5 February 2005 02:09

Preface

This book is about porting software between UNIX platforms, the process of taking a soft-
ware package in source form and installing it on your machine. This doesn’t sound like a big
deal at first, but there’s more to it than meets the eye: you need to know how to get the soft-
ware, how to unpack what you get, how to modify the package so that it will compile on your
system, how to compile and install the software on your system, and how to deal with prob-
lems if they crop up.

Nevertheless, it doesn’t involve anything that hasn’t already been done to death in hundreds of
well-written books: you can find out about getting software from the Internet in The Whole
Internet User’s Guide and Catalog, by Ed Krol. Unpacking software is basically a matter of
using standard tools described in dozens of good introductory textbooks. Compiling pro-
grams is so simple that most C textbooks deal with it in passing. Installation is just a matter
of copying software to where you want it. Programming is the meat of lots of books on UNIX
programming, for example Advanced Programming in the UNIX environment by Richard
Stevens,

So why yet another book?

Most textbooks give you an idealized view of programming: “This is the way to do it” (“and it
works™). They pay little attention to the ways things can go wrong. UNIX is famed for cryp-
tic or misleading error messages, but not many books go into the details of why they appear or
what they really mean. Even experienced programmers frequently give up when trying to port
software. The probable advantage of completing the port just isn’t worth effort that it takes.

In this book, I’d like to reduce that effort.

If you take all the books I just mentioned, you’ll have to find about 3 feet of shelf space to
hold them. They’re all good, but they contain stuff that you don’t really want to know about
right now (in fact, you’re probably not sure if you ever want to know all of it). Maybe you
have this pressing requirement to get this debugger package, or maybe you finally want to get
the latest version of nethack up and running, complete with X11 support, and the last thing
you want to do on the way is go through those three feet of paper.

That’s where this book comes in. It covers all issues of porting, from finding the software
through porting and testing up to the final installation, in the sequence in which you perform
them. It goes into a lot of detail comparing the features of many different UNIX systems, and
offers suggestions about how to emulate features not available on the platform to which you

5 February 2005 02:09

are porting. It views the problems from a practical rather than from a theoretical perspective.
You probably won’t know any more after reading it than you would after reading the in-depth
books, but I hope that you’ll find the approach more related to your immediate problems.

Audience

This book is intended for anybody who has to take other people’s software and compile it on a
UNIX platform. It should be of particular interest to you if you’re:

e Asoftware developer porting software to a new platform.
e Asystem administrator collecting software products for your system.
« A computer hobbyist collecting software off the Internet.

Whatever your interest, | expect that you’ll know UNIX basics. If you’re a real newcomer,
you might like to refer to Learning the UNIX Operating System, by Grace Todino, John
Strang and Jerry Peek. In addition, UNIX in a Nutshell, available in BSD and System V
flavours, includes a lot of reference material which I have not repeated in this book.

The less you already know, the more use this book is going to be to you, of course. Neverthe-
less, even if you’re an experienced programmer, you should find a number of tricks to make
life easier.

Organization

One of the big problems in porting software is that you need to know everything first. While
writing this book | had quite a problem deciding the order in which to present the material. In
the end, | took a two-pronged approach, and divided this book into two major parts:

1. Inthe first part, we’ll look at the stages through which a typical port passes: getting the
software, extracting the source archives, configuring the package, compiling the soft-
ware, testing the results, and installing the completed package.

2. In the second part, we’ll take a look at the differences between different flavours of
UNIX, how they can make life hard for you, and how we can solve the problems.

Operating System Versions

Nearly everything in this book is related to one version or another of UNIX," and a lot of the
text only makes sense in a UNIX context. Nevertheless, it should be of some use to users of
other operating systems that use the C programming language and UNIX tools such as make.

As in any book about UNIX, it’s difficult to give complete coverage to all flavours. The
examples in this book were made with six different hardware/software platforms:

* UNIX is, of course, a registered trademark of its current owner. In this context, | am referring to any
operating system that presents a UNIX-like interface to the user and the programmer.

5 February 2005 02:09

Preface i

* SCO XENIX/386 on an Intel 386 architecture (version 2.3.2).

e UNIX System V.3 on an Intel 386 architecture (Interactive UNIX/386 version 2.2).
e UNIX System V.4.2 on an Intel 386 architecture (Consensys V4.2).

« BSD onan Intel 386 architecture (BSD/386" 1.1 and FreeBSD).

e SunOS on a Sparc architecture (SunOS 4.1.3).

e IRIX 5.3 0nan SGI Indy Workstation (mainly System V.4).

This looks like a strong bias towards Intel architectures. However, most problems are more
related to the software platform than the hardware platform. The Intel platform is unique in
offering almost every flavour of UNIX that is currently available, and it's easier to compare
them if the hardware is invariant. | believe these examples to be representative of what you
might fi nd on other hardware.

