems 209

• F_SETFD and F_GETFD manipulate the close on exec flag. This is normally defined in
sys/fcntl.h as 1. Many programs use the explicit constant 1, which is theoretically non-
portable, but which works with current systems.

By default, exec inherits open files to the new program. If the close on exec flag is set,
exec automatically closes the file.

• F_GETOWN and F_SETOWN have very different meanings for BSD and System V.4. In
BSD, they get and set the process ID that receives SIGIO and SIGURG signals; in System
V.4, they get and set the file owner, which can also be done with stat or fstat. There
is no direct equivalent to the BSD F_SETOWN and F_GETOWN in System V, since the
underlying implementation of non-blocking I/O is different. Instead, you call ioctl
with the I_SETSIG request — see page 225 for more details.

• The request F_CHKFL is defined in the System V.3 header files, but it is not documented.

• F_GETFL and F_SETFL get and set the file status flags that were initally set by open. Ta-
ble 14-2 shows the flags.

Table 14−2: fcntlfile status flags

Flag System Meaning

O_NONBLOCK all Do not block if the operation cannot be performed immediate-
ly. Instead, the read or write call returns -1 with errno set
to EWOULDBLOCK.

O_APPEND all Append each write to the end of file.

O_ASYNC BSD Send a SIGIO signal to the process group when I/O is possi-
ble.

O_SYNC System V write waits for writes to complete before returning.

O_RDONLY System V Open for reading only.

O_RDWR System V Open for reading and writing.

O_WRONLY System V Open for writing only.

getdents and getdirentries
getdents (System V.4) and getdirentries (BSD) are marginally compatible system calls
that read a directory entry in a file-system independent format. Both systems provide a header
file /usr/include/sys/dirent.h, which defines a struct dirent, but unfortunately the struc-
tures are different. In System V, the structure and the call are:

struct dirent
{
ino_t d_ino;
off_t d_off;

5 February 2005 02:09

210

unsigned short d_reclen;
char d_name[1];
};

int getdents(int fd, struct dirent *buf, size_t nbyte);

getdirentries is the corresponding BSD system call:

struct dirent
{
unsigned long d_fileno; /* "file number" (inode number) of entry */
unsigned short d_reclen; /* length of this record */
unsigned short d_namlen; /* length of string in d_name */
char d_name[MAXNAMLEN + 1]; /* name must be no longer than this */

};

int getdirentries(int fd, char *buf, int nbytes, long *basep);

Because of these compatibility problems, you don’t normally use these system calls
directly — you use the library call readdir instead. See the description of readdir on page
213 for more information.

getdtablesize
Sometimes it’s important to know how many files a process is allowed to open. This depends
heavily on the kernel implementation: some systems have a fixed maximum number of files
that can be opened, and may allow you to specify it as a configuration parameter when you
build a kernel. Others allow an effectively unlimited number of files, but the kernel allocates
space for files in groups of about 20. Evidently, the way you find out about these limits
depends greatly on the system you are running:

• On systems with a fixed maximum, the constant NOFILE, usually defined in
/usr/include/sys/param.h, specifies the number of files you can open.

• On systems with a configurable maximum, you will probably also find the constant
NOFILE, only you can’t rely on it to be correct.

• On some systems that allocate resources for files in groups, the size of these groups may
be defined in /usr/include/sys/filedesc.h as the value of the constant NDFILE.

• BSD systems offer the function getdtablesize (no parameters) that returns the maxi-
mum number of files you can open.

• Modern systems offer the getrlimit system call, which allows you to query a number
of kernel limits. See Chapter 12, Kernel dependencies, page 169, for details of getr-
limit.

5 February 2005 02:09

Chapter 14: File systems 211

ioctl
ioctl is a catchall function that performs functions that weren’t thought of ahead of time.
Every system has its own warts on ioctl, and the most common problem with ioctl is a call
with a request that the kernel doesn’t understand. We can’t go into detail about every ioctl
function, but we do examine terminal driver ioctl calls in some depth in Chapter 15, Terminal
drivers, starting on page 252.

lstat
lstat is a version of stat. It is identical to stat unless the pathname specifies a symbolic
link. In this case, lstat returns information about the link itself, whereas stat returns infor-
mation about the file to which the link points. BSD and System V.4 support it, and it should
be available on any system that supports symbolic links.

ltrunc
ltrunc truncates an open file in the same way that ftruncate does, but the parameters are
more reminiscent of lseek:

int ltrunc (int fd, off_t offset, int whence);

fd is the file descriptor. offset and whence specify the new end-of-file value:

• If whence is SEEK_SET, ltrunc sets the file size to offset.

• If whence is SEEK_CUR, ltrunc sets the file size to offset bytes beyond the current
seek position.

• If whence is SEEK_END, ltrunc increases the file size by offset.

No modern mainstream system supports ltrunc. You can replace a call ltrunc (fd, off-
set, SEEK_SET) with ftruncate (fd, offset). If you have calls with SEEK_CUR and
SEEK_END, you need to first establish the corresponding offset with a call to lseek:

ftruncate (fd, lseek (fd, offset, SEEK_CUR)); or SEEK_END

mkdir and rmdir
Older versions of UNIX did not supply a separate system call to create a directory; they used
mknod instead. Unfortunately, this meant that only the superuser could create directories.
Newer versions supply mkdir and rmdir. The syntax is:

#include <sys/stat.h>
int mkdir (const char *path, mode_t mode)

#include <unistd.h>
int rmdir (const char *path)

If your system does not have the mkdir system call, you can simulate it by invoking the

5 February 2005 02:09

212

mkdir utility with the library function system.

open
Since the Seventh Edition, open has acquired a few new flags. All modern versions of UNIX
support most of them, but the following differ between versions:

• O_NDELAY is available only in earlier versions of System V. It applies to devices and
FIFOs (see Chapter 12, Kernel dependencies, page 165, for more information on FIFOs)
and specifies that both the call to open and subsequent I/O calls should return immedi-
ately without waiting for the operation to complete. A call to read returns 0 if no data is
available, which is unfortunately also the value returned at end-of-file. If you don’t hav e
O_NDELAY, or if this ambiguity bugs you, use O_NONBLOCK.

• O_NONBLOCK specifies that both the call to open and subsequent I/O calls should return
immediately without waiting for completion. Unlike O_NDELAY, a subsequent call to
read returns -1 (error) if no data is available, and errno is set to EAGAIN.

• System V.4 and 4.4BSD have a flag, called O_SYNC in System V.4 and O_FSYNC in
4.4BSD, which specifies that each call to write write should write any buffered data to
disk and update the inode. Control does not return to the program until these operations
complete. If your system does not support this feature, you can probably just remove it,
though you lose a little bit of security. To really do the Right Thing, you can include a
call to fsync after every I/O.

pathconf and fpathconf
pathconf and fpathconf are POSIX.1 functions that get configuration information for a file
or directory:

#include <unistd.h>
long fpathconf (int fd, int name);
long pathconf (const char *path, int name);

The parameter name is an int, not a name. Despite what it is called, it specifies the action to
perform:

Table 14−3: pathconf actions

name Function

_PC_LINK_MAX Return the maximum number of links that can be made to an
inode.

_PC_MAX_CANON For terminals, return the maximum length of a formatted in-
put line.

_PC_MAX_INPUT For terminals, return the maximum length of an input line.
_PC_NAME_MAX For directories, return the maximum length of a file name.

5 February 2005 02:09

Chapter 14: File systems 213

Table 14−3: pathconf actions (continued)

name Function

_PC_PATH_MAX Return the maximum length of a relative path name starting
with this directory.

_PC_PIPE_BUF For FIFOs, return the size of the pipe buffer.
_PC_CHOWN_RESTRICTED return TRUE if the chown system call may not be used on this

file. If fd or path refer to a directory, then this information
applies to all files in the directory.

_PC_NO_TRUNC return TRUE if an attempt to create a file with a name longer
than the maximum in this directory would fail with ENAME-
TOOLONG.

_PC_VDISABLE For terminals, return TRUE if special character processing can
be disabled.

read
The function read is substantially unchanged since the Seventh Edition, but note the com-
ments about O_NDELAY and O_NONBLOCK in the section about open on page 212.

rename
Older versions of UNIX don’t hav e a system call to rename a file: instead, they make a link
and then delete the old file. This can cause problems if the process is stopped in the middle of
the operation, and so the atomic rename function was introduced. If your system doesn’t
have it, you can still do it the old-fashioned way.

revoke
revoke is used in later BSD versions to close all file descriptors associated with a special file,
ev en those opened by a different process. It is not available with System V.4. Typically, this
call is used to disconnect serial lines.

After a process has called revoke, a call to read on the device from any process returns an
end-of-file indication, a call to close succeeds, and all other calls fail. Only the file owner
and the super user may use this call.

readdir and friends
In the Seventh Edition, reading a directory was simple: directory entries were 16 bytes long
and consisted of a 2-byte inode number and a 14 byte file name. This was defined in a
struct direct:

struct direct
{
ino_t d_ino;
char d_name[DIRSIZ];

5 February 2005 02:09

214

};

With the introduction of ufs, which supports names of up to 256 characters, it was no longer
practical to reserve a fixed-length field for the file name, and it became more difficult to access
directories. A family of directory access routines was introduced with 4.2BSD:

#include <sys/types.h>
#include <dirent.h>
DIR *opendir (const char *filename);
struct dirent *readdir (DIR *dirp);
long telldir (const DIR *dirp);
void seekdir (DIR *dirp, long loc);
void rewinddir (DIR *dirp);
int closedir (DIR *dirp);
int dirfd (DIR *dirp);

Along with the DIR type, there is a struct dirent that corresponds to the Seventh Edition
struct direct. Unfortunately, System V defines struct dirent and DIR differently
from the original BSD implementation. In BSD, it is

struct dirent /* directory entry */
{
unsigned long d_fileno; /* file number of entry */
unsigned short d_reclen; /* length of this record */
unsigned short d_namlen; /* length of string in d_name */
char d_name [255 + 1]; /* maximum name length */
};

/* structure describing an open directory. */
typedef struct _dirdesc
{
int dd_fd; /* directory file descriptor */
long dd_loc; /* offset in current buffer */
long dd_size; /* amount of data from getdirentries */
char *dd_buf; /* data buffer */
int dd_len; /* size of data buffer */
long dd_seek; /* magic cookie from getdirentries */
} DIR;

System V defines

struct dirent
{
ino_t d_ino; /* inode number of entry */
off_t d_off; /* offset of directory entry */
unsigned short d_reclen; /* length of this record */
char d_name [1]; /* name of file */
};

typedef struct
{
int dd_fd; /* file descriptor */
int dd_loc; /* offset in block */
int dd_size; /* amount of valid data */

5 February 2005 02:09

Chapter 14: File systems 215

char *dd_buf; /* directory block */
} DIR; /* stream data from opendir() */

There are a number of ugly incompatibilities here:

• The field d_fileno in the BSD dirent struct is not a file descriptor, but an inode num-
ber. The System V name d_ino makes this fact clearer, but it introduces a name incom-
patiblity.

• A number of the BSD fields are missing in the System V structures. You can calculate
dirent.d_namlen by subtracting the length of the other fields from
dirent.d_reclen. For example, based on the System V dirent structure above:

d_namlen = dirent.d_reclen
- sizeof (ino_t) /* length of the d_ino field */
- sizeof (d_off) /* length of the d_off field */
- sizeof (unsigned short); /* length of the d_reclen field */

System V.4 has two versions of these routines: a System V version and a BSD version. Many
reports have claimed that the BSD version is broken, though it’s possible that the program-
mers were using the wrong header files. If you do run into trouble, you should make sure the
header files match the flavour of dirent and DIR that you have.

readv and writev
readv and writev perform a so-called scatter read and gather write. These functions are
intended to write to a file a number of pieces of data spread in memory, or to read from a file
to a number of places.

#include <unistd.h>
#include <sys/types.h>
#include <sys/uio.h>
in sys/uio.h is the definition:
struct iovec
{
caddr_t iov_base;
int iov_len;
};

int readv(int d, struct iovec *iov, int iovcnt);
int writev (int d, struct iovec *iov, int iovcnt);

Each iovec element specifies an address and the number of bytes to transfer to or from it.
The total number of bytes transferred would be the sum of the iov_len fields of all iovcnt
elements. readv and writev are available only for BSD and System V.4 systems—if you
don’t hav e them, it’s relatively easy to fake them in terms of read or write. The reasons
why these calls exist at all are:

• Some devices, such as tape drives, write a physical record for each call to write. This
can result in a significant drop in performance and tape capacity.

5 February 2005 02:09

216

• For tape drives, the only alternative is to copy the data into one block before writing.
This, too, impacts performance, though not nearly as much as writing smaller blocks.

• Even for devices that don’t write a physical block per write, it’s faster to do it in the
kernel with just a single function call: you don’t hav e as many context switches.

statfs and statvfs
statfs or statvfs return information about a file system in a format referred to as a generic
superblock. All current UNIX versions supply one or the other of these functions, but the
information they return varies greatly. XENIX, System V.3, BSD, and BSD-derived SunOS
operating systems supply statfs. System V.4 supplies statvfs.

BSD systems define statfs like this:

typedef quad fsid_t;

#define MNAMELEN 32 /* length of buffer for returned name */

struct statfs
{
short f_type; /* type of filesystem (see below) */
short f_flags; /* copy of mount flags */
long f_fsize; /* fundamental file system block size */
long f_bsize; /* optimal transfer block size */
long f_blocks; /* total data blocks in file system */
long f_bfree; /* free blocks in fs */
long f_bavail; /* free blocks avail to non-superuser */
long f_files; /* total file nodes in file system */
long f_ffree; /* free file nodes in fs */
fsid_t f_fsid; /* file system id */
long f_spare[6]; /* spare for later */
char f_mntonname[MNAMELEN]; /* mount point */
char f_mntfromname[MNAMELEN]; /* mounted filesystem */
};

SunOS 4.1.3 defines them as:

#include <sys/vfs.h>

typedef struct
{
long val[2];
} fsid_t;

struct statfs
{
long f_type; /* type of info, zero for now */
long f_bsize; /* fundamental file system block size */
long f_blocks; /* total blocks in file system */
long f_bfree; /* free blocks */
long f_bavail; /* free blocks available to non-super-user */
long f_files; /* total file nodes in file system */
long f_ffree; /* free file nodes in fs */

5 February 2005 02:09

Chapter 14: File systems 217

fsid_t f_fsid; /* file system id */
long f_spare[7]; /* spare for later */
};

System V.3 and XENIX define:

struct statfs
{
short f_fstyp; /* File system type */
long f_bsize; /* Block size */
long f_frsize; /* Fragment size (if supported) */
long f_blocks; /* Total number of blocks on file system */
long f_bfree; /* Total number of free blocks */
long f_files; /* Total number of file nodes (inodes) */
long f_ffree; /* Total number of free file nodes */
char f_fname[6]; /* Volume name */
char f_fpack[6]; /* Pack name */
};

int statfs (const char *path, struct statfs *buf);
int fstatfs (int fd, struct statfs *buf);

System V.4 and Solaris 2.X use statvfs, which is defined as

#include <sys/types.h>
#include <sys/statvfs.h>

struct statvfs
{
u_long f_bsize; /* preferred file system block size */
u_long f_frsize; /* fundamental filesystem block size */
u_long f_blocks; /* total # of blocks on file system */
u_long f_bfree; /* total # of free blocks */
u_long f_bavail; /* # of free blocks available */
u_long f_files; /* total # of file nodes (inodes) */
u_long f_ffree; /* total # of free file nodes */
u_long f_favail; /* # of inodes available */
u_long f_fsid; /* file system id (dev for now) */
char f_basetype [FSTYPSZ]; /* target fs type name */
u_long f_flag; /* bit mask of flags */
u_long f_namemax; /* maximum file name length */
char f_fstr [32]; /* file system specific string */
u_long f_filler [16]; /* reserved for future expansion */
};

#define ST_RDONLY 0x01 /* read-only file system */
#define ST_NOSUID 0x02 /* does not support setuid/setgid */
#define ST_NOTRUNC 0x04 /* does not truncate long file names */

int statvfs (const char *path, struct statvfs *buf);
int fstatvfs (int fd, struct statvfs *buf);

There’s not much to say about these functions: if you have problems, hopefully this informa-
tion will help you figure out what the author intended.

5 February 2005 02:09

218

symlink
symlink creates a symbolic link in file systems that support symbolic links:

#include <unistd.h>

int symlink (const char *real_name, const char *symbolic_name);

A symbolic link symbolic_name is created to the name real_name.

sysfs
sysfs is a System V function that returns information about the kinds of file systems config-
ured in the system. This function has the rather strange property of not being compatible with
ANSI C—the parameters it accepts depend on the function supplied:

#include <sys/fstyp.h>
#include <sys/fsid.h>

int sysfs ((int) GETFSIND, const char *fsname);

This call translates fsname, a null-terminated file-system type identifier, into a file-system
type index.

int sysfs ((int) GETFSTYP, int fs_index, char *buf);

This call translates fs_index, a file-system type index, into a NUL-terminated file-system type
identifier in the buffer pointed to by buf.

int sysfs((int) GETNFSTYP);

This call returns the total number of file system types configured in the system.

truncate and ftruncate
These functions set the EOF pointer of a file. truncate finds the file via its file name, and
ftruncate requires the file number of an open file.

#include <unistd.h>
int truncate (const char *path, off_t length);
int ftruncate (int fd, off_t length);

These functions are available with BSD and System V.4. There is a subtle difference between
the way the BSD and System V.4 versions work: if the file is smaller than the requested
length, System V.4 extends the file to the specified length, while BSD leaves it as it is. Both
versions discard any data beyond the end if the current EOF is longer.

If your system doesn’t hav e these functions, you may be able to perform the same function
with chsize (page 206) or the fcntl function F_FREESP (page 208).

5 February 2005 02:09

Chapter 14: File systems 219

ustat
ustat returns information about a mounted file system, and is supported by System V and
SunOS 4, but not by BSD. The call is:

struct ustat
{
daddr_t f_tfree; /* Total blocks available */
ino_t f_tinode; /* Number of free inodes */
char f_fname [6]; /* File system name */
char f_fpack [6]; /* File system pack name */

int ustat (dev_t dev, struct ustat *buf);

On BSD systems, you can get this information with the statfs system call, which requires a
path name instead of a device number.

utime and utimes
utime is available in all versions of UNIX.

#include <sys/types.h>
#include <utime.h>

int utime (const char *path, const struct utimbuf *times);

utime sets the modification timestamp of the file defined by path to the time specified in
times. In the Seventh Edition, times was required to be a valid pointer, and only the file
owner or root could use the call. All newer versions of UNIX allow times to be a NULL
pointer, in which case the modification timestamp is set to the current time. Any process that
has write access to the file can use utime in this manner. BSD implements this function in
the C library in terms of the function utimes:

#include <sys/time.h>
sys/time.h defines:
struct timeval
{
long tv_sec; /* seconds */
long tv_usec; /* and microseconds */

};
int utimes (const char *file, const struct timeval *times);

#include <sys/types.h>
#include <utime.h>
utime.h defines:
struct utimbuf
{
time_t actime; /* access time */
time_t modtime; /* modification time */
};

int utime (char *path, struct utimbuf *times);

5 February 2005 02:09

220

The difference between utime and utimes is simply in the format of the access time: utime
supplies the time in time_t format, which is accurate to a second, whereas utimes uses the
timeval struct which is (theoretically) accurate to one microsecond. BSD systems supply
the utime function as a library call (which, not surprisingly, calls utimes). On XENIX and
early System V systems you can fake utimes using utime.

Non-blocking I/O
In early versions of UNIX, all device I/O was blocking: if you made a call to read and no
data was available, or if you made a call to write and the device wasn’t ready to accept the
data, the process would sleep until the situation changed. This is still the default behaviour.

Blocking I/O can be restrictive in many situations, and many schemes have been devised to
allow a process to continue execution before the I/O operation completes. On current sys-
tems, you select non-blocking I/O either by supplying the flag O_NONBLOCK to open, or by
calling the fcntl function F_SETFL with the O_NONBLOCK flag (see page 209).

One problem with non-blocking I/O is that you don’t automatically know when a request is
complete. In addition, if you have multiple requests outstanding, you may not really care
which finishes first, you just want to know when one finishes.

Tw o approaches have been used to inform a process when a request completes. One is to call
a function that returns information about current request status, and that may optionally block
until something completes. Traditionally, BSD uses select to perform this function,
whereas System V uses poll.

The other solution is to send a signal (SIGPOLL in System V, SIGIO or SIGURG in BSD) when
the request finishes. In both systems, this has the disadvantage of not supplying any informa-
tion about the request that completed, so if you have more than one request outstanding, you
still need to call select or poll to handle the situation.

select
select is called with the following parameters:

#define FD_SETSIZE 512 my maximum FD count, see below
#include <unistd.h>
#include <sys/types.h>
#include <sys/time.h>

These header files define the structs:

typedef struct fd_set
{
fd_mask fds_bits [howmany (FD_SETSIZE, NFDBITS)];
} fd_set;

struct timeval
{
long tv_sec; /* seconds */
long tv_usec; /* and microseconds */

5 February 2005 02:09

Chapter 14: File systems 221

};

int select (int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
struct timeval *timeout);

The parameters readfds, writefds, and exceptfds are bit maps, one bit per possible file
descriptor. Recall that file descriptors are small non-negative integers. select uses the file
descriptor as an index in the bit map.

This gives us a problem when porting: we don’t know how many files our implementation
supports. In modern systems, there is usually no fixed limit. The solution chosen is a kludge:
“choose a sufficiently high number”. The expression howmany (FD_SETSIZE, NFDBITS)
evaluates to the number of words of NFDBITS required to store FD_SETSIZE bits:

#define howmany(bits, wordsize) ((bits + wordsize - 1) / wordsize)

In 4.4BSD FD_SETSIZE defaults to 256 (in sys/types.h). Nowadays, a server with many
requestors could quite easily exceed that value. Because of this, you can set it yourself: just
define FD_SETSIZE before including /usr/include/sys/types.h, as indicated in the syntax over-
view above.

Setting variables of type fd_mask is tricky, so a number of macros are supplied:

FD_SET (fd, &fdset) /* set bit fd in fdset*/
FD_CLR (fd, &fdset) /* clear bit fd in fdset */
FD_ISSET (fd, &fdset) /* return value of bit fd in fdset */
FD_ZERO (&fdset) /* clear all bits in fdset */

select examines the files specified in readfds for read completion, the files specified in
writefds for write completion and the files specified in exceptfds for exceptional condi-
tions. You can set any of these pointers to NULL if you’re not interested in this kind of event.
The action that select takes depends on the value of timeout:

• If timeout is a NULL pointer, select blocks until a completion occurs on one of the
specified files.

• If both timeout->tv_sec and timeout->tv_usec are set to 0, select checks for
completions and returns immediately.

• Otherwise select waits for completion up to the specified timeout.

select returns -1 on error conditions, and the number of ready descriptors (possibly 0) other-
wise. It replaces the contents of readfds, writefds, and exceptfds with bit maps indicat-
ing which files had a corresponding completion.

So far, we hav en’t even mentioned nfds. Strictly speaking, it’s not needed: you use it to indi-
cate the number of file descriptors that are worth examining. By default, open and dup allo-
cate the lowest possible file descriptors, so select can save a lot of work if you tell it the
highest file number that is worth examining in the bit maps. Since file descriptors start at 0,
the number of file descriptors is 1 higher than the highest file descriptor number.

This baroque function has a couple of other gotchas waiting for you:

5 February 2005 02:09

222

• The state of readfds, writefds, and exceptfds is undefined if select returns 0 or
-1. System V clears the descriptors, whereas BSD leaves them unchanged. Some Sys-
tem V programs check the descriptors even if 0 is returned: this can cause problems if
you port such a program to BSD.

• The return value is interpreted differently in BSD and System V. In BSD, each comple-
tion event is counted, so you can have up to 3 completions for a single file. In System V,
the number of files with completions is returned.

• On completion without timeout, Linux decrements the value of timeout by the time
elapsed since the call: if timeout was initially set to 30 seconds, and I/O completes after
5 seconds, the value of timeout on return from select will be 25 seconds. This can be
of use if you have a number of outstanding requests, all of which must complete in a cer-
tain time: you can call select again for the remaining file descriptors without first cal-
culating how much time remains.

In Linux, this feature can be disabled by setting the STICKY_TIMEOUTS flag in the
COFF/ELF personality used by the process. Other versions of UNIX do not currently
suppport this feature, although both System V and BSD suggest that it will be imple-
mented. For example, the man pages for 4.4BSD state:

Select() should probably return the time remaining from the original timeout, if any, by modi-
fying the time value in place. This may be implemented in future versions of the system.
Thus, it is unwise to assume that the timeout value will be unmodified by the select() call.

If you find a system without select that does support poll, you can probably replace
select with poll—it’s just a SMOP.*

Typical use of select

Programs which use select generally start a number of I/O transfers and then go to some
central place to wait for something to happen. The code could look like:

if (select (maxfnum, /* number of files to check */
&readfds, /* mask of read completions */
&writefds, /* mask of write completions */
&exceptfds, /* mask of exception completions */
NULL) > 0) /* no timeout */

{ /* we have completions, */
int fd;
for (fd = 0; fd < maxfnum; fd++)
{
if (FD_ISSET (fd, readfds)) /* this file has a read completion */
read_completion (fd); /* process it */

if (FD_ISSET (fd, writefds)) /* this file has a write completion */
write_completion (fd); /* process it */

if (FD_ISSET (fd, exceptfds)) /* this file has a exception completion */

* To quote the New Hacker’s Dictionary: SMOP: /S-M-O-P/ [Simple (or Small) Matter of Program-
ming] n. 2. Often used ironically . . . when a suggestion for a program is made which seems easy to
the suggester, but is obviously (to the victim) a lot of work.

5 February 2005 02:09

Chapter 14: File systems 223

exception_completion (fd); /* process it */
}

As we saw above, FD_ISSET is a macro which checks if bit fd is set in the bit mask. The
foo_completion functions do whatever is needed on completion of I/O for this file descrip-
tor. See Advanced Programming in the UNIX environment, by Richard Stevens, for further
information.

poll
poll takes a different approach from select:

#include <stropts.h>
#include <poll.h>

... in poll.h is the definition
struct pollfd
{
int fd; /* file descriptor */
short events; /* requested events */
short revents; /* returned events */
};

int poll (struct pollfd *fds, unsigned long nfds, int timeout);

For each file of interest, you set up a pollfd element with the file number and the events of
interest. events and revents are again bit maps. events can be made up of the following
values:

Table 14−4: poll ev ent codes

Event Meaning

POLLIN Data other than high priority data is available for reading.
POLLRDNORM Normal data* (priority band = 0) is available for reading.
POLLRDBAND Data from a non-zero priority band is available for reading.
POLLPRI High priority data is available for reading.
POLLOUT Normal data may be written without blocking.
POLLWRNORM The same as POLLOUT: normal data may be written without blocking.
POLLWRBAND Priority data (priority band > 0) may be written without blocking.

When it succeeds, poll sets the corresponding bits in revents to indicate which events

* STREAMS recognizes 256 different data priority bands. Normal data is sent with priority band 0, but
urgent data with a higher priority can "leapfrog" normal data. See UNIX Network Programming, by W.
Richard Stevens, for further information.

5 February 2005 02:09

224

occurred. In addition, it may set the following event bits:

Table 14−5: poll result codes

Event Meaning

POLLERR An error has occurred on the device or stream.
POLLHUP A hangup has occurred.
POLLNVAL The specified fd is not open.

Timeout processing is nearly the same as for select, but the parameter timeout is specified
in milliseconds. Since it is an int, not a pointer, you can’t supply a NULL pointer; instead,
you set the value to INFTIM (defined in stropts.h) if you want the call to block.. To summa-
rize:

• If timeout is set to INFTIM, poll blocks until a completion occurs on one of the speci-
fied files.

• If timeout is set to 0, a check is made for completions and poll returns immediately.

• If timeout is non-zero, poll waits for completion up to the specified timeout.

Typical use of poll

Like select, programs which use poll generally start a number of I/O transfers and then go
to some central place to wait for something to happen. In this case, the code could look like:

if (poll (pollfds, maxfnum, NULL) > 0) /* wait for something to complete */
{
int fd;
for (fd = 0; fd < maxfnum; fd++)
{
if (pollfds [fd].revents) /* something completed */
... check the result bits which interest you and
perform the appropriate actions

}
}

The code for starting the request and enabling SIGIO and SIGURG for the line assumes that the
file has been opened and the number stored in an array of file numbers.

rdchk
rdchk is a XENIX function that checks if data is available for reading on a specific file
descriptor:

int rdchk (int fd);

It returns 1 if data is available, 0 if no data is currently available, and -1 on error (and errno
is set). If you don’t hav e it, you can implement it in terms of select or poll.

5 February 2005 02:09

Chapter 14: File systems 225

SIGPOLL
System V systems can arrange to have the signal SIGPOLL delivered when a request com-
pletes. It is not completely general: the file in question must be a STREAMS device, since
only STREAMS drivers generate the SIGPOLL signal.

The ioctl call I_SETSIG enables SIGPOLL. The third parameter specifies a bit mask of
ev ents to wait for:

Table 14−6: I_SETSIG ev ent mask bits

Mask bit Event

S_INPUT A normal priority message is on the read queue.
S_HIPRI A high priority message is on the read queue.
S_OUTPUT The write queue is no longer full.
S_WRNORM The same thing as S_OUTPUT: The write queue is no longer full.
S_MSG A signal message is at the front of the read queue.
S_ERROR An error message has arrived at the stream head.
S_HANGUP A hangup message has arrived at the stream head.
S_RDNORM A normal message is on the read queue.
S_RDBAND An out of band message is on the read queue.
S_WRBAND We can write out of band data.
S_BANDURG In conjunction with S_RDBAND, generate SIGURG instead of SIGPOLL.

In addition to the call to ioctl, the process needs to set up a signal handler for SIG-
POLL—the default disposition is to terminate the process, which is probably not what you
want.

SIGIO
BSD systems have a similar mechanism to SIGPOLL, called SIGIO. Like SIGPOLL, it also has
its restrictions: it can be applied only to terminal or network devices. In addition, when out-
of-band data* arrives, a second signal, SIGURG, is generated. SIGIO and SIGURG are enabled
by the O_ASYNC flag to open and a couple of calls to fcntl—see page 209 for more details:

• First, specify the process or process group that should receive the signals, using the
fcntl subfunction F_SETOWN in order to enable reception of SIGURG.

• If you want to use SIGIO, set the O_ASYNC file status flag with the fcntl subfunction
F_SETFL.

• As with System V, you need to define a signal handler for SIGIO and SIGURG.

* Sockets use the term out-of-band to refer to data which comes in at a higher priority, such as TCP
urgent mode. Like STREAMS priority data, this data will be presented ahead of normal data.

5 February 2005 02:09

226

File locking
The Seventh Edition did not originally allow programs to coordinate concurrent access to a
file. If two users both had a file open for modification at the same time, it was almost impos-
sible to prevent disaster. This is an obvious disadvantage, and all modern versions of UNIX
supply some form of file locking.

Before we look at the functions that are available, it’s a good idea to consider the various
kinds of lock. There seem to be two of everything. First, the granularity is of interest:

file locking applies to the whole file.

range locking applies only to a range of byte offsets. This is sometimes misleadingly
called record locking.

With file locking, no other process can access the file when a lock is applied. With range
locking, multiple locks can coexist as long as their ranges don’t overlap. Secondly, there are
two types of lock:

Advisory locks do not actually prevent access to the file. They work only if every par-
ticipating process ensures that it locks the file before accessing it. If the
file is already locked, the process blocks until it gains the lock.

mandatory locks prevent (block) read and write access to the file, but do not stop it from
being removed or renamed. Many editors do just this, so even manda-
tory locking has its limitations.

Finally, there are also two ways in which locks cooperate with each other:

exclusive locks allow no other locks that overlap the range. This is the only was to per-
form file locking, and it implies that only a single process can access
the file at a time. These locks are also called also called write locks.

shared locks allow other shared locks to coexist with them. Their main purpose is to
prevent an exclusive lock from being applied. In combination with
mandatory range locking, a write is not permitted to a range covered by
a shared lock. These locks are also called read locks.

There are five different kinds of file or record locking in common use:

• Lock files, also called dot locking, is a primitive workaround used by communication pro-
grams such as uucp and getty. It is independent of the system platform, but since it is
frequently used we’ll look at it briefly. It implements advisory file locking.

• After the initial release of the Seventh Edition, a file locking package using the system
call locking was introduced. It is still in use today on XENIX systems. It implements
mandatory range locking.

• BSD systems have the system call flock. It implements advisory file locking.

• System V, POSIX.1, and more recent versions of BSD support range locking via the
fcntl system call. BSD and POSIX.1 systems provide only advisory locking. System
V supplies a choice of advisory or mandatory locking, depending on the file permissions.
If you need to rewrite locking code, this is the method you should use.

5 February 2005 02:09

Chapter 14: File systems 227

• System V also supplies range locking via the lockf library call. Again, it supplies a
choice of advisory or mandatory locking, depending on the file permissions.

The decision between advisory and mandatory locking in System V depends on the file per-
missions and not on the call to fcntl or lockf. The setgid bit is used for this purpose. Nor-
mally, in executables, the setgid bit specifies that the executable should assume the effective
group ID of its owner group when execed. On files that do not have group execute permis-
sion, it specifies mandatory locking if it is set, and advisory locking if it is not set. For exam-
ple,

• A file with permissions 0764 (rwxrw-r--) will be locked with advisory locking, since
its permissions include neither group execute nor setgid.

• A file with permissions 0774 (rwxrwxr--) will be locked with advisory locking, since
its permissions don’t include setgid.

• A file with permissions 02774 (rwxrwsr--) will be locked with advisory locking, since
its permissions include both group execute and setgid.

• A file with permissions 02764 will be locked with mandatory locking, since it has the
setgid bit set, but group execute is not set. If you list the permissions of this file with ls
-l, you get rwxrwlr-- on a System V system, but many versions of ls, including BSD
and GNU versions, will list rwxrwSr--.

Lock files
Lock files are the traditional method that uucp uses for locking serial lines. Serial lines are
typically used either for dialing out, for example with uucp, or dialing in, which is handled by
a program of the getty family. Some kind of synchronization is needed to ensure that both of
these programs don’t try to access the line at the same time. The other forms of locking we
describe only apply to disk files, so we can’t use them. Instead, uucp and getty create lock
files. A typical lock file will have a name like /var/spool/uucp/LCK..ttyb, and for some reason
these double periods in the name have led to the term dot locking.

The locking algorithm is straightforward: if a process wants to access a serial line /dev/ttyb, it
looks for a file /var/spool/uucp/LCK..ttyb. If it finds it, it checks the contents, which specify
the process ID of the owner, and checks if the owner still exists. If it does, the file is locked,
and the process can’t access the serial line. If the file doesn’t exist, or if the owner no longer
exists, the process creates the file if necessary and puts its own process ID in the file.

Although the algorithm is straightforward, the naming conventions are anything but standard-
ized. When porting software from other platforms, it is absolutely essential that all programs
using dot locking should be agreed on the lock file name and its format. Let’s look at the lock
file names for the device /dev/ttyb, which is major device number 29, minor device number 1.
The ls -l listing looks like:

$ ls -l /dev/ttyb
crw-rw-rw- 1 root sys 29, 1 Feb 25 1995 /dev/ttyb

5 February 2005 02:09

228

Table 14-7 describes common conventions:

Table 14−7: uucp lock file names and formats

System Name PID format

4.3BSD /usr/spool/uucp/LCK..ttyb binary, 4 bytes
4.4BSD /var/spool/uucp/LCK..ttyb binary, 4 bytes
System V.3 /usr/spool/uucp/LCK..ttyb ASCII, 10 bytes
System V.4 /var/spool/uucp/LK.032.029.001 ASCII, 10 bytes

A couple of points to note are:

• The digits in the lock file name for System V.4 are the major device number of the disk
on which /dev is located (32), the major device number of the serial device (29), and the
minor device number of the serial device (1).

• Some systems, such as SCO, have multiple names for terminal lines, depending on the
characteristics which it should exhibit. For example, /dev/tty1a refers to a line when run-
ning without modem control signals, and /dev/tty1A refers to the same line when running
with modem control signals. Clearly only one of these lines can be used at the same
time: by convention, the lock file name for both devices is /usr/spool/uucp/LCK..tty1a.

• The locations of the lock files vary considerably. Apart from those in the table, other
possibilities are /etc/locks/LCK..ttyb, /usr/spool/locks/LCK..ttyb, and
/usr/spool/uucp/LCK/LCK..ttyb.

• Still other methods exist. See the file policy.h in the Taylor uucp distribution for further
discussion.

Lock files are unreliable. It is quite possible for two processes to go through this algorithm at
the same time, both find that the lock file doesn’t exist, both create it, and both put their
process ID in it. The result is not what you want. Lock files should only be used when there
is really no alternative.

locking system call
locking comes from the original implementation introduced during the Seventh Edition. It
is still available in XENIX. It implements mandatory range locking.

int locking (int fd, int mode, long size);

locking locks a block of data of length size bytes, starting at the current position in the file.

5 February 2005 02:09

Chapter 14: File systems 229

mode can have one of the following values:

Table 14−8: locking operation codes

Parameter Meaning

LK_LOCK Obtain an exclusive lock for the specified block. If any part is not avail-
able, sleep until it becomes available.

LK_NBLCK Obtain an exclusive lock for the specified block. If any part is not avail-
able, the request fails, and errno is set to EACCES.

LK_NBRLCK Obtains a shared lock for the specified block. If any part is not available,
the request fails, and errno is set to EACCES.

LK_RLCK Obtain a shared lock for the specified block. If any part is not available,
sleep until it becomes available.

LK_UNLCK Unlock a previously locked block of data.

flock
flock is the weakest of all the lock functions. It provides only advisory file locking.

#include <sys/file.h>
(defined in sys/file.h)
#define LOCK_SH 1 /* shared lock */
#define LOCK_EX 2 /* exclusive lock */
#define LOCK_NB 4 /* don’t block when locking */
#define LOCK_UN 8 /* unlock */

int flock (int fd, int operation);

flock applies or removes a lock on fd. By default, if a lock cannot be granted, the process
blocks until the lock is available. If you set the flag LOCK_NB, flock returns immediately
with errno set to EWOULDBLOCK if the lock cannot be granted.

fcntl locking
On page 207 we discussed fcntl, a function that can perform various functions on open files.
A number of these functions perform advisory record locking, and System V also offers the
option of mandatory locking. All locking functions operate on a struct flock:

struct flock
{
short l_type; /* lock type: read/write, etc. */
short l_whence; /* type of l_start */
off_t l_start; /* starting offset */
off_t l_len; /* len = 0 means until end of file */
long l_sysid; /* Only SVR4 */
pid_t l_pid; /* lock owner */

5 February 2005 02:09

230

};

In this structure,

• l_type specifies the type of the lock, listed in Table 14-9.

Table 14−9: flock.l_type values

value Function

F_RDLCK Acquire a read or shared lock.
F_WRLCK Acquire a write or exclusive lock.
F_UNLCK Clear the lock.

• The offset is specified in the same way as a file offset is specified to lseek:
flock->l_whence may be set to SEEK_SET (offset is from the beginning of the file),
SEEK_CUR (offset is relative to the current position) or SEEK_EOF (offset is relative to the
current end of file position).

All fcntl lock operations use this struct, which is passed to fcntl as the arg parameter. For
example, to perform the operation F_FOOLK, you would write:

struct flock flock;
error = fcntl (myfile, F_FOOLK, &flock);

The following fcntl operations relate to locking:

• F_GETLK gets information on any current lock on the file. when calling, you set the
fields flock->l_type, flock->l_whence, flock->l_start, and flock->l_len to
the value of a lock that we want to set. If a lock that would cause a lock request to block
already exists, flock is overwritten with information about the lock. The field
flock->l_whence is set to SEEK_SET, and flock->l_start is set to the offset in the
file. flock->l_pid is set to the pid of the process that owns the lock. If the lock can be
granted, flock->l_type is set to F_UNLK and the rest of the structure is left unchanged,

• F_SETLK tries to set a lock (flock->l_type set to F_RDLCK or F_WRLCK) or to reset a
lock (flock->l_type set to F_UNLCK). If a lock cannot be obtained, fcntl returns
with errno set to EACCES (System V) or EAGAIN (BSD and POSIX).

• F_SETLKW works like F_SETLK, except that if the lock cannot be obtained, the process
blocks until it can be obtained.

• System V.4 has a further function, F_FREESP, which uses the struct flock, but in fact
has nothing to do with file locking: it frees the space defined by flock->l_whence,
flock->l_start, and flock->l_len. The data in this part of the file is physically
removed, a read access returns EOF, and a write access writes new data. The only reason
this operation uses the struct flock (and the reason we discuss it here) is because
struct flock has suitable members to describe the area that needs to be freed. Many
file systems allow data to be freed only if the end of the region corresponds with the end
of file, in which case the call can be replaced with ftruncate.

5 February 2005 02:09

Chapter 14: File systems 231

lockf
lockf is a library function supplied only with System V. Like fcntl, it implements advisory
or mandatory range locking based on the file permissions. In some systems, it is implemented
in terms of fcntl. It supports only exclusive locks:

#include <unistd.h>

int lockf (int fd, int function, long size);

The functions are similar to those supplied by fcntl. l_type specifies the type of the lock,
as shown in Table 14-10.

Table 14−10: lockf functions

value Function

F_ULOCK Unlock the range.
F_LOCK Acquire exclusive lock.
F_TLOCK Lock if possible, otherwise return status.
F_TEST Check range for other locks.

lockf does not specify a start offset for the range to be locked. This is always the current
position in the file—you need to use lseek to get there if you are not there already. The fol-
lowing code fragments are roughly equivalent:

flock->ltype = F_WRLK; /* lockf only supports write locks */
flock->whence = SEEK_SET;
flock->l_start = filepos; /* this was set elsewhere */
flock->l_len = reclen; /* the length to set */
error = fcntl (myfile, F_GETLK, &flock);

...and

lseek (myfile, SEEK_SET, filepos); /* Seek the correct place in the file */
error = lockf (myfile, F_LOCK, reclen);

Which locking scheme?
As we’ve seen, file locking is a can of worms. Many portable software packages offer you a
choice of locking mechanisms, and your system may supply a number of them. Which do
you take? Here are some rules of thumb:

• fcntl locking is the best choice, as long as your system and the package agree on what it
means. On System V.3 and V.4, fcntl locking offers the choice of mandatory or advi-
sory locking, whereas on other systems it only offers advisory locking. If your package
expects to be able to set mandatory locking, and you’re running, say, 4.4BSD, the pack-
age may not work correctly. If this happens, you may have to choose flock locking
instead.

5 February 2005 02:09

232

• If your system doesn’t hav e fcntl locking, you will almost certainly have either flock
or lockf locking instead. If the package supports it, use it. Pure BSD systems don’t
support lockf, but some versions simulate it. Since lockf can also be used to require
mandatory locking, it’s better to use flock on BSD systems and lockf on System V
systems.

• You’ll probably not come across any packages which support locking. If you do, and
your system supports it, it’s not a bad choice.

• If all else fails, use lock files. This is a very poor option, though—it’s probably a better
idea to consider a more modern kernel.

Memory-mapped files
Some systems offer a feature called memory mapped files: the data of a file is mapped to a
particular area of memory, so you can access it directly rather than by calling read and
write. This increases performance, since the virtual memory system is more efficient than
the file system. The following function calls are used to implement memory mapping:

• You need to open the file with the file system calls open or creat.

• mmap maps the file into memory.

• msync ensures that updates to the file map are flushed back to the file.

• munmap frees the mapped file data.

In the following sections, we’ll look at these functions more closely.

mmap
mmap maps a portion of a file to memory.

#include <sys/types.h>
#include <sys/mman.h>

caddr_t mmap (caddr_t addr, int len, int prot, int flags, int fd, off_t offset);

• addr specifies the address at which the file should be mapped. Unless you have good
reasons to do otherwise, you should specify it as NULL and let mmap choose a suitable
address itself. If mmap can’t place the memory where it is requested, the subsequent be-
haviour depends on the flag MAP_FIXED—see the discussion of flags below.

• len specifies the length to map.

• prot specifies the accessibility of the resultant memory region, and may be any combi-
nation of PROT_EXEC (pages may be executed), PROT_READ (pages may be read) or
PROT_WRITE (pages may be written). In addition, System V.4 allows the specification
PROT_NONE (pages may not be accessed at all).

5 February 2005 02:09

Chapter 14: File systems 233

• flags is a bit map that specifies properties of the mapped region. It consists of a combi-
nation of the following bit-mapped flags:

− MAP_ANON specifies that the memory is not associated with any specific file. In
many ways, this is much the same thing as a call to malloc: you get an area of
memory with nothing in it. This flag is available only in BSD.

− MAP_FILE specifies that the region is mapped from a regular file or character-spe-
cial device. This flag, supplied only in BSD, is really a dummy and is used to indi-
cate the opposite of MAP_ANON: if you don’t hav e it, ignore it.

− MAP_FIXED specifies that mmap may use only the specified addr as the address of
the region. The 4.4BSD man page discourages the use of this option.

− MAP_INHERIT permits regions to be inherited across exec system calls. Only sup-
ported in 4.4BSD.

− MAP_PRIVATE specifies that modifications to the region are private: if the region is
modified, a copy of the modified pages is created and the modifications are copied
to them. This flag is used in debuggers and to perform page-aligned memory allo-
cations: malloc doesn’t allow you to specify the address you want. In some sys-
tems, such as System V.4, MAP_PRIVATE is defined as 0, so this is the default behav-
iour. In others, such as SunOS 4, you must specify either MAP_PRIVATE or
MAP_SHARED—otherwise the call fails with an EINVAL error code.

− MAP_SHARED specifies that modifications to the region are shared: the virtual mem-
ory manager writes any modifications back to the file.

• On success, mmap returns the address of the area that has been mapped. On failure, it
returns -1 and sets errno.

msync
Writes to the memory mapped region are treated like any other virtual memory access: the
page is marked dirty, and that’s all that happens immediately. At some later time the memory
manager writes the contents of memory to disk. If this file is shared with some other process,
you may need to explicitly flush it to disk, depending on the underlying cooperation between
the file system and the virtual memory manager.

System V.4 maps the pages at a low lev el, and the processes share the same physical page, so
this problem does not arise. BSD and older versions of System V keep separate copies of
memory mapped pages for each process that accesses them. This makes sharing them diffi-
cult. On these systems, the msync system call is used to flush memory areas to disk. This
solution is not perfect: the possibility still exists that a concurrent read of the area may get a
garbled copy of the data. To quote the 4.4BSD man pages:

Any required synchronization of memory caches also takes place at this time. Filesystem oper-
ations on a file that is mapped for shared modifications are unpredictable except after an
msync.

5 February 2005 02:09

234

Still, it’s better than nothing. The call is straightforward:

void msync (caddr_t addr, int len);

addr must be specified and must point to a memory mapped page; len may be 0, in which
case all modified pages are flushed. If len is not 0, only modified pages in the area defined
by addr and len are flushed.

munmap
munmap unmaps a memory mapped file region:

void munmap (caddr_t addr, int len);

It unmaps the memory region specified by addr and len. This is not necessary before termi-
nating a program—the region is unmapped like any other on termination—and it carries the
danger that modifications may be lost, since it doesn’t flush the region before deallocating.
About the only use is to free the area for some other operation.

5 February 2005 02:09

Terminal Drivers

Terminal I/O is a real can of worms. In the Seventh Edition, it wasn’t exactly simple. To
quote the terminal driver man page,

The terminal handler has clearly entered the race for ever-greater complexity and generality.
It’s still not complex and general enough for TENEX fans.

Since then, things have gone steadily downhill.

The most important terminal driver versions are:

• The “old” terminal driver, derived from the Seventh Edition terminal driver. This driver
is still in use in XENIX and older BSD versions.

• The System III/System V terminal driver, also called termio.

• The POSIX.1 termios routines, derived from termio.

Most modern systems support more than one kind of serial line driver. This is known as the
line discipline. Apart from terminal drivers, the most important line disciplines for asynchro-
nous lines are SLIP (Serial Line Internet Protocol) and PPP (Point to Point Protocol). These
are very implementation dependent, and we won’t discuss them further. The line discipline is
set with the TIOCSETD ioctl, described on page 259.

It’s beyond the scope of this book to explain all the intricacies and kludges that have been
added to terminal handlers over the decades. Advanced Programming in the UNIX environ-
ment, by Richard Stevens, gives you a good overview of current practice, and you shouldn’t
really want to know about older versions unless you have trouble with them. In the following
discussion, we’ll concentrate on the four areas that cause the most headaches when porting
programs:

• The externally visible data structures used for passing information to and from the driver.

• A brief overview of the different operational modes (raw, cooked, cbreak, canonical and
non-canonical).

235

5 February 2005 02:09

236

• The ioctl request interface to the terminal driver, one of the favourite problem areas in
porting terminal-related software.

• The POSIX.1 termios request interface.