The big difference in UNIX favours is certainly between UNIX System V.3 and BSD, while
System V.4 represents the logical sum of both of them. At a more detailled level, every sys-
tem has its own peculiarities. there is hardly a system available which doesn't have its own
quirks. These quirks turn out to be the biggest problem that you will have to fi ght when port-
ing software. Even software that ported just fi ne on the previous release of your operating
system may suddenly turn into an error message generator.

Conventions used in this book

This book uses the following conventions:

Bold is used for the names of keys on the keyboard. We'll see more about this in the next sec-
tion.

Italic is used for the names of UNIX utilities, directories and fi lenames, and to emphasize new
terms and concepts when they are fi rst introduced.

Gonstant Wdt h is used in examples to show the contents of fi les, the output from com-
mands, program variables, actual values of keywords, for the names of Usenet newsgroups,

and in the text to represent commands.

Constant Italic isusedin examplesto show variables for which context-specifi ¢ substitu-
tions should be made. For example, the variable fi | enane would be replaced by an actual

fi lename. In addition it is used for comments in code examples.

Gonstant Bol d is used in examples to show commands or text that would be typed in liter-
aly by the user.

Most examples assume the use of the Bourne shell or one of its descendents such as the Korn
Shell, or the Free Software Foundation’s bash. Normally the prompt will be shown as the
default $, unless it is an operation that requires the superuser, in which case it will be shown
as#. When continuation lines are used, the prompt will be the standard >. In cases where the
command wouldn’t work with the C shell, | present an alternative. In the C shell examples,
the prompt is the default %

* Later versions of this operating system are called BSD/OS.

5 February 2005 02:09

I have tried to make the examples in this book as close to practice as possible, and most are
from real-life sources. A book is not a monitor, however, and displays that look acceptable
(well, recognizable) on a monitor can sometimes look really bad in print. In particular, the
utilities used in porting sometimes print out “lines” of several hundred characters. | have tried
to modify such output in the examples so that it fits on the page. For similar reasons, | have
modified the line breaks in some literally quoted texts, and have occasionally squeezed things
like long directory listings.

Describing the keyboard

It’s surprising how many confusing terms exist to describe individual keys on the keyboard.
My favourite is the any key (‘Press any key to continue”). We won’t be using the any
key in this book, but there are a number of other keys whose names need understanding:

+ The Enter or Return key. I'll call this RETURN.

+ Control characters (characters produced by holding down the CTRL key and pressing a
normal keyboard key at the same time). These characters are frequently echoed on the
screen as a caret (7) followed by the character entered. In keeping with other Nutshell
books, I’ll write control-D as CTRL-D.

+ The ALT key, which emacs afficionados call a META key, works like a second CTRL
key, but generates a different set of characters. These are sometimes abbreviated by pre-
fixing the character with a tilde (7) or the characters A-. Although these are useful abbre-
viations, they can be confusing, so I’ll spell these out as CTRL-X and ALT-D, etc.

* NL is the new line character. In ASCII, it is CTRL-J, but UNIX systems generate it
when you press the RETURN key.

+ CR is the carriage return character, in ASCII CTRL-M. Most systems generate it with
the RETURN key.

« HT is the ASCII horizontal tab character, CTRL-1. Most systems generate it when the
TAB key is pressed.

Terminology

Any technical book uses jargon and technical terms that are not generally known. I’ve tried to
recognize the ones used in this book and describe them when they occur. Apart from this, |
will be particularly pedantic about the way | use the following terms in this book:

program Everybody knows what a program is: a series of instructions to the computer
which, when executed, cause a specific action to take place. Source files don’t fit
this category: a source program (a term you won’t find again in this book) is
really a program source (a file that you can, under the correct circumstances, use
to create a program). A program may, however, be interpreted, so a shell script
may qualify as a program. So may something like an emacs macro, whether byte
compiled or not (since emacs can interpret uncompiled macros directly).

5 February 2005 02:09

Preface \%

package A package is a collection of software maintained in a source tree. At various
stages in the build process, it will include

« source files: files that are part of the distribution.

« auxiliary files, like configuration information and object files that are not
part of the source distribution and will not be installed.

« installable files: files that will be used after the build process is complete.
These will normally be copied outside the source tree so that the source tree
can be removed, if necessary.

Some software does not require any conversion: you can just install the sources
straight out of the box. We won’t argue whether this counts as a package. It cer-
tainly shouldn’t give you any porting headaches.
We’ll use two other terms as well: building and porting. It’s difficult to come up with a hard-
and-fast distinction between the two—we’ll discuss the terms in Chapter 1, Introduction.

Acknowledgements

Without software developers all over the world, there would be nothing to write about. In par-
ticular, the Free Software Foundation and the Computer Sciences Research Group in Berkeley
(now defunct) have given rise to an incredible quantity of freely available software. Special
thanks go to the reviewers Larry Campbell and Matt Welsh, and particularly to James Cox,
Jerry Dunham, and J6rg Micheel for their encouragement and meticulous criticism of what
initially was just trying to be a book. Thanks also to Clive King of the University of Aberyst-
wyth for notes on data types and alignment, Steve Hiebert with valuable information about
HP-UX, and Henry Spencer and Jeffrey Friedl for help with regular expressions.