The documentation of every driver describes at least two different modes of treating terminal
input. The Seventh Edition and BSD drivers define three:

• In raw mode, the read system call passes input characters to the caller exactly as they
are entered. No processing takes place in the driver. This mode is useful for programs
which want to interpret characters themselves, such as full-screen editors.

• cooked mode interprets a number of special characters, including the new line character
\n. A read call will terminate on a \n. This is the normal mode used by programs that
don’t want to be bothered by the intricacies of terminal programming.

• cbreak mode performs partial interpretation of the special characters, this time not
including \n. cbreak mode is easier to use than raw mode, and is adequate for many pur-
poses. It’s a matter of taste whether you prefer this to raw mode or not.

By contrast, termio and termios specify two different processing modes for terminal input:

• canonical* mode performs significant processing on input before passing it to the calling
function. Up to 21 input special characters may be used to tell the driver to do things as
varied as start and stop output, to clear the input buffer, to send signals to the process and
to terminate a line in a number of different ways.

• Non-canonical input mode, in which the driver does not interpret input characters spe-
cially (this corresponds roughly to BSD cbreak mode).

In fact, subdividing the terminal operation into modes is an oversimplification: a large number
of flags modify the operational modes. Later in the chapter we’ll look at how to set these
modes with termios.

Typical terminal code
This is all rather abstract: let’s look at a simple example: a program wants to read a single
character from the terminal. To do this, it needs to set raw or non-canonical mode, read the
character, and then reinstate the previous mode. For the old terminal driver, the code looks
like Example 15-1:

Example 15−1:

struct sgttyb initial_status; /* initial termios flags */
struct sgttyb raw_status; /* and the same with icanon reset */

ioctl (stdin, TIOCGETA, &initial_status); /* get attributes */
raw_status = initial_status; /* make a copy */
raw_status.sg_flags |= RAW; /* and set raw mode */

* The word canon refers to (religious) law: the intent is that this should be the correct or standard way to
handle input characters. See the New Hacker’s Dictionary for a long discussion of the term.

5 February 2005 02:09

Chapter 15: Terminal Drivers 237

Example 15−1: (continued)

ioctl (stdin, TIOCSETN, &raw_status); /* set the new terminal flags */
puts ("? ");
if ((reply = getchar ()) != ’\n’) /* get a reply */
puts ("\n"); /* and finish the line */

ioctl (stdin, TIOCSETN, &initial_status); /* set the old terminal flags */

With the System V termio driver, it would look like Example 15-2:

Example 15−2:

struct termio initial_status; /* initial termio flags */
struct termio noicanon_status; /* and the same with icanon reset */

ioctl (stdin, TCGETA, &initial_status); /* get attributes */
noicanon_status = initial_status; /* make a copy */
noicanon_status.c_lflag &= ˜ICANON; /* and turn icanon off */
ioctl (stdin, TCSETA, &noicanon_status); /* set non-canonical mode */
puts ("? ");
if ((reply = getchar ()) != ’\n’) /* get a reply */
puts ("\n"); /* and finish the line */

ioctl (stdin, TCSETA, &initial_status)) /* reset old terminal mode */

Don’t rely on code like this to be termio code: termios code can look almost identical. Cor-
rect termios code uses the termios functions which we will look at on page 265, and looks like
Example 15-3:

Example 15−3:

struct termios initial_status; /* initial termios flags */
struct termios noicanon_status; /* and the same with icanon reset */

tcgetattr (stdin, &initial_status)l /* get current attributes */
noicanon_status = initial_status; /* make a copy */
noicanon_status.c_lflag &= ˜ICANON; /* and turn icanon off */

tcsetattr (stdin, TCSANOW, &noicanon_status); /* set non-canonical mode */
puts ("? ");
if ((reply = getchar ()) != ’\n’) /* get a reply */
puts ("\n"); /* and finish the line */

tcsetattr (stdin, TCSANOW, &initial_status); /* reset old terminal mode */

Terminology
Before we start, it’s a good idea to be clear about a few terms that are frequently confused:

• All terminal drivers buffer I/O in two queues, an input queue and an output queue. The
input queue contains characters that the user has entered and the process has not yet read.
The output queue contains characters that the process has written but that have not yet
been output to the terminal. These queues are maintained inside the terminal driver.
Don’t confuse them with buffers maintained in the process data space by the stdio rou-
tines.

5 February 2005 02:09

238

• The term flush can mean to discard the contents of a queue, or to wait until they hav e all
been output to the terminal. Most of the time it means to discard the contents, and that’s
how we’ll use it in this chapter.

• The term drain means to wait until the contents of the output queue have been written to
the terminal. This is also one of the meanings of flush.

• Special characters, frequently called control characters, are input characters that cause
the terminal driver to do something out of the ordinary. For example, CTRL-D usually
causes the terminal driver to return an end-of-file indication. The term special charac-
ters is the better term, since you can set them to characters that are not ASCII control
characters. For example, even today, the default erase character in System V is #: it’s a
special character, but not an ASCII control character.

• The baud rate of a modem is the number of units of information it can transmit per sec-
ond. Modems are analogue devices that can represent multiple bits in a single unit of
information — modern modems encode up to 6 bits per unit. For example, a modern
V.32bis modem will transfer 14400 bits per second, but runs at only 2400 baud. Baud
rates are of interest only to modem designers.

• As the name indicates, the bit rate of a serial line indicates how many bits it can transfer
per second. Bit rates are often erroneously called baud rates, even in official documenta-
tion. The number of bytes transferred per second depends on the configuration: nor-
mally, an asynchronous serial line will transmit one start bit and one stop bit in addition
to the data, so it transmits 10 bits per byte.

• break is an obsolescent method to signal an unusual condition over an asynchronous line.
Normally, a continuous voltage or current is present on a line except when data is being
transferred. Break effectively breaks (disconnects) the line for a period between .25 and
.5 second. The serial hardware detects this and reports it separately. One of the prob-
lems with break is that it is intimately related to the serial line hardware.

• DCE and DTE mean data communication equipment and data terminal equipment
respectively. In a modem connection, the modem is the DCE and both terminal and
computer are DTEs. In a direct connect, the terminal is the DTE and the computer is the
DCE. Different cabling is required for these two situations.

• RS-232, also known as EIA-232, is a standard for terminal wiring. In Europe, it is some-
times referred to as CCITT V.24, though V.24 does not in fact correspond exactly to
RS-232. It defines a number of signals, listed in Table 15-1.

Table 15−1: RS-232 signals

5 February 2005 02:09

Chapter 15: Terminal Drivers 239

Table 15−1: RS-232 signals (continued)

RS-232
name pin purpose

PG 1 Protective ground. Used for electrical grounding only.
TxD 2 Transmitted data.
RxD 3 Received data.
RTS 4 Request to send. Indicates that the device has data to output.
CTS 5 Clear to send. Indicates that the device can receive input. Can be used

with RTS to implement flow control.
DSR 6 Data set ready. Indicates that the modem (data set in older parlance) is

powered on.
SG 7 Signal ground. Return for the other signals.
DCD 8 Carrier detect. Indicates that the modem has connection with another

modem.
DTR 20 Data terminal ready. Indicates that the terminal or computer is ready to

talk to the modem.
RI 22 Ring indicator. Raised by a modem to indicate that an incoming call is

ringing.

For more details about RS-232, see RS-232 made easy, second edition by Martin Seyer.

Terminal data structures
In this section, we’ll take a detailed look at the data structures you’re likely to encounter when
porting software from a different platform. I hav e included typical literal values for the
macros. Don’t ever use these values! They’re not guaranteed to be correct for every imple-
mentation, and they’re included only to help you if you find that the program includes literals
rather than macro names. When writing code, always use the names.

Old terminal driver definitions
In the Seventh Edition, most ioctl calls that took a parameter referred to a struct sgttyb,
which was defined in /usr/include/sgtty.h:

struct sgttyb
{
char sg_ispeed; /* input bit rate code */
char sg_ospeed; /* output bit rate code */
char sg_erase; /* erase character */
char sg_kill; /* kill character */
int sg_flags; /* Terminal flags (see Table 15-3) */
char sg_nldly; /* delay after \n character */
char sg_crdly; /* delay after \r character */
char sg_htdly; /* delay after tab character */
char sg_vtdly; /* delay after vt character */
char sg_width; /* terminal line width */

5 February 2005 02:09

240

char sg_length; /* terminal page length */
};

The bit rates in sg_ispeed and sg_ospeed are encoded, and allow only a certain number of
speeds:

Table 15−2: Seventh Edition bit rate codes

Parameter value meaning

B0 0 hang up phone
B50 1 50 bits/second
B75 2 75 bits/second
B110 3 110 bits/second
B134 4 134.5 bits/second
B150 5 150 bits/second
B200 6 200 bits/second
B300 7 300 bits/second
B600 8 600 bits/second
B1200 9 1200 bits/second
B1800 10 1800 bits/second
B2400 11 2400 bits/second
B4800 12 4800 bits/second
B9600 13 9600 bits/second
EXTA 14 External A
EXTB 15 External B

The field sg_flags contains a bit map specifying the following actions:

Table 15−3: Seventh Edition tty flags

Parameter value value meaning
(octal) (hex)

XTABS 02000 0x400 Replace output tabs by spaces.
INDCTL 01000 0x200 Echo control characters as ˆa, ˆb etc.
SCOPE 0400 0x100 Enable neat erasing functions on display terminals

("scopes").
EVENP 0200 0x80 Even parity allowed on input (most terminals).
ODDP 0100 0x40 Odd parity allowed on input.
RAW 040 0x20 Raw mode: wake up on all characters, 8-bit interface.
CRMOD 020 0x10 Map CR into LF; echo LF or CR as CR-LF.
ECHO 010 0x8 Echo (full duplex).
LCASE 04 0x4 Map upper case to lower on input.
CBREAK 02 0x2 Return each character as soon as typed.

5 February 2005 02:09

Chapter 15: Terminal Drivers 241

Table 15−3: Seventh Edition tty flags (continued)

Parameter value value meaning
(octal) (hex)

TANDEM 01 0x1 Automatic flow control.

A second structure defines additional special characters that the driver interprets in cooked
mode. They are stored in a struct tchars, which is also defined in /usr/include/sgtty.h:

struct tchars
{
char t_intrc; /* interrupt (default DEL) */
char t_quitc; /* quit (default ˆ\) */
char t_startc; /* start output (default ˆQ)*/
char t_stopc; /* stop output (default ˆS) */
char t_eofc; /* end-of-file (default ˆD) */
char t_brkc; /* input delimiter (like nl, default -1) */
};

Each of these characters can be disabled by setting it to -1 (octal 0377), as is done with the
default t_brkc. This means that no key can invoke its effect.

termio and termios structures
The System V terminal driver defines a struct termio to represent the data that the Seventh
Edition driver stored in sgttyb and tchars. In POSIX.1 termios, it is called struct
termios. Both are very similar: compared to the Seventh Edition, they appear to have been
shorter by moving the special characters, which in sgttyb were stored as individual ele-
ments, into the array c_cc:

struct termio
{
unsigned short c_iflag; /* input modes */
unsigned short c_oflag; /* output modes */
unsigned short c_cflag; /* control modes */
unsigned short c_lflag; /* local modes */
char c_line; /* line discipline */
unsigned char c_cc [NCC]; /* special chars */
long c_ispeed; /* input speed, some termios */
long c_ospeed; /* output speed, some termios */
};

The variable c_line specifies the line discipline. It is defined in termio, and not in the
POSIX.1 termios standard, but some System V versions of termios have it anyway. NCC is the
number of special characters. We’ll look at them after the flags.

Not all versions of System V define the members c_ispeed and c_ospeed. Instead, they
encode the line speed in c_cflag. The correct way to access them is via the termios utility
functions cfgetispeed, cfsetispeed, cfgetospeed, cfsetospeed and cfsetspeed,
which we will discuss on page 265. To make matters worse, some older System V termios
implementations supplied c_ispeed and c_ospeed, but the implementation didn’t use them.
In addition, many systems cannot handle different input and output speeds, so setting one

5 February 2005 02:09

242

speed automatically sets the other as well.

c_iflag, c_oflag, c_cflag and c_lflag (a total of 128 possible bits) take the place of the
Seventh Edition sg_flags.

c_iflag

c_iflag specifies how the driver treats terminal input:

Table 15−4: termios c_iflag bits

Param- value value meaning
eter (SysV) (BSD)

IGNBRK 0x1 0x1 Ignore break condition.
BRKINT 0x2 0x2 Generate a SIGINT signal on break.
IGNPAR 0x4 0x4 Ignore characters with parity errors.
PARMRK 0x8 0x8 If a parity or framing error occurs on input, accept it

and insert into the input stream the three-character se-
quence 0xff, 0, and the character received.

INPCK 0x10 0x10 Enable input parity check.
ISTRIP 0x20 0x20 Strip bit 7 from character.
INLCR 0x40 0x40 Map NL to CR on input.
IGNCR 0x80 0x80 Ignore CR.
ICRNL 0x100 0x100 Map CR to NL on input.
IUCLC1 0x200 Map uppercase to lowercase on input.
IXON 0x400 0x200 Enable output flow control with XON/XOFF (CTRL-

S/CTRL-Q).
IXANY 0x800 0x800 Allow any character to restart output after being

stopped by CTRL-S.
IXOFF 0x1000 0x400 Enable input flow control with XON/XOFF.
CTSFLOW1 0x2000 Enable CTS protocol for a modem line.
RTSFLOW1 0x4000 Enable RTS signaling for a modem line.
IMAXBEL2 0x2000 0x2000 Ring the terminal bell when the input queue is full.

1 not in POSIX.1 or BSD.
2 not in POSIX.1 and some versions of System V.

A couple of these flags are not portable:

• IUCLC maps lower case to upper case: if you enter a lower case character, it is converted
to an upper case character and echos that way. Many people consider this a bug, not a
feature. There’s no good way to implement this on a non-System V system. If you
really want to have this behaviour, you’ll have to turn off echo and provide an echo from
the program.

• CTSFLOW and RTSFLOW specify flow control via the RS-232 signals CTS and RTS. These
are control flags, of course, not input flags, but some versions of System V put them here

5 February 2005 02:09

Chapter 15: Terminal Drivers 243

for backward compatibility with XENIX. Some other versions of System V don’t define
them at all, and BSD systems and yet other System V systems supply them in c_cflags,
where they belong.

c_oflag specifies the behaviour on output.

Table 15−5: termios c_oflag bits

Param- value value meaning
eter (SysV) (BSD)

OPOST 0x1 0x1 Postprocess output.
OLCUC1 0x2 Map lower case to upper on output.
ONLCR 0x4 0x2 Map NL to CR-NL on output.
OCRNL 0x8 0x8 Map CR to NL on output.
ONOCR 0x10 0x10 Suppress CR output at column 0.
ONLRET 0x20 0x20 NL performs CR function.
OFILL 0x40 0x40 Use fill characters for delay.
OFDEL 0x80 0x80 Fill is DEL if set, otherwise NUL.*

NLDLY1 0x100 Mask bit for new-line delays:
NL0 0x0 No delay after NL.
NL1 0x100 One character delay after NL.

CRDLY1 0x600 Mask bits for carriage-return delays:
CR0 0x0 No delay after CR.
CR1 0x200 One character delay after CR.
CR2 0x400 Tw o characters delay after CR.
CR3 0x600 Three characters delay after CR.

TABDLY1 0x18000 Mask bits for horizontal-tab delays:
TAB0 0x0 No delay after HT.
TAB1 0x800 One character delay after HT.
TAB2 0x1000 Tw o characters delay after HT.
TAB3 0x1800 Expand tabs to spaces.

BSDLY1 0x2000 Mask bit for backspace delays:
BS0 0x0 No delay after BS.
BS1 0x2000 One character delay after BS.

VTDLY1 0x4000 Mask bit for vertical-tab delays:
VT0 0x0 No delay after VT.
VT1 0x4000 One character delay after VT.

FFDLY1 0x8000 Mask bit for form-feed delays:
FF0 0x0 No delay after FF.
FF1 0x8000 One character delay after FF.

* The ASCII character represented by binary 0 (the C character constant \0). Not to be confused with
the null pointer, which in C is usually called NULL.

5 February 2005 02:09

244

Table 15−5: termios c_oflag bits (continued)
1 not in POSIX.1 or BSD.

A number of these flags are not portable:

• System V supplies a large number of flags designed to compensate for mechanical delays
in old hardcopy terminal equipment. It’s doubtful that any of this is needed nowadays.
If you do have an unbuffered hardcopy terminal connected to your BSD machine, and it
loses characters at the beginning of a line or a page, you should check whether CTS/RTS
flow control might not help. Or you could buy a more modern terminal.

• OLCUC is obsolete, of course, but if that old hardcopy terminal also doesn’t support
lower-case, and it doesn’t upshift lower-case characters automatically, you’ll have to do it
programatically.

c_cflag specifies hardware control aspects of the terminal interface:

Table 15−6: termios c_cflag bits

Parameter value value meaning
(SysV) (BSD)

CBAUD1 0xf Bit rate
B0 0 Hang up
B50 0x1 50 bps
B75 0x2 75 bps
B110 0x3 110 bps
B134 0x4 134 bps
B150 0x5 150 bps
B200 0x6 200 bps
B300 0x7 300 bps
B600 0x8 600 bps
B1200 0x9 1200 bps
B1800 0xa 1800 bps
B2400 0xb 2400 bps
B4800 0xc 4800 bps
B9600 0xd 9600 bps
B19200 0xe 19200 bps
EXTA 0xe External A
B38400 0xf 38400 bps
EXTB 0xf External B

CSIZE 0x30 0x300 Mask bits for character size:
CS5 0x0 0x0 5 bits
CS6 0x10 0x100 6 bits
CS7 0x20 0x200 7 bits
CS8 0x30 0x300 8 bits

5 February 2005 02:09

Chapter 15: Terminal Drivers 245

Table 15−6: termios c_cflag bits (continued)

Parameter value value meaning
(SysV) (BSD)

CSTOPB 0x40 0x400 Send two stop bits (if not set, send 1 stop bit).
CREAD 0x80 0x800 Enable receiver.
PARENB 0x100 0x1000 Enable parity.
PARODD 0x200 0x2000 Set odd parity if set, otherwise even.
HUPCL 0x400 0x4000 Hang up on last close.
CLOCAL 0x800 0x8000 Disable modem control lines.
RCV1EN3 0x1000 see below
XMT1EN3 0x2000 see below
LOBLK3 0x4000 Block layer output.
CTSFLOW1 0x10000 CTS flow control of output.
CCTS_OFLOW2 0x10000 CTS flow control of output.
CRTSCTS2 0x10000 CTS flow control of output (alternative symbol).
RTSFLOW1 0x20000 RTS flow control of input.
CRTS_IFLOW2 0x20000 RTS flow control of input.
MDMBUF2 0x100000 Flow control output via Carrier.

1 speeds are encoded differently in BSD—see below.
2 not in POSIX.1 or System V.
3 not in POSIX.1 or BSD.

Again, some of these flags are only available on specific platforms:

• RCV1EN and XMT1EN are defined in some System V header files, but they are not docu-
mented.

• BSD systems supply CRTS_IFLOW and CCTS_OFLOW for RS-232 flow control. Some
System V systems supply RTSFLOW and CTSFLOW to mean the same thing, but other Sys-
tem V systems don’t support it, and other systems again put these flags in c_iflag.

c_lflag specifies the behaviour specific to the line discipline. This flag varies so much
between System V and BSD that it’s easier to put them in separate tables. Table 15-7
describes the standard System V line discipline, and Table 15-8 describes the standard BSD
line discipline,

Table 15−7: System V termios c_lflag bits

Param- value meaning
eter

ISIG 0x1 Allow the characters INTR, QUIT, SUSP and DSUSP to generate signals.
ICANON 0x2 Enable canonical input (erase and kill processing).

5 February 2005 02:09

246

Table 15−7: System V termios c_lflag bits (continued)

Param- value meaning
eter

XCASE 0x4 In conjunction with ICANON, map upper/lower case to an upper-case only
terminal. Lower case letters are displayed in upper case, and upper case
letters are displayed with a preceding backslash (\).

ECHO 0x8 Enable echo.
ECHOE 0x10 Erase character removes character from screen.
ECHOK 0x20 Echo NL after line kill character.
ECHONL 0x40 Echo NL even if echo is off.
NOFLSH 0x80 Disable flush after interrupt or quit.

Here’s the BSD version:

Table 15−8: BSD termios c_lflag bits

Parameter value meaning

ECHOKE1 0x1 Line kill erases line from screen.
ECHOE 0x2 Erase character removes character from screen.
ECHOK 0x4 Echo NL after line kill character.
ECHO 0x8 Enable echo.
ECHONL 0x10 Echo NL even if echo is off.
ECHOPRT1 0x20 Visual erase mode for hardcopy.
ECHOCTL1 0x40 Echo control chars as ˆ(Char).
ISIG 0x80 Enable signals INTR, QUIT, SUSP and DSUSP.
ICANON 0x100 Enable canonical input (erase and kill processing).
ALTWERASE1 0x200 Use alternate WERASE algorithm. Instead of erasing back to

the first blank space, erase back to the first non-alphanumeric
character.

IEXTEN 0x400 Enable DISCARD and LNEXT.
EXTPROC1 0x800 This flag carries the comment "External processing". Apart

from that, it appears to be undocumented.
TOSTOP 0x400000 If a background process attempts output, send a SIGTTOU to

it. By default this stops the process.
FLUSHO1 0x800000 Status return only: output being flushed.
NOKERNINFO1 0x2000000 Prevent the STATUS character from displaying information on

the foreground process group.
PENDIN1 0x20000000 Pending input is currently being redisplayed.
NOFLSH 0x80000000 Don’t flush input and output queues after receiving SIGINT or

SIGQUIT.

1 not in POSIX.1.

5 February 2005 02:09

Chapter 15: Terminal Drivers 247

Converting the c_lflag bits is even more of a problem:

• XCASE is part of the System V upper case syndrome that we saw with c_iflag and
c_oflag.

• BSD offers a number of echo flags that are not available in System V. In practice, this is
a cosmetic difference in the way input works. Consider a BSD program with a line like:

term.c_lflag = ECHOKE | ECHOE | ECHOK | ECHOCTL;

This will fail to compile under System V because ECHOKE and ECHOCTL are undefined.
You can probably ignore these flags, so the way to fix it would be something like:

term.c_lflag = ECHOE | ECHOK
#ifdef ECHOKE

| ECHOKE
#endif
#ifdef ECHOCTL

| ECHOCTL
#endif

;

Note the lonesome semicolon on the last line.

• The flags FLUSHO and PENDIN are status flags that cannot be set. There’s no way to get
this information in System V.

• NOKERNINFO refers to the STATUS character, which we will see below. This is not sup-
ported in System V.

special characters

The number of special characters has increased from 6 in the Seventh Edition (struct
tchars) to 8 in termio and a total of 20 in termios (though 4 of the termios special characters
are “reserved”— in other words, not defined). Despite this number, there is no provision for
redefining CR and NL.

Table 15−9: termio and termios special characters

Index in Index in
c_cc Default c_cc Default

Name (SysV) (SysV) (BSD) (BSD) Function

CR (none) \r (none) \r Go to beginning of line. In
canonical and cooked modes,
complete a read request.

NL (none) \n (none) \n End line. In canonical and
cooked modes, complete a read
request.

VINTR 0 DEL 8 CTRL-C Generate an SIGINT signal.

5 February 2005 02:09

248

Table 15−9: termio and termios special characters (continued)

Index in Index in
c_cc Default c_cc Default

Name (SysV) (SysV) (BSD) (BSD) Function

VQUIT 1 CTRL-| 9 CTRL-| Generate a SIGQUIT signal.
VERASE 2 #4 3 DEL Erase last character.
VKILL 3 @4 5 CTRL-U Erase current input line.
VEOF 4 CTRL-D 0 CTRL-D Return end-of-file indication.
VEOL 5 NUL 1 \377 Alternate end-of-line character.
VEOL21 6 NUL 2 \377 Alternate end-of-line character.
VSWTCH1, 2 7 NUL shl layers: switch shell.
VSTART 8 CTRL-Q 12 CTRL-Q Resume output after stop.
VSTOP 9 CTRL-S 13 CTRL-S Stop output.
VSUSP 10 CTRL-Z 10 CTRL-Z Generate a SIGTSTP signal

when typed.
VDSUSP1 11 CTRL-Y 11 CTRL-Y Generate a SIGTSTP signal

when the character is read.
VREPRINT1 12 CTRL-R 6 CTRL-R Redisplay all characters in the

input queue (in other words,
characters that have been input
but not yet read by any
process). The term "print" re-
calls the days of harcopy termi-
nals.

VDISCARD1 13 CTRL-O 15 CTRL-O Discard all terminal output until
another DISCARD character ar-
rives, more input is typed or the
program clears the condition.

VWERASE1 14 CTRL-W 4 CTRL-W Erase the preceding word.
VLNEXT1 15 CTRL-V 14 CTRL-V Interpret next character literally.
VSTATUS1,3 18 \377 Send a SIGINFO signal to the

foreground process group. If
NOKERNINFO is not set, the ker-
nel also prints a status message
on the terminal.

1 not in POSIX.1.
2 shl layers are a System V method of multiplexing several shells on one terminal. They are
not supported on BSD systems.
3 not supported on System V.
4 These archaic, teletype-related values are still the default for System V. The file
/usr/include/sys/termio.h contains alternative definitions (VERASE set to CTRL-H and VKILL
set to CTRL-X), but these need to be specifically enabled by defining the preprocessor variable
_NEW_TTY_CTRL.

5 February 2005 02:09

Chapter 15: Terminal Drivers 249

You will frequently see these names without the leading V. For example, the stty program
refers to VQUIT as QUIT.

Terminal driver modes
Depending on the driver, it looks as if you have a choice of two or three operational modes on
input:

• With the termio and termios drivers, you have the choice of canonical and non-canonical
mode.

• With the old terminal driver, you have the choice of raw, cooked and cbreak modes.

This distinction is not as clear-cut as it appears: in fact, you can set up both drivers to do most
things you want.

Canonical mode
To quote Richard Stevens’ Advanced Programming in the UNIX environment: “Canonical
mode is simple”—it takes only about 30 pages for a brief description. For an even simpler
description: everything in the rest of this chapter applies to canonical mode unless otherwise
stated.

Non-canonical mode
Non-canonical mode ignores all special characters except INTR, QUIT, SUSP, STRT, STOP,
DISCARD and LNEXT. If you don’t want these to be interpreted, you can disable them by
setting the corresponding entry in tchars to _POSIX_VDISABLE.

The terminal mode has a strong influence on how a read from a terminal completes. In canon-
ical mode, a read request will complete when the number of characters requested has been
input, or when the user enters one of the characters CR, NL, VEOL or (where supported)
VEOL2. In non-canonical mode, no special character causes a normal read completion. The
way a read request completes depends on two variables, MIN and TIME. MIN represents a
minimum number of characters to be read, and TIME represents a time in units of 0.1 second.
There are four possible cases:

1. Both MIN and TIME are non-zero. In this case, a read will complete when either MIN
characters have been entered or TIME/10 seconds have passed since a character was
entered. The timer starts when a character is entered, so at least one character must be
entered for the read to complete.

2. MIN is non-zero, TIME is zero. In this case, the read will not complete until MIN char-
acters have been entered.

3. MIN is zero and TIME is non-zero. The read will complete after entering one character
or after TIME/10 seconds. In the latter case, 0 characters are returned. This is not the
same as setting MIN to 1 and leaving TIME as it is: in this case, the read would not

5 February 2005 02:09

250

complete until at least one character is entered.

4. Both MIN and TIME are set to 0. In this case, read returns immediately with any char-
acters that may be waiting.

If MIN is non-zero, it overrides the read count specified to read, even if read requests less
than MIN characters: the remaining characters are kept in the input queue for the next read
request. This can have the unpleasant and confusing effect that at first nothing happens when
you type something in, and then suddenly multiple reads complete.

Non-canonical mode does not interpret all the special characters, but it needs space to store
MIN and TIME. In 4.4BSD, two of the reserved characters are used for this purpose. Most
other implementations, including XENIX, System V and some older BSDs do it differently,
and this can cause problems:

• The value of VEOF is used for VMIN. This value is normally CTRL-D, which is decimal
4: if you switch from canonical to non-canonical mode and do not change MIN, you may
find that a read of a single character will not complete until you enter a total of four char-
acters.

• The value of VEOL is used for TIME. This is normally 0.

Raw mode
Raw mode does almost no interpretation of the input stream. In particular, no special charac-
ters are recognized, and there is no timeout. The non-canonical mode variables MIN and
TIME do not exist. The result is the same as setting MIN to 1 and TIME to 0 in non-canonical
mode.

Cooked mode
The cooked mode of the old terminal driver is essentially the same as canonical mode, within
the limitations of the driver data structures—termios offers some features that are not avail-
able with the old terminal driver, such as alternate end-of-line characters.

Cbreak mode
To quote the Seventh Edition manual:

CBREAK is a sort of half-cooked (rare?) mode.

In terms of termios, it is quite close to non-canonical mode: the only difference is that cbreak
mode turns off echo. Non-canonical mode does not specify whether echo is on or off.

Emulating old terminal driver modes
Table 15-10 illustrates how you can define old driver terminal modes with termios. You’ll see
that a large number of entries are not defined: raw and cbreak modes do not specify how these

5 February 2005 02:09

Chapter 15: Terminal Drivers 251

parameters are set. You can set them to whatever you feel appropriate.

Table 15−10: Defining terminal modes with termios

Flag raw cbreak
mode mode

BRKINT off on

INPCK off on

ISTRIP off not defined

ICRNL off not defined

IXON off not defined

OPOST off not defined

CSIZE CS8 not defined

PARENB off not defined

ECHO off off

ISIG off not defined

ICANON off off

IEXTEN off not defined

VMIN 1 1

VTIME 0 0

gtty and stty
You may still occasionally run into the system calls stty and gtty, which are leftovers from
the Seventh Edition. You can replace stty with the ioctl function TIOCSETP, and you can
replace gtty with the ioctl request TIOCGETP. Read more on both these requests on page
257.

The Linux terminal driver
Linux has the great advantage of being a recent development, so it doesn’t hav e a number of
the warts of older terminal drivers. It goes to some trouble to be compatible, however:

• In addition to POSIX.1 termios, the kernel also directly supports System V termio.

• The library libbsd.a includes ioctl calls for the old terminal driver, which Linux users
call the BSD driver.

• The only line discipline you can expect to work under Linux is the standard tty line disci-
pline N_TTY.

5 February 2005 02:09

252

ioctl
ioctl is the file system catchall: if there isn’t any other function to do the job, then somebody
will bend ioctl to do it. Nowhere is this more evident than in terminal I/O handling. As a
result of this catchall nature, it’s not easy to represent ioctl parameters in C.

We’ll look at the semantics first. The ioctl function call takes three parameters:

1. A file number.

2. A request, which we’ll look at in more detail in the next section.

3. When present, the meaining is defined by the request. It could be an integer, another
request code or a pointer to some structure defined by the request.

ioctl request codes
The key to understanding ioctl is the request code. Request codes are usually subdivided
into a number of fields. For example, 4.4BSD defines four fields:

Bit 31 29 28 16 15 8 7 0

type length ioctl type function subcode

• The first three bits specify the type of parameter. IOC_VOID (0x20 in the first byte) spec-
ifies that the request takes no parameters, IOC_OUT (0x40 in the first byte) specifies that
the parameters are to be copied out of the kernel (in other words, that the parameters are
to be returned to the user), and IOC_IN (0x80 in the first byte) specifies that the parame-
ters are to be copied in to the kernel (they are to be passed to ioctl).

• The next 13 bits specify the length of the parameter in bytes.

• The next byte specifies the type of request. This is frequently a mnemonic letter. In
4.4BSD, this field is set to the lower-case letter t for terminal ioctls.

• Finally, the last byte is a number used to identify the request uniquely.

This encoding depends heavily on the operating system. Other systems (especially, of course,
16 bit systems) encode things differently, but the general principle remains the same.

Both the request code and the third parameter, where present, do not map easily to C language
data structures. As a result, the definition of the function varies significantly. For example,
XENIX and BSD declare it as:

#include <sys/ioctl.h>
int ioctl (int fd, unsigned long request, char *argp)

and System V.4 has

5 February 2005 02:09

Chapter 15: Terminal Drivers 253

#include <unistd.h>
int ioctl (int fs, int request, /* arg */ ...);

Strictly speaking, since the request code is not a number, both int and unsigned long are
incorrect, but they both do the job.

When debugging a program, it’s not always easy to determine which request has been passed
to ioctl. If you have the source code, you will see something like

ioctl (stdin, TIOCGETA, &termstat);

Unfortunately, a number of ioctl calls are embedded in libraries to which you probably
don’t hav e source, but you can figure out what’s going on by setting a breakpoint on ioctl.
In this example, when you hit the breakpoint, you will see something like:

(gdb) bt
#0 ioctl (file=0, request=1076655123, parameter=0xefbfd58c "") at ioctl.c:6
#1 0x10af in main () at foo.c:12

The value of request looks completely random. In hexadecimal it starts to make a little
more sense:

(gdb) p/x request
$1 = 0x402c7413

If we compare this with the request code layout in the example above, we can recognize a fair
amount of information:

• The first byte starts with 0x40, IOC_OUT: the parameter exists and defines a return value.

• The next 13 bits are 0x2c, the length to be returned (this is the length of struct
termios).

• The next byte is 0x74, the ASCII character t, indicating that this is a terminal ioctl
request.

• The last byte is 0x13 (decimal 19).

It’s easy enough to understand this when it’s deciphered like this, but doing it yourself is a lot
different. The first problem is that there is no agreed place where the ioctl requests are
defined. The best place to start is in the header file sys/ioctl.h, which in the case of 4.4BSD
will lead you to the file sys/ioccom.h (sys/sys/ioccom.h in the 4.4BSD distribution). Here you
will find code like:

#define IOCPARM_MASK 0x1fff /* parameter length, at most 13 bits */
#define IOCPARM_LEN(x) (((x) >> 16) & IOCPARM_MASK)
#define IOCBASECMD(x) ((x) & ˜(IOCPARM_MASK << 16))
#define IOCGROUP(x) (((x) >> 8) & 0xff)
#define IOC_VOID 0x20000000 /* no parameters */
#define IOC_OUT 0x40000000 /* copy out parameters */
#define IOC_IN 0x80000000 /* copy in parameters */

These define the basic parts of the request. Next come the individual types of request:

5 February 2005 02:09

254

#define _IOC(inout,group,num,len) \ pass a structure of length len as parameter
(inout | ((len & IOCPARM_MASK) << 16) | ((group) << 8) | (num))

#define _IO(g,n) _IOC(IOC_VOID, (g), (n), 0) No parameter
#define _IOR(g,n,t) _IOC(IOC_OUT, (g), (n), sizeof(t)) Return parameter from kernel
#define _IOW(g,n,t) _IOC(IOC_IN, (g), (n), sizeof(t)) Pass parameter to kernel
/* this should be _IORW, but stdio got there first */
#define _IOWR(g,n,t) _IOC(IOC_INOUT, (g), (n), sizeof(t)) Pass and return parameter

With these building blocks, we can now understand the real definitions:

#define TIOCSBRK _IO(’t’, 123) /* set break bit */
#define TIOCCBRK _IO(’t’, 122) /* clear break bit */
#define TIOCSDTR _IO(’t’, 121) /* set data terminal ready */
#define TIOCCDTR _IO(’t’, 120) /* clear data terminal ready */
#define TIOCGPGRP _IOR(’t’, 119, int) /* get pgrp of tty */
#define TIOCSPGRP _IOW(’t’, 118, int) /* set pgrp of tty */

These define four requests without parameters (_IO), a request that returns an int parameter
from the kernel (_IOR), and a request that passes an int parameter to the kernel (_IOW).

Terminal ioctls
For a number of reasons, it’s difficult to categorize terminal driver ioctl calls:

• As the terminal driver has changed over the course of time, some implementors have
chosen to keep the old ioctl codes and give them new parameters. For example, the
Seventh Edition call TIOCGETA returned the terminal parameters to a struct sgttyb.
The same call in System V returns the values to a struct termio, and in 4.4BSD it
returns the values to a struct termios.

• The documentation for many ioctl calls is extremely hazy: although System V supports
the old terminal driver discipline, the documentation is very scant. Just because an
ioctl function is not documented in the man pages doesn’t mean that it isn’t supported:
it’s better to check in the header files (usually something like sys/termio.h or
sys/termios.h).

• Many ioctl calls seem to duplicate functionality. There are minor differences, but even
they are treacherous. For example, in the Seventh Edition the TIOCSETA function drains
the output queue and discards the content of the input queue before setting the terminal
state. The same function in 4.4BSD performs the function immediately. To get the Sev-
enth Edition behaviour, you need to use TIOCSETAF. The behaviour in System V is not
documented, which means that you may be at the mercy of the implementor of the device
driver: on one system, it may behave like the Seventh Edition, on another like 4.4BSD.

In the following sections, we’ll attempt to categorize the most frequent ioctl functions in the

5 February 2005 02:09

Chapter 15: Terminal Drivers 255

kind of framework that POSIX.1 uses for termios. Here’s an index to the mess:

Table 15−11: ioctl parameters

Name Function Parameter 3 Page

TCFLSH Flush I/O int * 263
TCGETA Get terminal state struct termio * 258
TCGETS Get terminal state struct termios * 258
TCSBRK Drain output, send break int * 261
TCSETA Set terminal state struct termio * 259
TCSETAF Drain I/O and set state struct termio * 259
TCSETAW Drain output and set state struct termio * 259
TCSETS Set terminal state struct termios * 258
TCSETSF Drain I/O and set state struct termios * 258
TCSETSW Drain output and set state struct termios * 258
TCXONC Set flow control int * 262
TIOCCBRK Clear break (none) 260
TIOCCDTR Clear DTR (none) 260
TIOCCONS Set console int * 264
TIOCDRAIN Drain output queue (none) 262
TIOCFLUSH Flush I/O int * 263
TIOCGETA Get current state struct termio * 256
TIOCGETC Get special chars struct tchars * 258
TIOCGETD Set line discipline int *ldisc 259
TIOCGETP Get current state struct sgttyb * 257
TIOCGPGRP Get process group ID pid_t * 263
TIOCGSID Get session ID pid_t * 264
TIOCGSOFTCAR Get DCD indication int * 265
TIOCGWINSZ Get window size struct winsize * 259
TIOCHPCL Hang up on clear (none) 258
TIOCMBIC Clear modem state bits int * 261
TIOCMBIS Set modem state bits int * 261
TIOCMGET Get modem state int * 261
TIOCMSET Set modem state int * 261
TIOCNXCL Clear exclusive use (none) 264
TIOCNOTTY Drop controlling terminal (none) 264
TIOCOUTQ Get output queue length int * 262
TIOCSBRK Send break (none) 260
TIOCSCTTY Set controlling tty (none) 263
TIOCSDTR Set DTR (none) 260
TIOCSETA Set terminal state struct sgttyb * 257
TIOCSETAF Drain I/O and set state struct termios * 257
TIOCSETAW Drain output and set state struct termios * 257

5 February 2005 02:09

256

Table 15−11: ioctl parameters (continued)

Name Function Parameter 3 Page

TIOCSETC Set special chars struct tchars * 258
TIOCSETD Set line discipline int *ldisc 259
TIOCSETN Set state immediately struct sgttyb * 257
TIOCSETP Get current state struct sgttyb * 257
TIOCSPGRP Set process group ID pid_t * 263
TIOCSSOFTCAR Set DCD indication int * 265
TIOCSTART Start output (none) 262
TIOCSTI Simulate input char * 262
TIOCSTOP Stop output (none) 262
TIOCSWINSZ Set window size struct winsize * 259

Terminal attributes
One of the most fundamental groups of ioctl requests get and set the terminal state. This
area is the biggest mess of all. Each terminal driver has its own group of requests, the request
names are similar enough to be confusing, different systems use the same request names to
mean different things, and even in termios, there is no agreement between BSD and System V
about the names of the requests.

Table 15-12 gives an overview.

Table 15−12: Comparison of sgttyb, termio and termios ioctls

Function sgtty termio termios termios

request request request request
(BSD) (System V)

Get current state TIOCGETA TCGETA TIOCGETA TCGETS

Get special chars TIOCGETC TCGETA TIOCGETA TCGETS

Set terminal state immediately TIOCSETN TCSETA TIOCSETA TCSETS

Drain output and set state TCSETAW TIOCSETAW TCSETSW

Drain I/O and set state TIOCSETA TCSETAF TIOCSETAF TCSETSF

Set special chars TIOCSETC TCSETAF TIOCSETAF TCSETSF

TIOCGETA

The call ioctl (fd, TIOCGETA, term) places the current terminal parameters in the struc-
ture term. The usage differs depending on the system:

• In the Seventh Edition, term was of type struct sgttyb *.

• In System V, term is of type struct termio *.

5 February 2005 02:09

Chapter 15: Terminal Drivers 257

• In 4.4BSD, term is of type struct termios *.

• The Seventh Edition request TIOCSETN only sets the terminal state described in the first
6 bytes of struct sgettyb.

TIOCSETA

The call ioctl (fd, TIOCSETA, term) sets the current terminal state from term. The
usage differs depending on the system:

• In the Seventh Edition, term was of type struct sgttyb *. The system drained the
output queue and flushed the input queue before setting the parameters.

• In System V.3, term is of type struct termio *. The drain and flush behaviour is not
documented.

• In 4.4BSD, term is of type struct termios *. The action is performed immediately
with no drain or flush. This is used to implement the tcsetattr function with the
TCSANOW option.

TIOCGETP and TIOCSETP

TIOCGETP and TIOCSETP are obsolete versions of TIOCGETA and TIOCSETA respectively.
They affect only the first 6 bytes of the sgttyb structure (sg_ispeed to sg_flags). These
requests correspond in function to the obsolete Seventh Edition system calls stty and gtty.

TIOCSETAW

The call ioctl (fd, TIOCSETAW, void *term) waits for any output to complete, then
sets the terminal state associated with the device. 4.4BSD uses this call to implement the
tcsetattr function with the TCSADRAIN option. In XENIX, the parameter term is of type
struct termio; in other systems is it of type struct termios.

TIOCSETAF

The call ioctl (fd, TIOCSETAF, void *term) waits for any output to complete, flushes
any pending input and then sets the terminal state. 4.4BSD uses this call to implement the
tcsetattr function with the TCSAFLUSH option. In XENIX, the parameter term is of type
struct termio, in other systems is it of type struct termios.

TIOCSETN

The call ioctl (fd, TIOCSETN, struct sgttyb *term) sets the parameters but does
not delay or flush input. This call is supported by System V.3. and the Seventh Edition. In
the Seventh Edition, this function works only on the first 6 bytes of the sgttyb structure.

5 February 2005 02:09

258

TIOCHPCL

The call ioctl (fd, TIOCHPCL, NULL) specifies that the terminal line is to be discon-
nected (hung up) when the file is closed for the last time.

TIOCGETC

The call ioctl (fd, TIOCGETC, struct tchars *chars) returns the terminal special
characters to chars.

TIOCSETC

The call ioctl (fd, TIOCSETC, struct tchars *chars) sets the terminal special char-
acters from chars.

TCGETS

The call ioctl (fd, TCGETS, struct termios *term) returns the current terminal
parameters to term. This function is supported by System V.4.

TCSETS

The call ioctl (fd, TCSETS, struct termios *term) immediately sets the current ter-
minal parameters from term. This function is supported by System V.4 and corresponds to
the 4.4BSD call TIOCSETA.

TCSETSW

The call ioctl (fd, TCSETSW, struct termios *term) sets the current terminal
parameters from term after all output characters have been output. This function is supported
by System V.4 and corresponds to the 4.4BSD call TIOCSETAW.

TCSETSF

The call ioctl (fd, TCSETSF, struct termios *term) flushes the input queue and
sets the current terminal parameters from term after all output characters have been output.
This function is supported by System V.4 and corresponds to the 4.4BSD call TIOCSETAF.

TCGETA

The call ioctl (fd, TCGETA, struct termio *term) stores current terminal parame-
ters in term. Not all termios parameters can be stored in a struct termio; you may find
it advantageous to use TCGETS instead (see above).

5 February 2005 02:09

Chapter 15: Terminal Drivers 259

TCSETA

The call ioctl (fd, TCSETA, struct termio *term) sets the current terminal status
from term. Parameters that cannot be stored in struct termio are not affected. This corre-
sponds to TCSETA, except that it uses a struct termio * instead of a struct termios *.

TCSETAW

The call ioctl (fd, TCSETAW, struct termio *term) sets the current terminal param-
eters from term after draining the output queue. This corresponds to TCSETW, except that it
uses a struct termio * instead of a struct termios *.

TCSETAF

The call ioctl (fd, TCSETAF, struct termio *term) input queue” flushes the input
queue and sets the current terminal parameters from term after all output characters have
been output. This corresponds to TCSETF, except that it uses a struct termio * instead of
a struct termios *.

TIOCGWINSZ

The call ioctl (fd, TIOCGWINSZ, struct winsize *ws) puts the window size infor-
mation associated with the terminal in ws. The window size structure contains the number of
rows and columns (and pixels if appropiate) of the devices attached to the terminal. It is set
by user software and is the means by which most full screen oriented programs determine the
screen size. The winsize structure is defined as:

struct winsize
{
unsigned short ws_row; /* rows, in characters */
unsigned short ws_col; /* columns, in characters */
unsigned short ws_xpixel; /* horizontal size, pixels */
unsigned short ws_ypixel; /* vertical size, pixels */
};

Many implementations ignore the members ws_xpixel and ws_ypixel and set them to 0.

TIOCSWINSZ

The call ioctl (fd, TIOCSWINSZ, struct winsize *ws) sets the window size associ-
ated with the terminal to the value at ws. If the new size is different from the old size, a SIG-
WINCH (window changed) signal is sent to the process group of the terminal. See TIOCG-
WINSZ for more details.

TIOCSETD

The call ioctl (fd, TIOCSETD, int *ldisc); changes the line discipline to ldisc.
Not all systems support multiple line disciplines, and both the available line disciplines and
their names depend on the system. Here are some typical ones:

5 February 2005 02:09

260

• OTTYDISC: In System V, the “old” (Seventh Edition) tty discipline.

• NETLDISC: The Berknet line discipline.

• NTTYDISC: In System V, the “new” (termio) tty discipline.

• TABLDISC: The Hitachi tablet discipline.

• NTABLDISC: The GTCO tablet discipline.

• MOUSELDISC: The mouse discipline.

• KBDLDISC: The keyboard line discipline.

• TTYDISC: The termios interactive line discipline.

• TABLDISC: The tablet line discipline.

• SLIPDISC: The Serial IP (SLIP) line discipline.

TIOCGETD

The call ioctl (fd, TIOCGETD, int *ldisc) returns the current line discipline at
ldisc. See the discussion in the section on TIOCSETD above.

Hardware control
TIOCSBRK

The call ioctl (fd, TIOCSBRK, NULL) sets the terminal hardware into break condition.
This function is supported by 4.4BSD.

TIOCCBRK

The call ioctl (fd, TIOCCBRK, NULL) clears a terminal hardware BREAK condition.
This function is supported by 4.4BSD.

TIOCSDTR

The call ioctl (fd, TIOCSDTR, NULL) asserts Data Terminal Ready (DTR). This func-
tion is supported by 4.4BSD. See page 239 for details of the DTR signal.

TIOCCDTR

The call ioctl (fd, TIOCCDTR, NULL) resets Data Terminal Ready (DTR). This function
is supported by 4.4BSD. See page 239 for details of the DTR signal.

5 February 2005 02:09

Chapter 15: Terminal Drivers 261

TIOCMSET

The call ioctl (fd, TIOCMSET, int *state) sets modem state. It is supported by
4.4BSD, SunOS and System V.4, but not all terminals support this call. *state is a bit map
representing the parameters listed in table Table 15-13:

Table 15−13: TIOCMSET and TIOCMGET state bits

Parameter meaning

TIOCM_LE Line Enable
TIOCM_DTR Data Terminal Ready
TIOCM_RTS Request To Send
TIOCM_ST Secondary Transmit
TIOCM_SR Secondary Receive
TIOCM_CTS Clear To Send
TIOCM_CAR Carrier Detect
TIOCM_CD Carrier Detect (synonym)
TIOCM_RNG Ring Indication
TIOCM_RI Ring Indication (synonym)
TIOCM_DSR Data Set Ready

TIOCMGET

The call ioctl (fd, TIOCMGET, int *state) returns the current state of the terminal
modem lines. See the description of TIOCMSET for the use of the bit mapped variable state.

TIOCMBIS

The call ioctl (fd, TIOCMBIS, int *state) sets the modem state in the same manner
as TIOMSET, but instead of setting the state bits unconditionally, each bit is logically ored
with the current state.

TIOCMBIC

The call ioctl (fd, TIOCMBIC, int *state) clears the modem state: each bit set in the
bitmap state is reset in the modem state. The other state bits are not affected.

TCSBRK

The call ioctl (fd, TCSBRK, int nobreak) drains the output queue and then sends a
break if nobreak is not set. This function is supported in System V and SunOS. In contrast
to the 4.4BSD function TIOCSBRK, TCSBRK resets the break condition automatically.

5 February 2005 02:09

262

TCXONC

The call ioctl (fd, TCXONC, int type) specifies flow control. It is supported in System
V and SunOS. Table 15-14 shows the possible values of type.

Table 15−14: TCXONC and tcflow type bits

Parameter value meaning

TCOOFF 0 suspend output
TCOON 1 restart suspended output
TCIOFF 2 suspend input
TCION 3 restart suspended input

Not all drivers support input flow control via TCXONC.

Queue control
TIOCOUTQ

The call ioctl (fd, TIOCOUTQ, int *num) sets the current number of characters in the
output queue to *num. This function is supported by BSD and SunOS.

TIOCSTI

The call ioctl (fd, TIOCSTI, char *cp) simulates typed input. It inserts the character
at *cp into the input queue. This function is supported by BSD and SunOS.

TIOCSTOP

The call ioctl (fd, TIOCSTOP, NULL) stops output on the terminal. It’s like typing
CTRL-S at the keyboard. This function is supported by 4.4BSD.

TIOCSTART

The call ioctl (fd, TIOCSTART, NULL) restarts output on the terminal, like typing CTRL-
Q at the keyboard. This function is supported by 4.4BSD.

TIOCDRAIN

The call ioctl (fd, TIOCDRAIN, NULL) suspends process execution until all output is
drained. This function is supported by 4.4BSD.

5 February 2005 02:09

Chapter 15: Terminal Drivers 263

TIOCFLUSH

The call ioctl (fd, TIOCFLUSH, int *what) flushes the input and output queues. This
function is supported by 4.4BSD, System V.3 and the Seventh Edition. The System V.3 and
Seventh Edition implementations ignore the parameter what and flush both queues. 4.4BSD
flushes the queues if the corresponding bits FREAD and FWRITE are set in *what. If no bits
are set, it clears both queues.

TCFLSH

The call ioctl (fd, TCFLSH, int type) flushes the input or output queues, depending
on the flags defined in Table 15-15.

Table 15−15: TCFLSH type bits

Parameter value meaning

TCIFLUSH 0 flush the input queue
TCOFLUSH 1 flush the output queue
TCIOFLUSH 2 flush both queues

This function is supported by System V. It does the same thing as TIOCFLUSH, but the seman-
tics are different.

Session control
TIOCGPGRP

The call ioctl (fd, TIOCGPGRP, pid_t *tpgrp) sets *tpgrp to the ID of the current
process group with which the terminal is associated. 4.4BSD uses this call to implement the
function tcgetpgrp.

TIOCSPGRP

The call ioctl (fd, TIOCSPGRP, pid_t *tpgrp) associates the terminal with the
process group tpgrp. 4.4BSD uses this call to implement the function tcsetpgrp.

TIOCSCTTY

TIOCSCTTY makes the terminal the controlling terminal for the process. This function is sup-
ported by BSD and SunOS systems. On BSD systems, the call is ioctl (fd, TIOCSCTTY,
NULL) and on SunOS systems it is ioctl (fd, TIOCSCTTY, int type). Normally the
controlling terminal will be set only if no other process already owns it. In those implementa-
tions that support type the superuser can set type to 1 in order to force the takeover of the
terminal, even if another process owns it. In 4.4BSD, you would first use the re voke system
call (see Chapter 14, File systems, page 213) to force a close of all file descriptors associated
with the file.

5 February 2005 02:09

264

System V and older versions of BSD have no equivalent of this function. In these systems,
when a process group leader without a controlling terminal opens a terminal, it automatically
becomes the controlling terminal. There are methods to ovverride this behaviour: in System
V, you set the flag O_NOCTTY when you open ther terminal. In old BSD versions, you subse-
quently release the control of the terminal with the TIOCNOTTY request, which we’ll look at in
the next section.

TIOCNOTTY

Traditionally, the first time a process without a controlling terminal opened a terminal, it
acquired that terminal as its controlling terminal. We saw in the section on TIOCSCTTY above
that this is no longer the default behaviour in BSD, and that you can override it in System V.
Older BSD versions, including SunOS, did not offer either of these choices. Instead, you had
to accept that you acquired a controlling terminal, and then release the controlling terminal
again with ioctl TIOCNOTTY. If you find this code in a package, and your system doesn’t sup-
port it, you can eliminate it. If your system is based on System V, you should check the call to
open for the terminal and ensure that the flag O_NOCTTY is set.

A second use for TIOCNOTTY was after a fork, when the child might want to relinquish the
controlling terminal. This can also be done with setsid (see Chapter 12, Kernel dependen-
cies, page 171).

TIOCGSID

The call ioctl (fd, TIOCGSID, pid_t *pid) stores the terminal’s session ID at pid.
This function is supported by System V.4.

Miscellaneous functions
TIOCEXCL

The call ioctl (fd, TIOCEXCL, NULL) sets exclusive use on the terminal. No further
opens are permitted except by root.

TIOCNXCL

The call ioctl (fd, TIOCNXCL, NULL) clears exclusive use of the terminal (see TIO-
CEXCL). Further opens are permitted.

TIOCCONS

The call ioctl (fd, TIOCCONS, int *on) sets the console file. If on points to a non-zero
integer, kernel console output is redirected to the terminal specified in the call. If on points to
zero, kernel console output is redirected to the standard console. This is usually used on work
stations to redirect kernel messages to a particular window.

5 February 2005 02:09

Chapter 15: Terminal Drivers 265

TIOCGSOFTCAR

The call ioctl (fd, TIOCGSOFTCAR, int *set) sets *set to 1 if the terminal “Data car-
rier detect” (DCD) signal or the software carrier flag is asserted, and to 0 otherwise. This
function is supported only in SunOS 4.X, and is no longer present in Solaris 2. See page 239
for a description of the DSR line.

TIOCSSOFTCAR

The call ioctl (fd, TIOCSSOFTCAR, int *set) is a method to fake a modem carrier
detect signal. It resets software carrier mode if *set is zero and sets it otherwise. In software
carrier mode, the TIOCGSOFTCAR call always returns 1; otherwise it returns the real value of
the DCD interface signal. This function is supported only in SunOS 4.X, and is no longer
present in Solaris 2.

termios functions
It should come as no surprise that people have long wanted a less bewildering interface to ter-
minals than the ioctl calls that we looked at in the previous section. In POSIX.1, a number
of new functions were introduced with the intent of bringing some sort of order into the chaos.
A total of 8 new functions were introduced, split into three groups. In addition, a further 6
auxiliary functions were added:

• tcgetattr and tcsetattr get and set terminal attributes using struct termios.

• tcgetpgrp and tcsetpgrp get and set the program group ID.

• tcdrain, tcflow, tcflush and tcsendbreak manipulate the terminal hardware.

• cfgetispeed, cfsetispeed, cfgetospeed, cfsetospeed, cfsetspeed and cfmak-
eraw are auxiliary functions to manipulate termios entries.

These functions do not add new functionality, but attempt to provide a more uniform inter-
face. In some systems, they are system calls, whereas in others they are library functions that
build on the ioctl interface. If you are porting a package that uses termios, and your sys-
tem doesn’t supply it, you have the choice of rewriting the code to use ioctl calls, or you can
use the 4.4BSD library calls supplied in the 4.4BSD Lite distribution
(usr/src/lib/libc/gen/termios.c). In the following sections we’ll look briefly at each function.

Direct termios functions
tcgetattr

tcgetattr corresponds to TIOCGETA described on page 256. It returns the current termios
state to term.

#include <termios.h>
int tcgetattr (int fd, struct termios *term)

5 February 2005 02:09

266

tcsetattr

tcgetattr sets the current termios state from term.

#include <termios.h>
int tcsetattr (int fd, int action, struct termios *t)

action can have one of the values listed in Table 15-16.

Table 15−16: tcsetattr action flags

Parameter meaning

TCSANOW Change terminal parameters immediately. Corresponds to the ioctl request
TIOCSETA.

TCSADRAIN First drain output, then change the parameters. Used when changing parame-
ters that affect output. Corresponds to the ioctl call TIOCSETAW.

TCSAFLUSH Discard any pending input, drain output, then change the parameters. Corre-
sponds to ioctl call TIOCSETAF.

See page 257 for details of the corresponding ioctl interfaces.

In addition, some implementations define the parameter TCSASOFT: if this is specified in addi-
tion to one of the above flags, the values of the fields c_cflag, c_ispeed and c_ospeed are
ignored. This is typically used when the device in question is not a serial line terminal.

tcgetpgrp

tcgetpgrp returns the ID of the current process group with which the terminal is associated.
It corresponds to the ioctl call TIOCGPGRP described on page 263.

#include <sys/types.h>
#include <unistd.h>
pid_t tcgetpgrp (int fd);

tcsetpgrp

tcsetpgrp associates the terminal with the process group tpgrp. It corresponds to the
ioctl call TIOCSPGRP described on page 263.

#include <sys/types.h>
#include <unistd.h>
int tcsetpgrp (int fd, pid_t pgrp_id);

tcdrain

tcdrain suspends the process until all output is drained. It corresponds to the ioctl call
TIOCDRAIN described on page 262.

5 February 2005 02:09

Chapter 15: Terminal Drivers 267

#include <termios.h>
int tcdrain (int fd);

tcflow

tcflow specifies flow control. It corresponds to the ioctl call TCXONC. See the description
of TCXONC on page 262 for the meaning of the parameter action.

#include <termios.h>
int tcflow (int fd, int action);

tcflush

tcflush flushes input or output queues for fd.

#include <termios.h>
int tcflush (int fd, int action);

action may take the values shown in Table 15-17.

Table 15−17: tcflush action bits

Parameter meaning

TCIFLUSH Flush data received but not read
TCOFLUSH Flush data written but not transmitted
TCIOFLUSH Flush both data received but not read and data written but not transmitted

This function corresponds to the ioctl request TCFLSH described on page 263.

tcsendbreak

tcsendbreak sends a break indication on the line. This is equivalent to the ioctl request
TCSBRK described on page 261.

#include <termios.h>
int tcsendbreak (int fd, int len);

termios auxiliary functions
In addition to the termios functions in the previous section, a number of library functions
manipulate termios struct entries. With one exception, they handle line speeds. They don’t
have any direct effect on the line—you need a tcsetattr for that—but they provide a link
between the viewpoint of the application and the underlying implementation.

There is still no agreement on how to represent line speeds. BSD systems use the bit rate as
an integer and store it in the fields c_ispeed and c_ospeed. They leave it to the driver to
explain it to the hardware, so you can effectively specify any speed the hardware is capable of
handling. By contrast, System V still uses the small numeric indices that were used in the

5 February 2005 02:09

268

Seventh Edition* (see page 240), which allows the field to be stored in 4 bits. They are
located in the field c_cflag. This is not a good idea, because these speeds are the only ones
System V knows about. If you have a V.32bis, V.42bis modem that claims to be able to trans-
fer data at up to 57,600 bps, you will not be able to take full advantage of its capabilities with
System V. In addition, there is only one speed constant, which sets both the input and output
speeds. The functions for setting input and output speed are effectively the same thing.

In addition to these problems, SCO UNIX System V.3 further complicates the issue by provid-
ing the fields s_ospeed and s_ispeed in the struct termios. The functions
cfsetispeed and cfsetospeed set these fields in addition to the four bits in c_cflag, but
the functions cfgetispeed and cfgetospeed retrieve the values from c_cflags, so it’s not
clear what use the fields c_ispeed and c_ospeed are intended to be.

Setting the bit rates is thus not quite as simple as it might appear: the preprocessor variables
B9600 and friends might not equate to the kind of constant that the termios implementation
needs, and there is no designated place in the termios structure to store the bit rates.

This problem is solved by the following functions, which are normally macros:

• speed_t cfgetispeed (struct termios *t) returns t’s input speed in speed_t
format. It is undefined if the speed is not representable as speed_t.

• int cfsetispeed (struct termios *t, speed_t speed)sets t’s input speed to
the internal representation of speed.

• speed_t cfgetospeed (struct termios *t) returns t’s output speed in speed_t
format. The result is undefined if the speed is not representable as speed_t.

• int cfsetospeed (struct termios *t, speed_t speed) sets t’s output speed
to the internal representation of speed.

• void cfsetspeed (struct termios *t, speed_t speed) sets both input and
output speed to the internal representation of speed.

• void cfmakeraw (struct termios *t) sets the whole structure t to default values.

* These constants were originally the values that were written to the interface hardware to set the speed.

5 February 2005 02:09

Timekeeping

UNIX timekeeping is an untidy area, made more confusing by national and international laws
and customs. Broadly, there are two kinds of functions: one group is concerned with getting
and setting system times, and the other group is concerned with converting time representa-
tions between a bewildering number of formats.

Before we start, we’ll define some terms:

• A time zone is a definition of the time at a particular location relative to the time at other
locations. Most time zones are bound to political borders, and vary from one another in
steps of one hour, although there are still a number of time zones that are offset from
adjacent time zones by 30 minutes. Time zones tend to have three-letter abbreviations
(TLAs) such as PST (Pacific Standard Time), EDT (Eastern Daylight Time), BST (British
Summer Time), AET (Australian Eastern Time), MEZ (Mitteleuropäische Zeit). As the
example shows, you should not rely on the combination ST to represent Standard Time.

• UTC is the international base time zone, and has the distinction of being one of those
abbreviations which nobody can expand. It means Universal Coordinated Time, despite
the initials. It obviously doesn’t stand for the French Temps Universel Coordonné either.
It corresponds very closely, but not exactly, to Greenwich Mean Time (GMT), the local
time in England in the winter, and is the basis of all UNIX timestamps. The result is that
for most of us, UTC is not the current local time, though it might be close enough to be
confusing or far enough away to be annoying.

• From the standpoint of UNIX, you can consider the Epoch to be the beginning of
recorded history: it’s 00:00:00 UTC, 1 January 1970. All system internal dates are rela-
tive to the Epoch.

• Daylight Savings Time is a method of making the days appear longer in summer by set-
ting the clocks forward, usually by one hour. Thus in summer, the sun appears to set one
hour later than would otherwise be the case.

Even after clarifying these definitions, timekeeping remains a pain. We’ll look at the main
problems in the following sections:

269

5 February 2005 02:09

270

Difficult to use
The time functions are not easy to use: to get them to do anything useful requires a lot of
work. You’d think that UNIX would supply a primitive call upon which you could easily
build, but unfortunately there isn’t any such call, and the ones that are available do not operate
in an intuitively obvious way. For example, there is no standard function for returning the
current time in a useful format.

Implementations differ
There is no single system call that is supported across all platforms. Functions are imple-
mented as system calls in some systems and as library functions in others. As a result, it
doesn’t make sense to maintain our distinction between system calls and library functions
when it comes to timekeeping. In our discussion of the individual functions, we’ll note which
systems implement them as system calls and which as library calls.

Differing time formats
There are at least four different time formats:

• The system uses the time_t format, which represents the number of seconds since the
Epoch. This format is not subject to time zones or daylight savings time, but it is accu-
rate only to one second, which is not accurate enough for many applications.

• The struct timeval format is something like an extended time_t with a resolution of 1
microsecond:

#include <sys/time.h>

struct timeval
{
long tv_sec; /* seconds since Jan. 1, 1970 */
long tv_usec; /* and microseconds */
};

It is used for a number of newer functions, such as gettimeofday and setitimer.

• Many library routines represent the calendar time as a struct tm. It is usually defined in
/usr/include/time.h:

struct tm
{
int tm_sec; /* seconds after the minute [0-60] */
int tm_min; /* minutes after the hour [0-59] */
int tm_hour; /* hours since midnight [0-23] */
int tm_mday; /* day of the month [1-31] */
int tm_mon; /* months since January [0-11] */
int tm_year; /* years since 1900 */
int tm_wday; /* days since Sunday [0-6] */
int tm_yday; /* days since January 1 [0-365] */
int tm_isdst; /* Daylight Savings Time flag */

5 February 2005 02:09

Chapter 16: Timekeeping 271

long tm_gmtoff; /* offset from UTC in seconds */
char *tm_zone; /* timezone abbreviation */
};

Unlike time_t, a struct tm does not uniquely define the time: it may be a UTC time, or it
may be local time, depending on the time zone information for the system.

• Dates as a text string are frequently represented in a strange manner, for example Sat
Sep 17 14:28:03 1994\n. This format includes a \n character, which is seldom
needed — often you will have to chop it off again.

Daylight Savings Time
The support for Daylight Savings Time was rudimentary in the Seventh Edition, and the solu-
tions that have arisen since then are not completely compatible. In particular, System V han-
dles Daylight Savings Time via environment variables, so one user’s view of time could be
different from the next. Recent versions of BSD handle this via a database that keeps track of
local regulations.

National time formats
Printable representations of dates and times are very much a matter of local customs. For
example, the date 9/4/94 (in the USA) would be written as 4/9/94 in Great Britain and
04.09.94 in Germany. The time written as 4:23 pm in the USA would be written 16.23 in
France. Things get even worse if you want to have the names of the days and months. As a
result, many timekeeping functions refer to the locale kept by ANSI C. The locale describes
country-specific information. Since it does not vary from one system to the next, we won’t
look at it in more detail—see POSIX Programmer’s Guide, by Donald Lewine, for more
information.

Global timekeeping variables
A number of global variables define various aspects of timekeeping:

• The variable timezone, which is used in System V and XENIX, specifies the number of
minutes that the standard time zone is west of Greenwich. It is set from the environment
variable TZ, which has a rather bizarre syntax. For example, in Germany daylight sav-
ings time starts on the last Sunday of March and ends on the last Sunday of September
(not October as in some other countries, including the USA). To tell the system about
this, you would use the TZ string

MEZ-1MSZ-2;M3.5,M9.5

This states that the standard time zone is called MEZ, and that it is one hour ahead of
UTC, that the summer time zone is called MSZ, and that it is two hours ahead of UTC.
Summer time begins on the (implied Sunday of the) fifth week in March and ends in the
fifth week of September.

5 February 2005 02:09

272

The punctuation varies: this example comes from System V.3, which requires a semi-
colon in the indicated position. Other systems allow a comma here, which works until
you try to move the information to System V.3.

• The variable altzone, used in SVR4 and XENIX, specifies the number of minutes that
the Daylight Savings Time zone is west of Greenwich.

• The variable daylight, used in SVR4 and XENIX, indicates that Daylight Savings
Time is currently in effect.

• The variable tzname, used in BSD, SVR4 and XENIX, is a pointer to two strings, speci-
fying the name of the standard time zone and the Daylight Savings Time zone respec-
tively.

In the following sections we’ll look at how to get the current time, how to set the current time,
how to convert time values, and how to suspend process execution for a period of time.

Getting the current time
The system supplies the current time via the system calls time or gettimeofday—only one
of these is a system call, but the system determines which one it is.

time
#include <sys/types.h>
#include <time.h>

time_t time (time_t *tloc);

time returns the current time in time_t form, both as a return value and at tloc if this is not
NULL. time is implemented as a system call in System V and as a library function (which
calls gettimeofday) in BSD. Since it returns a scalar value, a call to time can be used as a
parameter to functions like localtime or ctime.

ftime
ftime is a variant of time that returns time information with a resolution of one millisecond.
It originally came from 4.2BSD, but is now considered obsolete.

#include <sys/types.h>
#include <sys/timeb.h>

typedef long time_t; /* (typically) */

struct timeb
{
time_t time; /* the same time returned by time */
unsigned short millitm; /* Milliseconds */
short timezone; /* System default time zone */
short dstflag; /* set during daylight savings time */

5 February 2005 02:09

Chapter 16: Timekeeping 273

};

struct timeb *ftime (struct timeb *tp);

The timezone returned is the system default, possibly not what you want. System V.4 depre-
cates* the use of this variable as a result. Depending on which parameters are actually used,
there are a number of alternatives to ftime. In many cases, time supplies all you need.
However, time is accurate only to one second.
On some systems, you may be able to define ftime in terms of gettimeofday, which
returns the time of the day with a 1 microsecond resolution—see the next section. On other
systems, unfortunately, the system clock does not have a finer resolution than one second, and
you are stuck with time.

gettimeofday
#include <sys/time.h>

struct timeval
{
long tv_sec; /* seconds since Jan. 1, 1970 */
long tv_usec; /* and microseconds */
};

int gettimeofday (struct timeval *tp,
struct timezone *tzp); /* (BSD) */

int gettimeofday (struct timeval *tp); /* (System V.4) */

gettimeofday returns the current system time, with a resolution of 1 microsecond, to tp.
The name is misleading, since the struct timeval representation does not relate to the time
of day. Many implementations ignore tzp, but others, such as SunOS 4, return time zone
information there.

In BSD, gettimeofday is a system call. In some versions of System V.4 it is emulated as a
library function defined in terms of time, which limits its resolution to 1 second. Other ver-
sions of System V appear to have implemented it as a system call, though this is not docu-
mented.

* The term deprecate is a religious term meaning “to seek to avert by prayer”. Nowadays used to indi-
cate functionality that the implementors or maintainers wish would go away. This term seems to have
come from Berkeley. To quote the “New Hackers Dictionary”:

:deprecated: adj. Said of a program or feature that is considered obsolescent and in the
process of being phased out, usually in favor of a specified replacement. Deprecated features
can, unfortunately, linger on for many years. This term appears with distressing frequency in
standards documents when the committees writing the documents realize that large amounts of
extant (and presumably happily working) code depend on the feature(s) that have passed out of
favor. See also {dusty deck}.

5 February 2005 02:09

274

Setting the current time
Setting the system time is similar to getting it, except that for security reasons only the supe-
ruser (root) is allowed to perform the function. It is normally executed by the date program.

adjtime
#include <sys/time.h>

int adjtime (struct timeval *delta, struct timeval *olddelta);

adjtime makes small adjustments to the system time, and is intended to help synchronize
time in a network. The adjustment is made gradually—the system slows down or speeds up
the passage of time by a fraction of a percent until it has made the correction, in order not to
confuse programs like cron which are watching the time. As a result, if you call adjtime
again, the previous adjustment might still not be complete; in this case, the remaining adjust-
ment is returned in olddelta. adjtime was introduced in 4.3BSD and is also supported by
System V. It is implemented as a system call in all systems.

settimeofday
#include <sys/time.h>

int gettimeofday (struct timeval *tp, struct timezone *tzp);
int settimeofday (struct timeval *tp, struct timezone *tzp);

settimeofday is a BSD system call that is emulated as a library function in System V.4. It
sets the current system time to the value of tp. The value of tzp is no longer used. In Sys-
tem V, this call is implemented in terms of the stime system call, which sets the time only to
the nearest second. If you really need to set the time more accurately in System V.4, you can
use adjtime.

stime
#include <unistd.h>

int stime (const time_t *tp);

stime sets the system time and date. This is the original Seventh Edition function that is still
available in System V. It is not supported in BSD—use settimeofday instead on BSD sys-
tems.

Converting time values
As advertised, there are a large number of time conversion functions, made all the more com-
plicated because many are supported only on specific platforms. All are library functions.
Many return pointers to static data areas that are overwritten by the next call. Solaris attempts
to solve this problem with versions of the functions with the characters _r (for reentrant)

5 February 2005 02:09

Chapter 16: Timekeeping 275

appended to their names. These functions use a user-supplied buffer to store the data they
return.

strftime
#include <sys/types.h>
#include <time.h>
#include <string.h>

size_t strftime (char *s, size_t maxsize, char *format, struct tm *tm);

strftime converts the time at tm into a formatted string at s. format specifies the format of
the resultant string, which can be no longer than maxsize characters. format is similar to
the format strings used by printf, but contains strings related to dates. strftime has a
rather strange return value: if the complete date string, including the terminating NUL charac-
ter, fits into the space provided, it returns the length of the string—otherwise it returns 0,
which implies that the date string has been truncated.

strftime is available on all platforms and is implemented as a library function. System V.4
considers ascftime and cftime to be obsolete. The man pages state that strftime should
be used instead.

strptime
#include <time.h>

char *strptime (char *buf, char *fmt, struct tm *tm);

strptime is a library function supplied with SunOS 4. It converts the date and time string
buf into a struct tm value at tm. This call bears the same relationship to scanf that strf-
time bears to printf.

ascftime
#include <sys/types.h>
#include <time.h>

int ascftime (char *buf, char *fmt, tm *tm);

ascftime converts the time at tm into a formatted string at buf. format specifies the format
of the resultant string. This is effectively the same function as strftime, except that there is
no provision to supply the maximum length of buf. ascftime is available on all platforms
and is implemented as a library function.

asctime and asctime_r
#include <sys/types.h>
#include <time.h>

char *asctime (const struct tm *tm);

5 February 2005 02:09

276

char *asctime_r (const struct tm *tm, char *buf, int buflen);

asctime converts a time in struct tm* format into the same kind of string that is returned
by ctime. asctime is available on all platforms and is always a library function.

asctime_r is a version of asctime that returns the string to the user-provided buffer res,
which must be at least buflen characters long. It returns the address of res. It is supplied as
a library function on Solaris systems.

cftime
#include <sys/types.h>
#include <time.h>

int cftime (char *buf, char *fmt, time_t *clock);

cftime converts the time at clock into a formatted string at buf. format specifies the for-
mat of the resultant string. This is effectively the same function as strftime, except that
there is no provision to supply the maximum length of buf, and the time is supplied in
time_t format. cftime is available on all platforms and is implemented as a library func-
tion.

ctime and ctime_r
#include <sys/types.h>
#include <time.h>
extern char *tzname[2];

char *ctime (const time_t *clock);
char *ctime_r (const time_t *clock, char *buf, int buflen);

ctime converts the time clock into a string in the form Sat Sep 17 14:28:03 1994\n,
which has the advantage of consistency: it is not a normal representation anywhere in the
world, and immediately brands any printed output with the word UNIX. It uses the environ-
ment variable TZ to determine the current time zone. You can rely on the string to be exactly
26 characters long, including the final \0, and to contain that irritating \n at the end. ctime
is available on all platforms and is always a library function.

ctime_r is a version of ctime that returns its result in the buffer pointed to by buf. The
length is limited to buflen bytes. ctime_r is available on Solaris platforms as a library
function.

dysize
#include <time.h>

int dysize (int year);

dysize return the number of days in year. It is supplied as a library function in SunOS 4.

5 February 2005 02:09

Chapter 16: Timekeeping 277

gmtime and gmtime_r
#include <time.h>

struct tm *gmtime (const time_t *clock);
struct tm *gmtime_r (const time_t *clock, struct tm *res);

gmtime converts a time in time_t format into struct tm* format, like localtime. As the
name suggests, however, it does not account for local timezones—it returns a UTC time (this
was formerly called Greenwich Mean Time, thus the name of the function). gmtime is avail-
able on all platforms and is always a library function.

gmtime_r is a version of gmtime that returns the string to the user-provided buffer res. It
returns the address of res. It is supplied as a library function on Solaris systems.

localtime and localtime_r
#include <time.h>

struct tm *localtime (const time_t *clock);
struct tm *localtime_r (const time_t *clock, struct tm *res);

localtime converts a time in time_t format into struct tm* format. Like ctime, it uses
the time zone information in tzname to convert to local time. localtime is available on all
platforms and is always a library function.

localtime_r is a version of localtime that returns the string to the user-provided buffer
res. It returns the address of res. It is supplied as a library function on Solaris systems.

mktime
#include <sys/types.h>
#include <time.h>
time_t mktime (struct tm *tm);

mktime converts a local time in struct tm format into a time in time_t format. It does not
use tzname in the conversion — it uses the information at tm->tm_zone instead. In addition
to converting the time, mktime also sets the members wday (day of week) and yday (day of
year) of the input struct tm to agree with day, month and year. tm->tm_isdst determines
whether Daylight Savings Time is applicable:

• if it is > 0, mktime assumes Daylight Savings Time is in effect.

• If it is 0, it assumes that no Daylight Savings Time is in effect.

• If it is < 0, mktime tries to determine whether Daylight Savings Time is in effect or not.
It is often wrong.

mktime is available on all platforms and is always a library function.

5 February 2005 02:09

278

timegm
#include <time.h>

time_t timegm (struct tm *tm);

timegm converts a struct tm time, assumed to be UTC, to the corresponding time_t value.
This is effectively the same thing as mktime with the time zone set to UTC, and is the con-
verse of gmtime. timegm is a library function supplied with SunOS 4.

timelocal
#include <time.h>

time_t timelocal (struct tm *tm);

timelocal converts a struct tm time, assumed to be local time, to the corresponding
time_t value. This is similar to mktime, but it uses the local time zone information instead
of the information in tm. It is also the converse of localtime. timelocal is a library func-
tion supplied with SunOS 4.

difftime
#include <sys/types.h>
#include <time.h>

double difftime (time_t time1, time_t time0);

difftime returns the difference in seconds between two time_t values. This is effectively
the same thing as (int) time1 - (int) time0. difftime is a library function available
on all platforms.

timezone
#include <time.h>

char *timezone (int zone, int dst);

timezone returns the name of the timezone that is zone minutes west of Greenwich. If dst
is non-0, the name of the Daylight Savings Time zone is returned instead. This call is obso-
lete — it was used at a time when time zone information was stored as the number of minutes
west of Greenwich. Nowadays the information is stored with a time zone name, so there
should be no need for this function.

tzset
#include <time.h>

void tzset ();

5 February 2005 02:09

Chapter 16: Timekeeping 279

tzset sets the value of the internal variables used by localtime to the values specified in
the environment variable TZ. It is called by asctime. In System V, it sets the value of the
global variable daylight. tzset is a library function supplied with BSD and System V.4.

tzsetwall
#include <time.h>

void tzsetwall ();

tzsetwall sets the value of the internal variables used by localtime to the default values
for the site. tzsetwall is a library function supplied with BSD and System V.4.

Suspending process execution
Occasionally you want to suspend process execution for a short period of time. For example,
the tail program with the -f flag waits until a file has grown longer, so it needs to relinquish
the processor for a second or two between checks on the file status.

Typically, this is done with sleep. Howev er, some applications need to specify the length of
time more accurately than sleep allows, so a couple of alternatives hav e arisen: nap suspends
execution for a number of milliseconds, and usleep suspends it for a number of microsec-
onds.

nap
nap is a XENIX variant of sleep with finer resolution:

#include <time.h>

long nap (long millisecs);

nap suspends process execution for at least millisecs milliseconds. In practice, the XENIX
clock counts in intervals of 20 ms, so this is the maximum accuracy with which you can spec-
ify millisecs. You can simulate this function with usleep (see page 281 for more details).

setitimer
BSD systems and derivatives maintain three (possibly four) interval timers:

• A real time timer, ITIMER_REAL, which keeps track of real elapsed time.

• A virtual timer, ITIMER_VIRTUAL, which keeps track of process execution time, in other
words the amount of CPU time that the process has used.

• A profiler timer, ITIMER_PROF, which keeps track of both process execution time and
time spent in the kernel on behalf of the process. As the name suggests, it is used to
implement profiling tools.

5 February 2005 02:09

280

• A real time profiler timer, ITIMER_REALPROF, used for profiling Solaris 2.X multi-
threaded processes.

These timers are manipulated with the system calls getitimer and setitimer:

#include <sys/time.h>

struct timeval
{
long tv_sec; /* seconds */
long tv_usec; /* and microseconds */
};

struct itimerval
{
struct timeval it_interval; /* timer interval */
struct timeval it_value; /* current value */
};

int getitimer (int which, struct itimerval *value);
int setitimer (int which, struct itimerval *value, struct itimerval *ovalue);

setitimer sets the value of a specific timer which to value, and optionally returns the pre-
vious value in ovalue if this is not a NULL pointer. getitimer just returns the current value
of the timer to value. The resolution is specified to an accuracy of 1 microsecond, but it is
really limited to the accuracy of the system clock, which is more typically in the order of 10
milliseconds. In addition, as with all timing functions, there is no guarantee that the process
will be able to run immediately when the timer expires.

In the struct itimerval, it_value is the current value of the timer, which is decremented
depending on type as described above. When it_value is decremented to 0, two things hap-
pen: a signal is generated, and it_value is reloaded from it_interval. If the result is 0,
no further action occurs; otherwise the system continues decrementing the counter. In this
way, one call to setitimer can cause the system to generate continuous signals at a specified
interval.

The signal that is generated depends on the timer. Here’s an overview:

Table 16−1: setitimer signals

Timer Signal

Real time SIGALRM

Virtual SIGVTALRM

Profiler SIGPROF

Real-time profiler1 SIGPROF

1 Only Solaris 2.x

The only timer you’re likely to see is the real time timer. If you don’t hav e it, you can fake it
with alarm. In System V.4, setitimer is implemented as a library function that calls an
undocumented system call. See The Magic Garden explained: The Internals of UNIX System

5 February 2005 02:09

Chapter 16: Timekeeping 281

V Release 4, by Berny Goodheart and James Cox, for more details.

setitimer is used to implement the library routine usleep.

sleep
#include <unistd.h>

unsigned sleep (u_int seconds);

The library routine sleep suspends program execution for approximately seconds seconds.
It is available on all UNIX platforms.

usleep
usleep is a variant of sleep that suspends program execution for a very short time:

#include <unistd.h>
void usleep (u_int microseconds);

usleep sleeps for at least microseconds microseconds. It is supplied on BSD and System
V.4 systems as a library function that uses the setitimer system call.

select and poll
If your system doesn’t supply any timing function with a resolution of less than one second,
you might be able to fake it with the functions select or poll. select can wait for nothing
if you ask it to, and since the timeout is specified as a struct timeval (see page 270), you
can specify times down to microsecond accuracy. You can use poll in the same way, except
that you specifies its timeout value in milliseconds.

For example,

void usleep (int microseconds)
{
struct timeval timeout;
timeout.tv_usec = microseconds % 1000000;
timeout.tv_sec = microseconds / 1000000;
select (0, NULL, NULL, NULL, &timeout);
}

or
void usleep (int microseconds)
{
poll (0, NULL, microseconds / 1000);
}

5 February 2005 02:09

Header files

When the C language was young, header files were required to define structures and occasion-
ally to specify that a function did something out of the ordinary like taking a double parame-
ter or returning a float result. Then ANSI C and POSIX came along and changed all that.

Header files seem a relatively simple idea, but in fact they can be a major source of annoyance
in porting. In particular:

• ANSI and POSIX.1 have added a certain structure to the usage of header files, but there
are still many old-fashioned headers out there.

• ANSI and POSIX.1 have also placed more stringent requirements on data types used in
header files. This can cause conflicts with older systems, especially if the author has
commited the sin of trying to out-guess the header files.

• C++ has special requirements of header files. If your header files don’t fulfil these
requirements, the GNU protoize program can usually fix them.

• There is still no complete agreement on the names of header files, or in which directories
they should be placed. In particular, System V.3 and System V.4 frequently disagree as
to whether a header file should be in /usr/include or in /usr/include/sys.

ANSI C, POSIX.1, and header files
ANSI C and POSIX.1 have had a far-reaching effect on the structure of system header files.
We’ll look at the changes in the C language in more detail in Chapter 20, Compilers. The fol-
lowing points are relevant to the use of header files:

• ANSI C prefers to have an ANSI-style prototype for every function call it encounters. If
it doesn’t find one, it can’t check the function call semantics as thoroughly, and it may
issue a warning. It’s a good idea to enable all such warnings, but this kind of message
makes it difficult to recognize the real errors hiding behind the warnings. In C++, the
rules are even stricter: if you don’t hav e a prototype, it’s an error and your source file
doesn’t compile.

283

5 February 2005 02:09

284

• To do a complete job of error checking, ANSI C requires the prototype in the new,
embedded form:

int foo (char *zot, int glarp);

and not

int foo (zot, glarp);
char *zot;

Old C compilers don’t understand this new kind of prototype.

• Header files usually contain many definitions that are not part of POSIX.1. A mecha-
nism is needed to disable these definitions if you are compiling a program intended to be
POSIX.1 compatible.*

The result of these requirements is spaghetti header files: you frequently see things like this
excerpt from the header file stdio.h in 4.4BSD:

/*
* Functions defined in ANSI C standard.
*/
__BEGIN_DECLS
void clearerr __P((FILE *));
int fclose __P((FILE *));

#if !defined(_ANSI_SOURCE) && !defined(_POSIX_SOURCE)
extern int sys_nerr; /* perror(3) external variables */
extern __const char *__const sys_errlist[];
#endif
void perror __P((const char *));

__END_DECLS

/*
* Functions defined in POSIX 1003.1.
*/
#ifndef _ANSI_SOURCE
#define L_cuserid 9 /* size for cuserid(); UT_NAMESIZE + 1 */
#define L_ctermid 1024 /* size for ctermid(); PATH_MAX */

__BEGIN_DECLS
char *ctermid __P((char *));

__END_DECLS
#endif /* not ANSI */

/*
* Routines that are purely local.
*/

* Writing your programs to conform to POSIX.1 may be a good idea if you want them to run on as
many platforms as possible. On the other hand, it may also be a bad idea: POSIX.1 has very rudimen-
tary facilities in some areas. You may find it more confining than is good for your program.

5 February 2005 02:09

Chapter 17: Header files 285

#if !defined (_ANSI_SOURCE) && !defined(_POSIX_SOURCE)
__BEGIN_DECLS
char *fgetln __P((FILE *, size_t *));

__END_DECLS

Well, it does look vaguely like C, but this kind of header file scares most people off. A num-
ber of conflicts have led to this kind of code:

• The ANSI C library and POSIX.1 carefully define a subset of the total available func-
tionality. If you want to abide strictly to the standards, any extension must be flagged as
an error, even if it would work.

• The C++ language has a different syntax from C, but both languages share a common set
of header files.

These solutions have caused new problems, which we’ll examine in this chapter.

ANSI and POSIX.1 restrictions
Most current UNIX implementations do not conform completely with POSIX.1 and ANSI C,
and every implementation offers a number of features that are not part of either standard. A
program that conforms with the standards must not use these features. You can specify that
you wish your program to be compliant with the standards by defining the preprocessor vari-
ables _ANSI_SOURCE or _POSIX_SOURCE, which maximizes the portability of the code. It
does this by preventing the inclusion of certain definitions. In our example, the array
sys_errlist, (see Chapter 18, Function libraries, page 298), is not part of POSIX.1 or
ANSI, so the definition is not included if either preprocessor variable is set. If we refer to
sys_errlist anyway, the compiler signifies an error, since the array hasn’t been declared.
Similarly, L_cuserid is defined in POSIX.1 but not in ANSI C, so it is defined only when
_POSIX_SOURCE is defined and _ANSI_SOURCE is not defined.

Declarations for C++
C++ has additional requirements of symbol naming: function overloading allows different
functions to have the same name. Assemblers don’t think this is funny at all, and neither do
linkers, so the names need to be changed to be unique. In addition, the names need to some-
how reflect the class to which they belong, the kind of parameters that the function takes and
the kind of value it returns. This is done by a technique called function name encoding, usu-
ally called function name mangling. The parameter and return value type information is
appended to the function name according to a predetermined rule. To illustrate this, let’s look
at a simple function declaration:

double Internal::sense (int a, unsigned char *text, Internal &p, ...);

• First, two underscores are appended to the name of the function. With the initial under-
score we get for the assembler, the name is now _sense__.

5 February 2005 02:09

286

• Then the class name, Internal is added. Since the length of the name needs to be spec-
ified, this is put in first: _sense__8Internal.

• Next, the parameters are encoded. Simple types like int and char are abbreviated to a
single character (in this case, i and c. If they hav e modifiers like unsigned, these, too,
are encoded and precede the type information. In this case, we get just plain i for the int
parameter, and PUc (a Pointer to Unsigned characters for the second parameter:
_sense__8InternaliPUc.

• Class or structure references again can’t be coded ahead of time, so again the length of
the name and the name itself is used. In this case, we have a reference, so the letter R is
placed in front of the name: _sense__8InternaliPUcR8Internal.

• Finally, the ellipses are specified with the letter e: _sense__8InternaliPUcR8Inter-
nale.

For more details on function name mangling, see The Annotated C++ Reference Manual by
Margaret Ellis and Bjarne Stroustrup.

This difference in naming is a problem when a C++ program really needs to call a function
written in C. The name in the object file is not mangled, and so the C++ compiler must not
output a reference to a mangled name. Theoretically, there could be other differences between
C++ calls and C calls that the compiler also needs to take into account. You can’t just assume
that a function written in another language adheres to the same conventions, so you have to
tell it when a called function is written according to C conventions rather than according to
C++ conventions.

This is done with the following elegant construct:

extern "C"
{
char *ctermid (char *);
};

In ANSI C, the same declaration would be

char *ctermid (char *);

and in K&R C it would be

char *ctermid ();

It would be a pain to have a separate set of header files for each version. Instead, the imple-
mentors defined preprocessor variables which evaluate to language constructs for certain
places:

• __BEGIN_DECLS is defined as extern “C” { for C++ and nothing otherwise.

• __END_DECLS is defined as }; for C++ and nothing otherwise.

• __P(foo) is defined as foo for C++ and ANSI C, and nothing otherwise. This is the
reason why the arguments to __P() are enclosed in double parentheses: the outside level
of parentheses gets stripped by the preprocessor.

5 February 2005 02:09

Chapter 17: Header files 287

In this implementation, sys/cdefs.h defines these preprocessor variables. What happens if
sys/cdefs.h isn’t included before stdio.h? Lots of error messages. So one of the first lines in
stdio.h is #include <sys/cdefs.h>. This is not the only place that sys/cdefs.h is included:
in this particular implementation, from 4.4BSD, it is included from assert.h, db.h, dirent.h,
err.h, fnmatch.h, fstab.h, fts.h, glob.h, grp.h, kvm.h, locale.h, math.h, netdb.h, nlist.h, pwd.h,
regex.h, regexp.h, resolv.h, runetype.h, setjmp.h, signal.h, stdio.h, stdlib.h, string.h, time.h,
ttyent.h, unistd.h, utime.h and vis.h. This places an additional load on the compiler, which
reads in a 100 line definition file multiple times. It also creates the possibility for compiler
errors. sys/cdefs.h defines a preprocessor variable _CDEFS_H_ in order to avoid this problem:
after the obligatory UCB copyright notice, it starts with

#ifndef _CDEFS_H_
#define _CDEFS_H_

#if defined(__cplusplus)
#define __BEGIN_DECLS extern "C" {
#define __END_DECLS };
#else
#define __BEGIN_DECLS
#define __END_DECLS
#endif

This is a common technique introduced by ANSI C: the preprocessor only processes the body
of the header file the first time. After that, the preprocessor variable _CDEFS_H_ is defined,
and the body will not be processed again.

There are a couple of things to note about this method:

• There are no hard and fast rules about the naming and definition of these auxiliary vari-
ables. The result is that not all header files use this technique. For example, in FreeBSD
1.1, the header file machine/limits.h defines a preprocessor variable _MACHINE_LIM-
ITS_H and only interprets the body of the file if this preprocessor variable was not set on
entry. BSD/OS 1.1, on the other hand, does not. The same header file is present, and the
text is almost identical, but there is nothing to stop you from including and interpreting
machine/limits.h multiple times. The result can be that a package that compiles just fine
under FreeBSD may fail to compile under BSD/OS.

• The ANSI standard defines numerous standard preprocessor variables to ensure that
header files are interpreted only the first time they are included. The variables all start
with a leading _, and the second character is either another _ or an upper-case letter. It’s
a good idea to avoid using such symbols in your sources.

• We could save including sys/cdefs.h multiple times by checking _CDEFS_H_ before
including it. Unfortunately, this would establish an undesireable relationship between
the two files: if for some reason it becomes necessary to change the name of the pre-
processor variable, or perhaps to give it different semantics (like giving it different values
at different times, instead of just being defined), you have to go through all the header
files that refer to the preprocessor variable and modify them.

5 February 2005 02:09

288

ANSI header files
The ANSI C language definition, also called Standard C, was the first to attempt some kind of
standardization of header files. As far as it goes, it works well, but unfortunately it covers
only a comparatively small number of header files. In ANSI C,

• The only header files you should need to include are assert.h, ctype.h, errno.h, float.h,
limits.h, locale.h, math.h, setjmp.h, signal.h, stdarg.h, stddef.h, stdio.h, stdlib.h, string.h
and time.h.

• You may include headers in any order.

• You may include any header more than once.

• Header files do not depend on other header files.

• Header files do not include other header files.

If you can get by with just the ANSI header files, you won’t hav e much trouble. Unfortu-
nately, real-life programs usually require headers that aren’t covered by the ANSI standard.

Type information
A large number of system and library calls return information which can be represented in a
single machine word. The machine word of the PDP-11, on which the Seventh Edition ran,
was only 16 bits wide, and in some cases you had to squeeze the value to get it in the word.
For example, the Seventh Edition file system represented an inode number in an int, so each
file system could have only 65536 inodes. When 32-bit machines were introduced, people
quickly took the opportunity to extend the length of these fields, and modern file systems such
as ufs or vxfs have 32 bit inode numbers.

These changes were an advantage, but they bore a danger with them: nowadays, you can’t be
sure how long an inode number is. Current systems really do have different sized fields for
inode numbers, and this presents a portability problem. Inodes aren’t the only thing that has
changed: consider the following structure definition, which contains information returned by
system calls:

struct process_info
{
long pid; /* process number */
long start_time; /* time process was started, from time () */
long owner; /* user ID of owner */
long log_file; /* file number of log file */
long log_file_pos; /* current position in log file */
short file_permissions; /* default umask */
short log_file_major; /* major device number for log file */
short log_file_minor; /* minor device number */
short inode; /* inode number of log file */
}

On most modern systems, the longs take up 32 bits and the shorts take up 16 bits. Because

5 February 2005 02:09

Chapter 17: Header files 289

of alignment constraints, we put the longest data types at the front and the shortest at the end
(see Chapter 11, Hardware dependencies, page 158 for more details). And for older systems,
these fields are perfectly adequate. But what happens if we port a program containing this
structure to a 64 bit machine running System V.4 and vxfs? We’ve already seen that the inode
numbers are now 32 bits long, and System V.4 major and minor device numbers also take up
more space. If you port this package to 4.4BSD, the field log_file_pos needs to be 64 bits
long.

Clearly, it’s an oversimplification to assume that any particular kind of value maps to a short
or a long. The correct way to do this is to define a type that describes the value. In modern
C, the structure above becomes:

struct process_info
{
pid_t pid; /* process number */
time_t start_time; /* time process was started, from time () */
uid_t owner; /* user ID of owner */
long log_file; /* file number of log file */
pos_t log_file_pos; /* current position in log file */
mode_t file_permissions; /* default umask */
short log_file_major; /* major device number for log file */
short log_file_minor; /* minor device number */
inode_t inode; /* inode number of log file */
}

It’s important to remember that these type definitions are all in the mind of the compiler, and
that they are defined in a header file, which is usually called sys/types.h: the system handles
them as integers of appropriate length. If you define them in this manner, you give the com-
piler an opportunity to catch mistakes and generate more reliable code. Check your man
pages for the types of the arguments on your system if you run into trouble. In addition, Ap-
pendix A, Comparative reference to UNIX data types, contains an overview of the more com-
mon types used in UNIX systems.

Classes of header files
If you look at the directory hierarchy /usr/include, you may be astounded by the sheer number
of header files, over 400 of them on a typical UNIX system. Fortunately, many of them are in
subdirectories, and you usually won’t hav e to worry about them, except for one subdirectory:
/usr/include/sys.

/usr/include/sys
In early versions of UNIX, this directory contained the header files used for compiling the
kernel. Nowadays, this directory is intended to contain header files that relate to the UNIX
implementation, though the usage varies considerably. You will frequently find files that
directly include files from /usr/include/sys. In fact, it may come as a surprise that this is not
supposed to be necessary. Often you will also see code like

5 February 2005 02:09

290

#ifdef USG /* System V */
#include <sys/err.h>
#else /* non-System V system */
#include <err.h>
#endif

This simplified example shows what you need to do because System V keeps the header file
err.h in /usr/include/sys, whereas other flavours keep it in /usr/include. In order to include the
file correctly, the source code needs to know what kind of system it is running on. If it
guesses wrong (for example, if USG is not defined when it should be) or if the author of the
package didn’t allow for System V, either out of ignorance, or because the package has never
been compiled on System V before, then the compilation will fail with a message about miss-
ing header files.

Frequently, the decisions made by the kind of code in the last example are incorrect. Some
header files in System V have changed between System V.3 and System V.4. If, for example,
you port a program written for System V.4 to System V.3, you may find things like

#include <wait.h>

This will fail in most versions of System V.3, because there is no header file
/usr/include/wait.h; the file is called /usr/include/sys/wait.h. There are a couple of things you
could do here:

• You could start the compiler with a supplementary -I/usr/include/sys, which will
cause it to search /usr/include/sys for files specified without any pathname component.
The problem with this approach is that you need to do it for every package that runs into
this problem.

• You could consider doing what System V.4 does in many cases: create a file called
/usr/include/wait.h that contains just an obligatory copyright notice and an #include
directive enclosed in #ifdefs:

/* THIS IS PUBLISHED NON-PROPRIETARY SOURCE CODE OF O’REILLY */
/* AND ASSOCIATES Inc. */
/* The copyright notice above does not evidence any actual or */
/* intended restriction on the use of this code. */
#ifndef _WAIT_H
#define _WAIT_H
#include <sys/wait.h>
#endif

Problems with header files
It’s fair to say that no system is supplied with completely correct system header files. Your
system header files will probably suffer from at least one of the following problems:

• “Incorrect” naming. The header files contain the definitions you need, but they are not in
the place you would expect.

• Incomplete definitions. Function prototypes or definitions of structures and constants are
missing.

5 February 2005 02:09

Chapter 17: Header files 291

• Incompatible definitions. The definitions are there, but they don’t match your compiler.
This is particularly often the case with C++ on systems that don’t hav e a native C++
compiler. The gcc utility program protoize, which is run when installing gcc, is sup-
posed to take care of these differences, and it may be of use even if you choose not to
install gcc.

• Incorrect #ifdefs. For example, the file may define certain functions only if
_POSIX_SOURCE is defined, even though _POSIX_SOURCE is intended to restrict func-
tionality, not to enable it. The System V.4.2 version math.h surrounds M_PI (the constant
pi) with

#if (__STDC__ && !defined(_POSIX_SOURCE)) || defined(_XOPEN_SOURCE)

In other words, if you include math.h without defining __STDC__ (ANSI C) or
_XOPEN_SOURCE (X Open compliant), M_PI will not be defined.

• The header files may contain syntax errors that the native compiler does not notice, but
which cause other compilers to refuse them. For example, some versions of XENIX
curses.h contain the lines:

#ifdef M_TERMCAP
include <tcap.h> /* Use: cc -DM_TERMCAP ... -lcurses -ltermlib */
#else
ifdef M_TERMINFO
include <tinfo.h> /* Use: cc -DM_TERMINFO ... -ltinfo [-lx] */
else

ERROR -- Either "M_TERMCAP" or "M_TERMINFO" must be #define’d.
endif
#endif

This does not cause problems for the XENIX C compiler, but gcc, for one, complains
about the unterminated character constant starting with define’d.

• The header files may be “missing”. In the course of time, header files have come and
gone, and the definitions have been moved to other places. In particular, the definitions
that used to be in strings.h have been moved to string.h (and changed somewhat on the
way), and termio.h has become termios.h (see Chapter 15, Terminal drivers, page 241 for
more details).

The solutions to these problems are many and varied. They usually leave you feeling dissatis-
fied:

• Fix the system header files. This sounds like heresy, but if you have established beyond
any reasonable doubt that the header file is to blame, this is about all you can do, assum-
ing you can convince your system administrator that it is necessary. If you do choose
this way, be sure to consider whether fixing the header file will break some other pro-
gram that relies on the behaviour. In addition, you should report the bugs to your vendor
and remember to re-apply the updates when you install a newer version of the operating
system.

• Use the system header files, but add the missing definitions in local header files, or,
worse, in the individual source files. This is a particularly obnoxious “solution”,

5 February 2005 02:09

292

especially when, as so often, the declarations are not dependent on a particular ifdef. In
almost any system with reasonably complete header files there will be discrepancies
between the declarations in the system header files and the declarations in the package.
Even if they are only cosmetic, they will stop an ANSI compiler from compiling. For
example, your system header files may declare getpid to return pid_t, but the package
declares it to return int.

About the only legitimate use of this style of “fixing” is to declare functions that will
really cause incorrect compilation if you don’t declare them. Even then, declare them
only inside an ifdef for a specific operating system. In the case of getpid, you’re better
off not declaring it: the compiler will assume the correct return values. Nevertheless, you
will see this surprisingly often in packages that have already been ported to a number of
operating systems, and it’s one of the most common causes of porting problems.

• Make your own copies of the header files and use them instead. This is the worst idea of
all: if anything changes in your system’s header files, you will never find out about it. It
also means you can’t giv e your source tree to somebody else: in most systems, the header
files are subject to copyright.

5 February 2005 02:09

Function libraries

In this chapter, we’ll look at functions normally supplied in libraries with the system. As
mentioned on page 151, if you have the sources, it is usually relatively trivial to port a single
library function that doesn’t require specific kernel functionality. There are hundreds of
libraries, of course, and we can look only at those libraries that are available on a large num-
ber of systems. In the following sections, we’ll look at:

• Functions that are found in the standard C library frequently enough that their absence
can be a problem.

• Block memory functions, which modern compilers frequently treat as special cases.

• Regular expression libraries—five of them, all incompatible with each other, starting on
page 300.

• terminfo and termlib, starting on page 307. We’ll also briefly touch on curses.

Standard library functionality
The content of the standard C library libc.a reminds you of the joke “The nice thing about
standards is that there are so many to choose from.” Different systems have very different
views on what should and should not be part of the standard library, and a number of systems
don’t supply the functions at all. In this section, we’ll look at frequently used functions and
what to do if your system doesn’t hav e them.

alloca
alloca allocates memory in the stack, as opposed to malloc, which allocates memory in the
heap:

void *alloca (size_t size);

This has a significant speed advantage over malloc: malloc needs to search and update a
free space list. alloca typically just needs to change the value of a register, and is thus very
fast. It is often included with the package you are compiling, but you may need to set a flag or
modify the Makefile in order to include it. Versions for VAX, HP 300, i386 and Tahoe

293

5 February 2005 02:09

294

processors are located in the 4.4BSD Lite distribution as lib/libc/<machine>/gen/alloca.s. On
the down side, it is a somewhat system-dependent function, and it’s possible that it might
break after a new kernel release. You can almost always replace alloca with malloc,
though there may be a performance impact.

bcopy
bcopy is a BSD function that substantially corresponds to memmove:

#include <string.h>

void bcopy (const void *src, void *dst, size_t len);

Unlike memcpy, it is guaranteed to move correctly when the source and destination fields
overlap. If your system has memmove, you can define it as:

#define bcopy(s, d, l) memmove (d, s, l)

The operands have a different sequence from those of memmove.

bzero
bzero is a BSD function to clear an area of memory to 0. It is a subset of the standard func-
tion memset, and you can define it as

#define bzero(d, l) memset (d, ’\0’, l)

fnmatch
fnmatch is a routine that matches patterns according to the shell file name rules:

#include <fnmatch.h>

int fnmatch (const char *pattern, const char *string, int flags);

fnmatch compares string against pattern. It returns 0 if string matches pattern and
FNM_NOMATCH otherwise. The flags in Table 18-1 specify the kind of match to perform:

Table 18−1: fnmatch flags

Flag Meaning

FNM_NOESCAPE Interpret the backslash character (\) literally.

FNM_PATHNAME Slash characters in string must be explicitly matched by slashes in pat-
tern.

FNM_PERIOD Leading periods in strings match periods in patterns. Not all versions of
fnmatch implement this flag.

5 February 2005 02:09

Chapter 18: Function libraries 295

fnmatch is supplied with later BSD versions only. If you need it, it is in the 4.4BSD Lite dis-
tributio as lib/libc/gen/fnmatch.c.

getcwd and getwd
getcwd and getwd both return the name of the current working directory. This is the func-
tion behind the pwd command:

#include <stdio.h>

char *getcwd (char *buf, size_t size);
char *getwd (char *buf);

getwd has the great disadvantage that the function does not know the length of the pathname,
and so it can write beyond the end of the buffer. As a result, it has been replaced by getcwd,
which specifies a maximum length for the returned string. You can define getwd as:

#define getwd(d) getcwd (d, MAXPATHLEN)

MAXPATHLEN is a kernel constant defining the maximum path name length. It is normally
defined in /usr/include/sys/param.h.

gethostname and uname
There is no one function call which will return the name of the system on all UNIX platforms.
On BSD systems, gethostname returns the current host name:

#include <unistd.h>
int gethostname (char *name, int namelen);

gethostname returns a null-terminated string if the space defined by namelen allows. This
function is supported in System V.4, but not in standard versions of System V.3 and XENIX.

On System V systems, the system call uname returns a number of items of information about
the system, including the name. It is also supported as a library function by most BSD sys-
tems.

#include <sys/utsname.h>
sys/utsname.h defines
struct utsname
{
char sysname [9]; /* Internal system name */
char nodename [9]; /* External system name */
char release [9]; /* Operating system release */
char version [9]; /* Version of release */
char machine [9]; /* Processor architecture */
};

int uname (struct utsname *name);

The systems that do support uname apply a different meaning to the field sysname. For
example, consider the output of the following program, which was compiled and run on Inter-
active UNIX/386 System V.3 Version 2.2 and BSD/386 version 1.1, both running on an Intel

5 February 2005 02:09

296

486 platform:

#include <sys/utsname.h>
main ()
{
struct utsname myname;
uname (&myname);
printf ("sysname %s nodename %s release %s version %s machine %s\n",

myname.sysname,
myname.nodename,
myname.release,
myname.version,
myname.machine);

}
$ uname On the System V.3 machine:
sysname adagio nodename adagio release 3.2 version 2 machine i386
$ uname On the BSD/386 machine:
sysname BSD/386 nodename allegro release 1.1 version 0 machine i386

System V puts the node name in sysname, whereas BSD uses it for the name of the operating
system. This information is by no means complete: in particular, neither version tells you
explicitly whether the system is running System V or BSD, and there is no indication of the
vendor at all on the System V system.

index
index searches the string s forwards for the first occurrence of the character c. If it finds
one, it returns a pointer to the character. Otherwise it returns NULL. It is essentially the same
as the ANSI function strchr, and you can define it as:

#define index strchr

malloc
malloc has always been around, but the semantics have changed in the course of time. In the
Seventh Edition and XENIX, a call to malloc with length 0 returned a valid pointer, whereas
later versions return a NULL pointer, indicating an error. As a result, programs that ran on
older versions might fail on more recent implementations.

memmove
memmove copies an area of memory:

#include <string.h>

void *memmove (void *dst, const void *src, size_t len);

This is the same function as memcpy, except that memmove is guaranteed to move overlapping
data correctly. Except for the parameter sequence, it is the same as bcopy (see page 294). If
you don’t hav e either function, you can find bcopy in the 4.4BSD library source

5 February 2005 02:09

Chapter 18: Function libraries 297

(lib/libc/string/bcopy.c), as well as versions in assembler:
lib/libc/vax/string/memmove.s
lib/libc/hp300/string/bcopy.s
lib/libc/tahoe/string/bcopy.s

A generic version of memmove in C is in the GNU C library in sysdeps/generic/memmove.c.
See Appendix E, Where to get sources to locate all these sources. Note also the comments
about memory move functions on page 299.

remove
#include <stdio.h>

int remove (const char *path);

On BSD systems, remove is a synonym for the system call unlink. This means that it makes
sense to use it only for files. On System V.4 systems, it is slightly more complicated: if called
for a file, it does the same thing as unlink, for directories it does the same thing as rmdir.

rindex
rindex (reverse index) searches the string s for the last occurrence of character c and returns
a pointer to the character if it is found, and NULL otherwise. It is essentially the same function
as strrchr, and you can define it as:

#define rindex strrchr

snprintf and vsnprintf
snprintf and vsnprintf are versions of sprintf and vsprintf that limit the length of
the output string:

int sprintf (char *str, const char *format, ...);
int snprintf (char *str, size_t size, const char *format, ...);
int vsprintf (char *str, char *format, va_list ap);
int vsnprintf (char *str, size_t size, const char *format, va_list ap);

The argument size specifies the maximum length of the output string, including the trailing
’\0’. These functions are supplied in 4.4BSD Lite as usr/src/lib/libc/stdio/snprintf.c and
usr/src/lib/libc/stdio/vsnprintf.c. Alternatively, you can remove the second parameter and use
sprintf or vsprintf instead.

strcasecmp and strncasecmp
strcasecmp and strncasecmp perform an unsigned comparison of two ASCII strings ignor-
ing case (they consider a to be the same thing as A):

5 February 2005 02:09

298

#include <string.h>

int strcasecmp (const char *s1, const char *s2);
int strncasecmp (const char *s1, const char *s2, size_t len);

strncasecmp differs from strcasecmp by comparing at most len characters. Both func-
tions stop comparing when a NUL character is detected in one of the strings. You can find both
functions in the 4.4BSD Lite distribution (lib/libc/string/strcasecmp.c).

strdup
strdup allocates memory with malloc and copies a string to it:

#include <string.h>

char *strdup (const char *str);

It is included in the 4.4BSD Lite distribution (lib/libc/string/strdup.c).

strerror and sys_errlist
strerror returns an error message string for a specific error:

#include <string.h>

extern char *sys_errlist [];
extern int sys_nerr;
char *strerror (int errnum);

errnum is the number of the error; strerror returns a pointer to a text for the error, or
NULL if none is found.

Most library implementations also define sys_errlist, an array of description strings for
errors, and sys_nerr, the total number of error messages, in other words, the number of mes-
sages in sys_errlist. If you don’t find this function anywhere in your man pages, don’t
give up: it’s frequently hidden in an unexpected library. For example, NonStop UX version
B22 doesn’t define or document sys_errlist anywhere, but it is in libc.a all the same.

The implementation of strerror is trivial:

char *strerror (int errnum)
{
if (errnum < sys_nerr)
return sys_errlist [errnum];

else
{
static char bogus [80];
sprintf (bogus, "Unknown error: %d", errnum);
return bogus;
}

}

Don’t assume that your system doesn’t hav e sys_errlist just because you can’t find a

5 February 2005 02:09

Chapter 18: Function libraries 299

definition in the header files. Many systems install it via the back door because packages such
as X11 use them. The safest way to find out is to search the system libraries. The shell script
findf, described in Chapter 21, Object files and friends, page 374, will do this for you.

stricmp and strnicmp
These are somewhat uncommon alternatives to strcasecmp and strncasecmp which are
supplied on some systems (see page 297).

Block memory access functions
Many programs spend the bulk of their execution time moving areas of memory about or
comparing them. The C language supplies a rich set of functions, such as memcpy, memmove,
strcpy, strchr, strlen, and friends. Unfortunately, their performance frequently leaves
something to be desired. Many C libraries still write the move in C. You can write memcpy
as:

char *memcpy (char *d, char *s, int len)
{
char *dest = d;
while (len--)
*d++ = *s++;

return dest;
}

On an Intel 386 architecture, gcc compiles quite a tight little loop with only 7 instructions,*

but it also requires another 15 instructions to set up the function environment and remove it
again. In addition, the calling sequence memcpy (bar, foo, 10) might compile in 5
instructions. Many machines supply special instructions for block memory operations, but
ev en those that don’t can do it faster without a function call. The block memory functions are
thus ideal candidates for inline functions that the compiler can optimize. Many compilers
now do so, including gcc and the System V.4 CCS compilers. In this situation, the compiler
can recognize that there are only a few bytes to be moved, and that they are word-aligned, so
it can use native load and store operations. When you enable optimization, gcc can compiles
the memcpy (bar, foo, 10) into only 6 simple instructions: the loop has disappeared com-
pletely, and we just have 3 load and 3 store instructions. This approach isn’t appropriate for
moves of 1000 bytes, of course. Here, the compiler uses 4 instructions to set up a block move
instruction, for a total of 5 instructions.

These examples are typical of what a smart compiler can do if it has inside information about
what the function does. Normally this information is compiled into the compiler, and it
doesn’t need a header file to know about the function. This can have a number of conse-
quences for you:

• The compiler “knows” the parameter types for the function. If you define the function
differently, you get a possibly confusing error message:

* See Chapter 21, Object files and friends, page 377 for a discussion of parameter passing.

5 February 2005 02:09

300

memcpy.c:3: warning: conflicting types for built-in function ‘memcpy’

If you get this message, you can either ignore it or, better, remove the definition. The
compiler knows anyway.

• When debugging, you can’t just put a breakpoint on memcpy. There is no such function,
or if it has been included to satisfy references from modules compiled by other compil-
ers, it may not be called when you expect it to.

• If you have a program written for a compiler that knows about the block memory func-
tions, you may need to add definitions if your compiler doesn’t support them.

Regular expression routines
Regular expressions are coded descriptions of text strings. They are used by editors and utili-
ties such as grep for searching and matching actual text strings. There’s nothing very special
about routines that process regular expressions, but there is no agreement about standards and
there is no agreement about how to write a regular expression. The only regular thing about
them is the regularity with which programs fail to link due to missing functions. There are at
least five different packages, and the names are similar enough to cause significant confusion.

In all cases, the intention of the routines is the same:

• A compilation function converts a string representation of a regular expression into an
internal representation that is faster to interpret.

• A search function performs the search.

In addition, the Eighth Edition regex package has support for a replacement function based on
the results of a previous search.

Regular expression syntax also comes in two flavours:

• The documentation of the older syntax usually states that it is the same syntax that ed
uses. ed is an editor that is now almost completely obsolete,* so it’s good to know that
the stream editor sed, which is still in current use, uses the same syntax.

• The newer syntax is the same that egrep uses. It is similar to that of ed, but includes a
number of more advanced expressions.

If you get software that expects one package, but you have to substitute another, you should
expect changes in behaviour. Regular expressions that worked with the old package may not
work with the new one, or they may match differently. A particularly obvious example is the
use of parentheses to group expressions. All forms of regular expressions perform this group-
ing, but the old syntax requires the parentheses to be escaped: \(expr\), whereas the new
syntax does not: (expr).

* ed does have its uses, though. If you have serious system problems (like /usr crashed), it’s nice to have
a copy of ed on the root file system. It’s also useful when your only connection to the machine is via a
slow modem line: over a 2400 bps line, redrawing a 24x80 screen with vi or emacs takes 8 seconds, and
things are a lot faster with ed.

5 February 2005 02:09

Chapter 18: Function libraries 301

Apart from the intention of the functions, they also perform their task in very different ways.
They might store compiled program in an area that the caller supplies, they might malloc it, or
they might hide it where the user can’t find it. In some cases, the compiled expression is
stored in a struct along with other information intended for use by the calling functions. In
others this information is not returned at all, and in others again it is returned in global arrays,
and in others it is returned via optional arguments. Translating from one flavour to another
takes a lot of time. Three packages are generally available: Henry Spencer’s Eighth Edition
package, the 4.4BSD POSIX.2 version, and the GNU POSIX.2 version. See Appendix E,
Where to get sources for sources of these packages. If you do have to port to a different regu-
lar expression package, choose a POSIX.2 implementation. Although it is by far the most
complicated to understand, it is probably the only one that will be around in a few years.

Regular expressions are used for two purposes: searching and replacing. When replacing one
regular expression with another, it’s nice to be able to refer to parts of the expression. By con-
vention, you define these subexpressions with parentheses: the expression
foo\(.*\)bar\(.*\)baz defines two such subexpressions. The regular expression will
match all strings containing the texts foo, bar, and baz with anything in between them. The
first marked subexpression is the text between foo and bar, and the second one is the text
between bar and baz.

regexpr
The regexpr routines have traditionally been supplied with System V and XENIX systems.
They were originally part of the ed editor and thus implement the ed style of regular expres-
sions. Despite the name, there is no function called regexpr.

The routines themselves are normally in a library libgen.a. In addition, for some reason many
versions of System V and XENIX include the complete source to the functions in the header
file regexp.h, whereas the header file regexpr.h contains only the declarations. There are three
routines:

#include <regexpr.h>

extern char *loc1, *loc2, *locs;
extern int nbra, regerrno, reglength;
extern char *braslist [], *braelist [];

char *compile (const char *instring,
char *expbuf,
char *endbuf);

int step (const char *string, char *expbuf);
int advance (const char *string, char *expbuf);

• compile compiles the regular expression instring. The exact behaviour depends on
the value of expbuf. If expbuf is NULL, compile mallocs space for the compiled ver-
sion of the expression and returns a pointer to it. If expbuf is non-NULL, compile
places the compiled form there if it fits between expbuf and endbuf, and it returns a
pointer to the first free byte. If the regular expression does not fit in this space, compile
aborts. If the compilation succeeds, the length of the compiled expression is stored in the

5 February 2005 02:09

302

global variable reglength.

If the compilation fails, compile returns NULL and sets the variable regerrno to one of
the values in Table 18-2:

Table 18−2: regcomp error codes

Error Meaning
code

11 Range endpoint too large.
16 Bad number.
25 \digit out of range.
36 Illegal or missing delimiter.
41 No remembered search string.
42 \(\) imbalance.
43 Too many \(.
44 More than 2 numbers given in \{ \}.
45 } expected after \.
46 First number exceeds second in \{ \}.
49 [] imbalance.
50 Regular expression overflow.

• step compares the string string with the compiled expression at expbuf. It returns
non-zero if it finds a match, and 0 if it does not. If there is a match, the pointer loc1 is
set to point to the first matching character, and loc2 is set to point past the last character
of the match.

If the regular expression contains subexpressions, expressions bracketed by the character
sequences \(and \), step stores the locations of the start and end of each matching
string in the global arrays braslist (start) and braelist (end). It stores the total num-
ber of such subexpressions in nbra.

• advance has the same function as step, but it restricts its matching to the beginning of
the string. In other words, a match always causes loc1 to point to the beginning of the
string.

regcmp
regcmp is another regular expression processor used in System V and XENIX. Like regexpr,
they implement the ed style of regular expressions with some extensions. They are also nor-
mally part of the library libgen.a.

#include <libgen.h>

char *regcmp (const char *string1,
/* char *string2 */ ...
(char *) 0);

5 February 2005 02:09

Chapter 18: Function libraries 303

char *regex (const char *re,
const char *subject,
/* char *ret0, *ret1, ... *retn */ ...);

extern char *__loc1;

• regcmp can take multiple input arguments, which it concatenates before compilation.
This can be useful when the expression is supplied on a number of input lines, for exam-
ple. It always mallocs space for its compiled expression, and returns a pointer to it.

• regex searches for the string subject in the compiled regular expression re. On suc-
cess, it returns a pointer to the next unmatched character and sets the global pointer
__loc1 to the address of the first character of the match. Optionally, it returns up to ten
strings at ret0 and the parameters that follow. You specify them with the $n regular
expression element discussed below.

The regular expression syntax is slightly different from that of ed and sed:

• The character $ represents the end of the string, not the end of the line. Use \n to spec-
ify the end of the line.

• You can use the syntax [a-f] to represent [abcdef].

• You can use the syntax x+ to represent one or more occurrences of x.

• You can use the syntax {m}, where m is an integer, to represent that the previous subex-
pression should be applied m times.

• You can use the syntax {m,}, where m is an integer, to represent that the previous subex-
pression should be applied at least m times.

• You can use the syntax {m,u}, where m and u are integers, to represent that the previous
subexpression should be applied at least m and at most u times.

• The syntax (exp) groups the characters exp so that operators such as * and + work on
the whole expression and not just the preceding character. For example, abcabcabcabc
matches the regular expression (abc)+, and abcccccc matches abc+.

• The syntax (exp)$n, where n is an integer, matches the expression exp, and returns the
address of the matched string to the call parameter retn of the call to regex. It will
ev en try to return it if you didn’t supply parameter retn, so it’s good practice to supply
all the parameters unless you are in control of the regular expressions.

regex: re_comp and re_exec
regex is the somewhat confusing name given to the functions re_comp and re_exec, which
were introduced in 4.0BSD. Note particularly that there is no function called regex, and that
the name is spelt without a final p. regex also implements ed-style regular expressions. There
are two functions:

5 February 2005 02:09

304

char *re_comp (char *sp);
int re_exec (char *p1);

• re_comp compiles the regular expression sp and stores the compiled form internally.
On successful compilation, it returns a NULL pointer, and on error a pointer to an error
message.

• re_exec searches the string p1 against the internally stored regular expression. It
returns 1 if the string p1 matches the last compiled regular expression, 0 if the string p1
fails to match the last compiled regular expression, and -1 if the compiled regular expres-
sion is invalid.

No public-domain versions of regex are available, but it’s relatively simple to define them in
terms of POSIX.2 regex.

Eighth edition regexp
The Eighth edition reg exp package has gained wider popularity due to a widely available
implementation by Henry Spencer of the University of Toronto. It consists of the functions
regcomp, regexec, regsub and regerror:

#include <regexp.h>

regexp * regcomp (const char *exp);
int regexec (const regexp *prog, const char *string);
void regsub (const regexp *prog, const char *source, char *dest);
void regerror (const char *msg);

In contrast to earlier packages, Eighth edition regexp implements egrep-style regular expres-
sions. Also in contrast to other packages, the compiled form of the regular expression
includes two arrays which regexec sets for the convenience of the programmer: char
*startp [] is an array of start addresses of up to nine subexpressions (expressions enclosed
in parentheses), and char *endp [] is an array of the corresponding end addresses. The
subexpressions are indexed 1 to 9; startp [0] refers to the complete expression.

regcomp compiles the regular expression exp and stores the compiled version in an area that
it mallocs. It returns a pointer to the compiled version on success or NULL on failure.

regexec matches the string string against the compiled regular expression prog. It returns
1 if a match was found and 0 otherwise. In addition, it stores the start and end addresses of
the first ten parenthesized subexpressions in prog->startp and prog->endp.

regsub performs a regular expression substitution, a function not offered by the other pack-
ages. You use it after regcomp finds a match and stores subexpression start and end informa-
tion in startp and endp. It copies the input string source to dest, replacing expressions of
the type &n, where n is a single digit, by the substring defined by startp [n] and endp
[n].

regerror determines the action to be taken if an error is detected in regcomp, regexec or
regsub. The default regerror prints the message and terminates the program. If you want,
you can replace it with your own routine.

5 February 2005 02:09

Chapter 18: Function libraries 305

POSIX.2 regex
As if there weren’t enough regular expression libraries already, POSIX.2 also has a version of
regex. It is intended to put an end to the myriad other flavours of regular expressions, and thus
supplies all the functionality of the other packages. Unfortunately, it re-uses the function
names of Eighth Edition regexp. This is the only similarity: the POSIX.2 functions take com-
pletely different parameters. The header file of the 4.4BSD package starts with

#ifndef _REGEX_H_
#define _REGEX_H_ /* never again */

#ifdef _REGEXP_H_
BAD NEWS -- POSIX regex.h and V8 regexp.h are incompatible
#endif

The Eighth Edition regexp.h contains similar code, so if you accidentally try to use both, you
get an error message when you try to compile it.

The POSIX.2 regex package offers a seemingly infinite variety of flags and options. It con-
sists of the functions regcomp, regexec, regerror and regfree. They match regular
expressions according to the POSIX.2 regular expression format, either ed format (so-called
basic regular expressions, the default) or egrep format (extended regular expressions). The
4.4BSD implementations refer to them as obsolete regular expressions and modern regular
expressions respectively. You choose the kind of expression via flag bits passed to the compi-
lation function regcomp. Alternatively, you can specify that the string is to be matched
exactly — no characters have any special significance any more.

Here are the functions:

#include <sys/types.h>
#include <regex.h>

int regcomp (regex_t *preg, const char *pattern, int cflags);
int regexec (const regex_t *preg,

const char *string,
size_t nmatch,
regmatch_t pmatch [],
int eflags);

size_t regerror (int errcode,
const regex_t *preg,
char *errbuf,
size_t errbuf_size);

void regfree (regex_t *preg);

• regcomp compiles the regular expression pattern and stores the result at preg. It
returns 0 on success and an error code on failure. cflags modifies the way in which the

5 February 2005 02:09

306

compilation is performed. There are a number of flags, listed in Table 18-3:

Table 18−3: cflags bits for regcomp

Flag bit Function

REG_BASIC Compile basic ("obsolete") REs. This is the default.

REG_EXTENDED Compile extended ("modern") REs.

REG_NOSPEC Compile a literal expression (no special characters). This is not spec-
ified by POSIX.2. You may not combine REG_EXTENDED and
REG_NOSPEC.

REG_ICASE Compile an expression that ignores case.

REG_NOSUB Compile to report only whether the text matched, don’t return subex-
pression information. This makes the search faster.

REG_NEWLINE Compile for newline-sensitive matching. By default, a newline char-
acter does not have any special meaning. With this flag, ˆ and $
match beginnings and ends of lines, and expressions bracketed with
[] do not match new lines.

REG_PEND Specify that the expression ends at re_endp, thus allowing NUL char-
acters in expressions. This is not defined in POSIX.2

• regexec matches the string string against the compiled regular expression preg. If
nmatch is non-zero and pmatch is non-NULL, start and end information for up to
nmatch subexpressions is returned to the array pmatch. regexec also supports a num-
ber of flags in eflags. They are described in Table 18-4:

Table 18−4: eflags bits for regexec

Flag bit Function

REG_NOTBOL Do not match the beginning of the expression with ˆ.

REG_NOTEOL Do not match the end of the expression wtih $.

REG_STARTEND Specify that the string starts at string + pmatch[0].rm_so and
ends at string + pmatch[0].rm_eo. This can be used with
cflags value REG_PEND to match expressions containing NUL char-
acters.

• regerror is analogous to the C library function perror: it converts the error code
errcode for regular expression preg into a human-readable error message at errbuf,
up to a maximum of errbuf_size bytes.

As in Eighth Edition regexp, regcomp returns additional information about the expression:

5 February 2005 02:09

Chapter 18: Function libraries 307

• If you compile the expression with the REG_PEND bit set in cflags, you can set
re_endp to point to the real end of the regular expression string supplied to regcomp,
thus allowing NUL characters in the regular expression.

• After compilation, regcomp sets re_nsub to the number of subexpressions it found. For
each subexpression, regexec can return start and end address information if you call it
with appropriate parameters.

In addition, regexec stores information about matched subexpressions in a structure of type
regmatch_t, unless you specify the flag REG_NOSUB. This contains at least the fields rm_so
and rm_eo, which are offsets from the start of the string of the first and last character of the
match. They are of type regmatch_t.

No less than three versions of POSIX.2 regex are generally available: Henry Spencer’s regex is
included in the 4.4BSD distribution, and the GNU project has the older regex and newer rx.
See Appendix E, Where to get sources.

termcap and terminfo
When full-screen editors started to appear in the late 70s, Bill Joy at UCB wrote ex, out of
which grew vi. One of the problems he had was that just about every terminal has a different
command set. Even commands as simple as positioning the cursor were different from one
terminal to the next. In order to get the editor to work over a range of terminals, he devised
termcap, the terminal capabilities database, which, with a few access routines, allowed a pro-
gram to determine the correct control sequences for most common functions.

A few years later, while writing the game ro gue, Ken Arnold extended the routines and cre-
ated a new package, curses, which offered higher-level functions.

Finally, USG improved on curses and introduced terminfo, a new implementation of the same
kind of functionality as termcap. It was designed to address some of the weaknesses of term-
cap, and as a result is not compatible with it. More programs use termcap than terminfo: ter-
minfo is usually restricted to System V systems, and termcap has been around for longer, and
is available on most systems. Some programs use both, but there aren’t very many of them.

There are a number of gotchas waiting for you with termcap, termlib and curses:

• Termcap isn’t perfect, to put it mildly: it relies on a marginally human-readable definition
file format, which means that the access routines are slow. When AT&T incorporated
termcap into System V, they addressed this problem and created terminfo, with a so-
called compiled representation of the terminal data.

• Both termcap and terminfo are passive services: your program has to explicitly ask for
them in order for them to work. Many programs don’t use either, and many use only one
or the other.

• Though the BSD curses package offered a bewildering number of functions, users asked
for more. When AT&T incorporated curses into System V, they added significant
enhancements. Curses goes a level of complexity beyond termcap and terminfo, and
supplies a huge number of functions to perform all kinds of functions on a terminal. It’s

5 February 2005 02:09

308

like a can of worms: avoid opening it if you can, otherwise refer to UNIX Curses
Explained by Berny Goodheart. If you have a BSD system and need System V curses,
you can try the ncurses package (see Appendix E, Where to get sources).

• BSD versions of UNIX have still not incorporated terminfo or the additional curses rou-
tines, although they hav e been available for some time. In this section, we’ll look at the
differences in the implementations and what can be done about them. For more informa-
tion, read Programming with curses, by John Strang, for a description of BSD curses,
Termcap and Terminfo, by John Strang, Tim O’Reilly and Linda Mui for a description of
termcap and terminfo, and UNIX Curses Explained, by Berny Goodheart, for a descrip-
tion of both versions of curses.

termcap
The heart of termcap is the terminal description. This may be specified with an environment
variable, or it may be stored in a file containing definitions for a number of terminals. There
is no complete agreement on the location of this file:

• If the termcap routines find the environment variable TERMCAP, and it doesn’t start with a
slash (/), they try to interpret it as a termcap entry.

• If the termcap routines find the environment variable TERMCAP, and it does start with a
slash, they try to interpret it as the name of the termcap file.

• If TERMCAP isn’t specified, the location depends on a constant which is compiled into the
termcap library. Typical directories are /etc, /usr/lib, and /usr/share. Don’t rely on find-
ing only one of these files: it’s not uncommon to find multiple copies on a machine, only
one of which is of any use to you. If the system documentation forgets to tell you where
the termcap file is located, you can usually find out with the aid of strings and grep. For
example, BSD/OS gives

$ strings libtermcap.a |grep /termcap
.termcap /usr/share/misc/termcap

and SCO UNIX gives

$ strings libtermcap.a |grep /termcap
/etc/termcap
/etc/termcap

The file termcap contains entries for all terminals known to the system. On some systems it
can be up to 200 kB in length. This may not seem very long, but every program that uses
termcap must read it until it finds the terminal definition: if the terminal isn’t defined, it reads
the full length of the file.

Here’s a typical entry:

vs|xterm|vs100|xterm terminal emulator (X Window System):\
:AL=\E[%dL:DC=\E[%dP:DL=\E[%dM:DO=\E[%dB:IC=\E[%d@:UP=\E[%dA:\
:al=\E[L:am:\
:bs:cd=\E[J:ce=\E[K:cl=\E[H\E[2J:cm=\E[%i%d;%dH:co#80:\

5 February 2005 02:09

Chapter 18: Function libraries 309

:cs=\E[%i%d;%dr:ct=\E[3k:\
:dc=\E[P:dl=\E[M:\
:im=\E[4h:ei=\E[4l:mi:\
:ho=\E[H:\
:is=\E[r\E[m\E[2J\E[H\E[?7h\E[?1;3;4;6l\E[4l:\
:rs=\E[r\E[m\E[2J\E[H\E[?7h\E[?1;3;4;6l\E[4l\E<:\
:k1=\EOP:k2=\EOQ:k3=\EOR:k4=\EOS:kb=ˆH:kd=\EOB:ke=\E[?1l\E>:\
:kl=\EOD:km:kn#4:kr=\EOC:ks=\E[?1h\E=:ku=\EOA:\
:li#65:md=\E[1m:me=\E[m:mr=\E[7m:ms:nd=\E[C:pt:\
:sc=\E7:rc=\E8:sf=\n:so=\E[7m:se=\E[m:sr=\EM:\
:te=\E[2J\E[?47l\E8:ti=\E7\E[?47h:\
:up=\E[A:us=\E[4m:ue=\E[m:xn:

v2|xterms|vs100s|xterm terminal emulator, small window (X Window System):\
:co#80:li#24:tc=xterm:

vb|xterm-bold|xterm with bold instead of underline:\
:us=\E[1m:tc=xterm:

#
vi may work better with this termcap, because vi
doesn’t use insert mode much
vi|xterm-ic|xterm-vi|xterm with insert character instead of insert mode:\

:im=:ei=:mi@:ic=\E[@:tc=xterm:

The lines starting with the hash mark (#) are comments. The other lines are terminal capabil-
ity definitions: each entry is logically on a single line, and the lines are continued with the
standard convention of terminating them with a backslash (\). As in many other old UNIX
files, fields are separated by colons (:).

The first field of each description is the label, the name of the terminal to which the definition
applies. The terminal may have multiple names, separated by vertical bars (|). In our exam-
ple, the first entry has the names vs, xterm and vs100. The last part of the name field is a
description of the kind of terminal. In the second entry, the names are vi, xterm-ic and
xterm-vi.

Both 4.4BSD termcap and System V terminfo recommend the following conventions for nam-
ing terminals:

• Start with the name of the physical hardware, for example, hp2621.

• Avoid hyphens in the name.

• Describe operational modes or configuration preferences for the terminal with an indica-
tor, separated by a hyphen. Use the following suffixes where possible:

Suffix Meaning Example
-w Wide mode (more than 80 columns) vt100-w

-am With automatic margins (usually default) vt100-am

-nam Without automatic margins vt100-nam

-n Number of lines on screen aaa-60

-na No arrow keys (leave them in local) concept100-na

-np Number of pages of memory concept100-4p

-rv Reverse video concept100-rv

5 February 2005 02:09

310

The following fields describe individual capabilities in the form capability=definition. The
capabilities are abbreviated to two characters, and case is significant. See Programming with
curses, by John Strang, for a list of the currently defined abbreviations and their meaning.
Depending on the capability, the definition may be a truth value (true or false), a number, or a
string. For example,

• The first entry for vs (AL=\E[%dL) states that the capability AL (insert n new blank lines)
can be invoked with the string \E[%dL. \E represents an ESC character. The characters
[and L are used literally. The program uses sprintf to replace the %d with the number
of lines to insert.

• The next entry, am, has no parameter. This is a boolean or truth value, in this case mean-
ing that the terminal supports automatic margins. The presence of the capability means
that it is true, the absence means that it is false.

• The entry co#80 specifies a numeric parameter and states that the capability co (number
of columns) is 80.

There is almost nothing in the syntax of the definition file that requires that a particular capa-
bility have a particular type, or even which capabilities exist: this is simply a matter of agree-
ment between the program and the capabilities database: if your program wants the capability
co, and wants it to be numeric, it calls tgetnum. For example, the following code checks first
the information supplied by ioctl TIOCGWINSZ (see Chapter 15, Terminal drivers, page
259), then the termcap entry, and if both of them are not defined, it defaults to a configurable
constant:

if (! (maxcols = winsize.ws_col)
&& (! (maxcols = tgetnum ("co"))))
maxcols = MAXCOLS;

The only exception to this rule is the capability tc, which refers to another capability. In the
example above, the entry for vi and friends consists of only 5 entries, but the last one is a tc
entry that refers to the vs entry above.

This lack of hard and fast rules means that termcap is extensible: if you have a terminal that
can change the number of colours which can be displayed at one time, and for some reason
you want to use this feature, you might define a termcap variable XC specifying the string to
output to the terminal to perform this function. The danger here is, of course, that somebody
else might write a program that uses the variable XC for some other purpose.

termcap functions: termlib

Along with termcap come library functions, normally in a library called libtermcap.a, though
a number of systems include them in libc.a. They help you query the database and perform
user-visible functions such as writing to the terminal. There aren’t many functions, but they
are nonetheless confusing enough:

char PC; /* padding character */
char *BC; /* backspace string */
char *UP; /* Cursor up string */

5 February 2005 02:09

Chapter 18: Function libraries 311

short ospeed; /* terminal output speed */

tgetent (char *bp, char *name);
tgetnum (char *id);
tgetflag (char *id);
char *tgetstr (char *id, char **sbp);
char *tgoto (char *cm, int destcol, int destline);
tputs (register char *cp, int affcnt, int (*outc) ());

Before you start, you need two areas of memory: a 1 kB temporary buffer for the termcap
entry, which we call buf, and a buffer for the string capabilities that you need, which we call
sbuf. The initialization function tgetent fills sbuf with the termcap entry, and the function
tgetstr transfers strings from buf to sbuf. After initialization is complete, buf can be
deallocated.

In addition, you need a char pointer sbp which must be initialized to point to sbuf. tget-
str uses it to note the next free location in sbuf.

If you don’t specify a specific termcap string as the value of the TERMCAP environment vari-
able, you need to know the name of your terminal in order to access it in the termcap file. By
convention, this is the value of the TERM environment variable, and you can retrieve it with the
library function getenv.

• tgetent searches the termcap file for a definition for the terminal called name and
places the entry into the buffer, which must be 1024 bytes long, at buf. All subsequent
calls use this buffer. The confusing thing is that they do not explicitly reference the
buffer: tgetent saves its address in a static pointer internal to the termcap routines.
tgetent returns 1 on success, 0 if the terminal name was not found, or -1 if the termcap
database could not be found.

• tgetnum looks for a numeric capability id and returns its value if found. If the value is
not found, it returns -1.

• tgetflag looks for a boolean capability id and returns 1 if it is present and 0 otherwise.

• tgetstr looks for a string capability id. If it is found, it copies it into the buffer
pointed to by the pointer at *sbp. It then updates sbp to point past the string. It returns
the address of the string in sbuf if found, or NULL if not. This method ensures that the
strings are null-terminated (which is not the case in buf), and that they are stored effi-
ciently (though a 1 kB buffer is no longer the overhead it used to be).

• tgoto generates a positioning string to move the cursor to column destcol and line
destline using the cm (cursor position) capability. This capability contains format
specifications that tgoto replaces with the representation of the actual row and column
numbers. It returns a pointer to the positioning string, which again is stored in a static
buffer in the package. It also attempts to avoid the use of the characters \n, CTRL-D or
CTRL-@. The resulting string may contain binary information that corresponds to tab
characters. Depending on how it is set up, the terminal driver may replace these tab char-
acters with blanks, which is obviously not a good idea. To ensure that this does not hap-
pen, turn off TAB3 on a termio or termios system (see Chapter 15, Terminal drivers, page
243) or reset XTABS in sgttyp.sg_flags with the old terminal driver (see page 240).

5 February 2005 02:09

312

This is all that tgoto does. It does not actually output anything to the terminal.

• tputs writes the string at cp to the screen. This seems unnecessary, since write and
fwrite already do the same thing. The problem is that the output string cp may contain
padding information for serial terminals, and only tputs interprets this information cor-
rectly. affcnt is the number of lines on the screen affected by this output, and outc is
the address of a function that outputs the characters correctly. Often enough, this is
something like putchar.

Problems with termcap
Sooner or later you’ll run into problems with termcap. Here are some of the favourite ones:

Missing description

It could still happen that there isn’t a description for your terminal in the termcap data base.
This isn’t the problem it used to be, since most modern terminals come close to the ANSI
standard. In case of doubt, try ansi or vt100. This is, of course, not a good substitute for
complete documentation for your terminal.

Incomplete description

It’s much more likely that you will find a terminal description for your terminal, but it’s
incomplete. This happens surprisingly often. For example, the xterm definition supplied in
X11R5 has 56 capabilities, and the definition supplied with X11R6 has 85. xterm hasn’t
changed significantly between X11R5 and X11R6: the capabilities were just missing from the
entry in X11R5. Frequently you’ll find that a feature you’re looking for, in particular the code
generated by a particular function key, is missing from your termcap entry. If nothing else
helps, you can find out what codes the key generates with od:

$ od -c display stdin in character format
ˆ[[11˜ˆ[[12˜ˆ[[13˜ˆ[[14˜ RETURN
0000000 033 [1 1 ˜ 033 [1 2 ˜ 033 [1 3 ˜ 0000020
033 [1 4 ˜ \n
0000025

In this example, I pressed the keys F1, F2, F3 and F4 on an xterm: this is what echos on the
first line. od doesn’t display anything until its read completes, so I pressed RETURN to
show the text. It shows that the sequences generated are:

• 033 (ESC, which is represented as \E in termcap entries).

• [1 and the number of the function key and a tilde (˜).

These sequences can then be translated into the termcap capabilities:

k1=\E[11˜:k2=\E[12˜:k3=\E[13˜:k4=\E[14˜:

5 February 2005 02:09

Chapter 18: Function libraries 313

Incorrect description

If we look at the previous example more carefully, we’ll notice something strange: these capa-
bilities aren’t the same as the ones in the example for xterm on page 308. What’s wrong with
this picture? A good question. Both under X11R5 and X11R6, xterm on an Intel architecture
gives you the codes shown above. The codes for F5 to F10 are as shown in the termcap entry,
but the entries for F1 to F4 are just plain wrong. I don’t know of any way to generate them
with xterm. This is typical of termcap entries: if you run into trouble, first make sure that your
descriptions are correct.

Obsolete information

Another interesting thing about the xterm example is that it tells you the size of the terminal:
co#80 says that this terminal has 80 columns, and li#65 says that it has 65 lines. This infor-
mation can be an approximation at best, since X11 allows you to resize the window. Most
modern systems supply the SIGWINCH signal, which is delivered to the controlling process
when a window is resized (see Chapter 15, Terminal drivers, page 259). This information is
just plain misleading, but there’s a lot of it in just about any termcap file. The 4.4BSD man
page flags a number of capabilities that are considered obsolete, including things as the char-
acter used to backspace or the number of function keys.

terminfo
terminfo is the System V replacement for termcap. At first sight it looks very similar, but
there are significant differences:

• Instead of reading the termcap file, the terminfo routines require a “compiled” version.

• Instead of storing all entries in a single file, terminfo stores each entry in a different file,
and puts them in a directory whose name is the initial letter of the terminal name. For
example, the terminfo description for xterm might be stored in /usr/lib/terminfo/x/xterm.

• The substitution syntax has been significantly expanded: in termcap, only tgoto could
handle parameter substitution (see page 311); in terminfo, the substitution syntax is more
general and offers many more features.

• The program tic (terminfo compiler) compiles terminfo descriptions.

• The programs infocmp, which is supplied with System V, and untic, which is part of
ncurses, dump compiled terminfo entries in source form.

As an example of a terminfo definition, let’s look at the definition for an xterm. This should
contain the same information as the termcap entry on page 308:

xterm|xterm-24|xterms|vs100|xterm terminal emulator (X Window System),
is2=\E7\E[r\E[m\E[?7h\E[?1;3;4;6l\E[4l\E8\E>,
rs2=\E7\E[r\E[m\E[?7h\E[?1;3;4;6l\E[4l\E8\E>,
am, bel=ˆG,
cols#80, lines#24,
clear=\E[H\E[2J, cup=\E[%i%p1%d;%p2%dH,

5 February 2005 02:09

314

csr=\E[%i%p1%d;%p2%dr,
cud=\E[%p1%dB, cud1=\n, cuu=\E[%p1%dA, cuu1=\E[A,
cub=\E[%p1%dD, cub1=\b, cuf=\E[%p1%dC, cuf1=\E[C,
el=\E[K, ed=\E[J,
home=\E[H, ht=ˆI, ind=ˆJ, cr=ˆM,
km,
smir=\E[4h, rmir=\E[4l, mir,
smso=\E[7m, rmso=\E[m, smul=\E[4m, rmul=\E[m,
bold=\E[1m, rev=\E[7m, blink@, sgr0=\E[m, msgr,
enacs=\E)0, smacs=ˆN, rmacs=ˆO,
smkx=\E[?1h\E=, rmkx=\E[?1l\E>,
kf1=\EOP, kf2=\EOQ, kf3=\EOR, kf4=\EOS,
kf5=\E[15˜, kf6=\E[17˜, kf7=\E[18˜, kf8=\E[19˜, kf9=\E[20˜,
kf10=\E[21˜,
kf11=\E[23˜, kf12=\E[24˜, kf13=\E[25˜, kf14=\E[26˜, kf15=\E[28˜,
kf16=\E[29˜, kf17=\E[31˜, kf18=\E[32˜, kf19=\E[33˜, kf20=\E[34˜,
kfnd=\E[1˜, kich1=\E[2˜, kdch1=\E[3˜,
kslt=\E[4˜, kpp=\E[5˜, knp=\E[6˜,
kbs=\b, kcuu1=\EOA, kcud1=\EOB, kcuf1=\EOC, kcub1=\EOD,
meml=\El, memu=\Em,
smcup=\E7\E[?47h, rmcup=\E[2J\E[?47l\E8,
sc=\E7, rc=\E8,
il=\E[%p1%dL, dl=\E[%p1%dM, il1=\E[L, dl1=\E[M,
ri=\EM,
dch=\E[%p1%dP, dch1=\E[P,
tbc=\E[3g,
xenl,

xterm-65|xterm with tall window 65x80 (X Window System),
lines#65,
use=xterm,

xterm-bold|xterm with bold instead of underline (X Window System),
smul=\E[1m, use=xterm,

#
vi may work better with this entry, because vi
doesn’t use insert mode much
xterm-ic|xterm-vi|xterm with insert character instead of insert mode,

smir@, rmir@, mir@, ich1=\E[@, ich=\E[%p1%d@, use=xterm,

The entries look very similar, but there are a few minor differences:

• The names for the capabilities may be up to 5 characters long. As a result, the names are
different from the termcap names.

• Capabilities are separated by commas instead of colons.

• Definitions may be spread over sev eral lines: there is no need to terminate each line of a
definition with a \.

• The last character in each entry must be a comma (,). If you remove it, you will thor-
oughly confuse tic.

5 February 2005 02:09

Chapter 18: Function libraries 315

terminfo functions

terminfo has a number of functions that correspond closely to termlib. They are also the low-
level routines for curses:

#include <curses.h>
#include <term.h>
TERMINAL *cur_term;

int setupterm (char *term, int fd, int *error);
int setterm (char *term);
int set_curterm (TERMINAL *nterm);
int del_curterm (TERMINAL *oterm);
int restartterm (char *term, int fildes, int *errret);
char *tparm (char *str, long int p1 ... long int p9);
int tputs (char *str, int affcnt, int (*putc) (char));
int putp (char *str);
int vidputs (chtype attrs, int (*putc) (char));
int vidattr (chtype attrs);
int mvcur (int oldrow, int oldcol, int newrow, int newcol);
int tigetflag (char *capname);
int tigetnum (char *capname);
int tigetstr (char *capname);

Terminfo can use an environment variable TERMINFO, which has a similar function to TERM-
CAP: it contains the name of a directory to search for terminfo entries. Since terminfo is com-
piled, there is no provision for stating the capabilities directly in TERMINFO.

• setupterm corresponds to the termcap function tgetent: it reads in the terminfo data
and sets up all necessary capabilities. The parameter term is the name of the terminal,
but may be NULL, in which case setupterm calls getenv to get the name of the terminal
from the environment variable TERM. fd is the file descriptor of the output terminal (nor-
mally 1 for stdout), and error is an error status return address.

• setterm is a simplified version of setupterm: it is equivalent to setupterm (term,
1, NULL).

• setupterm allocates space for the terminal information and stores the address in the
global pointer cur_term. You can use set_curterm to set it to point to a different ter-
minal entry in order to handle multiple terminals.

• del_curterm deallocates the space allocated by setupterm for the terminal oterm.

• restartterm performs a subset of setupterm: it assumes that the cur_term is valid,
but that terminal type and transmission speed may change.

• tparm substitutes the real values of up to 9 parameters (p1 to p9) into the string str.
This can be used, for example, to create a cursor positioning string like tgoto, but it is
much more flexible.

• tputs is effectively the same function as termcap puts described on page 312.

5 February 2005 02:09

316

• putp is effectively tputs (str, stdout, putchar).

• vidputs sets the terminal attributes for a video terminal.

• vidattr is effectively vidputs (attr, putchar).

• mvcur provides optimized cursor motion depending on the terminal capabilities and the
relationship between the current cursor position (oldrow, oldcol) and the new position
(newrow, newcol).

• tigetflag, tigetnum and tigetstr correspond to the termcap functions tgetnum,
tgetflag and tgetstr described on page 311.

printcap
Termcap was developed in the days where “terminal” did not always mean a display terminal,
and the capabilities include a number of functions relating to hardcopy terminals. Neverthe-
less, they are not sufficient to describe the properties of modern printers, and BSD systems
have dev eloped a parallel system called printcap, which is a kind of termcap for printers. It is
used primarily by the spooling system.

Printcap differs from termcap in a number of ways:

• The printcap capabilities are stored in a file called /etc/printcap, even in systems where
termcap is stored in some other directory.

• The syntax of the printcap file is identical to the syntax of termcap, but the capabilities
differ in name and meaning from termcap capabilities.

• There is no environment variable corresponding to TERMCAP.

• There are no user-accessible routines. The functions used by the spool system actually
have the same names as the corresponding termcap functions, but they are private to the
spooling system. In a BSD source tree, they are located in the file usr.sbin/lpr/com-
mon_source/printcap.c.

A better way to look at printcap is to consider it part of the spooling system, but occasionally
you’ll need to modify /etc/printcap for a new printer.

5 February 2005 02:09

Make

Nowadays, only the most trivial UNIX package comes without a Makefile, and you can
assume that the central part of building just about any package is:

$ make

We won’t go into the details of how make works here—you can find this information in Man-
aging projects with make, by Andrew Oram and Steve Talbott. In this chapter, we’ll look at
the aspects of make that differ between implementations. We’ll also take a deeper look at
BSD make, because it is significantly different from other flavours, and because there is very
little documentation available for it.

Terminology
In the course of evolution of make, a change in terminology has taken place. Both the old and
the new terminology are in current use, which can be confusing at times. In the following list,
we’ll look at the terms we use in this book, and then relate them to others which you might
encounter:

• A rule looks like:

target: dependencies
command
command

• A target is the name by which you invoke a rule. make implicitly assumes that you want
to create a file of this name.

• The dependencies are the files or targets upon which the target depends: if any of the
dependencies do not exist, or they are newer than the current target file, or the corre-
sponding target needs to be rebuild, then the target will be rebuilt (in other words, its
commands will be executed). Some versions of make use the terms prerequisite or
source to represent what we call dependencies.

• The commands are single-line shell scripts that get executed in sequence if the target
needs to be rebuilt.

317

5 February 2005 02:09

318

• variables are environment variables that make imports, explicitly named variables, or
implicit variables such as $@ and $<. Variables used to be called macros. They aren’t
really macros, since they don’t take parameters, so the term variable is preferable. BSD
make uses the term local variable for implicit variables. As we will see, they don’t cor-
respond exactly. SunOS uses the term dynamic macros for implicit variables.

Additional make features
A number of versions of make offer additional features beyond those of the version of make
described in Managing projects with make. In the following sections, we’ll look at:

• Internal variables

• Variables with special meanings

• Targets with special meanings

• Including other source files from the Makefile

• Conditional execution

• Variations on assignments to variables

• Functions

• Multiple targets

Internal variables
All versions of make supply internal variables, but the list differs between individual imple-
mentations. We’ll defer their discussion until we discuss BSD make, on page 324.

Variables with special meanings
A number of normal variables have taken on special meanings in some versions of make.
Here’s an overview:

• VPATH is a list of directory names to search for files named in dependencies. It is explic-
itly supported in GNU make, where it applies to all file searches, and is also supported,
but not documented, in some versions of System V.4. GNU make also supports a direc-
tive vpath.

• MAKE is the name with which make was inv oked. It can be used to invoke subordinate
makes, and has the special property that it will be invoked even if you have specified the
-n flag to make, indicating that you just want to see the commands that would be
executed, and you don’t want to execute them.

• In all modern versions of make, MAKEFLAGS is a list of the flags passed to make. make
takes the value of the environment variable MAKEFLAGS, if it exists, and adds the com-
mand line arguments to it. It is automatically passed to subordinate makes.

5 February 2005 02:09

Chapter 19: Make 319

• SHELL is the name of a shell to be used to execute commands. Note that many versions
of make execute simple commands directly, so you may find that this doesn’t hav e any
effect unless you include a shell metacharacter like ;.

The exact semantics of these variables frequently varies from one platform to another—in
case of doubt, read your system documentation.

Special targets
All versions of make define a number of targets that have special meanings. Some versions
define additional targets:

• .BEGIN is a target to be executed before any other target. It is supported by BSD make.

• .INIT is a target to be executed before any other target. It is supported by SunOS and
Solaris make.

• .END is a target to be executed after all other targets have been executed. It is supported
by BSD make.

• .DONE is a target to be executed after all other targets have been executed. It is supported
by SunOS and Solaris make.

• .FAILED is a target to be executed after all other targets have been executed. It is sup-
ported by SunOS and Solaris make.

• .INTERRUPT is a target to be executed if make is interrupted. It is supported by BSD
make.

• .MAIN is the default target to be executed if no target was specified on the command line.
If this target is missing, make will execute the first target in the Makefile. It is supported
by BSD make.

• .MAKEFLAGS is an alternate method to supply flags to subordinate makes. It is supported
by BSD make.

• .PATH is an alternate method to specify a search path for files not found in the current
directory. It is supported by BSD make.

• .MUTEX is used in System V.4 to synchronize parallel makes.

• GNU make uses the target .PHONY to indicate targets that do not create files, such as
clean and install. If by chance you have a file install in your directory, make will
determine that make install does not need to be executed, since install is up to date.
If you use GNU make, you can avoid this problem with:

.PHONY: all install clean

If you don’t hav e GNU make, you can usually solve the problem with

5 February 2005 02:09

320

all install clean: .FORCE
install commands

.FORCE:

In this example, .FORCE looks like a special target, as it is meant to. In fact, the name is
not important: you just need a name that doesn’t correspond to a real file.

In addition to special targets, BSD make also has special sources (in other words, special
dependencies). We’ll look at them on page 327.

include directive
Many modern makes allow you to include other files when processing the Makefile. Unfortu-
nately, the syntax is very variable:

• In GNU make, the syntax is simply include filename.

• In BSD make, the syntax is .include <filename> or .include “filename". The
syntax resembles that of the C preprocessor: the first form searches only the system
directories, the second form searches the current directory before searching the system
directories.

• In SunOS, Solaris and System V.4 make, the syntax is include filename, but the text
include must be at the beginning of the line.

• SunOS and Solaris make automatically include a file make.rules in the current directory
if it exists. Otherwise they include the file /usr/share/lib/make/make.rules.

Conditional execution
A number of versions of make support conditional execution of commands. GNU make has
commands reminiscent of the C preprocessor:

ifeq (${CC},gcc}
${CC} -traditional -O3 -g $*.c -c -o $<

else
${CC} -O $*.c -c -o $<

endif

BSD make has a different syntax, which also vaguely resembles the C preprocessor. Apart
from standard .if, .else and .endif, BSD make also provides an .ifdef directive and
additional operators analogous to #if defined:

• .if make (variable) checks whether variable is a main target of make (in other
words, if it was mentioned on the command line that invoked make).

• .if empty (variable) tests whether variable represents the empty string.

• .if exists (variable) tests whether the file variable exists.

5 February 2005 02:09

Chapter 19: Make 321

• .if target (variable) tests whether variable represents a defined target.

SunOS and Solaris have so-called conditional macros:

foo bar baz:= CC = mycc

This tells make that the variable (macro) CC should be set to mycc only when executing the
targets foo, bar, and baz.

Other forms of variable assignment
Simply expanded variables

make normally expands variables until no variable references remain in the result. Take the
following Makefile, for example:

CFLAGS = $(INCLUDE) $(OPT)
OPT = -g -O3
INCLUDE= -I/usr/monkey -I/usr/dbmalloc

all:
@echo CFLAGS: ${CFLAGS}

If you run make, you will get:

$ make
CFLAGS: -I/usr/monkey -I/usr/dbmalloc -g -O3

On the other hand, you can’t change the definition to:

CFLAGS = $(CFLAGS) -I/usr/monkey

If you do this, you will get:

$ make
makefile:7: *** Recursive variable ‘CFLAGS’ references itself (eventually). Stop.

make would loop trying to expand $(CFLAGS). GNU make solves this with simply expanded
variables, which go through one round of expansion only. You specify them with the assign-
ment operator := instead of the usual =. For example:

CFLAGS = -g -O3
CFLAGS := $(CFLAGS) -I/usr/monkey

In this case, CFLAGS expands to -g -O3 -I/usr/monkey.

define directive

You frequently see multi-line shell script fragments in make rules. They’re ugly and error-
prone, because in conventional make, you need to put this command sequence on a single line
with lots of backslashes and semicolons. GNU make offers an alternative with the define
directive. For example, to check for the existence of a directory and create it if it doesn’t
exist, you might normally write

5 February 2005 02:09

322

${INSTDIR}:
if [! -d $@]; then \
mkdir -p $@; \

fi

With GNU make, you can define this as a command:

define makedir
if [! -d $@]; then
mkdir -p $@

fi
endef

${INSTDIR}:
${makedir}

Override variable definitions

Conventional versions of make have three ways to define a make variable. In order of prece-
dence, they are:

1. Define it on the command line used to invoke make:

$ make CFLAGS="-g -O3"

2. Define it in the Makefile.

3. Define it in an environment variable. This is all the more confusing because most shells
allow you to write the environment variable on the same line as the invokation of make:

$ CFLAGS="-g -O3" make

This looks almost identical to the first form, but the precedence is lower.

The command line option has the highest priority. This is usually a good idea, but there are
times when you want the declaration in the Makefile to take precedence: you want to override
the definition on the command line. GNU make allows you to specify it with the override
directive. For example, you might want to insist that the optimization level be limited to -O2
if you’re generating debugging symbols. In GNU make, you can write:

override CFLAGS=-O2

Functions
As well as variables, GNU make supplies builtin functions. You call them with the syntax
${function arg,arg,arg}. These functions are intended for text manipulation and have
names like subst, findstring, sort, and such. Unfortunately there is no provision for
defining your own functions.

5 February 2005 02:09

Chapter 19: Make 323

Multiple targets
All forms of make support the concept of multiple targets. They come in two flavours:

• Single-colon targets, where the target name is followed by a single colon. Each target of
the same name may specify dependencies—this is how Makefile dependencies are speci-
fied — but only one rule may have commands. If any of the dependencies require the tar-
get to be rebuilt, then these commands will be executed. If you supply commands to
more than one rule, the behaviour varies: some versions of make will print a warning or
an error message, and generally they execute only the last rule with commands. Under
these circumstances, however, BSD make executes the first rule with commands.

• Double-colon targets have two colons after the target name. Each of these is indepen-
dent of the others: each may contain commands, and each gets executed only if the
dependencies for that rule require it. Unfortunately, if multiple rules need to be
executed, the sequence of execution of the rules is not defined. Most versions of make
execute them in the sequence in which they appear in the Makefile, but it has been
reported that some versions of BSD make execute in reverse order, which breaks some
Imakefiles.

BSD make
With the Net/2 release, the Computer Sciences Research Group in Berkeley released a com-
pletely new make with many novel features. Most BSD flavoured software that has come out
in the last few years uses it. Unfortunately, it contains a number of incompatibilities with
other makes. It is part of the 4.4BSD Lite distribution — see Appendix E, Where to get
sources for further details—and includes hardcopy documentation, which refers to it as
PMake. This name does not occur anywhere else, though you may see the name bsdmake.

We’v e already seen some of the smaller differences between BSD make and other flavours. In
the following sections we’ll look at some more significant differences. On page 327 we’ll
investigate the features of BSD make designed to make configuration easier.

Additional rule delimiter
There is a third delimiter between target and dependency in rules. Apart from the single and
double colon, which have the same meaning as they do with other makes, there is a ! delim-
iter. This is the same as the single colon delimiter in that the dependencies are the sum of all
dependencies for the target, and that only the first rule set gets executed. However, the com-
mands are always executed, even if all the dependencies are older than the target.

Assignment operators
BSD make supplies five different types of variable assignment:

• = functions as in other versions of make: the assignment CFLAGS = -g unconditionally
sets CFLAGS to -g.

5 February 2005 02:09

324

• += adds to a definition. If CFLAGS was set as in the previous example, writing CFLAGS
+= -O3 results in a new value -g -O3.

• ?= assigns a value only if the variable is currently undefined. This can be used to set
default values.

• := assigns and expands immediately. This is the same as the GNU make := assignment.

• != expands the value and passes it to a shell for execution. The result from the shell is
assigned to the variable after changing newline characters to spaces.

Variables
BSD make has clarified the definitions of variables somewhat. Although there is nothing
really new in this area, the terminology is arranged in a more understandable manner. It
defines four different kinds of variables, the first three of which correspond to the kinds of
variable assignment in other makes. In order of priority, they are:

• Environment variables

• global variables (just called variables in other flavours of make)

• command line variables

• local variables, which correspond roughly to implicit variables in other makes.

BSD make allows the use of the implicit variable symbols ($@ and friends), but doesn’t rec-
ommend it. They don’t match very well, anyway, so it makes sense not to use them. Local
variables are really variables that make predefines. Table 19-1 compares them to traditional
make variables:

Table 19−1: make local variables

Trad-

itional BSD Meaning

.ALLSRC, $> The list of all dependencies ("sources") for this target.

$ˆ (GNU make) The list of all dependencies of the current target.
Only the member name is returned for dependencies that rep-
resent an archive member. Otherwise this is the same as BSD
.ALLSRC.

$@ .ARCHIVE The name of the current target. If the target is an archive file
member, the name of the archive file.

$$@ .TARGET, $@ The complete name of the current target, even if it represents
an archive file.1

5 February 2005 02:09

Chapter 19: Make 325

Table 19−1: make local variables (continued)

Trad-

itional BSD Meaning

.IMPSRC, $< The implied source, in other words the name of the source file
(dependency) implied in an implicit rule.

$< The name of the current dependency that has been modified
more recently than the target. Traditionally, it can only be
used in suffix rules and in the .DEFAULT entry, but most mod-
ern versions of make (except BSD make) allow it to be used in
normal rules as well.

$% .MEMBER The name of an archive member. For example, if the target
name is libfoo.a(bar.o), $@ evaluates to libfoo.a and $%
evaluates to bar.o. Supported by GNU, SunOS and System
V.4 make.

$? .OODATE, $? The dependencies for this target that were newer than the tar-
get.2

$* The raw name of the current dependency, without suffix, but
possibly including directory components. Can only be used in
suffix rules.

${*F} .PREFIX, $* The raw file name of the current dependency. It does not con-
tain any directory component.

${*D} The directory name of the current dependency. For example,
if $@ evaluates to foo/bar.o, ${@D} will evaluate to foo.
Supported by GNU, SunOS and System V.4 make.

.CURDIR The name of the directory in which the top-level make was
started.

1 $$@ can only be used to the right of the colon in a dependency line. Supported by SunOS
and System V.4 make.
2 Confusingly, BSD make refers to these dependencies as out of date, thus the name of the
variable.

Variable substitution
In BSD make, variable substitution has reached a new lev el of complexity. All versions of
make support the syntax ${SRC:.c=.o}, which replaces a list of names of the form foo.c
bar.c baz.c with foo.o bar.o baz.o.. BSD make generalizes this syntax is into
${variable[:modifier[: . . .]]}. In the following discussion, BSD make uses the term
word where we would normally use the term parameter. In particular, a file name is a word.
modifier is an upper case letter:

5 February 2005 02:09

326

• E replaces each word in the variable with its suffix.

• According to the documentation, H strips the “last component” from each “word” in the
variable. A better definition is: it returns the directory name of each file name. If the
original file name didn’t hav e a directory name, the result is set to . (current directory).

• Mpattern selects those words from the variable that match pattern. pattern is a glob-
bing pattern such as is used by shells to specify wild-card file names.

• Npattern selects those words from the variable that don’t match pattern.

• R replaces each word in the variable with everything but its suffix.

• S/old/new/ replaces the first occurrence of the text old with new. The form
S/old/new/g replaces all occurrences.

• T replaces each word in the variable with its “last component”, in other words with the
file name part.

This is heavy going, and it’s already more than the documentation tells you. The following
example shows a number of the features:

SRCS = foo.c bar.c baz.cc zot.pas glarp.f src/mumble.c util/grunt.f
LANGS = ${SRCS:E}
DIRS = ${SRCS:H}
OBJS = ${SRCS:T}
CSRCS = ${SRCS:M*.c}
PASSRCS = ${SRCS:M*.pas}
FSRCS = ${SRCS:M*.f}
PROGS = ${SRCS:R}
PROFS = ${CSRCS:S/./_p./g:.c=.o}

all:
@echo Languages: ${LANGS}
@echo Objects: ${OBJS}
@echo Directories: ${DIRS}
@echo C sources: ${CSRCS}
@echo Pascal sources: ${PASSRCS}
@echo Fortran sources: ${FSRCS}
@echo Programs: ${PROGS}
@echo Profiled objects: ${PROFS}

If you run it, you get:

$ make
Languages: c c cc pas f c f
Objects: foo.c bar.c baz.cc zot.pas glarp.f mumble.c grunt.f
Directories: src util
C sources: foo.c bar.c src/mumble.c
Pascal sources: zot.pas
Fortran sources: glarp.f util/grunt.f
Programs: foo bar baz zot glarp src/mumble util/grunt
Profiled objects: foo_p.o bar_p.o src/mumble_p.o

5 February 2005 02:09

Chapter 19: Make 327

Special sources
In addition to special targets, BSD make includes special sources (recall that source is the
word that it uses for dependencies). Here are the more important special sources:

• .IGNORE, .SILENT and .PRECIOUS have the same meaning as the corresponding special
targets in other versions of make.

• .MAKE causes the associated dependencies to be executed even if the flags -n (just list
commands, don’t perform them) or -t (just update timestamps, don’t perform make) are
specified. This enables make to perform subsidiary makes even if these flags are speci-
fied. If this seems a strange thing to want to do, consider that the result of the main make
could depend on subsidiary makes to such an extent that it would not even make sense to
run make -n if the subsidiary makes did not run correctly—for example, if the subsidiary
make were a make depend.

• .OPTIONAL tells make that the specified dependencies are not crucial to the success of
the build, and that make should assume success if it can’t figure out how to build the tar-
get.

Specifying dependencies
We hav e seen that the bulk of a well-written Makefile can consist of dependencies. BSD make
offers the alternative of storing these files in a separate file called .depend. This avoids the
problem of different flavours of makedepend missing the start of the dependencies and adding
them again.

BSD Makefile configuration system
One of the intentions of BSD make is to make configuration easier. A good example of how
much difference it makes is in the Makefiles for gcc. In its entirety, the top-level Makefile is:

SUBDIR= cc cpp lib cc1 libgcc cc1plus cc1obj #libobjc
.include <bsd.subdir.mk>

The complete Makefile in the subdirectory cc1 (the main pass of the compiler) reads

@(#)Makefile 6.2 (Berkeley) 2/2/91

PROG= gcc1
BINDIR= /usr/libexec
SRCS= c-parse.c c-lang.c c-lex.c c-pragma.c \

c-decl.c c-typeck.c c-convert.c c-aux-info.c \
c-iterate.c

CFLAGS+= -I. -I$(.CURDIR) -I$(.CURDIR)/../lib
YFLAGS=
NOMAN= noman

.if exists(${.CURDIR}/../lib/obj)

5 February 2005 02:09

328

LDADD= -L${.CURDIR}/../lib/obj -lgcc2
DPADD= ${.CURDIR}/../lib/obj/libgcc2.a
.else
LDADD= -L${.CURDIR}/../lib/ -lgcc2
DPADD= ${.CURDIR}/../lib/libgcc2.a
.endif

LDADD+= -lgnumalloc
DPADD+= ${LIBGNUMALLOC}

.include <bsd.prog.mk>

The standard release Makefile for gcc is about 2500 lines long. Clearly a lot of work has gone
into getting the BSD Makefiles so small. The clue is the last line of each Makefile:

.include <bsd.subdir.mk>

or

.include <bsd.prog.mk>

These files are supplied with the system and define the hardware and software used on the
system. They are normally located in /usr/share/mk, and you can modify them to suit your
local preferences.

This configuration mechanism has little connection with the new BSD make. It could equally
well have been done, for example, with GNU make or System V make. Unfortunately, the
significant incompatibilities between BSD make and the others mean that you can’t just take
the configuration files and use them with other flavours of make.

The BSD system places some constraints on the Makefile structure. To get the best out of it,
you may need to completely restructure your source tree. To quote bsd.README:

It’s fairly difficult to make the BSD .mk files work when you’re building multiple programs in a
single directory. It’s a lot easier [to] split up the programs than to deal with the problem.
Most of the agony comes from making the “obj” directory stuff work right, not because we
switch to a new version of make. So, don’t get mad at us, figure out a better way to handle
multiple architectures so we can quit using the symbolic link stuff.

On the other hand, it’s remarkably easy to use BSD make configuration once you get used to
it. It’s a pity that the make itself is so incompatible with other makes: although the system is
good and works well, it’s usually not worth restructuring your trees and rewriting your Make-
files to take advantage of it.

There are a couple of other points to note about the configuration method:

• make depend is supported via an auxiliary file .depend, which make reads after reading
the Makefile.

• The configuration files are included at the end of the Makefile. This is due to the way
that BSD make works: unlike other makes, if multiple targets with a single colon exist,
only the first will be executed, but if multiple declarations of the same variable exist,
only the last one will take effect.

The configuration files consist of one file, sys.mk, which make automatically reads before

5 February 2005 02:09

Chapter 19: Make 329

doing anything else, and a number of others, one of which is usually included as the last line
in a Makefile. These are usually:

• bsd.prog.mk for a Makefile to make an executable binary.

• bsd.lib.mk for a Makefile to make a library.

• bsd.subdir.mk to make binaries or libraries in subdirectories of the current directory.

• In addition, another file bsd.doc.mk is supplied to make hardcopy documentation. In
keeping with the Cinderella nature of such parts of a package, no other file refers to it. If
you want to use it, you include it in addition to one of the other three. This is required
only for hardcopy documentation, not for man pages, which are installed by the other
targets.

sys.mk

sys.mk contains global definitions for all makes. make reads it in before looking for any
Makefiles. The documentation states that it is not intended to be modified, but since it con-
tains default names for all tools, as well as default rules for makes, there is every reason to
believe that you will want to change this file: there’s no provision to override these definitions
anywhere else. How you handle this dilemma is your choice. I personally prefer to change
sys.mk (and put up with having to update it when a new release comes), but you could create
another file bsd.own.mk, like FreeBSD does, and put your personal choices in there. The last
line of the FreeBSD sys.mk is

.include <bsd.own.mk>

With this method you can override the definitions in sys.mk with the definitions in
bsd.own.mk. It’s up to you to decide whether this is a better solution.

bsd.prog.mk

bsd.prog.mk contains definitions for building programs. Table 19-2 lists the targets that it
defines:

Table 19−2: bsd.prog.mk targets

Target Purpose

all Build the single program ${PROG}, which is defined in the Makefile.

clean remove ${PROG}, any object files and the files a.out, Errs, errs, mklog, and core.

cleandir remove all of the files removed by the target clean and also the files .depend,
tags, obj, and any manual pages.

depend make the dependencies for the source files, and store them in the file .depend.

5 February 2005 02:09

330

Table 19−2: bsd.prog.mk targets (continued)

Target Purpose

install install the program and its manual pages. If the Makefile does not itself define
the target install, the targets beforeinstall and afterinstall may also
be used to cause actions immediately before and after the install target is execut-
ed.

lint run lint on the source files.

tags create a tags file for the source files.

In addition, it supplies default definitions for the variables listed in Table 19-3. The operator
?= is used to ensure that they are not redefined if they are already defined in the Makefile (see
page 324 for more details of the ?= operator).

Table 19−3: variables defined in bsd.prog.mk

Variable Purpose

BINGRP Group ownership for binaries. Defaults to bin.

BINOWN Owner for binaries. Defaults to bin.

BINMODE Permissions for binaries. Defaults to 555 (read and execute permission for ev-
erybody).

CLEANFILES Additional files that the clean and cleandir targets should remove.
bsd.prog.mk does not define this variable, but it adds the file strings to the list if
the variable SHAREDSTRINGS is defined.

DPADD Additional library dependencies for the target ${PROG}. For example, if you
write DPADD=${LIBCOMPAT} ${LIBUTIL} in your Makefile, the target depends
on the compatibility and utility libraries.

DPSRCS Dependent sources—a list of source files that must exist before compiling the
program source files. Usually for a building a configuration file that is required
by all sources. Not all systems define this variable.

LIBC The C library. Defaults to /lib/libc.a.

LIBCOMPAT The 4.3BSD compatibility library. Defaults to /usr/lib/libcompat.a.

LIBCURSES The curses library. Defaults to /usr/lib/libcurses.a.

LIBCRYPT The crypt library. Defaults to /usr/lib/libcrypt.a.

LIBDBM The dbm library. Defaults to /usr/lib/libdbm.a.

LIBDES The des library. Defaults to /usr/lib/libdes.a.

LIBL The lex library. Defaults to /usr/lib/libl.a.

5 February 2005 02:09

Chapter 19: Make 331

Table 19−3: variables defined in bsd.prog.mk (continued)

Variable Purpose

LIBKDB Defaults to /usr/lib/libkdb.a.

LIBKRB Defaults to /usr/lib/libkrb.a.

LIBM The math library. Defaults to /usr/lib/libm.a.

LIBMP Defaults to /usr/lib/libmp.a.

LIBPC Defaults to /usr/lib/libpc.a.

LIBPLOT Defaults to /usr/lib/libplot.a.

LIBTELNET Defaults to /usr/lib/libtelnet.a.

LIBTERM Defaults to /usr/lib/libterm.a.

LIBUTIL Defaults to /usr/lib/libutil.a.

SRCS List of source files to build the program. Defaults to ${PROG}.c.

STRIP If defined, this should be the flag passed to the install program to cause the bina-
ry to be stripped. It defaults to -s.

The variables in Table 19-4 are not defined in bsd.prog.mk, but will be used if they hav e been
defined elsewhere:

Table 19−4: variables used by bsd.prog.mk

Variable Purpose

COPTS Additional flags to supply to the compiler when compiling C object
files.

HIDEGAME If defined, the binary is installed in /usr/games/hide, and a symbolic link
is created to /usr/games/dm.

LDADD Additional loader objects. Usually used for libraries.

LDFLAGS Additional loader flags.

LINKS A list of pairs of file names to be linked together. For example
LINKS= ${DESTDIR}/bin/test ${DESTDIR}/bin/[links /bin/test
to /bin/[.

NOMAN If set, make does not try to install man pages. This variable is defined
only in bsd.prog.mk, and not in bsd.lib.mk or bsd.man.mk.

PROG The name of the program to build. If not supplied, nothing is built.

SRCS List of source files to build the program. If SRC is not defined, it’s as-
sumed to be ${PROG}.c.

5 February 2005 02:09

332

Table 19−4: variables used by bsd.prog.mk (continued)

Variable Purpose

SHAREDSTRINGS If defined, the Makefile defines a new .c.o rule that uses xstr to create
shared strings.

SUBDIR A list of subdirectories that should be built as well as the targets in the
main directory. Each target in the main Makefile executes the same tar-
get in the subdirectories. Note that the name in this file is SUBDIR,
though it has the same function as the variable SUBDIRS in bsd.sub-
dir.mk.

There are a couple more points to note:

• If the file ../Makefile.inc exists, it is included before the other definitions. This is one
possibility for specifying site preferences, but of course it makes assumptions about the
source tree structure, so it’s not completely general.

• The file bsd.man.mk is included unless the variable NOMAN is defined. We’ll take another
look at bsd.man.mk on page 333.

bsd.lib.mk

bsd.lib.mk contains definitions for making library files. It supplies the same targets as
bsd.prog.mk, but defines or uses a much more limited number of variables:

Table 19−5: Variables defined or used in bsd.lib.mk

Variable Purpose

LDADD Additional loader objects.

LIB The name of the library to build. The name is in the same form that you find in
the -l option to the C compiler—if you want to build libfoo.a, you set LIB to
foo.

LIBDIR Target installation directory for libraries. Defaults to /usr/lib.

LIBGRP Library group owner. Defaults to bin.

LIBOWN Library owner. Defaults to bin.

LIBMODE Library mode. Defaults to 444 (read access for everybody).

LINTLIBDIR Target directory for lint libraries. Defaults to /usr/libdata/lint.

NOPROFILE If set, only standard libraries are built. Otherwise (the default), both standard li-
braries (libfoo.a) and profiling libraries (libfoo_p.a) are built.*

SRCS List of source files to build the library. Unlike in bsd.prog.mk, there is no default
value.

5 February 2005 02:09

Chapter 19: Make 333

Given the choice of compiling foo.s or foo.c, bsd.lib.mk chooses foo.s. Like bsd.prog.mk, it
includes bsd.man.mk. Unlike bsd.prog.mk, it does this even if NOMAN is defined.

bsd.subdir.mk

bsd.subdir.mk contains definitions for making files in subdirectories. Since only a single pro-
gram target can be made per directory, BSD-style directory trees tend to have more branches
than others, and each program is placed in its own subdirectory. For example, if I have three
programs foo, bar and baz, I might normally write a Makefile with the rule

all: foo bar baz

foo: foo.c foobar.h conf.h

bar: bar.c foobar.h zot.h conf.h

baz: baz.c baz.h zot.h conf.h

As we have seen, this is not easy to do with the BSD configuration scheme. Instead, you
might place all the files necessary to build foo in the subdirectory foo, and so on. You could
then write

SUBDIRS = foo bar baz
.include <bsd.subdir.mk>

foo/Makefile could then contain

PROG = foo
DPADD = foo.c foobar.h conf.h
.include <bsd.prog.mk>

bsd.subdir.mk is structured in the same way as bsd.prog.mk. Use bsd.prog.mk for making files
in the same directory, and bsd.subdir.mk for making files in subdirectories. If you want to do
both, use bsd.prog.mk and define SUBDIR instead of SUBDIRS.

bsd.man.mk

bsd.man.mk contains definitions for installing man pages. It is included from bsd.prog.mk and
bsd.lib.mk, so the target and variables are available from both of these files as well. It defines
the target maninstall, which installs the man pages and their links, and uses or defines the

A profiling library is a library that contains additional code to aid profilers, programs that analyze the
CPU usage of the program. We don’t cover profiling in this book.

5 February 2005 02:09

334

variables described in Table 19-6:

Table 19−6: Variables defined or used by bsd.man.mk

Variable Meaning

MANDIR The base path of the installed man pages. Defaults to /usr/share/man/cat. The
section number is appended directly to MANDIR, so that a man page foo.3 would
be installed in /usr/share/man/cat3/foo.3.

MANGRP The group that owns the man pages. Defaults to bin.

MANOWN The owner of the man pages. Defaults to bin.

MANMODE The permissions of the installed man pages. Defaults to 444 (read permission
for anybody).

MANSUBDIR The subdirectory into which to install machine specific man pages. For example,
i386 specific pages might be installed under /usr/share/man/cat4/i386. In this
case, MANSUBDIR would be set to /i386.

MANn (n has the values 1 to 8). Manual page names, which should end in .[1-8]. If
no MANn variable is defined, MAN1=${PROG}.1 is assumed.

MLINKS A list of pairs of names for manual page links. The first filename in a pair must
exist, and it is linked to the second name in the pair.

bsd.own.mk

Not all variants of the BSD configuration system usebsd.own.mk. Where it is supplied, it con-
tains default permissions, and may be used to override definitions in sys.mk, which includes it.

bsd.doc.mk

bsd.doc.mk contains definitions for formatting hardcopy documentation files. It varies signifi-
cantly between versions and omits even obvious things like formatting the document. It does,
however, define the variables in Table 19-7, which can be of use in your own Makefile:

Table 19−7: Variables defined in bsd.doc.mk

Variable Meaning

PRINTER Not a printer name at all, but an indicator of the kind of output format to be used. This is the
argument to the troff flag -T. Defaults to ps (PostScript output).

BIB The name of the bib processor. Defaults to bib.

COMPAT Compatibility mode flag for groff when formatting documents with Berkeley me macros.
Defaults to -C.

5 February 2005 02:09

Chapter 19: Make 335

Table 19−7: Variables defined in bsd.doc.mk (continued)

Variable Meaning

EQN How to inv oke the eqn processor. Defaults to eqn -T${PRINTER}.

GREMLIN The name of the gremlin processor. Defaults to grn.

GRIND The name of the vgrind processor. Defaults to vgrind -f.

INDXBIB Name of the indxbib processor. Defaults to indxbib.

PAGES Specification of the page range to output. Defaults to 1-.

PIC Name of the pic processor. Defaults to pic.

REFER Name of the refer processor. Defaults to refer.

5 February 2005 02:09

Compilers

The central tool in building software is the compiler. In UNIX, the compiler is really a collec-
tion of programs that compile sources written in the C language. In this chapter, we’ll con-
sider the following topics:

• The way the C language has evolved since its introduction and some of the problems that
this evolution has caused.

• C++, an evolution of C.

• The way the compiler is organized.

• How to use the individual parts of the compiler separately, in particular the assembler
and the linker.

We’ll defer how the assembler and the linker work until the next chapter—to understand
them, we first need to look at object files in more detail.

There are, of course, lots of other languages besides C, but on a UNIX platform C is the most
important. Even if you use another language, some of the information in this chapter will be
of use to you: many other languages output C source code.

The C language
The C language has evolved a lot since its appearance in the early 70’s. It started life as a
Real Man’s language, cryptic, small, tolerant of obscenities almost to the point of encouraging
them, but now it has passed through countless committees and has put on weight and become
somewhat sedate, pedantic and much less tolerant. Along with this, of course, it has devel-
oped a whole lot of idiosyncracies that plague the life of the portable software writer. First,
let’s take a look at the flavours that are commonly available.

337

5 February 2005 02:09

338

Kernighan and Ritchie
Kernighan and Ritchie or K&R is the name given to the dialect of C described in the first edi-
tion of The C programming language by Brian Kernighan and Dennie Ritchie. This was the
first book to describe the C language, and has become something of a bible. In 1988, a second
edition appeared, which describes an early version of ANSI C, not K&R C.

The K&R dialect is now completely obsolete, though many older versions of UNIX C resem-
ble it. Compared to ANSI C (also called Standard C), it lacks a number of features, and has a
few incompatibilities. In particular, strings were always allocated separately for each
instance, and so could be modified if desired. For example, you could encounter code like
this:

complain (msg)
char *msg;
{
char *message = "Nothing to complain about\n";
if (msg) /* parameter supplied? */
strcpy (message, msg); /* yes, save in message */

puts (message); /* say what we have to say */
}

When the parameter msg is non-NULL, it is copied into the string message. If you call this
function with a NULL message, it will display the last message again. For example:

complain (NULL); prints Nothing to complain about
complain ("Bad style"); prints Bad style
complain (NULL); prints Bad style

This may fail with modern C compilers: The ANSI Standard says that string constants are not
writable, but real-world compilers differ in the way they handle this situation.

UNIX C
A period of over ten years elapsed between the publication of K&R and the final adoption of
the ANSI C standard. During this time, the language didn’t stand still, but there was no effec-
tive standards document beyond K&R. The resultant evolution in the UNIX environment is
based on the Portable C Compiler first described in the paper Portability of C Programs and
the UNIX System published by S. C. Johnson and Dennis Ritchie in 1978, and is frequently
referred to as “UNIX C”. This is not a standard, or even a series of standards—it’s better to
consider it a set of marginally compatible extensions to K&R C. You can find more informa-
tion in The evolution of C—Past and Future by L. Rosler, but you can’t rely on the degree to
which your particular compiler (or the one for which your software package was written)
agrees with that description. From a present-day standpoint, it’s enough to know that these
extensions exist, and otherwise treat the compilers like K&R. In case of doubt, the documen-
tation that comes with the compiler is about the only even remotely reliable help. Here’s a
brief summary of the sort of things that had changed by the time The evolution of C—Past
and Future appeared:

5 February 2005 02:09

Chapter 20: Compilers 339

• Optional function prototyping similar to that of ANSI C was introduced. One difference
exists: if a function accepts a variable number of parameters, UNIX C uses the form

int printf (char *format,);

whereas ANSI C uses the form

int printf (char *format, ...);

•

• The enum type specifies a way to define classes of constants. For example, traditionally I
could write:

#define RED 0
#define GREEN 1
#define BLUE 2

int colour;
int x;
colour = BLUE;
x = RED;

With enums, I can write

enum colours {red, green, blue};
enum texture {rough, smooth, slimy};

enum colours colour;
enum texture x;
colour = blue;
x = red;

This syntax is intended to make error checking easier. As you can see in the second
example, there seems to be something wrong with the assignment to x, which was not
evident in the K&R example. The compiler can see it too, and should complain,
although many modern compilers compile the second program without any comment. In
addition, the symbols are visible to the compiler. This means that the debugger can use
them as well: preprocessor macros never make it to the code generation pass of the com-
piler, so the debugger doesn’t know about them. The keyword const was added to spec-
ify that a variable may not be changed in the course of program execution.

• The preprocessor directive #elif was added.

• The preprocessor pseudofunction defined (identifier) was added.

• The data type void was added.

5 February 2005 02:09

340

ANSI C
In 1989, the C programming language was finally standardized by the American National
Standards Institute (ANSI) as standard X3.159-1989. In the following year it was adopted by
the International Standards organization (ISO) as standard ISO/IEC 9899:1990. There are
minor textual differences in the two standards, but the language defined is the same in each.
The existence of two standards is good for a certain amount of confusion: some people call it
ANSI C, some call it Standard C, and I suppose you could call it ISO C, though I haven’t
heard that name. I call it ANSI C because the name is more specific: the word “Standard”
doesn’t make it obvious which standard is implied.

The following discussion is intended to show the differences between ANSI C and older ver-
sions. It’s not intended to teach you ANSI C—see Practical C Programming, by Steve
Oualline, and the POSIX Programmer’s Guide by Donald A. Lewine for that information.

ANSI C introduced a large number of changes, many of them designed to help the compiler
detect program errors. You can find a reasonably complete list in Appendix C of K&R. Here
are the most important from the standpoint of porting software:

• A number of changes have been made in the preprocessor. We’ll look at these on page
342.

• The keywords void, signed and const were adopted from the Portable C compiler.

• The keyword volatile was added to tell an optimizer not to assume that the value of
the variable will stay the same from one reference to another. Variables normally stay
unchanged unless you execute an explicit assignment statement or call a function, and
most optimizers rely on this behaviour. This assumption may not hold true if a signal
interrupts the normal course of execution, or if you are sharing the memory with another
process. If the value of a variable might change without your influence, you should
declare the variable volatile so that the optimizer can handle it correctly. We saw an
example of this kind of problem in Chapter 13, Signals, page 200.

• You can state the type of numeric constants explicitly: for example, you can write a long
constant 0 as 0L, and a double 0 would be 0D.

• Implicit string literal concatenation is allowed — the following two lines are completely
equivalent:

"first string" "second string"
"first stringsecond string"

K&R C allows only the second form.

• void pointers are allowed. Previous versions of C allowed the type void, but not point-
ers to objects of that type. You use a void pointer to indicate the the object you are
pointing to is of indeterminate type. Before you can use the data, you need to cast it to a
specific data type.

• In strict ANSI C, you must declare or define functions before you call them. You use a
function declaration to tell the compiler that the function exists, what parameters it takes,

5 February 2005 02:09

Chapter 20: Compilers 341

and what value (if any) it returns. A function definition is the code for the function, and
includes the declaration.

Strict ANSI C function definitions and declarations include function protyping, which
specifies the nature of each parameter, though most implementations allow old-style defi-
nitions. Consider the following function definition in K&R C:

foobar (a, b, c, d)
char *c;
struct baz *a;
{
body
}

This definition does not specify the return type of the function; it may or may not return
int. The types of two of the parameters are specified, the others default to int. The
parameter type specifiers are not in the order of the declaration. In ANSI C, this would
become:

void foobar (struct baz *a, int b, char *c, int d)
{
body
}

This definition states all types explicitly, so we can see that foobar does not, in fact,
return any value.

• The same syntax can also be used to declare the function, though you can also abbreviate
it to:

void foobar (struct baz *, int, char, int);

This helps catch one of the most insidious program bugs: consider the following code,
which is perfectly legal K&R:

extern foobar ();/* define foobar without parameters */
int a, b; /* two integers */
struct baz *c; /* and a struct baz */

foobar (a, b, c);/* call foobar (int, int, struct baz *) */

In this example, I have supplied the parameters to foobar in the wrong sequence: the
struct baz pointer is the first parameter, not the third. In all likelihood, foobar will
try to modify the struct baz, and will use the value of a—possibly a small inte-
ger — to do this. If I call foobar without parameters, the compiler won’t notice, but by
the time I get my almost inevitable segmentation violation, foobar will probably have
overwritten the stack and removed all evidence of how the problem occurred.

5 February 2005 02:09

342

Differences in the ANSI C preprocessor
At first sight, the C preprocessor doesn’t seem to have changed between K&R C and ANSI C.
This is intentional: for the casual user, everything is the same. When you scratch the surface,
however, you discover a number of differences. The following list reflects the logical
sequence in which the preprocessor processes its input.

• A method called trigraphs represents characters not found in the native character set of
some European countries. The following character sequences are considered identical:

Table 20−1: ANSI C trigraphs

character trigraph

??=
[??(
\ ??/
] ??)
ˆ ??’
{ ??<
| ??!
} ??>
˜ ??-

To show what this means, let’s look at a possibly barely recognizable program:

??=include <unistd.h>
main ()
??<
printf ("Hello, world??/n");
??>

Not surprisingly, most programmers hate the things. To quote the gcc manual: “You
don’t want to know about this brain-damage”. Many C compilers, including the GNU C
compiler, giv e you the opportunity to turn off support for trigraphs, since they can bite
you when you’re not expecting them.

• Any line may end with \, indicating that it should be spliced—in other words, the pre-
processor removes the \ character and the following newline character and joins the line
to the following line. K&R C performed line splicing only during the definition of pre-
processor macros. This can be dangerous: trailing blanks can nullify the meaning of the \
character, and it’s easy to oversee one when deleting lines that follow it.

• Unlike UNIX C, formal macro parameters in strings are not replaced by the actual
parameters. In order to be able to create a string that includes an actual parameter, the
operator # was introduced. A formal parameter preceded by a # is replaced by the actual
parameter surrounded by string quotes. Thus

5 February 2005 02:09

Chapter 20: Compilers 343

#define foo(x) open (#x)
foo (/usr/lib/libc.a);

will be replaced by

open ("/usr/lib/libc.a");

In many traditional versions of C, you could have got the same effect from:

#define foo(x) open ("x")
foo (/usr/lib/libc.a);

• In K&R C, problems frequently arose concatenating two parameters. Since both param-
eter names are valid identifiers, you can’t just write one after the other, because that
would create a new valid identifer, and nothing would be substituted. For example, con-
sider the X11 macro Concat, which joins two names together to create a complete path
name from a directory and a file name:

Concat(dir, file);

I obviously can’t just write

#define Concat(dir, file) dirfile

because that will always just give me the text dirfile, which isn’t much use. The solu-
tion that the X Consortium used for K&R C was:

#define Concat(dir,file)dir/**/file

This relies on the fact that most C compilers derived from the portable C compiler sim-
ply remove comments and replace them by nothing. This works most of the time, but
there is no basis for it in the standard, and some compilers replace the sequence /**/
with a blank, which breaks the mechanism. ANSI C introduced the operator ## to
address this problem. ## removes itself and any white space (blanks or tab characters) to
either side. For ANSI C, Imake.tmpl defines Concat as

#define Concat(dir,file)dir##file

• The #include directive now allows the use of preprocessor directives as an argument.
imake uses this to #include the <vendor>.cf file.

• Conditional compilation now includes the #elif directive, which significantly simplifies
nested conditional compilation. In addition, a number of logical operators are available:
|| and && have the same meaning as in C, and the operator defined checks whether its
operand is defined. This allows code like:

#if defined BSD || defined SVR4 || defined ULTRIX
foo
#elif defined SVR3
bar
#endif

If you want, you can surround the operand of defined with parentheses, but you don’t
need to.

5 February 2005 02:09

344

• The use of the preprocessor directive #line, which had existed in previous versions of
C, was formalized. #line supports preprocessors that output C code—see page 88 for
an example. #line tells the compiler to reset the internal line number and file name
used for error reporting purposes to the specified values. For example if the file bar.c
contains just

#line 264 "foo.c"
slipup!

the compiler would report the error like this:

$ gcc -O bar.c -o bar
foo.c:264: parse error before ‘!’
gnumake: *** [bar] Error 1

Although the error was really detected on line 2 of bar.c, the compiler reports the error as
if it had occurred on line 264 of foo.c.

• The line slipup! suggests that it is there to draw attention to an error. This is a fairly
common technique, though it’s obviously just a kludge, especially as the error message
requires you to look at the source to figure out what the problem is. ANSI C introduced
another directive to do the Right Thing. Instead of slipup!, I can enter:

#error Have not finished writing this thing yet

This produces (from gcc)

$ make bar
gcc -O bar.c -o bar
foo.c:270: #error Have not finished writing this thing yet
gnumake: *** [bar] Error 1

I couldn’t write Haven’t, because that causes gcc to look for a matching apostrophe (’).
Since there isn’t one, it would die with a less obvious message, whether or not an error
really occurred.

• To quote the Standard:

A preprocessor line of the form # pragma token-sequence
opt

causes the processor to perform
an implementation-dependent action. An unrecognized pragma is ignored.

This is not a Good Thing. Implementation-dependent actions are the enemy of portable soft-
ware, and about the only redeeming fact is that the compiler ignores an unrecognized pragma.
Since almost nobody uses this feature, you can hope that your compiler will, indeed, ignore
any pragmas it finds.

Assertions
Assertions provide an alternative form of preprocessor conditional expression. They are spec-
ified in the form

5 February 2005 02:09

Chapter 20: Compilers 345

#assert question (answer)

In the terminology of the documentation, this asserts (states) that the answer to question is
answer. You can test it with the construct:

#if #question(answer)
...
#endif

The code between #if and #endif will be compiled if the answer to question is answer.
An alternative way to use this facility is in combination with the compiler directive -Aques-
tion(answer). This method is intended for internal use by the compiler: typically, it tells
the compiler the software and platform on which it is running. For example, compiling bar.c
on UNIXWare 1.0 with gcc and the -v flag reveals:

/usr/local/lib/gcc-lib/i386-univel-sysv4.2/2.4.5/cpp \
-lang-c -v -undef -D__GNUC__=2 -Di386 -Dunix -D__svr4__ \
-D__i386__ -D__unix__ -D__svr4__ -D__i386 -D__unix \
-D__svr4__ -Asystem(unix) -Acpu(i386) -Amachine(i386) \
bar.c /usr/tmp/cca000Nl.i

The -A flags passed by gcc to the preprocessor specify that this is a unix system and that the
cpu and machine are both i386. It would be nice if this information stated that the operating
system was svr4, but unfortunately this is not the default for System V.4. gcc has also retro-
fitted it to System V.3, where the assertion is -Asystem(svr3), which makes more sense,
and to BSD systems, where the assertion is -Asystem(bsd).

C++
C++ is an object-oriented evolution of C that started in the early 80’s, long before the ANSI C
standard evolved. It is almost completely upwardly compatible with ANSI C, to a large extent
because ANSI C borrowed heavily from C++, so we don’t run much danger by considering it
the next evolutionary step beyond ANSI C.

The last thing I want to do here is explain the differences between ANSI C and C++: The
Annotated C++ Reference Manual, by Margaret A. Ellis and Bjarne Stroustrup, spends
nearly 450 very carefully written pages defining the language and drawing attention to its
peculiarities. From our point of view, there is not too much to say about C++.

One of the more popular C++ translators is AT&T’s cfront, which, as the name suggests, is a
front-end preprocessor that generates C program code as its output. Although this does not
make the generated code any worse, it does make debugging much more difficult.

Since C++ is almost completely upwards compatible from ANSI C, a C++ compiler can usu-
ally compile ANSI C. This assumes well-formed ANSI C programs: most ANSI C compilers
accept a number of anachronisms either with or without warnings — for example, K&R-style
function definitions. The same anachronisms are no longer part of the C++ language, and
cause the compilation to fail.

C++ is so much bigger than C that it is not practicable to even think about converting a C++
program to C. Unless there are some really pressing reasons, it’s a whole lot easier to get hold

5 February 2005 02:09

346

of the current version of the GNU C compiler, which can compile both C and C++ (and
Objective C, if you’re interested).

C and C++ have different function linking conventions. Since ev ery C++ program calls C
library functions, there is potential for errors if you use the wrong calling convention. We
looked at this aspect in Chapter 17, Header files, on page 286.

Other C dialects
Before the advent of ANSI C, the language was ported to a number of non-UNIX architec-
tures. Some of these added incompatible extensions. Many added incompatible library calls.
One area is of particular interest: the Microsoft C compiler, which was originally written for
MS-DOS. It was subsequently adapted to run under XENIX and SCO UNIX System V.
Since our emphasis is on UNIX and UNIX-like systems, we’ll talk about the XENIX com-
piler, though the considerations also apply to SCO UNIX and MS-DOS.

The most obvious difference between the XENIX C compiler and most UNIX compilers is in
the flags, which are described in Appendix B, Compiler flags, but a couple of architectural
limitations have caused incompatibilities in the language. We’ll look at them in the following
section.

Intel 8086 memory models
The original MS-DOS compiler ran on the Intel 8086 architecture. This architecture has 1
MB of real memory, but the addresses are only 16 bits long. In order to address memory, each
machine instruction implicitly adds the contents one of four segment registers to the address,
so at any one time the machine can address a total of 256 kB of memory. In order to address
more memory, the C implementation defines a 32 bit pointer type, the so-called far address, in
software. Accessing memory via a far pointer requires reloading a segment register before the
access, and is thus significantly slower than access via a 16-bit near address. This has a num-
ber of consequences:

Near addresses are simply offsets within a segment: if the program expects it to point to a dif-
ferent segment, it will access the wrong data.

Far pointers are 32 bits wide, containing the contents of the segment register in one half and
the offset within the segment in the other half. The segment register contains bits 4 through
19 of a 20-bit address, and the offset contains bits 0 through 15. To create an absolute address
from a far pointer, the hardware performs effectively

struct fp
{
short segment_reg; /* 16 bits, bits 4 through 19 of address */
short offset; /* 16 bits, bits 0 through 15 of address */
}

long abs_address = (fp.segment_reg << 4) + fp.offset;

As a result, many possible far pointer contents that could resolve to the same address. This
complicates pointer comparison significantly. Some implementations solved this problem by
declaring huge pointers, which are normalized 20-bit addresses in 32-bit words.

5 February 2005 02:09

Chapter 20: Compilers 347

Along with three pointer types, MS-DOS C uses a number of different executable formats.
Each of them has default pointer sizes associated with them. You choose your model by sup-
plying the appropriate flag to the compiler, and you can override the default pointer sizes with
the explicit use of the keywords near, far or (where available) huge:

• The tiny model occupies a single segment and thus can always use near addresses. Apart
from the obvious compactness of the code, this model has the advantage that it can be
converted to a .COM file.

• The small model occupies a single data segment and a single code segment. Here, too,
you can always use near pointers, but you need to be sure you’re pointing into the correct
segment.

• The medium model (sometimes called middle model) has multiple code segments and a
single data segment. As a result, code pointers are far and data pointers are near.

• The compact model is the inverse of the medium model. Here, code is restricted to one
segment, and data can have multiple segemnts. Static data is restricted to a single seg-
ment. As a result, code pointers are near and data pointers are far.

• The large model can have multiple code and multiple data segments. Static data is
restricted to a single segment. All pointers are far.

• The huge model is like the large model except that it can have multiple static data seg-
ments. The name is unfortunate, since it suggests some connection with huge pointers.
In fact, the huge model uses far pointers.

What does this mean to you? If you’re porting from MS-DOS to UNIX, you may run into
these keywords near, far and huge. This isn’t a big deal: you just need to remove them, or
better still, define them as an empty string. You may also find a lot of pointer checking code,
which will probably get quite confused in a UNIX environment. If you do find this kind of
code, the best thing to do is to ifdef it out (#ifndef unix).

If you’re converting from UNIX to MS-DOS, things can be a lot more complicated. You’ll be
better off using a 32-bit compiler, which doesn’t need this kind of kludge. Otherwise you
may have to spend a considerable amount of time figuring out the memory architecture most
suitable for your package.

Other differences in MS-DOS
MS-DOS compilers grew up in a very different environment from UNIX. As a result, a num-
ber of detail differences exist. None of them are very serious, but it’s good to be forewarned:

• They do not adhere to the traditional UNIX organization of preprocessor, compiler,
assembler and loader.

• They don’t use the assembler directly, though they can usually output assembler code for
use outside the compilation environment.

5 February 2005 02:09

348

• The assembler code output by MS-DOS compilers is in the standard Intel mnemonics,
which are not compatible with UNIX assemblers.

• Many MS-DOS compilers combine the preprocessor and the main compiler pass, which
makes for faster compilation and less disk I/O.

• Many rely on the Microsoft linker, which was not originally written for C, and which has
significant limitations.

• Many MS-DOS compilers still run in real mode, which limits them to 640K code and
data. This is a severe limitation, and it is not uncommon to have to modify programs in
order to prevent the compiler from dying of amnesia. This leads to a different approach
with header files, in particular: in UNIX, it’s common to declare everything just in case,
whereas in MS-DOS it may be a better idea to not declare anything unless absolutely
necessary.

Compiler organization
The traditional UNIX compiler is derived from the Portable C Compiler and divides the com-
pilation into four steps, traditionally called phases or passes, controlled by the compiler con-
trol program cc. Most more modern compilers also adhere to this structure:

1. The preprocessor, called cpp, reads in the the source files and handles the preprocessor
directives (those starting with #) and performs macro substitution.

2. The compiler itself, usually called cc1, reads in the preprocessor output and compiles to
assembler source code. In SunOS, this pass is called ccom.

3. The assembler as reads in this output and assembles it, producing an object file.

4. The loader takes the object file or files and links them together to form an executable. To
do so, it also loads a low-level initialization file, normally called crt0.o, and searches a
number or libraries.

cc usually performs these passes invisibly. The intermediate outputs are stored in temporary
files or pipes from one pass to the next. It is possible, however, to call the passes directly or to
tell cc which pass to execute — we’ll look at how to do that in the next section. By conven-
tion, a number of suffixes are used to describe the intermediate files. For example, the GNU

5 February 2005 02:09

Chapter 20: Compilers 349

C compiler recognizes the following suffixes for a program foo:

Table 20−2: C compiler intermediate files

file contents created by
compiler?

foo.c unpreprocessed C source code
foo.cc unpreprocessed C++ source code
foo.cxx unpreprocessed C++ source code
foo.C unpreprocessed C++ source code
foo.i preprocessed C source code yes
foo.ii preprocessed C++ source code yes
foo.m Objective C source code
foo.h C header file
foo.s assembler source code yes
foo.S assembler code requiring preprocessing
foo.o object file yes

Here’s what you need to do to go through the compilation of foo.c to the executable foo, one
pass at a time:

$ gcc -E foo.c -o foo.i preprocess
$ gcc -S foo.i compile
$ gcc -c foo.s assemble
$ gcc foo.o -o foo link

There are slight variations in the form of the commands: if you don’t tell the preprocessor
where to put the output file, gcc writes it to stdout. Other preprocessors may put a special suf-
fix on the base file name, or if you specify the -o flag, the compiler might put it in the file you
specify. If you don’t tell the linker where to put the output file, it writes to a.out.

Compiling an object file from an assembler file is the same as compiling from a source file or
a preprocessed file—gcc decides what to do based on the suffix of the input file.

You can also run any combination of contiguous passes like this:

$ gcc -S foo.c preprocess and compile
$ gcc -c foo.c preprocess, compile and assemble
$ gcc -o foo foo.c preprocess, compile, assemble, link
$ gcc -c foo.i compile and assemble
$ gcc -o foo foo.i compile, assemble, link
$ gcc -o foo foo.s assemble and link

The location of the C compiler is, unfortunately, anything but standardized. The control pro-
gram cc is normally in /usr/bin, or occasionally in /bin, but the other components might be
stored in any of the following: /usr/lib, /usr/ccs/lib (System V.4), /usr/lib/cmplrs/cc (MIPS) or
/usr/local/lib/gcc-lib (gcc on most systems).

5 February 2005 02:09

350

Other compiler organizations
Some modern compilers have additional passes. Some optimizers fit between the compiler
and the assembler: they take the output of the compiler and output optimized code to the
assembler. An extreme example is the MIPS compiler, which has a total of 8 passes: The pre-
processor cpp, the front end cc1, the ucode* linker uld, the procedure merge pass umerge, the
global optimizer uopt, the code generator ugen, the assembler as1, and the linker ld. Despite
this apparent complexity, you can consider this compiler as if it had only the traditional four
passes: the five passes from the front end up to the code generator perform the same function
as the traditional cc1.

The C preprocessor
You can use the preprocessor cpp for other purposes than preprocessing C source code: it is a
reasonably good macro processor, and it has the advantage that its functionality is available on
ev ery system with a C compiler, though in some cases it is available only via the C compiler.
It is one of the mainstays of imake, and occasionally packages use it for other purposes as
well.

There are two ways to invoke cpp: you can invoke it with cc and the -E flag, or you can start it
directly. If at all possible, you should start it via cc rather than running it directly. On some
systems you can’t rely on cc to pass the correct flags to cpp. You also can’t rely on all ver-
sions of cpp to use the same flags—you can’t even rely on them to be documented. You can
find a list comparing the more common preprocessor flags in Appendix B, Compiler flags,
page .

Which compiler to use
Most systems still supply a C compiler, and normally this is the one you would use. In some
cases, bugs in the native system compiler, compatibility problems, or just the fact that you
don’t hav e the normal compiler may lead to your using a different compiler. This situation is
becoming more common as software manufacturers unbundle their compilers.

Using a different compiler is not necessarily a Bad Thing, and can frequently be an
improvement. In particular, gcc, the GNU C compiler from the Free Software Foundation, is
very popular—it’s the standard C compiler for a number of systems, including OSF/1,
4.4BSD, and Linux. It can do just about everything except run in minimal memory, and it has
the advantage of being a well-used compiler: chances are that somebody has compiled your
package with gcc before, so you are less likely to run into trouble with gcc than with the
native compiler of a less-known system. In addition, gcc is capable of highly optimized code,
in many cases significantly better than the code created by the native compiler.

Compilers are becoming more standardized, and so are the bugs you are liable to run into. If
you have the choice between compiling for K&R or ANSI, choose ANSI: the K&R flags may

* ucode is a kind of intermediate code used by the compiler. It is visible to the user, and you have the
option of building and using ucode libraries.

5 February 2005 02:09

Chapter 20: Compilers 351

use “features” that were not universally implemented, whereas the ANSI versions tend to pay
more attention to the standard. If you do run into a bug, chances are someone has seen it
before and has taken steps to work around it. In addition, compiling for ANSI usually means
that the prototypes are declared in ANSI fashion, which increases the chance of subtle type
conflicts being caught.

Some things that neither you nor the Makefile may expect are:

• gcc compiles both K&R (-traditional) and ANSI dialects. However, even some soft-
ware supplied by the Free Software Foundation breaks when compiled with gcc unless
the -traditional flag is used.

• Many compilers do not compile correctly when both optimization and debugging infor-
mation are specified (-O and -g flags), though most of them recognize the fact and turn
off one of the flags. Even if the compiler ostensibly supports both flags together, bugs
may prevent it from working well. For example, gcc version 2.3.3 generated invalid
assembler output for System V.4 C++ programs if both flags were specified. Even when
compilers do create debugging information from an optimizing compilation, the results
can be confusing due to the action of the optimizer:

− The optimizer may remove variables. As a result, you may not be able to set or dis-
play their values.

− The optimizer may rearrange program flow. This means that single-stepping might
not do what you expect, and you may not be able to set breakpoints on certain lines
because the code there has been eliminated.

− Some optimizers remove stack frames,* which makes for faster code, particularly
for small functions. gcc will do this with the -O3 option.

Stack frame removal in particular makes debugging almost impossible. These aren’t
bugs, they’re features. If they cause problems for you, you will need to recompile with-
out optimization.

• Some compilers limit the length of identifiers. This can cause the compiler to treat two
different identifiers as the same thing. The best thing to do if you run into this problem is
to change the compiler: modern compilers don’t hav e such limits, and a compiler that
does is liable to have more tricks in store for you.

• With a System V compiler, you might find:

$ cc -c frotzel.c -o frotzel.o
cc: Error: -o would overwrite frotzel.o

System V compilers use the flag -o only to specify the name of the final executable,
which must not coincide with the name of the object file. In many Makefiles from the
BSD world, on the other hand, this is the standard default rule for compiling from .c to
.o.

* See Chapter 21, Object files and friends, page 377, for further information on stack frames.

5 February 2005 02:09

352

• All C compilers expect at least some of their flags in a particular sequence. The docu-
mentation is frequently hazy about which operands are sequence-sensitive, or what inter-
actions there are between specific operands.

The last problem bears some more discussion. A well-documented example is that the linker
searchs library specifications (the -l option) in the sequence in which they are specified on
the compiler invocation line—we’ll investigate that in more detail in Chapter 21, Object files
and friends, page 373. Here’s an example of another operand sequence problem:

$ cc foo.c -I../myheaders

If foo.c refers to a file bar.h in the directory ../myheaders, some compilers won’t find the
header because they don’t interpret the -I directive until after they try to compile foo.c. The
man page for System V.4 cc does state that the compiler searches directories specified with -I
in the order in which they occur, but it does not relate this to the sequence of operands and file
names.

5 February 2005 02:09

Object files and friends

Object files are a special kind of file which store compiled programs. Normally, you manipu-
late them only as part of the build process, where you can treat them as a black box: you don’t
need to know what they look like inside.
Sometimes, however, some aspects of the true nature of object files become apparent—for
example:

• Your program bombs out with a segmentation violation, and when you check up you dis-
cover that it was trying to write to a valid storage location—so why did it bomb out? It
might be that the location was in the text segment, a part of the address space that is
read-only.

• You want to debug a program, and find that the debugger refuses to look at it, because it
doesn’t hav e any symbols — whatever that may mean.

• You recompile programs and run out of disk space—for some reason, the object files are
suddenly ten times the size that they used to be.

The information in this chapter is some of the most technical in the whole book, which is why
I’ve left it to the end. We look at a number of topics that are related only by their dependence
on object files. So far, the inter-platform differences we’ve seen have been the result of a
choice made by the software people who implemented the system. In this chapter, we come a
whole lot closer to the hardware — you can almost feel the clocks tick and the pipelines fill.
You definitely see instructions execute. You’ll find it an interesting look below covers that are
usually locked shut.
A number of programs manipulate the object files either because that’s their purpose—for
example, assemblers or linkers — or because they want to play tricks to install more comfort-
ably. For example, emacs and TEX both write themselves out as object files during the build
process. If anything goes wrong with these programs, you need to open the black box and
look inside. In this chapter, we’ll examine the tools that manipulate object files and some of
the background information that you need to know to solve problems.
There aren’t many programs that manipulate object files. The kernel uses absolute object files
when creating a process—this is the most frequent use of an object file. In addition, the
assembler creates them from assembly sources. In most UNIX systems, this is the only

353

6 February 2005 00:57

354

program that creates object files from scratch. The linker or link editor joins object files
together to form a larger object file, and debuggers access specific debugging information in
the object file. These are the only programs that have intimate understanding of the object file
format.
A number of smaller programs do relatively trivial things with object files:

• The archiver ar is normally used for archiving binary files, but it does not know very
much about their contents.

• The name list display program nm displays the symbol table or name list of an object file
or an archive of object files. We’ll look at the symbol table in more detail on page 363.

• size displays size information from an object file.

• strings displays printable strings in an object file.

• strip removes unnecessary information from an object file.

In the rest of this chapter, we’ll look at the following topics:

• The kernel process model that the object file supports.

• The assembler, including some of the syntax, the symbol table, relocation, and debug-
ging symbols.

• The linker, including the way it searches libraries, and some of the problems that can
occur during linking.

• The internal structure of function libraries, and how this affects what they can and cannot
do.

• How emacs and TEX dump themselves as object files.

• How exec starts programs.

Object formats
The purpose of object files is to make it as easy as possible to start a process, so it makes
sense to look at the process image in memory first. Modern UNIX systems run on stack-
based systems with virtual memory. We touched on the concept of virtual memory in Chapter
11, Hardware dependencies, on page 155. Since UNIX is a multiprogramming system, it is
possible for more than one process to run from a single object file. These facts have a signifi-
cant influence on the way the system manages processes. For each process, the system allo-
cates at least three segments in which program code and data is stored:

• A text segment, which contains the executable code of the program and read-only data.
Modern systems create code where the program may not write to its text segment — it is
so-called pure text. This has two significant advantages for the memory manager: first,
all processes in the system that are run from this program can share the same text seg-
ment, which significantly reduces the memory requirements when, say, 20 copies of a
shell are running. In addition, since the text is not modified, the memory management

6 February 2005 00:57

Chapter 21: Object files 355

routines never need to swap it out to disk. The copy on disk is always the same as the
copy in memory. This also means that the copy on disk can be the copy in the object file:
it does not take up any space in the swap partition.

Older systems also provided for impure text segments that could be modified by the program.
This usage is obsolete, but it is still supported by modern systems.

• A data segment. This consists of two parts:

− Global data that has been initialized in the program. This data can be modified, of
course, so it takes up space in the swap partition, but the first time the page is refer-
enced, the memory manager must load it from the object file.

− bss* data, non-initialized global data. Since the data is not initialized, it does not
need to be loaded from a file. The first time the page is referenced, the memory
manager just creates an empty data page. After that, it gets paged to the swap parti-
tion in the same way as initialized data.

• A stack segment. Like bss data, the stack segment is not initialized, and so is not stored
in the object file. Unlike any of the other segments, it does not contain any fixed
addresses: at the beginning of program execution, it is almost empty, and all data stored
in it is relative to the top of the stack or another stack marker. We’ll look at stack organi-
zation in more detail on page 377.

• In addition, many systems have library segments. From the point of view of memory
management, these segments are just additional text and data segments, but they are
loaded at run time from another object file, the library file.

Older systems without virtual memory stored the data segment below the stack segment with
a gap in between, the so-called break. The stack grew down into the break as the result of
push or call instructions, and the data segment grew up into the break as the result of system
calls brk and sbrk (set break). This additional space in the data segment is typically used for
memory allocated by the library call malloc. With a virtual memory system, the call to sbrk
is no longer necessary, but some versions of UNIX still require it, and all support it. Table
21-1 summarizes this information:

* The name comes from the assembler directive bss (Block Starting with Symbol), which was used in
older assemblers to allocate uninitialized memory and allocate the address of the first word to the label
of the directive. There was also a directive bes (Block Ending with Symbol) which allocated the address
of the last word to the label.

6 February 2005 00:57

356

Table 21−1: Kinds of segments

Property Text Initialized bss Stack
Segment Data Data Segment

In object file yes yes no no
Access r-x rw- rw- rw-
Paged out no yes yes yes
Fixed size yes yes maybe no

Object files contain the information needed to set up these segments. Before we continue, we
should be aware of a terminology change:

• The object file for a process is called a program.

• The images of process segments in an object file are called sections.

There are three main object file formats in current use:

• The a.out format is the oldest, and has remained essentially unchanged since the Seventh
Edition. It supplies support for a text section and a data section, as well as relocation
information for both sections. It is used by XENIX and BSD systems.

• The COFF (Common Object File Format) was introduced in System V, and offers an
essentially unlimited number of segments, including library segments. It is now obsoles-
cent, except for use in Microsoft Windows NT.

• The ELF (Executable and Linking Format) format was introduced for System V.4. From
our point of view, it offers essentially the same features as COFF. ELF shows promise as
the executable format of the future, since it greatly simplifies the use of shared libraries.
Currently the Linux project is moving from a.out to ELF.

With the exception of library segments, there’s not much to choose between the individual
object formats, but the internal structures and the routines that handle them are very different.
Let’s take an a.out header from a BSD system as an example. The header file sys/exec.h
defines:

struct exec
{
long a_magic; /* magic number */
unsigned long a_text; /* text segment size */
unsigned long a_data; /* initialized data size */
unsigned long a_bss; /* uninitialized data size */
unsigned long a_syms; /* symbol table size */
unsigned long a_entry; /* entry point */
unsigned long a_trsize; /* text relocation size */
unsigned long a_drsize; /* data relocation size */
};

/* a_magic */
#define OMAGIC 0407 /* old impure format */

6 February 2005 00:57

Chapter 21: Object files 357

#define NMAGIC 0410 /* read-only text */
#define ZMAGIC 0413 /* demand load format */
#define QMAGIC 0314 /* compact demand load format */

This header includes:

• A magic number. This specifies the exact kind of file (for example, whether it is relocat-
able or absolute). The program file can interpret this magic number and report the kind
of object file.

• The length of the text section, an image of the text segment. The text section immedi-
ately follows the header.

• The length of the data section, an image of the initialized global data part of the data seg-
ment — as we have seen, bss data does not need to be stored in the object file. The data
section immedately follows the text section.

• The length of the bss data. Since the bss data is not initialized, no space is needed for it
in the object file.

• The length of the symbol table. The symbol table itself is stored after the data section.

• The entry point, the address in the text segment at which execution is to start.

• The lengths of the text and data relocation tables, which are stored after the symbol table.
If you look at the above list of contents carefully, you’ll notice that there are no start addresses
for the segments, and there isn’t even any mention of the stack segment. The start address of
the text and data segments is implicit in the format, and it’s frequently difficult information to
figure out. On 32 bit machines, the text segment typically starts at a low address, for example
0 or 0x1000.* The data segment may start immediately after the text segment (on the follow-
ing page), or it might start at a predetermined location such as 0x40000000. The stack seg-
ment is usually placed high in the address space. Some systems place it at 0x7fffffff, oth-
ers at 0xefffffff. The best way to find out these addresses is to look through the address
space of a typical process with a symbolic debugger.
The magic number is worth closer examination: I said that it occupies the first two bytes of
the header, but in our example it is a long, four bytes. In fact, the magic number is used in
two different contexts:

• The first two bytes in the file are reserved for the magic number in all systems. The
information in these bytes should be sufficient to distinguish the architecture.

• The following two bytes may contain additional information for specific systems, but it is
often set to 0.

* Why 0x1000? It’s a wonderful debugging aid for catching NULL pointers. If the first page of memory
is not mapped, you’ll get a segmentation violation or a bus error if you try to access data at that address

6 February 2005 00:57

358

The assembler
Assembly is the second oldest form of programming*. It is characterized by being specific
about the exact instructions that the machine executes, which makes an assembler program
much more voluminous than a higher level language. Nevertheless, there is nothing difficult
about it, it’s just tedious.
Assembler programming involves two aspects that don’t hav e much in common:

• The instruction set of the machine in question. The best source of information for this
aspect is the hardware description of the machine. Even if you get an assembler manual
for the machine, it will not be as authoratative as the hardware description.

• The syntax of the assembler. This is where the problems start: first, little documentation
is available, and secondly, assembler syntax diverges greatly, and the documentation you
get may not match your assembler.

The i386 is a particularly sorry example of incompatible assembler syntax. The UNIX assem-
blers available for the i386 (at least three of them, not even compatible with each other) use
modified forms of the old UNIX as syntax, whereas all books about the assembler and the
hardware of the i386 use a syntax related to the Microsoft assembler MASM. They don’t even
agree on such basic things as the names of the instructions and the sequence of the operands.
Although nowadays it is used almost only for assembling compiler output, as frequently
offers features specifically intended for human programmers. In particular, most assemblers
support some kind of preprocessing: they may use the macro preprocessor m4 or the C pre-
processor when processing assembler source. See the description of the flags in Appendix C,
Assembler directives and flags, page 415, for more information.

Assembler syntax
Assembler syntax is a relatively involved topic, but there are some general rules that apply to
just about every assembler. In this section, we’ll see how to fight our way through an assem-
bler listing.

• Assemblers are line-oriented: each instruction to the assembler is placed on a separate
line.

• An instruction line consists of four parts:

− If the optional label is present, the assembler assigns a value to it. For most instruc-
tions, the value is the current value of the location counter, the relative address of
the instruction in the current section. In UNIX, if the label is present it is followed
by a colon (:). Other assemblers frequently require that only labels start at the
beginning of the line, and recognize them by this fact.

* The oldest form of programming, of course, used no computational aids whatsoever: in some form or
another, the programmer wrote down direct machine code and then entered into memory with a loader or
via front-panel switches. Assembly added the symbolic character to this operation.

6 February 2005 00:57

Chapter 21: Object files 359

The assembler usually translates the source file in a single pass. This means that
when it encounters the name of a label that is further down in the source file, it can-
not know its value or even if it exists. Some assemblers require that the name of the
label be followed with the letter b (backwards) for labels that should have already
been seen in the text, and f (forwards) for labels that are further down. In order to
avoid ambiguity, these assemblers also require that the labels be all digits. Many
other assemblers also support this syntax, so 1b is not a good name for a label.

− The next field is the instruction. In this context, assembler instructions are com-
mands to the assembler, and may be either directives, which tell the assembler to do
something not directly related to emitting code, or machine instructions, which emit
code. In UNIX, directives frequently start with a period (.).

− The third field contains the operands for the instruction. Depending on the
instruction, they may not be required.

− The fourth field is a comment field. It is usually delimited by a hash mark (#).

• The operands of instructions that take a source operand and a destination operand are
usually specified in the sequence src, dest.

• Register names are usually preceded with a % sign.

• Literal values are usually preceded with a $ sign.

For example, consider the instruction:

fred: movl $4,%eax # example

This instruction emits a movl instruction, which moves the literal* value 4 to the register eax.
The symbol fred is set to the address of the instruction.
We can’t go into all the details of the assembly language for all machines, but the descriptions
in Appendix C, Assembler directives and flags, page 415, will hopefully give you enough
insight to be able to read existing assembler source, though you’ll need more information
before you can write it. One of the few reasonably detailed as manuals is Using as, by Dean
Elsner and Jay Fenlason, which is included as part of the GNU binutils distribution.

Assembler symbols
Local symbols define instruction addresses. High-level constructs in C such as if, while and
switch require a number of jump (go to) instructions in assembler, and the compiler must
generate labels for the instructions.
Local symbols are also used to label literal data constants such as strings.
Global symbols defined in the source. The word global has different meanings in C and
assembler: in C, it is any symbol defined in the data or text segments, whether or not it is

* movl means “move long”, not “move literal”. In this particular assembler, we know that it is a literal
value because of the $ symbol, just as we know that eax is a register name because it is preceded by a %
sign.

6 February 2005 00:57

360

visible outside the module. In assembler, a global symbol is one that is visible outside the
module.
There are a couple of points to note here:

• C local variables are generated automatically on the stack and do not retain their names
after compilation. They do not have a fixed location, since their position on the stack
depends on what was already on the stack when the function was called. If the function
is recursive, they could even be in many different places on the stack at the same time.
As a result, there is nothing that the assembler or the linker can do with the symbols, and
the compiler discards them.

• There is a possibility of conflict between the local symbols generated by the compiler
and global symbols declared in the program. Most compilers avoid this conflict by
prepending an underscore (_) to all symbols defined in the program, and not using the
underscore for local symbols. Others solve the problem by prepending local symbols
with a period (.), which is not legal in a C identifier.

To see how this all works, let’s take the following small program and look at different aspects
of what the compiler and assembler do with it in the next few sections:

Example 21−1:

char global_text [] = "This is global text in the data area";
void inc (int *x, int *y)
{
if (*x)
(*x)++;

else
(*y)++;

puts (global_text); /* this is an external function */
puts ("That’s all, folks");
}

We compile this program on a BSD/OS machine using gcc version 2.5.8, with maximum opti-
mization and debugging symbols:

$ gcc -O2 -g -S winc.c

The -S flag tells the compiler control program to stop after running the compiler. It stores the
assembly output in winc.s, which looks like this:

Example 21−2:

.file "winc.c"
gcc2_compiled.:
___gnu_compiled_c:
.stabs "/usr/lemis/book/porting/grot/",100,0,0,Ltext0 name of the source directory
.stabs "winc.c",100,0,0,Ltext0 name of the source file
.text select text section
Ltext0: internal label: start of text
.stabs "int:t1=r1;-2147483648;2147483647;",128,0,0,0
.stabs "char:t2=r2;0;127;",128,0,0,0
... a whole lot of standard debugging output omitted

6 February 2005 00:57

Chapter 21: Object files 361

Example 21−2: (continued)

.stabs "void:t19=19",128,0,0,0

.globl _global_text specify an externally defined symbol

.data select data section

.stabs "global_text:G20=ar1;0;36;2",32,0,1,0 debug info for global symbol
_global_text: variable label

.ascii "This is global text in the data area " and text
.text select text section
LC0:

.ascii "That’s all, folks "

.align 2 start on a 16 bit boundary
.globl _inc define the function inc to be external
_inc: start of function inc

.stabd 68,0,3 debug information: start of line 3
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
movl 12(%ebp),%edx
.stabd 68,0,4 debug information: start of line 4

LBB2:
cmpl $0,(%eax)
je L2
.stabd 68,0,5 debug information: start of line 5
incl (%eax)
jmp L3
.align 2,0x90

L2:
.stabd 68,0,7 debug information: start of line 7
incl (%edx)

L3:
.stabd 68,0,8 debug information: start of line 8
pushl $_global_text
call _puts
.stabd 68,0,9 debug information: start of line 9
pushl $LC0
call _puts
.stabd 68,0,10 debug information: start of line 10

LBE2:
leave
ret

.stabs "inc:F19",36,0,3,_inc debug information for inc

.stabs "x:p21=*1",160,0,2,8 debug information for x

.stabs "y:p21",160,0,2,1 debug information for y

.stabs "x:r21",64,0,2,0

.stabs "y:r21",64,0,2,2

.stabn 192,0,0,LBB2

.stabn 224,0,0,LBE2

We’ll look at various aspects of this output in the next few sections. For now, we should
notice:

• As advertised, the names of the global symbols global_text, inc and puts have been
changed to _global_text, _inc and _puts.

6 February 2005 00:57

362

• The compiler has created the local symbols Ltext0, LC0, LBB2, LBE2, L2 and L3.
Clearly it likes to start the names of local symbols with the letter L, and distinguish them
with numbers at the end. But what has happened to L1, for example? The compiler gen-
erated it, but the optimizer optimized it away. If you compile this same program without
the optimizer, the labels will all still be there.

• The compiler has assigned the local symbol LC0 to the string "That’s all, folks" so
that the assembler can refer to it.

• The variables x and y have disappeared, since they exist only on the stack.

Relocation information
Example 21-2 shows another dilemma that afflicts the linker: the program is not complete. It
refers to the external symbol _puts, and in addition it does not have a main function: the only
way to use it is for a function in another object file to call _inc. In order to do this, we need
to give the linker additional information:

• Information about the names of the external symbols that the object file references
(_puts in our example).

• Information about symbols defined in the object file that can be referenced by other
object files (_global_text and _inc in our example).

• Information about where external symbols are referenced in the object code.

• Information about where locations in the text and data segments are referenced in the
object code.

Why do we need to know where internal locations are referenced? The linker takes the text
and data sections from a large number of object files and makes a single text section and a sin-
gle data section out of them. The locations of the original sections from the individual object
files differ from one occasion to the next, but the addresses in the final executable must reflect
the correct references. If an instruction refers to an address in the data or text section or an
external symbol, the assembler can’t just put the address of the item in the instruction, since
the address is allocated by the linker. Instead, it places the offset from the beginning of the
text or data section or from the external symbol into the instruction or data word, and gener-
ates a relocation record in the output file. These relocation records contain the following
information:

• The address of the data that needs to be relocated. From the linker’s point of view, the
data may be an instruction, in which case it will need to modify only the address portion
of the instruction, or it may be a pointer, in other words an indirect address.

• The length of the data. For a data pointer, this is the length of the pointer. For an
instruction, it is the length of the address field of the instruction. Some systems have
strange instruction formats, and this can become quite complicated.

• Information about the section in which the data will be located. This could be the current
text or data section, or it could be a reference to an external symbol.

6 February 2005 00:57

Chapter 21: Object files 363

• For an external symbol, a pointer to information about the symbol.

Object files contain separate relocation tables for each section that can contain address
data — at least the text and data sections. Referring again to Example 21-2, we see that the
compiler has output .text and .data directives. These are used to tell the assembler in
which section it should put the output that follows. It also supplies relocation information for
the output file.

String table and name list
Amongst other things, the relocation information includes a significant number of strings.
These are stored in the string table, which is simply a list of strings terminated with a NUL
(\0) character. Other parts of the object file refer to strings by their offset in the string table.
As we saw in Example 21-2, the assembler has a directive (.globl in this example) that out-
puts information about externally visible symbols, such as global_text. Some assemblers
need to be told about external references (such as _puts in this example), and others don’t,
like the GNU assembler gas used here. For both external definitions and external references,
gas outputs an entry for the symbol table to the output file with information about the symbol.
This symbol table is one of the better-known parts of an object file, and is usually called the
name list. The structure differs strongly from one flavour of UNIX to the next, but all
namelists contain the following information:

• The index of the symbol’s name in the string table.

• The type of the symbol (undefined, absolute, text, data, bss, common).

• The value of the symbol, if it has one (undefined symbols don’t, of course).

The library function nlist accesses the symbol table and returns a symbol table entry. The call
is

#include <nlist.h>

int nlist (const char *filename, struct nlist *nl);

This function has confusing semantics: the symbol table structure struct nlist does not
contain the name of the symbol. Instead, it contains a pointer to the name of the symbol. On
disk, the symbol is located in the string list, but in your program you supply the strings in
advance. For the System V.4 ELF format, the structure is

struct nlist
{
char *n_name; /* name of symbol */
long n_value; /* value of symbol */
short n_scnum; /* section number */
unsigned short n_type; /* type and derived type */
char n_sclass; /* storage class */
char n_numaux; /* number of auxiliary entries */
};

6 February 2005 00:57

364

To use the nlist function, you create an array of struct nlist entries with n_name set to
the symbols you are looking for. The last entry contains a null string to indicate the end of the
list. nlist searches the symbol table and fills in information for the symbols it finds, and sets
all fields except n_name to 0 if it can’t find the string.
The return value differs from one system to another:

• If filename doesn’t exist, or if it isn’t an object file, nlist returns -1.

• If all symbols were found, nlist returns 0.

• If some symbols were not found, BSD nlist returns the number of symbols not found.
System V nlist still returns 0.

Examining symbol tables: the nm program
You can display the complete symbol table of an object file or an archive with the program nm.
Invoke it simply with

$ nm filename

nm output is frequently used by tools such as shell scripts used during building. This can be a
problem, since the format of the printout depends strongly on the object file format. In the
following sections we’ll look at the differences between nm output for a.out, COFF and ELF
files.

nm display of a.out format

With an a.out file, nm output looks like:

$ nm /usr/lib/libc.a

syscall.o: this is the object file name
00000028 T _syscall

U cerror

sigsuspend.o:
00000030 T _sigsuspend

U cerror

The lines with the file name and colon tell you the name of the archive member (in other
words, the object file) from which the following symbols come. The other lines contain a
value (which may be missing if it is not defined), a type letter, and a symbol name.
That’s all there is to a.out symbols. As we will see, a.out handles debugging information sep-
arately. On the other hand, this means that the type letters are reasonably easy to remember.
Upper case represents global symbols, lower case represents local symbols. Table 21-2 gives
an overview:

6 February 2005 00:57

Chapter 21: Object files 365

Table 21−2: a.out symbol types

Type Meaning
letter
- symbol table entries (see the -a flag).
A absolute symbol (not relocatable)
B bss segment symbol
C common symbol
D data segment symbol
f file name (always local)
T text segment symbol
U undefined

nm display of COFF format

By contrast,, COFF gives something like this:

$ nm /usr/lib/libc.a
Symbols from /lib/libc.a[printf.o]: this is the object file name

Name Value Class Type Size Line Section

printf.c | | file | | | |
DGROUP | 0|static| | | |.data
printf | 0|extern| | | |.text
_doprnt | 0|extern| | | |
_iob | 0|extern| | | |

These columns have the following meaning:

• Name is the name of the symbol.

• Value is the value of the symbol.

• Class is the storage class of the symbol. There are a large number of storage classes,
and the System V.3 man pages don’t describe them. See Understanding and using
COFF, by Gintaras R. Gircys, for a complete list. The one that interests us is extern
(externally defined symbols).

• In conjunction with Class, Type describes the type of symbol more accurately, when it is
needed. The symbols we’re looking at don’t need a more accurate description.

• Size specifies the size of the entry. This is used in symbolic debug information.

• Line is line number information, which is also used for symbolic debug information.

• Section is the section to which the symbol belongs. In our example, the familiar .text
and .data occur, but this could be any of the myriad COFF section names.

6 February 2005 00:57

366

nm display of ELF format

The differences between COFF and ELF are less obvious:

$ nm /lib/libc.so.1

Symbols from /lib/libc.so.1:

[Index] Value Size Type Bind Other Shndx Name

[1] | 0| 0|FILE |LOCL |0 |ABS |../../libc.so.1
[2] | 148| 0|SECT |LOCL |0 |1 |
... skipping
[32] | 208976| 12|OBJT |LOCL |0 |12 |libdirs
[33] | 208972| 4|OBJT |LOCL |0 |12 |rt_dir_list
[34] | 0| 0|FILE |LOCL |0 |ABS |dlfcns.c
[35] | 57456| 384|FUNC |LOCL |0 |8 |dl_delete
[36] | 56240| 72|FUNC |LOCL |0 |8 |lmExists
[37] | 56112| 128|FUNC |LOCL |0 |8 |appendLm
[38] | 56320| 464|FUNC |LOCL |0 |8 |dl_makelist
[39] | 214960| 4|OBJT |LOCL |0 |15 |dl_tail

These columns have the following meanings:

• Index is simply the index of the symbol in the symbol list.

• Value is the value of the symbol.

• Size is the size of the associated object in bytes.

• Type is the type of the object. This can be NOTY (no type specfied), OBJT (a data object),
FUNC (executable code), SECT (a section name), or FILE (a file name).

• Bind specifies the scope of the symbol. GLOB specifies that the symbol is global in scope,
WEAK specifies a global symbol with lower precendene, and LOCL specifies a local sym-
bol.

• Other is currently unused and contains 0.

• Shndx may be ABS, specifying an absolute symbol (in other words, not relocatable), COM-
MON specifies a bss block, and UNDEF specifies a reference to an external symbol. A
number in this field is an index into the section table of the section to which the symbol
relates. nm doesn’t tell you which section this is, so the information is not very useful.

Problems with nm output

As we have seen, the output of nm depends a lot on the object file format. You frequently see
shell scripts that use nm to look inside a file and extract information—they will go seriously
wrong if the object file format is not what they expect. If there isn’t an alternative script to
look at your kind of object file, you will have to modify it yourself.

6 February 2005 00:57

Chapter 21: Object files 367

Debugging information
Symbolic debuggers have a problem: they relate to the object file, but they want to give the
impression that they are working with the source file. For example, the program addresses
that interest you are source file line numbers, not absolute addresses, and you want to refer to
variables by their names, not their addresses. In addition, you expect the debugger to know
the types of variables, so that when you ask the debugger to display a variable of type char
*, it displays a string, and when you ask it to display a float, you get the correct numeric
value.
The object file structures we have seen so far don’t help too much. Information is available
for global symbols, both in the text and data sections, but the type information is not detailed
enough to tell the debugger whether a data variable is a char * or a float. The symbol ta-
ble information contains no information at all about local variables or line numbers. In addi-
tion, the symbol table information goes away at link time, so it wouldn’t be of much help any-
way.
For these reasons, separate data structures for debugging information were introduced. In the
a.out format, they hav e nothing to do with the rest of the file. In COFF and ELF, they are
more integrated, but debugging information has one thing in common in all object formats: it
is at the end of the file so that it can be easily removed when it is no longer wanted — debug-
ging information can become very large. It’s not uncommon to see debugging information
increase the size of an executable by a factor of 5 or 10. In extreme cases, such as in libraries,
it can become 50 times as big.
Frequently you’ll see a make all that creates an executable with debugging symbols, and a
make install that installs the same executable but removes the debugging symbols. This
process is called stripping, and can be done by the program strip or by install with the -s flag.
In order to do this, it makes sense for the debugging information to be in its own section at the
end of the file, and this is how all object file formats solve the problem.
Debugging information is supplied in the assembler source in the form of directives. In
Example 21-2, which is from an assembler designed to create a.out relocatables, this job is
done by the .stabs, .stabn and .stabd directives. These directives are discussed in more
detail in Appendix C, Assembler directives and flags, on page 421. Let’s look at the directives
in our example:

• At the beginning of the file there are a lot of .stabs directives defining standard data
types, so many that we have omitted most of them. The compiler outputs these directives
ev en if the data type isn’t used in the program, and they’re handy to have in case you
want to cast to this data type when debugging.

• Throughout the file you find individual .stabd 68 directives. These specify that the
line number specified in the last parameter starts at this point in the text.

• At the end of the function _inc, information about the function itself and the variables
associated with it appear in further .stabs directives.

• Finally, information about the block structure of the function appears in the .stabn
directive.

6 February 2005 00:57

368

This information is very dependent on the object file format. If you need more information,
the best source is the accompanying system documentation.

The linker
You usually encounter the linker as the last pass of the C compiler. As the name ld implies,
the linker was called the loader in the Seventh Edition, though all modern systems call it a
link editor.* Traditionally, the compiler compiles object files, and then runs the linker to create
an executable program. This is logical, since a single executable is always composed of mul-
tiple object files,† whereas there is a one-to-one relationship between source files and object
modules.
The most important function performed by the linker is symbol resolution. To understand
this, we need to define a few terms:

• The symbol list, sometimes called a symbol table, is an internal data structure where the
linker stores information about all symbols whose name it has encountered. It contains
the same kind of information about the symbol as we saw in struct nlist on page
363.

• An undefined symbol is only partially undefined: we know at least its name, but some
part of its value is unknown.

Initially, the symbol list is empty, but every file that is included adds to the list. A number of
cases can occur:

• The file refers to an undefined symbol. In this case, if the linker has not yet seen this
symbol, it enters it into the symbol list and starts a list of references to it. If the symbol
is already in the symbol list, the linker adds a reference to the symbol’s reference list.

• The file refers to a symbol that has already been defined. In this case, the linker simply
performs the required relocation.

• The file defines a symbol. There are three possibilities here:

− If the symbol has not been encountered before, it is just added to the symbol list.

− If the symbol is already marked as undefined, the linker updates the symbol infor-
mation and performs the required relocation for each element in the reference list.

− If the symbol is known and defined, it is now doubly defined. The linker prints an
error message, and will not create an output file.

At the same time as it creates the symbol list, the linker copies data and text sections into the
areas it has allocated for them. It copies each individual section to the current end of the area.
The symbol list entries reflect these addresses.

* Properly, the loader was the part of the operating system that loaded a program into memory prior to
execution. Once, long before the advent of UNIX, the two functions were almost synonymous.
† Even if you supply only a single object file yourself, you need the C startup code in crt0.o and library
modules from system libraries such as libc.a.

6 February 2005 00:57

Chapter 21: Object files 369

Function libraries
Many of the functions you use in linking an executable program are located in function
libraries, a kind of object file archive built by ar. The linker knows about the format of ar ar-
chives and is able to extract the object files from the archive. The resultant executable con-
tains code from the object files specified on the command line and from the object files found
in the libraries. The functions in the libraries are just like any others you may include. They
run in user context, not kernel context, and are stored in libraries simply for convenience. We
can consider three groups:

• The standard* C library, normally /usr/lib/libc.a. This library contains at least the func-
tions needed to link simple C programs. It may also contain functions not directly con-
nected with the C language, such as network interface functions—BSD does it this way.

• Additional libraries supporting system functions not directly concerned with the C pro-
gramming language. Networking functions may also fall into this category — System V
does it this way.

• Libraries supporting third party packages, such as the X11 windowing system.

Library search
You can specify object files to the linker in two different ways: you specify that an object file
is to be included in the output or that a library file is to be searched by specifying its name on
the command line. The library search is one of the most powerful functions performed by the
linker. Instead of including the complete library in the output file, the linker checks each
object file in the library for definitions of currently undefined symbols. If this is the case, it
includes the object file, and not the library. This has a number of implications:

• The linker includes only object files that define symbols referenced by the program, so
the program is a lot smaller than it would be if you included the complete library.

• We don’t want to include anything that isn’t required, so each object file usually defines a
single function. In some rare cases, it may define a small number of related functions
that always get included together.

• Each object file may refer to other external symbols, so including one file in an archive
may require including another one.

• If you compile a library with symbols, each single-function object file will contain
debugging information for all the external information defined in the header files. This
information is usually many times the size of the function text and data.

• Once the library has been searched, the linker forgets it. This has important conse-
quences which we’ll examine on page 373.

For reasons shrouded in history, you don’t specify the path name of the library file—instead

* Note the lower-case use of the word standard. Whether or not the library conforms to the ANSI/ISO
C Standard, it is a standard part of a software development system.

6 February 2005 00:57

370

you tell the linker the names of directories that may contain the libraries you are looking for,
and a coded representation of the library name. For example, if you want to include
/opt/lib/libreg ex.a in your search path, you would include -L/opt/lib -lregex in your
compiler or linker call:

• -L/opt/lib tells the linker to include /opt/lib in the list of directories to search.

• -lregex tells the linker to search for the file libreg ex.a in each of the directories to
search.

This can be a problem if you have four files /usr/lib/libfoo.a, /usr/lib/libbar.a, /opt/lib/libfoo.a
and /opt/lib/libbar.a, and you want to search only /opt/lib/libfoo.a and /usr/lib/libbar.a. In this
case, you can name the libraries explicitly.
To keep the pain of linking executables down to tolerable levels, the compiler control program
(usually cc) supplies a few library paths and specifications for free—normally the equivalent
of -L/usr/lib -lc, which at least finds the library /usr/lib/libc.a, and also supplies the path
to all other libraries in /usr/lib. You need only specify additional paths and libraries. Occa-
sionally this behaviour is undesirable: what if you deliberately want to exclude the standard
libraries, like if you’re building an executable for a different version of the operating system?
Some compilers give you an option to forget these libraries. For example, in gcc it is -nost-
dlib.
Like most aspects of UNIX, there is no complete agreement on where to store library files, but
most systems come close to the following arrangement:

• /usr/lib contains the basic system libraries as well as startup code like crt0.o and friends,
which are bound in to supply low-level support for the C language. We’ll look at this in
the next section.

• Some of these files used to be stored in /lib. Now adays /lib tends either not to be present
or, for compatibility’s sake, it is a symlink to /usr/lib.

• System V.4 systems place BSD compatibility libraries in /usr/ucblib*. Many of these
functions duplicate functions in /usr/lib.

• /usr/X11/lib, /usr/X/lib, /usr/lib/X11, /usr/lib/X11R6 and others are some of the places
that the X11 libraries might be hidden. This directory probably contains all the parts of
X11 and related code that are on your system.

Shared libraries
Some libraries can be very big. The X11R6 version libX11.a, the standard X11 functions,
runs to 630 kB on BSD/OS. The Motif library libXm.a is nearly 1.4 MB in size. This can
lead to enormous executables, even if the program itself is relatively small—the “500 kB
Hello world” syndrome. Since these functions are used in many programs, many copies of a
function may be active at any one time in the system. For example, just about every program

* UCB stands for the University of California at Berkeley, the home of the Berkeley Software Distribu-
tions. You’ll frequently find BSD-derived software stored in directories whose names start with the let-
ters ucb.

6 February 2005 00:57

Chapter 21: Object files 371

uses the function printf, which with its auxiliary functions can be quite big. To combat this,
modern UNIX flavours support shared libraries: the library itself is no smaller, but it is in
memory only once.
Tw o different library schemes are in current use: static shared libraries* and dynamic shared
libraries. Static shared libraries contain code which has been linked to run at a specific
address, which means that you could have difficulties if your program refers to two libraries
with overlapping address ranges, or if you use a different version of the library with functions
at slightly different addresses. Dynamic libraries get round this problem by linking at run
time, which requires a dynamic linker. Unless you’re building shared libraries, a topic beyond
the scope of this book, you don’t need to worry about the difference between the two. If you
do find yourself in the situation where you need to build shared libraries, your best source of
information is your operating system documentation.
A shared library performs two different functions:

• When you link your program, it supplies information about the locations of the functions
and data in the library. Some systems, such as SunOS 4, supply a “stub” file with a name
like libc.sa.1.9. Since it does not contain the code of the functions, it is relatively
small — on SunOS 4.1.3, it is 7996 bytes long. Other systems, such as System V.4, only
supply a single library file with a name like libc.so. The linker only includes enough
information for the dynamic loader to locate the functions in the library file at run time.

• At run time, it supplies the functions and data. On all systems, the file name is of the
form libc.so.1.9

It’s important to ensure that you use the same library to perform these two actions. If a func-
tion or a data structure changes between versions of the library, a program written for a differ-
ent version may work badly or crash. This is a common problem: most programs are distrib-
uted in executable form, and thus contain preconceived notions about what the library looks
like. Since we’re linking the program ourselves, we should not run in to this problem. If you
do run into problems, you can always fall back to static (unshared) libraries.

Other linker input
In addition to the user-specified object files and libraries, the C programming language
requires a few auxiliary routines to set up its run-time environment. These are stored in one
or more auxiliary object files in a place known to the compiler, usually /usr/lib. For example,
in the System V.4 example above, we can see how the compiler control program starts the
linker if we use the -v flag to the compiler:

$ gcc -v -u baz -o foo foo.o -L. -lbaz -lbar
/usr/ccs/bin/ld -V -Y P,/usr/ccs/lib:/usr/lib -Qy -o foo -u baz
/usr/ccs/lib/crt1.o /usr/ccs/lib/crti.o /usr/ccs/lib/values-Xa.o
/opt/lib/gcc-lib/i386-unknown-sysv4.2/2.5.8/crtbegin.o
-L. -L/opt/lib/gcc-lib/i386-unknown-sysv4.2/2.5.8 -L/usr/ccs/bin
-L/usr/ccs/lib -L/opt/lib foo.o -lbaz -lbar -lgcc -lc

* Don’t confuse static shared libraries with the term static libraries, which are traditional, non-shared
libraries.

6 February 2005 00:57

372

/opt/lib/gcc-lib/i386-unknown-sysv4.2/2.5.8/crtend.o
/usr/ccs/lib/crtn.o -lgcc

The same example in BSD/OS specifies the files /usr/lib/crt0.o, foo.o, -lbar, -lbaz, -lgcc, -lc
and -lgcc—only fractionally more readable. This example should make it clear why almost
nobody starts the linker directly.

Merging relocatable files
Occasionally you want to merge a number of object files into one large file. We’v e seen one
way of doing that: create an object file library with ar. You can also use the linker to create an
object file. Which you choose depends on why you want to make the file. If you are creating
a function library, use ar. As we hav e seen, the linker includes individual object files from the
archive. It also happily includes a relocatable object created by a previous invocation of the
linker, but in this case it includes the complete object, even if you don’t need all the functions.
You don’t often need to create relocatable objects with the linker: the only real advantage over
a library is that the resultant object is smaller and links faster. If you want to do it, you spec-
ify a flag, normally -r. For example,

$ ld -r foo.o bar.o baz.o -o foobarbaz.o

This links the three object files foo.o, bar.o and baz.o and creates a new object file foobarbaz.o
that contains all the functions and data in the three input files.

Problems with the link editor
Once you have compiled all your objects, you’re still not home. There are plenty of things
that can go wrong with the linkage step. In this section we’ll look at some of the more com-
mon problems.

Invalid linker flags

You normally invoke the linker via the compiler rather than calling it directly. This is a good
idea, as we saw in the previous section. If you have a Makefile with an explicit linker call, and
you run into trouble with linker flags, and the system documentation doesn’t help, consider
replacing the linker invocation with a compiler invocation.

Invalid object files

Occasionally, the package you are building may already contain object files. It’s unlikely that
you can to use them, but make is far too simplistic to notice the difference, and the result is
usually some kind of message from the linker saying that it can’t figure out what kind of file
this is. If you’re in doubt, use the file command:

$ file *.o
gram.o: 386 executable not stripped
main.o: ELF 32-bit LSB relocatable 80386 Version 1
scan.o: sparc executable not stripped

6 February 2005 00:57

Chapter 21: Object files 373

util.o: 80386 COFF executable not stripped - version 30821

Here are four different kinds of object files in the same directory. Occasionally, you will see
files like this that are there for a good reason: due to license reasons, there are no correspond-
ing sources, and there will be one object for each architecture that the package supports. In
this example, however, the file names are different enough that you can be reasonably sure
that these files are junk left behind from previous builds. If the object files are still there after
a make clean, you should remove them manually (and fix the Makefile).

Suboptimal link order

We hav e seen that the linker takes all objects it finds and puts their code and data into the code
and data segments in the order in which they appear. From the point of view of logic flow,
this works fine, but it can have significant performance implications on modern machines.
You might find that 95% of the execution time of a program is taken up by 5% of the code. If
this code is located contiguously, it will probably fit into the cache of any modern machine.
If, on the other hand, it is scattered throughout memory, it will require much more cache, pos-
sibly more than the machine can supply. This can result in a dramatic drop in performance.
Most linkers do not help you much in arranging functions. The simplest way is to put one
function in a file, like you do in an archive, and specify them in sequence in the linker invoca-
tion. For example, if you have five functions foo, bar, baz, zot, and glarp, and you have
determined that you need three functions next to each other in the sequence foo, glarp and
zot, you can invoke the linker with:

$ cc -o foobar foo.o glarp.o zot.o bar.o baz.o

Missing functions

The UNIX library mechanism works well and is reasonably standardized from one platform to
the next. The main problem you are likely to encounter is that the linker can’t find a function
that the program references. There can be a number of reasons for this:

• The symbol may not be a function name at all, but a reference to an undefined preproces-
sor variable. For example, in xfm version 1.1, the source file FmInfo.c contains:

if (S_ISDIR(mode))
type = "Directory";

else if (S_ISCHR(mode))
type = "Character special file";

else if(S_ISBLK(mode))
type = "Block special file";

else if(S_ISREG(mode))
type = "Ordinary file";

else if(S_ISSOCK(mode))
type = "Socket";

else if(S_ISFIFO(mode))
type = "Pipe or FIFO special file";

sys/stat.h defines the macros of the form S_ISfoo. They test the file mode bits for spe-
cific file types. System V does not define S_ISSOCK (the kernel doesn’t hav e sockets), so

6 February 2005 00:57

374

a pre-ANSI compiler assumes that S_ISSOCK is a reference to an external function. The
module compiles correctly, but the linker fails with an undefined reference to S_ISSOCK.
The obvious solution here is conditional compilation, since S_ISSOCK is a preprocessor
macro, and you can test for it directly with #ifdef:

type = "Ordinary file";
#ifdef S_ISSOCK

else if(S_ISSOCK(mode))
type = "Socket";

#endif
else if(S_ISFIFO(mode))

• The function is in a different library, and you need to specify it to the linker. A good
example is the networking code we mentioned on page 369: a reference to socket will
link just fine with no additional libraries on a BSD platform, but on some versions of
System V.3 you will need to specify -linet, and on System V.4 and other versions of
System V.3 you will need to specify -lsocket. The findf script can help here. It uses
nm to output symbol information from the files specified in LIBS, and searches the out-
put for a function definition whose name matches the parameter supplied. The search
parameter is a regular expression, so you can search for a number of functions at once.
For example, to search for strcasecmp and strncasecmp, you might enter:

$ findf str.*casecmp
/usr/lib/libc.a(strcasecmp.o): _strcasecmp
/usr/lib/libc.a(strcasecmp.o)): _strncasecmp
/usr/lib/libc_p.a(strcasecmp.po): _strcasecmp
/usr/lib/libc_p.a(strcasecmp.po)): _strncasecmp

Because of the differences in nm output format, findf looks very different on BSD sys-
tems and on System V. You may find that you need to modify the script to work on your
system. Example 21-3 shows a version for 4.4BSD:

Example 21−3:

LIBS="/usr/lib/lib* /usr/X11R6/lib/lib*"
nm $LIBS 2>/dev/null \
| awk -v fun=$1 \
’/ˆ\// {file = $1};
/ˆ[ˆ\/].*:/{member = $1};
$3 ˜ fun && $2 ˜ /T/ {
sub (":$", "", file); ; sub (":$", "):", member); print file "(" member "\t" $3}’

On a system like System V.4, which uses ELF format, the corresponding script is in
Example 21-4:

Example 21−4:

LIBS="/usr/lib/lib* /usr/X11R6/lib/lib*"
nm $LIBS 2>/dev/null \
| sed ’s:|: :g’ \
| gawk -v fun=$1 \
’/ˆSymbols from/ {file = $3};
$8 ˜ fun && $4 ˜ /FUNC/ { print file member "\t" $8 }’

6 February 2005 00:57

Chapter 21: Object files 375

Example 21−4: (continued)

Some versions of System V awk have difficulty with this script, which is why this ver-
sion uses GNU awk.

• The function is written in a different language, and the internal name differs from what
the compiler expected. This commonly occurs when you try to call a C function from
C++ and forget to tell the C++ compiler that the called function is written in C. We dis-
cussed this in Chapter 17, Header files, page 285.

• The function is part of the package, but has not been compiled because a configuration
parameter is set incorrectly. For example, xpm, a pixmap conversion program, uses str-
casecmp. Knowing that it is not available on all platforms, the author included the func-
tion in the package, but it gets compiled only if the Makefile contains the compiler flag
-DNEED_STRCASECMP.

• The function is supplied in a library within the package, but the Makefile is in error and
tries to reference the library before it has built it. You wouldn’t expect this ever to hap-
pen, since it is the purpose of Makefiles to avoid this kind of problem, but it happens
often enough to be annoying. It’s also not always immediately obvious that this is the
cause — if you suspect that this is the reason, but are not sure, the best thing is to try to
build all libraries first and see if that helps.

• The function is really not supplied in your system libraries. In this case, you will need to
find an alternative. We looked at this problem in detail in Chapter 18, Function libraries.

• The first reference to a symbol comes after the linker has searched the library in which it
is located.

Let’s look at the last problem in more detail: when the linker finishes searching a library, it
continues with the following file specifications. It is possible that another file later in the list
will refer to an object file contained in the library which was not included in the executable.
In this case, the symbol will not be found. Consider the following three files:

foo.c
main ()
{
bar ("Hello");
}

bar.c
void bar (char *c)
{
baz (c);
}

baz.c
void baz (char *c)
{
puts (c);
}

6 February 2005 00:57

376

We compile them to the corresponding object files, and then make libraries libbar.a and lib-
baz.a, which contain just the single object file bar.o and baz.o respectively. Then we try to
link:

$ gcc -c foo.c
$ gcc -c bar.c
$ gcc -c baz.c
$ ar r libbaz.a baz.o
$ ar r libbar.a bar.o
$ gcc -o foo foo.o -L. -lbaz -lbar
Undefined first referenced
symbol in file
baz ./libbar.a(bar.o)
ld: foo: fatal error: Symbol referencing errors. No output written to foo
$ gcc -o foo foo.o -L. -lbar -lbaz
$

In the first link attempt, the linker included foo.o, then searched libbaz.a and didn’t find any-
thing of interest. Then it went on to libbar.a and found it needed the symbol baz, but by that
time it was too late. You can solve the problem by putting the reference -lbar before -lbaz.
This problem is not even as simple as it seems: although it’s bad practice, you sometimes find
that libraries contain mutual references. If libbar.a also contained an object file zot.o, and baz
referred to it, you would have to link with:

$ gcc -o foo foo.o -L. -lbar -lbaz -lbar

An alternative seems even more of a kludge: with the -u flag, the linker will enter an unde-
fined symbol in its symbol table. In this example, we could also have written

$ gcc -u baz -o foo foo.o -L. -lbaz -lbar
$

Dumping to object files
Some programs need to perform significant processing during initialization. For example,
emacs macros are written in emacs LISP, and they take some time to load. Startup would be
faster if they were already in memory when the program is started. The only normal way to
have them in memory is to compile them in, and it’s very difficult to initialize data at compile
time as intricately as a program like emacs does it at run time.
The solution chosen is simple in concept: emacs does it once at run time. Then it dumps itself
to disk in object file format: it copies the text section directly from its own text area, since
there is no way it can be changed, and it writes the data section from its current data area,
including all of what used to be bss. It doesn’t need to copy the stack section, since it will be
recreated on initialization.
This rather daring approach works surprisingly well as long as emacs knows its own object
file format. UNIX doesn’t provide any way to find out, since there is normally no reason why
a program should know its own object file format. The result can be problems when porting a
package like this to a system with a different object format: the port runs fine until the first

6 February 2005 00:57

Chapter 21: Object files 377

executable dumps, but the dumped executable does not have a format that the kernel can rec-
ognize.
Other programs that use this technique are gcl (GNU common LISP) and TEX.

Process initialization and stack frames
In Chapter 12, Kernel dependencies, page 168, we examined the myriad flavours of exec.
They all pass arguments and environment information to the newly loaded program. From a
C program viewpoint, the arguments are passed as a parameter to main, and the environment
is just there for the picking. In this section we’ll look more closely at what goes on between
exec and main. In order to understand this, we need to look more closely at parameter pass-
ing.

Stack frames
Most modern machines have a stack-oriented architecture, even if the support is rather rudi-
mentary in some cases. Everybody knows what a stack is, but here we’ll use a more restric-
tive definition: a stack is a linear list of storage elements, each relating to a particular function
invocation. These are called stack frames. Each stack frame contains

• The parameters with which the function was invoked.

• The address to which to return when the function is complete.

• Sav ed register contents.

• Variables local to the function.

• The address of the previous stack frame.

With the exception of the return address, any of these fields may be omitted.* Typical stack
implementations supply two hardware registers to address the stack:

• The stack pointer points to the last used word of the stack.

• The frame pointer points to somewhere in the middle of the stack frame.

The resultant memory image looks like:

* Debuggers recognize stack frames by the frame pointer. If you don’t sav e the frame pointer, it will
still be pointing to the previous frame, so the debugger will report that you are in the previous function.
This frequently happens in system call linkage functions, which typically do not save a stack linkage, or
on the very first instruction of a function, before the linkage has been built. In addition, some optimizers
remove the stack frame.

6 February 2005 00:57

378

Function arguments

Return address
Old value of frame pointer

Automatic variables

Temporary storage

Function arguments

Return address
Old value of frame pointer

Automatic variables

Temporary storage

Stack frame 0

Stack frame 1

Fr ame pointer

Stack pointer

Figure 21−1. Function stack frame

The individual parts of the stack frames are built at various times. In the following sections,
we’ll see how the stack gets set up and freed.

Setting up the initial parameters
exec builds the initial stack. The exact details are implementation-dependent, but most come
close to the way BSD/OS does it, so we’ll look at that.
The stack is always allocated at a fixed point in memory, 0xefbfe000 in the case of BSD/OS,
and grows downwards, like the stacks on almost every modern architecture. At the very top
of stack, is structure with information for the ps program:

struct ps_strings
{
char **ps_argv; /* first of 0 or more argument pointers */
int ps_argc; /* the number of argument pointers */
char **ps_envp; /* first of 0 or more environment pointers */
int ps_nenv; /* the number of environment pointers */

};

This structure is supplied for convenience and is not strictly necessary. Many systems, for
example FreeBSD, do not define it.
Next, exec places on the stack all environment variable strings, followed by all the program
arguments. Some systems severely limit the maximum size of these strings—we looked at
the problems that that can cause in Chapter 5, Building the package, page 74.
After the variable strings come two sets of NULL-terminated pointers, the first to the environ-
ment variables, the second to the program arguments.

6 February 2005 00:57

Chapter 21: Object files 379

Finally comes the number of arguments to main, the well-known parameter argc. At this
point, the stack looks like:

ps information

Environment variables

Program arguments

NULL

Environment pointers

NULL

more argument pointers

argv [1]

argv [0]

argc
Stack pointer

Figure 21−2. Stack frame at start of program

At this point, all the data for main is on the stack, but it’s not quite in the form that main
needs. In addition, there’s no return address. But where could main return to? All this work
has been done in the kernel by exec: we need to return to a place in the program. These prob-
lems are solved by the function start, the real beginning of the program: it calls main, and
then calls exit with the return value from main. Before doing so, it may perform some run-
time initializations. A minimal start function looks like this stripped down version of GNU
libc start.c, which is the unlikely name of the source file for crt0.o:

static void start (int argc, char *argp)
{
char **argv = &argp; /* set up a pointer to the first argument pointer */
__environ = &argv [argc + 1]; /* The environment starts just after argv */
asm ("call L_init"); /* call the .init section */
__libc_init (argc, argv, __environ); /* Do C and C++ library initializations */
exit (main (argc, argv, __environ)); /* Call the user program */

}

The asm directive is used for C++ initialization—we’ll look at that on page 380. But what’s
this? start calls main with three parameters! The third is the address of the environment
variable pointers. This is one of the best kept secrets in UNIX: main really has three parame-
ters:

6 February 2005 00:57

380

int main (int argc, char *argv [], char *envp []);

It isn’t documented anywhere, but it’s been there at least since the Seventh Edition and it’s
unlikely to go away, since there isn’t really any other good place to store the environment
variables.
By the time we have sav ed the stack linkage in main, the top of the stack looks like:

*argv [0]

argc

dummy return

dummy frame pointer

**environ

**argv

argc

return to start

saved frame pointer
Frame pointer

Stack pointer

start stack frame

main stack frame

Figure 21−3. Stack frame after entering main

Initializing C++ programs
What we’ve seen here is not enough for C++: before entering main, the program may need to
initialize global class instances. Since this is system library code, it can’t know what global
classes exist. The solution depends on the system:

• System V systems place this information in a special section, .init. The initialization
file crtn.o contains a default .init section containing a single return instruction. If a
C++ program has global initializers, it will create an .init section to initialize them. If
any object module before ctrn.o has an .init section, it will be included before the
.init section in ctrn.o. During program initialization, the function start calls the
.init section to execute the global constructors—this is the purpose of the asm direc-
tive on page 379.

• Systems based on a.out formats do not have this luxury. Instead, they compile special
code into main to call the appropriate constructors.

The difference between these two approaches can be important if you are debugging a C++
program which dies in the global constructors.

6 February 2005 00:57

Chapter 21: Object files 381

Stack growth during function calls
Now that we have an initial stack, let’s see how it grows and shrinks during a function call.
We’ll consider the following simple C program compiled on the i386 architecture:

foo (int a, int b)
{
int c = a * b;
int d = a / b;
printf ("%d %d0, c, d);
}

main (int argc, char *argv [])
{
int x = 4;
int y = 5;
foo (y, x);
}

The assembler code for the calling sequence for foo in main is:

pushl -4(%ebp) value of x
pushl -8(%ebp) value of y
call _foo call the function
addl $8,%esp and remove parameters

Register ebp is the base pointer, which we call the frame pointer. esp is the stack pointer.
The push instructions decrement the stack pointer and then place the word values of x and y
at the location to which the stack pointer now points.
The call instruction pushes the contents of the current instruction pointer (the address of the
instruction following the call instruction) onto the stack, thus saving the return address, and
loads the instruction pointer with the address of the function. We now hav e:

argc

return to start

saved frame pointer

local var x

local var y

parameter a

parameter b

return to main

Frame pointer

Stack pointer

main stack frame

foo stack frame

Figure 21−4. Stack frame after call instruction

The called function foo saves the frame pointer (in this architecture, the register is called ebp,
for extended base pointer), and loads it with the current value of the stack pointer register esp.

6 February 2005 00:57

382

_foo: pushl %ebp save ebp on stack
movl %esp,%ebp and load with current value of esp

At this point, the stack linkage is complete, and this is where most debuggers normally set a
breakpoint when you request on to be placed at the entry to a function.
Next, foo creates local storage for c and d. They are each 4 bytes long, so it subtracts 8 from
the esp register to make space for them. Finally, it sav es the register ebx—the compiler has
decided that it will need this register in this function.

subl $8,%esp create two words on stack
pushl %ebx and save ebx register

At this point, our stack is now complete and looks like the diagram on page 377:

saved frame pointer

local var x

local var y

parameter a

parameter b

return to main

saved frame pointer

local var c

local var d

saved ebx contents

Frame pointer

Stack pointer

main stack frame

foo stack frame

Figure 21−5. Complete stack frame after entering called function

The frame pointer isn’t absolutely necessary: you can get by without it and refer to the stack
pointer instead. The problem is that during the execution of the function, the compiler may
save further temporary information on the stack, so it’s difficult to keep track of the value of
the stack pointer—that’s why most architectures use a frame pointer, which does stay con-
stant during the execution of the function. Some optimizers, including newer versions of gcc,
give you the option of compiling without a stack frame. This makes debugging almost impos-
sible.
On return from the function, the sequence is reversed:

movl -12(%ebp),%ebx and restore register ebx
leave reload ebp and esp
ret and return

The first instruction reloads the saved register ebx, which could be stored anywhere in the
stack. This instruction does not modify the stack.
The leave instruction loads the stack pointer esp from the frame pointer ebp, which effectively
discards the part stack below the saved ebp value. Then it loads ebp with the contents of the

6 February 2005 00:57

Chapter 21: Object files 383

word to which it points, the saved ebp, effectively reversing the stack linkage. The stack now
looks like it did on entry.
Next, the ret instruction pops the return address into the instruction pointer, causing the next
instruction to be fetched from the address following the call instruction in the calling function.
The function parameters x and y are still on the stack, so the next instruction in the calling
function removes them by adding to the stack pointer:

addl $8,%esp and remove parameters

Object Archive formats
As we have seen, object files are frequently collected into libraries, which from our current
point of view are archives maintained by ar. One of the biggest problems with ar archives is
that there are so many different forms. You’re likely to come across the following ones:

• The so-called common archive format. This format starts with the magic string
!<arch>\n. It is used both in System V.4 and in BSD versions since 4BSD.

• The PORT5AR format, which starts with the magic string <ar>. System V.3 defines it,
but doesn’t use it.

• The Seventh Edition archive, which starts with the magic number 0177545. It is also
used by XENIX and System V.2 systems. In System V.3 systems, file reports this format
as x.out randomized archive. 4.4BSD file refers to it as old PDP-11 archive, while
many System V.4 files don’t recognize it at all. UnixWare is one that does, and it calls it
a pdp11/pre System V ar archive.

As long as you stick to modern systems, the only archive type you’re likely to come across is
the common archive format. If you do find one of the others, you should remember that it’s
not the archive that interests you, it’s the contents. If you have another way to get the con-
tents, like the original object or source files, you don’t need to worry about the archive.

6 February 2005 00:57

Comparative reference to UNIX data types

Table A-1 lists a number of typedefs that are defined in System V.4 and 4.4BSD. The list is
not intended to be exhaustive, but it might be of assistance if you run into trouble with a new
typedef. You’ll note a couple of things about the table:

• There is a significant deviation even between 4.4BSD and System V.4, although both are
systems that have gone to some trouble to be portable.

• 4.4BSD uses a construct long long to describe 64 bit integers. This is not officially
part of the C language, but is supported by the GNU C compiler, which is the standard
compiler for 4.4BSD. The System V.4 compilers do not support long long, so they
have to define quad as a structure containing two longs.

Table A−1: system type definitions

Type Definition Description

addr_t (SVR4) char * core address type
amq_mount_tree (4.4BSD) struct amq_mount_tree

amq_mount_tree_p (4.4BSD) amq_mount_tree *

ansistat_t (SVR4) struct ansi_state

audio_info_t (4.4BSD) struct audio_info

auto_tree (4.4BSD) struct auto_tree

bitstr_t (4.4BSD) unsigned char

bool_t (4.4BSD) int truth value
boolean_t (4.4BSD) int

boolean_t (SVR4) enum boolean

caddr_t (4.4BSD) char * core address
cat_t (4.4BSD) unsigned char

cc_t unsigned char

cc_t1 char

charstat_t (SVR4) struct char_stat

chr_merge_t (SVR4) struct chr_merge

385

5 February 2005 02:09

386

Table A−1: system type definitions (continued)

Type Definition Description

clock_t (4.4BSD) unsigned long_

clock_t (SVR4) long

cnt_t (SVR4) short count type
comp_t (4.4BSD) u_short

comp_t (SVR4) ushort

create_t (SVR4) enum create

daddr_t long disk address
dblk_t (SVR4) struct datab

dev_t unsigned long device number
dirent_t (SVR4) struct dirent

dmask_t (SVR4) unsigned short

dpt_dma_t (SVR4) struct ScatterGather

dpt_sblk_t (SVR4) struct dpt_srb

emask_t (SVR4) unsigned short

emcp_t (SVR4) unsigned char *

emip_t (SVR4) struct emind *

emop_t (SVR4) struct emout *

emp_t (SVR4) struct emtab *

entryno_t (SVR4) int

ether_addr_t (SVR4) u_char []

eucioc_t (SVR4) struct eucioc

faddr_t (SVR4) char * far address (XENIX
Compatibility)

fhandle_t (4.4BSD) struct fhandle

fhandle_t (SVR4) struct svcfh

fixpt_t (4.4BSD) unsigned long fixed point number
fpos_t (4.4BSD) off_t

fpos_t (SVR4) long

frtn_t (SVR4) struct free_rtn

fsid_t (4.4BSD) struct { long val[2]; } file system id type
gdp_t (SVR4) struct gdp

gdpmisc_t (SVR4) struct gdpmisc

gid_t (4.4BSD) unsigned long group id
gid_t (SVR4) uid_t GID type
gid_t2 unsigned short group ID
greg_t (SVR4) int

gregset_t (SVR4) greg_t []

hostid_t (SVR4) long

id_t (SVR4) long process id, group id,
etc.

idata_t (SVR4) struct idata

5 February 2005 02:09

Appendix A: UNIX data types 387

Table A−1: system type definitions (continued)

Type Definition Description

index_t (SVR4) short index into bitmaps
indx_t (4.4BSD) u_int16_t

ino_t unsigned long inode number
inode_t (SVR4) struct inode

instr_t (SVR4) char

int8_t (4.4BSD) char 8 bit signed integer
int16_t (4.4BSD) short 16 bit integer
int32_t (4.4BSD) int 32 bit integer
int64_t (4.4BSD) long long 64 bit integer
ioctl_t (4.4BSD) void * Third arg of ioctl
jdata_t (SVR4) struct jdata

k_fltset_t (SVR4) unsigned long kernel fault set type
k_sigset_t (SVR4) unsigned long kernel signal set type
key_t (4.4BSD) long IPC key type
key_t (SVR4) int IPC key type
klm_testargs (SVR4) struct klm_testargs

klm_testrply (SVR4) struct klm_testrply

kmabuf_t (SVR4) struct kmabuf

kmasym_t (SVR4) struct kmasym

kvm_t (4.4BSD) struct __kvm

label_t (SVR4) struct {int val [6];} setjmp/longjmp save
area

level_t (SVR4) lid_t user’s view of securi-
ty level

lid_t (SVR4) unsigned long internal representation
of security level

lock_data_t (4.4BSD) struct lock

lock_t (SVR4) short lock work for busy
wait

major_t (SVR4) unsigned long major part of device
number

mblk_t (SVR4) struct msgb

minor_t (SVR4) unsigned long minor part of device
number

mode_t (4.4BSD) unsigned short permissions
mode_t (SVR4) unsigned long file attribute type
n_time u_long ms since 00:00 GMT
nfsv2fh_t (4.4BSD) union nfsv2fh

nl_catd (SVR4) nl_catd_t *

nlink_t (4.4BSD) unsigned short link count
nlink_t (SVR4) unsigned long file link type

5 February 2005 02:09

388

Table A−1: system type definitions (continued)

Type Definition Description

nmcp_t (SVR4) unsigned char *

nmp_t (SVR4) struct nmtab *

nmsp_t (SVR4) struct nmseq *

o_dev_t (SVR4) short old device type
o_gid_t (SVR4) o_uid_t old GID type
o_ino_t (SVR4) unsigned short old inode type
o_mode_t (SVR4) unsigned short old file attribute type
o_nlink_t (SVR4) short old file link type
o_pid_t (SVR4) short old process id type
o_uid_t (SVR4) unsigned short old UID type
off_t (4.4BSD) quad_t file offset type
off_t (SVR4) long file offset type
paddr_t (4.4BSD) long physical address type
paddr_t (SVR4) unsigned long physical address type
pgno_t (4.4BSD) u_int32_t

pid_t (4.4BSD) long process id
pid_t (SVR4) long process id type
priv_t (SVR4) unsigned long

ptr_t (4.4BSD) void * pointer type
ptrdiff_t int Difference between

two pointers
pvec_t (SVR4) unsigned long kernel privilege vector
qaddr_t (4.4BSD) quad_t *

qband_t (SVR4) struct qband

qshift_t (4.4BSD) u_quad_t

quad_t (4.4BSD) long long

queue_t (SVR4) struct queue

recno_t (4.4BSD) u_int32_t

regoff_t (4.4BSD) off_t

rf_token_t (SVR4) struct rf_token

rlim_t (SVR4) unsigned long

rm_t (SVR4) enum rm

rune_t (4.4BSD) int "rune" type: extended
character

rval_t (SVR4) union rval

s_token (SVR4) u_long

scrnmap_t (SVR4) unsigned char [] Screen map type
scrnmapp_t (SVR4) unsigned char * Pointer to screen map

type
segsz_t (4.4BSD) long segment size
sel_t (SVR4) unsigned short selector type

5 February 2005 02:09

Appendix A: UNIX data types 389

Table A−1: system type definitions (continued)

Type Definition Description

sema_t (SVR4) int

sig_atomic_t int

sig_t (4.4BSD) void (*) (int) return type of signal
function

sigset_t (4.4BSD) unsigned int

size_t (4.4BSD) int

size_t (SVR4) unsigned

speed_t (4.4BSD) long

speed_t (SVR4) unsigned long

spl_t (SVR4) int

srqtab_t (SVR4) unsigned char []

ssize_t (4.4BSD) int to return byte count or
indicate error

stack_t (SVR4) struct sigaltstack

stridx_t (SVR4) ushort [] String map index type
strmap_t (SVR4) unchar [] String map table type
sv_t (SVR4) char

swblk_t (4.4BSD) long swap offset
symfollow_t (SVR4) enum symfollow

sysid_t (SVR4) short system id
tcflag_t unsigned long

tcl_addr_t (SVR4) struct tcl_addr

tcl_data_t (SVR4) union tcl_data

tcl_endpt_t (SVR4) struct tcl_endpt

tco_addr_t (SVR4) struct tco_addr

tco_endpt_t (SVR4) struct tco_endpt

tcoo_addr_t (SVR4) struct tcoo_addr

tcoo_endpt_t (SVR4) struct tcoo_endpt

time_t long time of day in seconds
tpproto_t (SVR4) struct tpproto

tpr_t (4.4BSD) struct session *

ttychar_t (4.4BSD) unsigned char [] []

u_char unsigned char

u_int unsigned int

u_int16_t (4.4BSD) unsigned short 16 bit unsigned int
u_int32_t (4.4BSD) unsigned int 32 bit unsigned int
u_int64_t (4.4BSD) unsigned long long 64 bit unsigned int
u_int8_t (4.4BSD) unsigned char 64 bit unsigned int
u_long unsigned long Abbreviation
u_quad_t (4.4BSD) unsigned long long quads
u_short unsigned short Abbreviation

5 February 2005 02:09

390

Table A−1: system type definitions (continued)

Type Definition Description

uchar_t (SVR4) unsigned char

uid_t (4.4BSD) unsigned long User ID
uid_t (SVR4) long User ID
uid_t2 unsigned short User ID
uinfo_t (SVR4) struct master *

uint unsigned int Abbreviation
uint_t (SVR4) unsigned int

uio_rw_t (SVR4) enum uio_rw

uio_seg_t (SVR4) enum uio_seg

ulong (SVR4) unsigned long Abbreviation
ulong_t (SVR4) unsigned long

unchar (SVR4) unsigned char Abbreviation
use_t (SVR4) unsigned char use count for swap
ushort unsigned short Abbreviation
ushort_t (SVR4) unsigned short

vcexcl_t (SVR4) enum vcexcl

vfs_namemap_t (4.4BSD) struct vfs_namemap

vifbitmap_t (4.4BSD) u_long

vifi_t (4.4BSD) u_short type of a vif index
vpix_page_t (SVR4) struct vpix_page

wchar_t (4.4BSD) int Wide character type
wchar_t (SVR4) long Wide character type
whymountroot_t (SVR4) enum whymountroot

xdrproc_t bool_t (*)()

1 Only 4.4BSD telnet
2 Only 4.4BSD Kerberos

5 February 2005 02:09

There is little standardization in the choice of compiler options from one compiler to another,
though a couple (-o and -c, for example) are the same across all platforms. Even the -o
option differs slightly in meaning from one system to another, howev er. If there is any reli-
able documentation, it’s what was supplied with your compiler. This doesn’t help you, of
course, if you have a Makefile from some unfamiliar machine and you’re trying to figure out
what the options there mean. This table should fill that gap: if you find an option, chances are
this table will help you guess what it means. If you’re looking for a way to tell your compiler
what to do, read its documentation.

This appendix provides the following comparative references between the GNU, SGI IRIX,
SCO UNIX, Solaris, SunOS, System V.3, System V.4 and XENIX versions of the C compiler
control program and the C preprocessor.

• Flags used by the C compiler control program (cc or gcc), starting after this section.

• gcc-specific options specifying dialect, starting on page 405.

• gcc-specific debugging options, starting on page 406.

• gcc-specific warning options, starting on page 407. We discuss the more important warn-
ings in , starting on page .

• Flags used by the C preprocessor cpp, starting on page 410.

C compiler options
-a (gcc, SunOS)

Generate extra code to write profile information for tcov.

-a align (some MS-DOS compilers)

Align in structs to align boundary.

-A (SVR3)

Linker output should be an absolute file (i.e. the opposite of the -r option).

-A (gcc, SVR4)

-Aquestion(answer) asserts that the answer to question is answer. This can used with the pre-
processor conditional #if #question(answer).

391

5 February 2005 04:34

392

-A- (gcc, SVR4)

Disable standard assertions. In addition, SVR4 cc undefines all standard macros except those
beginning with __.

-acpp (SGI)

Use alternative cpp based on GNU cpp.

-align block (SunOS)

Force the global bss symbol block to be aligned to the beginning of a page.

-ansi (gcc, SGI)

Enforce strict ANSI compatibility.

-ansiposix (SGI)

Enforce strict ANSI compatibility and define _POSIX_SOURCE.

-B (gcc)

Specify the path of the directory from which the compiler control program gcc should start the
individual passes of the compiler.

-B dynamic (SunOS, SVR4)

Dynamic linking: tell the linker to search for library files named libfoo.so and then libfoo.a
when passed the option -lfoo.

-B static (SunOS, SVR4)

Static linking: tell the linker to just search for libfoo.a when passed the option -lfoo.

-b target (gcc)

Cross-compile for machine target.

-C (gcc, SGI ANSI C, SCO UNIX, SunOS, SVR4)

Tell the preprocessor not to discard comments. Used with the -E option.

-c (all)

Stop compiler after producing the object file, do not link.

-call_shared (older MIPS)

Produce an executable that uses sharable objects (default). On more modern SGI machines,
this is called -KPIC.

-cckr(SGI)

Define K&R-style preprocessor variables.

-common (SGI)

Cause multiple definitions of global data to be considered to be one definition, and do not pro-
duce error messages.

-compat (SCO UNIX)

Create an exectauble which is binary compatible across a number of Intel-based systems. Use
XENIX libraries to link.

-cord (SGI)

5 February 2005 04:34

Chapter 0: Compiler options 393

Rearrange functions in the object file to reduce cache conflicts.

-CSON (SCO UNIX)

Enable common subexpression optimization. Used in conjunction with the -Ooption.

-CSOFF (SCO UNIX)

Disable common subexpression optimization. Used in conjunction with the -Ooption.

-D (all)

Define a preprocessor macro. The form -Dfoo defines foo, but does not give it a value. This
can be tested with #ifdef and friends. The form -Dfoo=3 defines foo to have the value 3.
This can be tested with #if.

-d (XENIX, SCO UNIX)

Report the compiler passes and arguments as they are executed.

-d when (gcc)

Make dumps during compilation for debugging the compiler. when specifies when the dump
should be made. Most of these should not be needed by normal users, however the forms -dD
(leave all macro definitions in the preprocessor output), -dM (dump only the macro definitions
in effect at the end of preprocessing) and -dN (like -dD except that only the macro names are
output) can be used with the -E option in order to debug preprocessor macros.

-dalign (SunOS on Sun-4 systems)

Generate double load/store instructions for better performance

-dD (gcc)

Special case of the -d option: leave all macro definitions in the preprocessor output. The
resulting output will probably not compile, but it’s useful for debugging preprocessor macros.

-dl (SVR3)

Don’t generate line number information for the symbolic debugger.

-dM (gcc)

Special case of the -d option: dump only the macro definitions in effect at the end of prepro-
cessing.

-dn (SVR4)

Don’t use dynamic linking. This cannot be used with the -G option.

-dollar (SGI)

Allow the symbol $ in C identifiers.

-dos (SCO UNIX, XENIX)

Create an executable for MS-DOS systems.

-dryrun (SunOS)

Display the commands that the compiler would execute, but do not execute them

-ds (SVR3)

Don’t generate symbol attribute information for the symbolic debugger. This option and -dl
can be combined as -dsl. Together they are the opposite of the -g option.

5 February 2005 04:34

394

-dy (SVR4)

Use dynamic linking where possible. This is the default.

-E (all)

Write preprocessor output to standard output, then stop. Some compilers interpret the -o
option and write the output there instead if specified.

-EP (SCO UNIX, XENIX)

Use this instead of the -E option to generate preprocessor output without #line directives. The
output is written to standard output. In addition, SCO UNIX copies the output to a file with the
suffix .i.

-F num (SCO UNIX, XENIX)

Set the size of the program stack to num (hexadecimal) bytes.

-f (gcc)

A family of options specifying details of C dialect to be compiled. See page 405 for more
details.

-f type (SunOS)

Specify the kind of floating-point code to generate on Sun-2, Sun-3 and Sun-4 systems.

-Fa name (SCO UNIX, XENIX)

Write an assembler source listing to name (default file.s).

-Fc name (SCO UNIX, XENIX)

Write a merged assembler and C source listing to name (default file.L).

-feedback name (SGI)

Specify the name of the feedback file used in conjunction with the -cord option.

-Fe name (SCO UNIX, XENIX)

Specify the name of the executable file.

-Fl name (SCO UNIX, XENIX)

Write an assembler listing with assembler source and object code to name (default file.L).

-float (SGI)

Cause the compiler not to promote float to double.

-Fm name (SCO UNIX, XENIX)

Write a load map to name (default a.map).

-Fo name (SCO UNIX, XENIX)

Specify the name of the object file.

-Fp (SCO UNIX, XENIX)

Specify floating point arithmetic options for MS-DOS cross-compilation.

-framepointer (SGI)

Use a register other than the stack pointer (sp) for the frame pointers (see Chapter 21, Object
files and friends, page 377).

5 February 2005 04:34

Chapter 0: Compiler options 395

-fullwarn(SGI)

Produce all possible warnings.

-Fs name (SCO UNIX, XENIX)

Write a C source listing to name (default file.S).

-G (SVR4)

Instruct the linker to create a shared object rather than a dynamically linked executable. This is
incompatible with the -dn option.

-G size (SGI)

Limit items to be placed in the global pointer area to size bytes.

-g (all)

Create additional symbolic information in order to support symbolic debuggers. gcc has a
number of suboptions to specify the amount and the nature of the debugging information—see
page 406 for more details. SGI C specifies a numeric level for the amount of debug informa-
tion to produce.

-Gc (SCO UNIX)

Generate code with the alternate calling sequence and naming conventions used in System V
386 Pascal and System V 386 FORTRAN.

-go (SunOS)

Produce additional symbol table information for adb.

-Gs (SCO UNIX)

Removes stack probe routines. Effective only in non-protected environments.

-H (gcc, System V)

Print the names of header files to the standard output as they are #included.

-H num (SCO UNIX, XENIX)

Set the maximum length of external symbols to num.

-help (SCO UNIX, SunOS)

Display help for cc.

-I dir (all)

Add dir to a list of pathnames to search for header files included by the #include directive.

-I (SGI)

Remove /usr/include from the list of paths to search for header files.

-I- (gcc)

Search the list of include pathnames only when the #include directive is of the form #include
“header". Do not search these directories if the directive is #include <header>. In addition, do
not search the current directory for header files. If -I dir options are specified after -I-,
they apply for all forms of the #include directive.

-i (SCO UNIX, XENIX)

5 February 2005 04:34

396

Create separate instruction and data spaces for small model programs.

-J (SCO UNIX)

Change the default mode for the char type to unsigned.

-J (SunOS, Sun-2 and Sun-3)

Generate 32-bit offsets in switch statements.

-J sfm (SVR4)

Specify the pathname of the assembly language source math library libsfm.sa. The positioning
of this option is important, since the library is searched when the name is encountered.

-j (SGI)

Create a file file.u containing intermediate code. Does not create an object file unless used in
conjunction with -c.

-KPIC (SGI)

Generate position-independent code.

-imacros file (gcc)

Process file before reading the regular input. Do not produce any output for file—only the
macro definitions will be of use.

-include file (gcc)

Process file as input before processing the regular input file. The text of the file will be handled
exactly like the regular files.

-K (SVR4)

Specify various code generation options.

-K (SCO UNIX, XENIX)

Remove stack probes from a program. Useful only in non-protected environments.

-k options (SGI)

Pass options to the ucode loader.

-ko name (SGI)

Cause the output of the intermediate code loader to be called name.

-L (SCO UNIX, XENIX)

Create an assembler listing with assembled code and assembler source instructions with the
name file.L.

-L dir (All but SCO UNIX, XENIX)

Add dir to the list of directories to search to resolve library references. See Chapter 18, Func-
tion libraries, page 369 for further details.

-l (all but XENIX)

Specify a library. The option -lbaz will search the library paths specified via -L options (see
above) for a file typically called libbaz.a. See Chapter 18, Function libraries, page 369 for
more details.

5 February 2005 04:34

Chapter 0: Compiler options 397

-LARGE (SCO UNIX, XENIX)

Invoke the large model compiler to run. Used if heap space problems occur during compila-
tion.

-link specs (SCO UNIX, XENIX)

Pass specs to the linker. All text following up to the end of the command line is passed to the
linker, so this has to be the last command on the line.

-M (SVR3)

Instruct the linker to output a message for each multiply defined external symbol.

-M (gcc, SGI, SunOS, Solaris)

Instruct the preprocessor to write a list of Makefile dependencies to stdout. Suppress normal
preprocessor output.

-MM (gcc)

Like the -M option, but only process #include “file" directives—ignore #include <file>.

-MD (gcc)

Like the -M directive, but output to a file whose name is made by replacing the final .c with .d.
This option does not suppress preprocessor output.

-MDupdate file (SGI)
While compiling, update file to contain header, library and runtime dependency information
for the output file.

-MMD (gcc)

Combination of -MD and -MM. Does not suppress preprocessor output.

-Ma (SCO UNIX, XENIX)

Compile strict ANSI.

-M model (SCO UNIX, XENIX)

Select model (only 16-bit modes). model may be c (compact), s (small), m (medium), l
(large) or h (huge).

-M num (SCO UNIX, XENIX)

Specify processor model for which code should be generated. 0 specifies 8086, 1 specifies
80186, 2 specifies 80286 and 3 specifies 80386 or later. 16-bit models (0 to 2) may be fol-
lowed by models s, m or l.

-Mb (SCO UNIX, XENIX)

Reverse the word order for long types.

-Md (SCO UNIX, XENIX)

Generate code for separate stack and data segments.

-Me (SCO UNIX, XENIX)

Enable the keywords far, near, huge, pascal and fortran.

-Mf (SCO UNIX, XENIX)

5 February 2005 04:34

398

Enable software floating point.

-Mt num (SCO UNIX, XENIX)

Set the maximum size of data items to num. Only valid for large model.

-m (SVR3)

Write a load map to standard output.

-m file (SCO UNIX, XENIX)

Write a load map to file.

-mipsnum (SGI)

Specify the target machine. num 1 (default) generates code for R2000/R3000, and 2 generates
code for R4000.

-misalign (SunOS on Sun-4)

Generate code to allow loading and storing misaligned data.

-mp(SGI)

Enable multiprocessing directives.

-n (SCO UNIX, XENIX)

Select pure text model (separated text and data).

-ND name (SCO UNIX, XENIX)

Set the names of each data segment to name.

-nl num (SCO UNIX, XENIX)

Set the maximum length of external symbols to num.

-NM name (SCO UNIX, XENIX)

Set the names of each module to name.

-nocpp (SGI)

Do not run the preprocessor when compiling.

-nointl (SCO UNIX)

Create a binary without international functionality.

-non_shared (SGI)

Produce an executable that does not use shared objects.

-noprototypes (SGI)

Remove prototype error and warning messages when run in -cckrmode.

-nostdinc (gcc, SGI)

Do not search the standard include file locations (like /usr/include) for header files. Only
search the directories specified with the -I option. gcc also has a version -nostdinc++ for
C++ programs.

-nostdlib (gcc)

Don’t include the standard startup files and library paths when linking. Only files explicitly
mentioned on the command line will be included.

5 February 2005 04:34

Chapter 0: Compiler options 399

-NT name (SCO UNIX, XENIX)

Set the names of each text segment to name.

-O (all)

Perform optimizations. In some, it may be followed by a level number (-O1 normal optimiza-
tions, -O2 additional optimizations, etc.). -O means the same thing as -O1. Others, such as
the SCO compiler, use letters to specify specific optimizations.

-o file (all)

Name the output file file. System V compilers only use this option to specify the name of the
final executable, whereas other compilers use it to specify the name of the output of the final
compiler pass. This can give rise to compatibility problems—see Chapter 20, Compilers, page
351 for further details.

-oldcpp (SGI)

Run with old-style cpp.

-Olimit size (SGI)

Set the maximum size of a routine to be optimized by the global optimizer to size basic blocks.

-os2 (SCO UNIX)

Create an executable program for OS/2.

-P (gcc)

Instruct the preprocessor not to generate #line commands. Used with the -E option.

-P (SunOS, SGI, SVR4, SCO UNIX, XENIX)

Use instead of the -E option to generate preprocessor output without #line directives. The out-
put will be stored in file.i.

-p (all)

Generate extra code to aid profiling using the profiling program prof.

-pack (SCO UNIX, XENIX)

Ignore alignment considerations in structs and pack as tightly as possible.

-pca (SGI)

Run the pca processor to discover parallelism in the source code.

-pedantic (gcc, SGI)

Be pedantic about syntax checking, issue all required warnings. The variety -pedantic-
errors treats them as errors instead of warnings.

-pg (gcc, SunOS)

Like -p, except that the output is suitable for processing by the gprof profiler.

-pic, -PIC (SunOS)

Generate position-independent code. The form -PIC allows a larger global offset table.

-pipe (gcc, SunOS)

Specify that output from one pass should be piped to the next pass, rather than the more tradi-
tional technique of storing it in a temporary file.

5 February 2005 04:34

400

-prototypes (SGI)

Output ANSI function prototypes for all functions in the source file when run in -cckrmode.

-qp (System V)

A synonym for -p.

-Qn (gcc (System V versions), SVR4)

Do not output .ident directives to the assembler output to identify the versions of each tool
used in the output file.

-Qy (gcc (System V versions), SVR4)

Output .ident directives to the assembler output to identify the versions of each tool used in the
output file.

-Qprog opt (SunOS)

Pass option opt to program prog. prog may be as (the assembler), cpp (the preprocessor),
inline (the assembly code reorganizer) or ld (the loader).

-Qpath (SunOS)

Specify search paths for compiler passes and other internal files, such as *crt*.o.

-Qproduce type (SunOS)

Produce source code output of type type. type specifies the filename extension and may be one
of .c (C source), .i (preprocessor output), .o (object output from the assembler) or .s (assembler
output from the compiler).

-R (SunOS)

Merge the data segment into text. This creates read-only data.

-r (SCO UNIX, XENIX)

Invoke the incremental linker /lib/ldr for the link step.

-r (SVR3)

Instruct the linker to retain relocation information in the final executable.

-S (gcc, SGI, SunOS, System V)

Stop after compiling the output assembler code, and do not assemble it. Save the results in a
file file.s.

-S (SCO UNIX, XENIX)

Create a human-readable assembler source listing in file.s. This listing is not suitable for
assembly.

-s (SCO UNIX, XENIX, SVR3)

Strip the final executable.

-save-temps (gcc)

Keep intermediate files even when they are no longer needed.

-sb (SunOS)

Generate additional symbol table information for the Sun Source Code Browser.

5 February 2005 04:34

Chapter 0: Compiler options 401

-SEG num (SCO UNIX, XENIX)

Set the maximum number of segments that the linker can handle to num.

-shared (gcc)

Produce a shared object which can be linked with other objects to form an executable.

-show (SGI)

Print the names of the passes and their arguments during compilation.

-signed (SGI)

Use signed characters instead of the default unsigned characters.

-sopt (SGI)

Invoke the C source-to-source optimizer. There is nothing corresponding to this on other plat-
forms.

-Ss subtitle (SCO UNIX)

Sets subtitle of the source listing. This also causes the linker pass to be omitted.

-St title (SCO UNIX)

Sets title of the source listing. This also causes the linker pass to be omitted.

-static (gcc)

Produce a statically linked object. This is only of interest on systems which have shared
libraries.

-systype (MIPS)

Specify the name of the compilation environment. Valid names are bsd4, svr3 and svr4.

-t (SVR3)

Instruct the linker to suppress warnings about multiply defined symbols that are not the same
size.

-target arch (SunOS)

Specify the target machine. arch can be one of sun2, sun3 or sun4.

-Tc (SCO UNIX)

Specify that the input file is a C source file. This can be used if the file does not have a stan-
dard .c file name extension.

-temp=dir (SunOS)

Store compiler temporary files in dir.

-time (SunOS)

Print time information for each compiler pass.

-traditional (gcc)

Treat the input sources as pre-ANSI-C. There is also an option -traditional-cpp which
only affects the preprocessor.

-trigraphs (gcc)

5 February 2005 04:34

402

Enable trigraph processing. By default, trigraphs are disabled unless the -ansi option is spec-
ified.

-U macro (all)

Undefine macro.

-u symbol (gcc, SVR3)

Force the linker to resolve the symbol symbol by searching additional libraries where speci-
fied.

-u (SCO UNIX)

Undefine all predefined macros.

-undef (gcc)

Do not predefine standard macros. This includes the macros which define the architecture.

-use-readonly-const(SGI)

Do not allow writing to strings and aggregate constants.

-use-readwrite-const(SGI)

Allow writing to strings and aggregate constants.

-V (System V)

Print version numbers of the compiler passes as they are invoked.

-V version (gcc 2.X)

Tell gcc to run version version of gcc.

-V"string" (SCO UNIX)

Place string in the object file, typically for use as a copyright notice or version information.

-V version (XENIX)

Compile a program compatible with specific versions of UNIX. version may be 2 (Seventh
Edition compatible), 3 (System III compatible) or 5 (System V compatible).

-v (gcc, SGI)

Produce verbose output. gcc output includes the complete invocation parameters of each pass
and the version numbers of the passes.

-v (SVR4)

Perform more and stricter semantic checks.

-varargs (SGI)

Print warnings for lines that may requires the varargs.h macros.

-W (gcc)

Without print a number of additional warning messages. With an argument, add a specific kind
of warning message check—see page 407 for more details.

-W num (SCO UNIX, XENIX)

Specify the level of warning messages. If num is 0, no warnings are produced. A maximum
number of warnings is produced by -W3.

5 February 2005 04:34

Chapter 0: Compiler options 403

-W0,option (System V)

Pass option to the compiler.

-W2,option (System V)

Pass option to the optimizer.

-Wa,option (gcc, System V)

Pass option to the assembler.

-Wb,option (System V)

Pass option to the basic block analyzer.

-Wl,option (gcc, System V)

Pass option to the linker.

-Wp,option (System V)

Pass option to the preprocessor.

-w (gcc, SCO UNIX, SunOS, XENIX)

Inhibit warning messages.

-w num (SGI)

If num is 0 or 1, suppress warning messages. If num is 2, treat warnings as errors.

-wline (SGI)

Produce lint-like warning messages.

-woff numbers (SGI)
Suppress warning messages corresponding to numbers.

-X (SCO UNIX, XENIX)

Remove the standard directories from the list of directories to searched for #include files.

-Xa (SVR4)

Compile full ANSI C. Extensions are enabled.

-Xc (SVR4)

Compile strictly conforming ANSI C. Extensions are disabled.

-Xcpluscomm (SGI)

Allow the C++ comment delimiter //when processing C code.

-xansi (SGI)

Process ANSI C, but accept the extensions allowed by -cckr.

-xenix (SCO UNIX)

Produce XENIX programs using XENIX libraries and include files.

-xgot (SGI)

Compile using a 32 bit offset in the Global Symbol Table. This can be ignored for other sys-
tems.

5 February 2005 04:34

404

-x2.3 (SCO UNIX)

Produce XENIX programs using XENIX libraries and include files. The programs are compat-
ible with release 2.3 of XENIX (the last release, with 80386 capabilities).

-Xlinker,option (gcc)

Pass option to the linker.

-Xp (SVR3)

Compile for a POSIX.1 environment.

-Xs (SVR3)

Compile for a System V.3 environment (i.e. not POSIX.1).

-Xt (SVR4)

Compile pre-ANSI C, but with compatibility warnings.

-x (SVR3)

Instruct the linker to save space by not preserving local symbols in the final executable.

-x lang (gcc)

Specify the language to be compiled. lang may be one of c, objective-c, c-header, c++,
cpp-output, assembler or assembler-with-cpp. This overrides the filename extensions.

-Y0,dir (SVR3)

Search for compiler in directory dir.

-Y2,dir (SVR3)

Search for optimizer in directory dir.

-Ya,dir (SVR3)

Search for assembler in directory dir.

-Yb,dir (SVR3)

Search for basic block analyzer in directory dir.

-YI,dir (SVR3)

Search for Default include directory in directory dir.

-Yl,dir (SVR3)

Search for link editor in directory dir.

-YL,dir (SVR3)

Search for first default library directory in directory dir.

-Ym,dir (gcc (System V versions))

Search for m4 in directory dir.

-YP,dirs (SVR3, gcc (System V versions))

Tell the compiler to search the directories dirs (a colon-separated list, like the PATH environ-
ment variable) for libraries specified via the -l option. This is an alternative to -L. It is not
additive: only the directories specified in the last -YP option are searched.

5 February 2005 04:34

Chapter 0: Compiler options 405

-Yp,dir (SVR3)

Search for compiler in directory dir.

-YS,dir (SVR3)

Search for startup files crt1.o and crtend.o in directory dir.

-YU,dir (SVR3)

Search for second default library directory in directory dir.

-z (SCO UNIX, XENIX)

Display the passes and arguments, but do not execute them.

-z (SVR3)

Instruct the linker not to bind anything at address 0 to aid run-time detection of null pointers.

-Za (SCO UNIX, XENIX)

Restrict the language to ANSI specifications.

-Zd (SCO UNIX, XENIX)

Include line number information in the object file.

-Ze (SCO UNIX)

Enables the keywords far, near, huge, pascal and fortran keywords. The same as
the -Me option.

-Zi (SCO UNIX, XENIX)

Include symbolic information in the object file.

-Zl (SCO UNIX)

Do not include default library information in the object file.

-Zpalign (SCO UNIX, XENIX, SVR3)

Force structs to align to the an align boundaries. align may be 0, 2 or 4, and defaults to 1.

-Zs (SCO UNIX, XENIX)

Perform syntax check only, do not compile.

gcc dialect options
gcc supplies a large number of options to specify what dialect of C should be compiled. In
addition, it supplies a further large number of options for C++ dialect. We’ll only look at the
C dialect options here—check the gcc release for the complete documentation.

-ansi

Compile ANSI C. Flag any non-standard extension as warnings, but do not treat them as
errors. This option implies the options -fn-asm and -trigraphs.

-fno-asm

Do not recognize the keywords asm, inline or typeof, so that they can be used as

5 February 2005 04:34

406

identifiers. The keywords __asm__, __inline__ and __typeof__ can be used instead.

-fno-builtin

Don’t recognize builtin function names that do not begin with two leading underscores.

-trigraphs

Support ANSI C trigraphs.

-traditional

Support pre-ansi dialects. This also implies -funsigned-bitfields and -fwritable-
strings.

-traditional-cpp

Provide pre-ANSI style preprocessing. This is implied by -traditional.

-fcond-mismatch

Allow conditional expressions (such as a: b? c) where the second and third arguments have
different types.

-funsigned-char

By default, characterss are unsigned. This effectively makes the declaration char the same
thing as unsigned char.

-fsigned-char

By default, characterss are signed. This effectively makes the declaration char the same thing
as signed char.

-fsigned-bitfields

Make bit fields signed by default. This is the default action.

-funsigned-bitfields

Make bit fields unsigned by default.

-fno-signed-bitfields

Make bit fields unsigned by default.

-fno-unsigned-bitfields

Make bit fields signed by default. This is the default action.

-fwritable-strings

Allocate strings in the data segment, so that the program can write to them. See Chapter 20,
Compilers, page 338 for a discussion of this misfeature.

-fallow-single-precision

Do not perform operations on single precision floating point values with double precision
arithmetic. This is only needed if you specify -traditional.

5 February 2005 04:34

Chapter 0: Compiler options 407

gcc debugging options
-g mods

Produce standard debugging information. This can be used in conjunction with gdb. It some-
times includes information that can confuse other debuggers.

-ggdb mods

Produce debugging information in the native format (if that is supported), including GDB
extensions if at all possible.

-gstabs mods

Produce debugging information in stabs format without GDB extensions.

-gcoff mods

Produce debugging information in the COFF format used by sdb on older System V systems.

-gxcoff mods

Produce debugging information in the XCOFF format used dbs on IBM RS/6000 systems.

-gdwarf mods

Produce debugging information in the DWARF format used by sdb on most SVR4 systems.

mods are optional and may take the values + or the digits 1 to 3:

• + specifies that additional information for gdb should be included in the output. This may
cause other debuggers to reject the object.

• 1 specifies that only minimal debugging information: include information about function
names and external variables, but not about local variables or line numbers.

• 2 (the default): include function names, all variables and line numbers.

• In addition, 3 includes macro definitions. Not all systems support this feature.

gcc warning options
-W

Print an number of “standard” extra warning messages. See , starting on page , for a discussion
of the individual situations.

-Wimplicit

Warn if functions or parameters are declared implicitly (in other words, if the explicit declara-
tion is missing).

-Wreturn-type

Warn if a function is defined without a return type (in other words, one that defaults to int).
Also warn if return is used without an argument in a non-void function.

-Wunused

Warn when local or static variables are not used, and if a statement computes a value which is

5 February 2005 04:34

408

not used.

-Wswitch

Warn if a switch statement has an index of an enumeral type and does not cater for all the
possible values of the enum, or if a case value is specified which does not occur in the enum.

-Wcomment

Warn if the sequence /* is found within a comment. This might mean that a comment end is
missing.

-Wtrigraphs

Warn if trigraphs are encountered. Only effective if -ftrigraphs is also specified.

-Wformat

Check the parameters supplied to printf, scanf and friends to ensure that they agree with
the format string.

-Wchar-subscripts

Warn if an array subscript has type char.

-Wuninitialized

Warn if an automatic variable is used before it is initialized. This requires the optimizer to be
enabled.

-Wparentheses

Warn if parentheses are omitted in assignments in contexts where truth values are expected
(for example, if (a = foo ()), or when unusual and possibly confusing sequences of
nested operators occur without parentheses.

-Wenum-clash

Warn if enum types are mixed. This is only issued for C++ programs. See Chapter 20, Com-
pilers, page 339 for further details.

-Wtemplate-debugging

Warn if debugging is not fully available for the platform when using templates in a C++ pro-
gram.

-Wall

Specify all of the warning options above. The FSF considers this a good compromise between
accuracy and completeness.

-fsyntax-only

Check for syntax errors, but don’t compile.

-pedantic

Issue all warnings specified by ANSI C. Reject programs which use extensions not defined in
the Standard. The Free Software Foundation does not consider this to be a useful option, since
ANSI C does not specify warnings for all possible situations. It is included because it is
required by the ANSI Standard.

5 February 2005 04:34

Chapter 0: Compiler options 409

-pedantic-errors

The same thing as -pedantic, but the warnings are treated as errors.

-w

Inhibit all warning messages.

-Wno-import

Inhibit warning messages about the use of #import.

-Wtraditional

Warn about: Macro parameters in strings, functions declared external within a block and then
referenced outside the block and switch statements with long indexes. These are treated
differently in ANSI and traditional C.

-Wshadow

Warn if a local variable shadows another local variable.

-Wid-clash-len

Warn whenever two different identifiers match in the first len characters. To quote the FSF
documentation: This may help you prepare a pro gram that will compile with certain obsolete,
brain-damaged compilers.

-Wpointer-arith

Warn about anything that depends on the “size of” a function type or of void. GNU C
assigns these types a size of 1, for convenience in calculations with void * pointers and
pointers to functions.

-Wcast-qual

Warn when a cast removes a type qualifier from a pointer, for example if a const char * is
cast to a char *.

-Wcast-align

Warn if a pointer is cast to a type which has an increased alignment requirement. For example,
warn if a char * is cast to an int * on machines where integers require specific align-
ments.

-Wwrite-strings

Give string constants the type const char []. This will cause a warning to be generated if
a string address is copied into a non-const char * pointer.

-Wconversion

Warn if the existence of a prototype causes a different type conversion from the default, or if a
negative integer constant expression is implicitly converted to an unsigned type.

-Waggregate-return

Warn when functions that return structures, unions or arrays are defined or called.

-Wstrict-prototypes

5 February 2005 04:34

410

Warn if a function is declared or defined without specifying the argument types.

-Wmissing-prototypes

Warn if a global function is defined without a previous prototype declaration, even if the defi-
nition itself provides the prototype. This warning is intended to help detect missing declara-
tions of global functions in header files.

-Wredundant-decls

Warn if anything is declared more than once in the same scope, even in cases where multiple
declaration is valid and changes nothing.

-Wnested-externs

Warn if an extern declaration is encountered within an function.

-Winline

Warn if a function was declared as inline, or the C++ option -finline-functions was
specified, and the function cannot be inlined.

-Woverloaded-virtual

C++ only: warn when a derived class function declaration may be an error in defining a virtual
function.

-Werror

Treat all warnings as errors.

cpp options
-$ (gcc)

Disable the use of the character $ in identifers. This is passed by gcc when the -ansi option
is specified.

-A (gcc)

-Aquestion(answer) asserts that the answer to question is answer. This can used with the pre-
processor conditional #if #question (answer).

-A- (gcc)

Disable standard assertions. In addition, SVR4 cc undefines all standard macros except those
beginning with __.

-B (SunOS, Solaris)

Recognize the C++ comment string //.

-C (gcc, SVR3, SunOS, Solaris, XENIX)

Do not strip comments from the preprocessor output.

-Dname (gcc, SVR3, SunOS, Solaris, XENIX)

Define name as 1. This is the equivalent to specifying -Dname=1 to cc and not the same as
-Dname.

5 February 2005 04:34

Chapter 0: Compiler options 411

-Dname=def (gcc, SVR3, SunOS, Solaris, XENIX)

Define name. This is the same as the corresponding cc option. This will be overridden by
-Uname ev en if the -U option appears earlier on the command line.

-dM (gcc)

Suppress normal preprocessor output and output #define commands for all macros instead.
This can also be used with an empty file to show the values of predefined macros.

-dD (gcc)

Do not strip #define commands from the preprocessor output. This can be useful for debug-
ging preprocessor macros.

-H (gcc, SVR3, SunOS, Solaris)

Print the pathnames of included files on stderr.

-Idir (gcc, SVR3, SunOS, Solaris)

Add dir to the path to search for #include directives.

-I- (gcc)

Search the list of include pathnames only when the #include directive is of the form #include
“header". Do not search these directories if the directive is #include<header>. In addition, do
not automatically search the current directory for header files. If -I dir options are speci-
fied after -I-, they apply for all forms of the #include directive.

-imacros file (gcc)

Process file before reading the regular input. Do not produce any output for file—only the
macro definitions will be of use.

-include file (gcc)

Process file as input before processing the regular input file. The text of the file will be handled
exactly like the regular files.

-idirafter dir (gcc)

Add dir to the second include path. The second include path is an include path which is
searched when a file isn’t found in the standard include path (the one built by the -I option).

-iprefix prefix (gcc)

Specify a prefix for the -iwithprefix option (see next entry).

-iwithprefix dir (gcc)

Add a the directory prefix/dir to the second include path. prefix must previously have been set
with the iprefix command.

-lang-language (gcc)

Specify the source language. -lang-c++ enables the comment sequence //, -lang-objc
enables the #import command, -lang-objc++ enables both, -lang-c disables both.

-lint (gcc)

Replace lint commands such as /* NOTREACHED */ with the corresponding pragma, e.g.
#pragma lint NOTREACHED.

5 February 2005 04:34

412

-M (gcc, SunOS, Solaris)

Write a list of Makefile dependencies to stdout. Suppress normal preprocessor output.

-MM (gcc)

Like the -M option, but only process #include “file"directives—ignore #include <file>.

-MD (gcc)

Like the -M directive, but output to a file whose name is made by replacing the final .c with .d.
This option does not suppress preprocessor output.

-MMD (gcc)

Combination of -MD and -MM. Does not suppress preprocessor output.

-nostdinc (gcc)

Do not search the standard include file locations (like /usr/include) for header files. Only
search the directories specified with the -I option. A version -nostdinc++ exists for C++
programs.

-P (gcc, SVR3, SunOS, Solaris, XENIX)

Do not output #line directives.

-p (SunOS, Solaris)

Limit the length of preprocessor directives to 8 characters.

-pedantic (gcc)

Issue the warnings that ANSI C specifies for specific situations. See Page 399 for more details.

-pedantic-errors (gcc)

If the situations specified in the ANSI Standard occur, option them as errors rather than warn-
ings.

-R (SunOS, Solaris)

Allow recursive macros.

-T (SVR3, SunOS, Solaris)

Limit the length of preprocessor directives to 8 characters. For backward compatibility only.

-traditional (gcc)

Preprocess in the “traditional” (pre-ANSI) manner.

-trigraphs (gcc)

Recognize and convert trigraphs.

-undef (SunOS, Solaris)

Undefine all predefined symbols.

-Uname (SVR3, SunOS, Solaris, XENIX)

Remove definition of name. This will also override -D options placed later on the command
line.

-undef (gcc)

5 February 2005 04:34

Chapter 0: Compiler options 413

Do not predefine standard macros.

-Ydir (SunOS, Solaris)

Search only directory dir for #include files.

-Wall (gcc)

Set both -Wcomment and -Wtrigraphs.

-Wcomment (gcc)

Warn if the sequence /* is found within a comment. This could imply that a comment end is
missing.

-Wtraditional (gcc)

Warn about macro parameters in strings. These are treated differently in ANSI and traditional
C.

-Wtrigraphs (gcc)

Warn if trigraphs are encountered. Only effective if -ftrigraphs is also specified.

5 February 2005 04:34

Assembler directives and options

as options
It’s particularly evident that as seldom sees the light of day when you look at the options,
which differ greatly from one system to the next. GNU as doesn’t even maintain compatibil-
ity between versions 1 and 2, as you can see in the following table:

-a (GNU 2.x)

List high-level language, assembly output, and symbols. This is the generic form of the -a
option; the following variants modify this in some manner. Combinations are possible: for
example, -alh lists the high-level input and assembly output, but not the symbol table. In
order to get the high-level language input, you also need to specify the -g option.

-ad (GNU 2.x)
List high-level language, assembly output, and symbols, but omit debugging pseudo-ops from
listing.

-ah (GNU 2.x)
List high-level language source.

-al (GNU 2.x)
List assembly output.

-an (GNU 2.x)
Disable forms processing of the listing. This only works in combination with other -a
options.

-as (GNU 2.x)
List symbols.

-D (GNU 1.x)
Turn on assembler debugging (if available).

-D (GNU 2.x)
No effect — just for compatibility.

-dl (SVR3)

415

5 February 2005 02:09

416

Don’t put line number information in object file.

-f (GNU 2.x)
skip preprocessing (for compiler output)

-g (GNU 1.x)
Generate debugging symbols for source language debugging of assembly programs.

-I path (GNU 2.x)
Add path to the search list for .include directives

-K (GNU 2.x)
Issue warnings when difference tables altered for long displacements.

-k (GNU 1.x)
Warn about problems with calculating symbol differences.

-L (GNU)
Keep local symbols starting with L in the symbol table output to object file.

-m (System V)
preprocess with m4

-n (System V)
Turn off long/short address optimization.

-o (GNU 2.x, System V)
Specify output file name.

-Qy (System V)
Put assembler version number in object file.

-R (GNU 1.x)
Merge the data segment into the text segment, making it read-only.

-R (System V)
Remove the input file after assembly.

-W (GNU 1.x)
Suppress warnings.

-f (GNU 1.x)
Suppress the preprocessor pass which removes comments and redundant white space from the
input. This can also be done with the #NO_APP directive.

-T (System V)
Accept (and ignore) obsolete directives without complaining.

-V (System V)
Print the current version number.

-v (GNU)
Print the current version number.

5 February 2005 02:09

Appendix C: Assembler directives and options 417

-W (GNU 2.x)

Suppress warning messages

-Y (System V)
Specify directory for m4 processor and predefined macros (Y,dir).

-Yd (System V)
Specify directory for predefined macros (Yd,dir).

-Ym (System V)
Specify directory for m4 processor (Ym,dir).

as directives
Assembler directives are mainly provided for the convenience of the compiler, and are seldom
documented. Here is a list of the directives provided by GNU as, one of the few which is doc-
umented. Many of these directives are provided only on certain platforms—read Using as, by
Dean Elsner and Jay Fenlason, for specific information.

.abort

Abort the assembly. This is obsolescent. It was intended to be used by a compiler piping its
output into the assembler when it discovered a fatal error.

.ABORT

A synonym for .abort.

.align boundary [, content]

Increment the assembler location counter, (the pointer to the location where the next byte will
be emitted), to a boundary which has zeros in the last boundary binary positions. If content is
specified, any bytes skipped will be filled with this value.

.app-file string

Specify the start of a new logical file string. This is obsolescent.

.ascii string . . .

Emit each string into consecutive addresses. Do not append a trailing \0 character.

.asciz string

Emit each string into consecutive addresses. Append a trailing \0 character.

.byte expressions

Emit zero or more expressions into the next output byte.

.comm symbol , length

Declare symbol a named common area in the bss section. length is the minimum length—the
actual length will be determined by the linker as the maximum of the length fields of all object

5 February 2005 02:09

418

files which define the symbol.

.data subsection

Switch to data section subsection (default zero). All assembled data will go to this section.

.def name

Begin defining COFF debugging information for a symbol name. The definition is completed
by a .endef directive.

.desc symbol, abs-expression

Set the symbol descriptor to the low 16 bits of abs-expression. This is ignored if the assembler
is outputting in COFF format.

.double flonums

Emit double floating point number flonums.

.eject

Force a page break in the assembly listing at this point.

.else

else in conditional assembly—see the .if directive.

.endef

End a symbol definition begun with .def.

.endif

End a conditional assembly block. See the .if directive.

.equ symbol, expression

Set the value of symbol to expression. This is the same thing as .set.

.extern

In some assemblers, define a symbol external to the program. This is ignored by GNU as,
which treats all undefined symbols as external.

.file string

Specify the start of a new file. This directive is obsolescent, and may not be available.

.fill repeat , size , value

Create repeat repeated data blocks consisting of the low-order size bytes of value.

.float flonums

Emit floating point numbers flonums.

.global symbol

5 February 2005 02:09

Appendix C: Assembler directives and options 419

Define symbol as an external symbol.

.globlsymbol

A synonym for .global.

.hword expressions

Emit the values of each expression, truncated to 16 bits if necessary.

.ident

This directive is used by some assemblers to place tags in object files. GNU as ignores it.

.if expression

If expression evaluates to non zero, assemble the following code down to the corresponding
.else or .endif directive. If the next directive is .else, do not assemble the code
between the .else and the .endif. If expression evaluates to 0, do not assemble the code
down to the corresponding .else or .endif directive.

.ifdef symbol

Like .if, but the condition is fulfilled if symbol is defined.

.ifndef symbol

Like .if, but the condition is fulfilled if symbol is not defined.

.ifnotdef symbol

Like .if, but the condition is fulfilled if symbol is not defined.

.include “file"

Process the source file file before continuing this file.

.int expressions

Emit 32 bit values of each expression.

.lcomm symbol , length

Reserve length bytes of local common in bss, and give it the name symbol.

.ln line-number

Change the logical line number of the next line to line-number. This corresponds to the C pre-
processor line directive.

.ln line-number

A synonym for .line.

.list

Increment the listing counter (initially 0). If the listing counter is > 0, the following lines will
be listed in the assembly listing, otherwise they will not. .nolist decrements the counter.

5 February 2005 02:09

420

.long expressions

A synonym for .int.

.nolist

Decrement the listing counter—see .list.

.octa bignums

Evaluate each bignum as a 16 byte integer and emit its value.

.org new-lc, fill

Set the location counter of the current section to new-lc. new-lc must be either absolute or an
expression in the current subsection: you can’t use .org to cross sections. .org may not
decrement the location counter. The intervening bytes are filled with the value fill (default 0).

.psize lines, columns

Set the page size for assembly listings to lines lines (default 60) and columns columns (default
200). If lines is set to 0, no automatic pagination will occur.

.quad bignums

Evaluate each bignum as an 8 byte integer and emit its value.

.sbttl subheading

Set the subtitle of assembly listings to subheading.

.section name, subsection

Switch to section called name (default .text), subsection (default zero). All emitted data
goes to this section.

.set symbol, expression

Define the value of symbol to be expression. This may be used more than once to change the
value of symbol after it is defined. The value of an external symbol will be the value of the last
.set directive.

.short expressions

Emit the values of each expression, truncated to 16 bits if necessary.

.single flonums

Emit floating point numbers flonums. This is the same as .float.

.space size, fill

Emit size bytes of value fill. fill defaults to 0.

.space

Usually a synonym for .block, but on some hardware platforms GNU as uses it differently.

5 February 2005 02:09

Appendix C: Assembler directives and options 421

.stabd

Emit debug information. See page for more information.

.stabn

Emit debug information. See page for more information.

.stabs

Emit debug information. See page for more information.

.text subsection

Switch to text section subsection (default zero). All assembled data will go to this section.

.title heading

Set the title of the assembly listing to heading.

.word expressions

Emit 32 bit values of each expression.

Debug information
Debug information is very dependent on the kind of object file format in use: In a.out format,
it is defined by the directives .stabd, .stabn and .stabs. They can take up to five parame-
ters:

• desc is the symbol descriptor, and is 16 bits wide.

• other is the symbol’s “other” attribute. This is normally not used.

• string is the name of the symbol.

• type is the symbol type, and is 8 bits wide.

• value is the value of the symbol, and must be absolute.

These symbols are used as follows:

.stabd type, other, desc

Define a debugging entry without a name. The value of the symbol is set to the current value
of the location counter. This is commonly used for line number information, which is type 68
for line number references in the text segment. For example .stabd 68, 0, 27 specifies
that the current location is the beginning of line 27.

.stabn type, other, desc, value

Define a debugging entry without a name. The value of the symbol is set to value.

.stabs string, type, other, desc, value

Define a debugging entry with the name string. The value of the symbol is set to value.

5 February 2005 02:09

422

For further information about stabs formats and types, see the header file stab.h and the man
page stab(5).

In COFF format, it is defined by the directives .dim, .scl, .size, .tag, .type and .val.
They are enclosed in a .def/.endef pair. For example, to define a symbol foo, you would
write

.def foo

.value bar

.size 4

.endef

.dim

Set dimension information.

.scl class

Set the storage class value of the symbol to class.

.size size

Set the size of the symbol to size.

.tag structname

Specify the struct definition of the current symbol.

.type int

Set the type of the symbol to type.

.val addr

Set the value of the symbol to addr.

In ELF format, debug information is output to a special section called .debug, so no specific
directives are needed.

5 February 2005 02:09

Linker options

Like the assembler, the linker seldom sees the light of day: you normally start both programs
via the C compiler control program cc. As with the assembler, this gives rise to a surprising
diversity of options. The following list compares the linker options for the GNU linkers (two
of them, with conflicting options), SCO UNIX, Solaris 2, SunOS 4, System V.3, System V.4,
and SCO XENIX. Currently available BSD systems use one of the GNU linkers: for example,
BSD/386 up to version 1.1 uses the old linker, and BSD/OS 2.0 uses the new linker. The
Solaris 2 linker is basically the System V.4 linker, but it has a few extra flags. Unless other-
wise noted, all SVR4 options also apply to Solaris 2.

-Aarchitecture (GNU)

For the Intel 960 family only: architecture is a two-letter abbreviation specifying a member of
the processor family.

-A file (old GNU)

Don’t incorporate the text and data from file into the output file, just use the symbols. This
can be used to implement crude dynamic loading.

-A file (SunOS 4)

Perform an incremental load: the resultant output file is to be read in to a process executing
from the program file, which will be used to resolve symbolic references.

-A address (XENIX)

Produce a standalone program to be loaded at address.

-a (SCO, SVR3, SVR4)

Produce an executable file. This is the default behaviour, and is the opposite of the -r option.

-align datum (SunOS 4)

Force datum to be page-aligned. This is typically used for FORTRAN common blocks.

-assert assertion (SunOS 4)

Check an assertion. If the assertion fails, print a diagnostic and abort the link.

-Bbinding (SunOS 4, Solaris 2)

Specify the kind of binding to perform. binding may be dynamic (perform dynamic binding
at run time), nosymbolic (do not perform symbolic relocation), static (perform static

423

5 February 2005 04:34

424

binding at link time), or symbolic (force symbolic relocation). Solaris 2 does not support the
keyword nosymbolic.

-Bstatic (SunOS 4, GNU)

Specify static libraries only. GNU ld accepts this option, but ignores it.

-B number (XENIX)

Set the text selector bias to number

-b (SVR4)

When performing dynamic linking, do not perform special processing for relocations to sym-
bols in shared objects.

-b format (new GNU)

Specify the binary format of the files whose names follow. This is only needed when linking
files with multiple formats.

-C (XENIX)

Ignore the case of the symbols.

-c file (new GNU)

Read commands from file. These commands override the standard link format.

-c x (XENIX)

Specify the target CPU type 80x86. x defaults to 3.

-D size (old GNU, SunOS 4)

Pad the data segment to size. The padding may overlap with the bss segment. The SunOS 4
linker interprets size in hexadecimal.

-D number (XENIX)

Set the data selector bias to number.

-dyn (SVR4)

Specify dynamic (yn is y) or static (yn is n) linking.

-d (GNU, SunOS 4)

When creating a relocatable output file with the -r option, convert “common” symbols to bss.

-dc (SunOS 4)

Perform the -d option, but also copy initialized data referenced by this program from shared
objects.

-dp (SunOS 4)

Force an alias definition of undefined procedure entry points. Used with dynamic binding.

-defsym symbol = expression (new GNU)

Create the global symbol symbol in the output file and assign the value expression to it.

-e symbol (all)

Set the entry address in the output file to symbol.

5 February 2005 04:34

Appendix D: Linker options 425

-Fformat (new GNU)

This is an obsolete option which some older linkers used to specify object file formats. GNU
ld accepts it, but ignores it.

-F name (Solaris 2)

Used when building shared objects. The symbol table of the shared object being built is used
as a “filter” on the symbol table of the shared object name.

-F size (XENIX)

Reserve size bytes for the run-time stack.

-f fill (SCO, SVR3)

Fill unassigned memory (gaps in text and data segments, and also the bss segment) with the
16-bit pattern fill.

-format format (new GNU)

Specify the binary format of the files whose names follow. This is the same as the -b option.

-G size (new GNU)

Only for MIPS ECOFF format: set the minimum size of objects to be optimized using the GP
register.

-G (Solaris 2)

Produce a shared object in dynamic mode.

-g (new GNU, XENIX)

Include symbolic information in the output file. The GNU linker accepts this option, but
ignores it, since this is the default behaviour.

-h name (SVR4)

When building a dynamic object, record name as the name of the file to link at run time.

-I name (Solaris 2)

Use name as the path name of the interpreter to be written into the program header. In static
mode, name defaults to no interpreter, and in dynamic mode it defaults to /usr/lib/ld.so.1.

-i (new GNU)

Create a relocatable output file. Same as the -r option.

-i (Solaris 2)

Ignore the LD_LIBRARY_PATH setting.

-i (XENIX)

Create separate instruction and data space for small model programs.

-L dir (all)

Search the given directory for library archives in addition to the default directories. ld
searches directories supplied with the -L option in order of appearance in the argument list
and before the default directories.

-l lib (all)

5 February 2005 04:34

426

Search the specified libraries for a library called liblib.a. This is the same as the C compiler
-l option. SunOS4 allows you to write -l lib.version to indicate a specific
library version number.

-La (XENIX)

Set advisory file locking

-Lm (XENIX)

Set mandatory file locking.

-LI[NENUMBERS] (SCO)

Create a map file including line number information.

-M (GNU, SunOS 4)

Print a load map on the standard output.

-M mapfile (Solaris 2)

Read directives to ld from mapfile.

-M (SCO, SVR3)

Print warning messages for multiply defined external definitions.

-m (SCO, SVR3, SVR4)

Print a load map on the standard output.

-Mx (XENIX)

Specify the memory model. x can be s (small), m (middle), l (large), h (huge), or e (mixed).

-m emulation (new GNU)

Emulate the emulation linker.

-m file (XENIX)

Write a map listing to file.

-M[AP]:number (SCO)

Create a map listing with up to number symbols. number defaults to 2048.

-Map file (new GNU)

Print a load map to file.

-N (GNU, SunOS 4)

Create an OMAGIC format binary. This is the default format for relocatable object files.
OMAGIC format binaries have writable text segments. Where appropriate, this option implies
-Bstatic.

-N (SVR3)

Place the text section at the beginning of the text segment, and the data segment immediately
after the text segment.

-N num (XENIX)

Set the page size to num bytes.

5 February 2005 04:34

Appendix D: Linker options 427

-n (GNU, SunOS 4)

Create an NMAGIC format shared executable binary. The text segment is read-only. Where
appropriate, this option implies -Bstatic.

-n num (XENIX)

Truncate symbol names to num characters.

-noinhibit-exec (new GNU)

Create an output file even if errors are encountered during linking.

-o file (all)

Write output to file instead of the default a.out.

-oformat format (new GNU)

Write the output file in format format.

-P (XENIX)

Disable packing of segments.

-p (SunOS 4)

Start the data segment on a page boundary, even if the text segment is not shared.

-Qyn (Solaris 2)

If yn is y, add an ident string to the .comment section of the output file identifying the version
of the linker used. cc does this by default. -Qn suppresses this header.

-q (old GNU on BSD)

Create a QMAGIC format demand loaded executable binary.

-R file (new GNU)

Read symbol information from file, but do not include it in the output.

-R (XENIX)

Ensure a relocation table of non-zero size.

-Rd offset (XENIX)

Set the data segment relocation offset to offset.

-Rt offset (XENIX)

Set the text segment relocation offset to offset.

-R paths (Solaris 2)

Specify paths as a colon-separated list of directories to be searched for libraries by the run-
time linker.

-r (all)

Generate a relocatable output file.

-S (GNU, SunOS 4)

Strip only stab symbols from a.out files.

-s (all)

5 February 2005 04:34

428

Strip all symbols from the output file. This overrides other strip options.

-SE[GMENTS]:number (SCO)

Allow the program to have number segments. The default value is 128.

-sort-common (new GNU)

Disable sorting of common blocks by size.

-ST[ACK]:size (SCO)

Specify that the stack should be size bytes long.

-T file (new GNU)

Read commands from file. These commands override the standard link format. This is the
same as the -c option.

-T address (old GNU, SunOS 4)

Start the text segment at address.

-Tbss address (new GNU)

Start the bss segment at address.

-Tdata address (GNU, SunOS 4)

Start the data segment at address.

-Ttext address (GNU, SunOS 4)

Start the text segment at address. The same as -T.

-t (GNU)

Print the names of input files to stderr as they are processed.

-t (SCO, SVR3, SVR4)

Do not warn about multiply defined symbols of different size.

-u symbol (all)

Consider symbol to be undefined. This can be used to force the extraction of certain files from
a library.

-Ur (new GNU)

Generate relocatable output, like the -r option. For C++ programs only, resolve references to
constructors.

-V (new GNU)

Print full version number information, including supported emulations.

-V (SCO, SVR3, Solaris 2)

Print version number information for ld.

-VS number (SCO, SVR3)

Store version number in the optional header of the output file.

-v (new GNU)

Print version number information for ld only.

5 February 2005 04:34

Appendix D: Linker options 429

—version (new GNU)

Print version number information for ld only, then exit.

-warn-common (new GNU)

Warn when a common symbol is combined with another common symbol or with a symbol
definition.

-X (GNU, SunOS 4)

Strip local symbols which start with the letter L. This is the default behaviour of the assem-
bler. The new GNU linker will only perform this operation if the -s or -S options are also
specified.

-x (GNU, SCO, SunOS 4, SVR3)

Strip all local symbols. The new GNU linker will only perform this operation if the -s or -S
options are also specified.

-Y [L][U], dir (SCO, SVR3, SVR4 in BSD mode)

Change the default directory used for finding libraries. If L is specified, the standard library
directory (LLIBDIR, normally /usr/lib) is replaced with dir. If U is specified and the linker was
built with a second library directory (LLIBDIR), it is replaced with dir.

-YP, dir (Solaris 2)

Change the default directory used for finding libraries to dir.

-y symbol (old GNU, SunOS 4)

Trace symbol on stderr during linking.

-z (old GNU, SunOS 4)

Create a ZMAGIC format demand loaded executable binary. On SunOS 4, this implies the
-Bdynamic option.

-z (SCO, SVR3)

Do not bind anything at address 0, in order to allow run-time detection of null pointers.

-z defs (Solaris 2)

Force a fatal error if any undefined symbols remain at the end of a link. This is the default for
executables, but not for relocatable output.

-z nodefs (Solaris 2)

Allow undefined symbols in an executable.

-z text (Solaris 2)

Force a fatal error if any relocations against non-writable, allocatable sections remain when
performing a dynamic link.

5 February 2005 04:34

Where to get sources

In this book, I’ve mentioned a large quantity of freely available software. Here’s some infor-
mation on how to get it.

All the software is available on the Internet, but a large quantity is also available on CD-ROM,
sometimes ported to specific platforms. Your choice of where to get it from depends a lot on
how often you need the software, how fast your connection to the Internet is and how much
you pay to transfer data on the Internet. I personally prefer to keep as many packages as pos-
sible on CD-ROM.

CD-ROM producers
A large number of companies produce CD-ROMs, but the following are of particular interest:

The Free Software Foundation
675 Massachusetts Avenue
Cambridge
MA, 02139
Phone: +1 617 876 3296
Mail: gnu@prep.ai.mit.edu

The producers of GNU software. They sell a CD-ROM with all the GNU software. If you buy
your CD-ROM here, you also help support the Free Software Foundation, which is dependent
on such income to survive.

The primary Internet site for the Free Software Foundation is prep@ai.mit.edu, and you
can find the software in the directory /pub/gnu. This site is frequently overloaded, so please
use more local mirrors where possible.

InfoMagic, Inc.
P.O. Box 30370
Flagstaff
AZ 86003-0370
Phone: +1-800-800-6613

+1-602-526-9565

431

5 February 2005 04:34

432

Fax: +1-602-526-9573
Mail: info@infomagic.com

A number of UNIX-oriented CDs, including Internet tools, Linux, and standards.

O’Reilly & Associates
103A Morris Street
Sebastopol
CA 95472
Phone: +1-800-998-9938

+1-707-829-0515
Fax: +1-707-829-0104
Mail: order@ora.com

Our favourite source. High-quality, well-thought out books on UNIX, many with CD-ROMs.

Prime Time Freeware
370 Altair Way, Suite 150
Sunnyvale
CA 94086
Phone: +1-408-433-9662
Fax: +1-408-433-0727
Mail: ptf@cfcl.com

A small supplier of software of special interest to programmers: well-organized, six-monthly
distributions of the latest software packages, source only, including separate editions for TEX
and artificial intelligence. In addition, ported software for System V.4 (Intel) and Sun plat-
forms.

Walnut Creek CD-ROM
4041 Pike Lane, Suite D-893
Concord
CA 94520
Phone: +1-800-786-9907

+1-510-674-0783
Fax: +1-510-674-0821
Mail: orders@cdrom.com

By far the largest choice of CDs, including nearly everything the other companies have to
offer. Mainly ported software, including definitive FreeBSD distribution and ported software
for System V.4 (Intel), Linux, and Sun.

5 February 2005 04:34

Appendix E: Where to get sources 433

Table E−1: Software sources

Package Internet site CD suppliers

GNU software prep.ai.mit.edu:/pub/gnu FSF, PTF, WC
4.4BSD Lite IM, ORA, WC
ghostscript in GNU distribution FSF, PTF, WC
jargon file In GNU distribution PTF, FSF
ncurses netcom.com:pub/zmbenhal/ncurses

patch in GNU distribution PTF, WC, FSF
RCS in GNU distribution PTF, WC, FSF
tcpdump ftp.ee.lbl.gov WC1

TeX ftp.shsu.edu:/tex-archive PTF, WC
dvips PTFin TEX distribution
dviware PTFin TEX distribution
ghostview PTFin TEX distribution
POSIX.2 reg ex zoo.toronto.edu:/pub

SeeTeX PTFin TEX distribution
t1ascii PTFin TEX distribution
X11 ftp.x.org:/pub/R6 PTF, ORA, WC

ftp.ora.com — fill in this space XXXSystem V shared mem-
ory

1 tcpdump is included in the FreeBSD distribution.

The initials of the CD-ROM publishers are self-evident. The initials in bold print are, in my
personal opinion, the best choice for the package in question. Your mileage may vary.

5 February 2005 04:34

Bibliography

4.4 Berkeley Software Distribution System Manager’s Manual. O’Reilly & Associates, Inc.,
1994.

A Fast File System for UNIX. Marshall Kirk McKusick, William N. Joy, Samuel J. Leffler
and Robert S. Fabry. A description of the Berkeley Fast File System, now known as ufs
(Unix File System). Chapter 5 of the Berkeley Software Distribution System Manager’s Man-
ual.

A Stream Input-Output System. Dennis M. Ritchie, in AT&T Bell Laboratories Technical
Journal, Volume 63, No. 8, Part 2, page 1897. A description of the original Eighth Edition
Streams concept.

Advanced Programming in the UNIX environment. W. Richard Stevens, Addison Wesley
1992. An excellent treatise on systems programming under modern UNIX variants.

CVS II: Parallelizing Software Development. Brian Berliner, in RCS distribution.

Checking C Programs with lint. Ian F. Darwin, O’Reilly & Associates Inc., 1988. A descrip-
tion of the lint program checker.

Connecting to the Internet. Susan Estrada, O’Reilly & Associates Inc., 1993. A Buyer’s
Guide to the Internet.

Encyclopedia of graphics file formats. James D. Murray and William vanRyper, O’Reilly
and Associates Inc., 1994. Includes CD-ROM. A complete description of graphics file for-
mats.

Learning the UNIX Operating System. Grace Todino, John Strang and Jerry Peek, O’Reilly
and Associates Inc., 1993. A straightforward introduction to UNIX.

Making TEX work. Norman Walsh, O’Reilly and Associates Inc., 1994. A usable book on
TEX.

Managing projects with make, Second Edition. Andrew Oram and Steve Talbott, O’Reilly
and Associates Inc., 1991.

Managing uucp and Usenet, tenth edition. Tim O’Reilly and Grace Todino, O’Reilly and As-
sociates Inc., 1992. The definitive guide to uucp management.

POSIX Programmer’s Guide. Donald A. Lewine, O’Reilly & Associates Inc., 1991.

Portability of C Programs and the UNIX System. S. C. Johnson, D. M. Ritchie, published
in the Bell System Techinical Journal July/August 1978, Volume 57, No. 6, Part 2, pages

435

5 February 2005 04:34

436

2021-2048. An early description of the portable C compiler.

Practical C Programming, second edition. Steve Oualline, O’Reilly and Associates Inc.,
1992. A mid-level book stressing robust programming techniques rather then “clever” pro-
gramming.

Programming with curses. John Strang, O’Reilly and Associates Inc., 1986. A description of
the BSD version of curses.

Programming with GNU Software. Mike Loukides, O’Reilly & Associates, Inc., 1995

RCS — A System for Version Control. Walter F. Tichy, 1991. Part of the RCS distribution.

RS-232 made easy, second edition. Martin D. Seyer, Prentice-Hall 1991. A discussion of the
RS-232 standard.

SCO UNIX in a Nutshell. Ellie Cutler and the staff of O’Reilly & Associates, Inc. O’Reilly
and Associates Inc., 1994.

Software Portability with imake. Paul DuBois, O’Reilly & Associates Inc., 1993. A complete
manual for imake and associated topics.

TCP/IP Illustrated, Volume 1. W. Richard Stevens, Addison Wesley 1994. A description of
the IP protocol suite from the viewpoint of the tcpdump program.

Termcap and Terminfo. John Strang, Tim O’Reilly and Linda Mui. O’Reilly and Associates
Inc., 1989. A description of Termcap and Terminfo.

The TEXbook , Donald E. Knuth, Addison Wesley, 1989. A mystery story about TEX, also the
main reference.

The Annotated C++ Reference Manual, Margaret A. Ellis and Bjarne Stroustrup. Addison
Wesley, 1990. The definitive reference manual for C++.

The C Programming Language, first edition. Brian W. Kernighan, Dennis M. Ritchie, Pren-
tice-Hall, 1978. The first complete description of the C programming language.

The Design and the Implementation of the 4.3BSD UNIX Operating System. Samuel J. Lef-
fler, Marshall Kirk McKusick, Michael J. Karels, John S. Quarterman. Addison-Wesley,
1990. The definitive description of the 4.3BSD kernel and communications.

The Design of the UNIX System. Maurice J. Bach, Prentice-Hall, 1986. An in-depth descrip-
tion of an early version of System V.

The Magic Garden explained: The Internals of UNIX System V Release 4. Berny Goodheart
and James Cox, Prentice-Hall 1994. The definitive guide to the internals of System V Release
4.

The New Hacker’s Dictionary. Eric Raymond (ed.), MIT Press 1991.

The Standard C Library. P. J. Plauger, Prentice-Hall 1992. An in-depth description of the
Standard (i.e. ANSI) C library.

The Whole Internet User’s Guide and Catalog, second edition. Ed Krol, O’Reilly & Asso-
ciates Inc., 1994. The definitive guide to the Internet.

The evolution of C—Past and Future. L. Rosler, in AT&T Bell Laboratories Technical Jour-
nal, Volume 63, No. 8, Part 2, page 1685. A description of the state of the C language in
1984.

5 February 2005 04:34

Appendix F: Bibliography 437

Tr avels into several remote nations of the world, by Lemuel Gulliver. Jonathan Swift,
Bejamin Motte, London, 1726. A satirical treatment of early 18th century English politics.

Typesetting tables with tbl. Henry McGilton, Mary McNabb, Trilithon Press, 1990. A tutorial
introduction to tbl.

UNIX Curses Explained. Berny Goodheart, Prentice-Hall 1991. A description of BSD and
System V versions of Curses.

UNIX in a Nutshell, for System V and Solaris 2.0. Daniel Gilly and the staff of O’Reilly &
Associates, Inc. O’Reilly and Associates Inc., 1992.

UNIX in a Nutshell, for 4.3BSD. c the staff of O’Reilly & Associates, Inc. O’Reilly and As-
sociates Inc., 1990.

UNIX Network Programming. W. Richard Stevens, Prentice-Hall 1990. Includes a compari-
son of sockets and STREAMS.

UNIX Power Tools. Jerry Peek, Tim O’Reilly, Mike Loukides, O’Reilly and Associates Inc.,
1993. Includes CD-ROM. An indispensible collection of tips and tricks.

UNIX System V Application Binary Interface, Revised Edition, UNIX Press, 1992.

UNIX Time-sharing system UNIX Programmer’s Manual, Sev enth Edition. Holt, Rinehart
and Winston, 1979. The original Seventh Edition UNIX documentation (two volumes).

Understanding and using COFF. Gintaras R. Gircys, O’Reilly & Associates Inc., 1988. A
description of the Common Object File Format.

Using as. A detailed description of GNU as, Dean Elsner and Jay Fenlason, source only from
the Free Software Foundation. Part of the GNU binutils distribution.

Using uucp and Usenet. Grace Todino and Dale Dougherty, O’Reilly and Associates Inc.,
1987. The definitive guide to using uucp.

X Window System Administrator’s Guide (Volume 8 of the X Window System documenta-
tion). Linda Mui, Eric Pearce, O’Reilly & Associates Inc., 1993. Av ailable with companion
CD-ROM.

lex and yacc, Second Edition. John R. Levine, Tony Mason and Doug Brown, O’Reilly &
Associates Inc., 1992.

sed and awk. Dale Dougherty, O’Reilly & Associates Inc., 1992. An in-depth treatment of
both utilities.

sendmail. Bryan Costales with Eric Allman and Neil Rickert, O’Reilly & Associates Inc.,
1993. Everything you never wanted to know about sendmail.

5 February 2005 04:34