Finally, I can’t finish this without mentioning Mike Loukides and Andy Oram at O’Reilly and

Associates, who gently persuaded me to write a book about porting, rather than just present-
ing the reader with a brain dump.

5 February 2005 02:09

Introduction

One of the features that made UNIX successful was the ease with which it could be imple-
mented on new architectures. This advantage has its down side, which is very evident when
you compare UNIX with a single-platform operating system such as MS-DOS: since UNIX
runs on so many different architectures, it is not possible to write a program, distribute the
binaries, and expect them to run on any machine. Instead, programs need to be distributed in
source form, and installation involves compiling the programs for the target hardware. In
many cases, getting the software to run may be significantly more than just typing nake.

What is porting?

It’s difficult to make a clear distinction between porting and building. In this book, we’ll use
three terms:

< building a package is the planned process of creating an installable software package.
This is essentially the content of Chapter 5, Building the package.

e installation is the planned process of putting an installable software package where users
can use it. This is what we talk about in Chapter 9, Installation.

e Some people use the term porting to describe a software installation requiring undocu-
mented changes to adapt it to a new environment, not including the process of configura-
tion if this is intended to be part of the build process. Although this is a useful definition,
it contains an element of uncertainty: when you start, you don’t know whether this is
going to be a build or a port. It’s easier to call the whole process porting, whether you
just have to perform a simple build or complicated modifications to the source. That’s
the way we’ll use the term in this book.

The effort required to port a package can vary considerably. If you are running a SparcStation
and get some software developed specifically for SparcStations, and the software does not
offer much in the way of configuration options, you probably really can get it to run by read-
ing the sources onto disk, and typing nake and make instal|. This is the exception, how-
ever, not the rule. Even with a SparcStation, you might find that the package is written for a
different release of the operating system, and that this fact requires significant modifications.
A more typical port might include getting the software, configuring the package, building the

1

5 February 2005 02:09

package, formatting and printing the documentation, testing the results and installing files in
the destination directories.

How long does it take?

It is very difficult to gauge the length of time a port will take to complete. If a port takes a
long time, it’s not usually because of the speed of the machine you use: few packages take
more than a few hours to compile on a fast workstation. Even the complete X11R6 window-
ing system takes only about 4 hours on a 66 MHz Intel 486 PC.

The real time-consumers are the bugs you might encounter on the way: if you’re unlucky, you
can run into big trouble, and you may find yourself getting to know the package you’re port-
ing much more intimately than you wish, or even having to find and fix bugs.

Probably the easiest kind of program to port is free software, that is to say, software that is
freely redistributable. As a result of the ease of redistribution, it tends to be ported more fre-
quently and to more platforms, so that configuration bugs get ironed out more evenly than in
commercial software. Porting a product like bison™ from the Free Software Foundation is
usually just a matter of minutes:

$ configure

checki ng how to run the C preprocessor
. nmessages from configure

$ make
. nessages from make

$ nake install

On an Intel 486/66, configure runs for 15 seconds, make runs for about 85 seconds, and make
install runs for about 5 seconds—all in all, less than two minutes. If everything were that
simple, nobody would need this book.

On the other hand, this simple view omits a point or two. bison comes with typeset documen-
tation. Like most products of the Free Software Foundation, it is written in texinfo format,
which relies on TEX for formatting. It doesn’t get formatted automatically. In fact, if you
look for the target in the Makefile, you’ll find that there isn’t one: the Makefile ignores printed
documentation. | consider this a bug in the Makefile. Never mind, it’s easy enough to do it
manually:

$ tex bison.texinfo
tex: not found

This is a fairly typical occurrence in porting: in order to port a package, you first need to port
three other, more complicated packages. In fact, most ports of bison are made in order to
compile some other product, such as the GNU C compiler. In order to get our documentation
printed, we first need to port TEX, which is appropriately depicted in its own printed documen-
tation as a shaggy lion. This is definitely a non-trivial port: TEX consists of dozens of differ-
ent parts, the source tree varies greatly depending on where you get it from, the whole thing is
written in Web, Donald Knuth’s own private dialect of Pascal, and once you get it to run you

* bison is a parser generator, compatible with yacc.

5 February 2005 02:09

Chapter 1: Introduction 3

discover that the output (deliberately) does not match any printer available, and that you need
a so-called printer driver to output it to your favourite laser printer—yet another port.

Under these circumstances, it wouldn’t be surprising if you give up and rely on the online
documentation supplied with bison. bison has two different online reference documents: a
man page and something called info, a cross-linked documentation reader from the Free Soft-
ware Foundation. The man page is two pages long, the info runs to over 200K in five files.
There are no prizes for guessing where the real information is. But how do you run info?
Simple: you port the GNU texinfo package. This time it’s not quite as bad as porting TEX, but
it’s still more difficult than porting bison.

This scenario is fairly typical: you set out to port something simple, and everything seems to
be fine, and then you find that a minor part of the port can really take up lots of time. Typi-
cally, this is the point where most people give up and make do with what they have achieved.
This book is intended to help you go the whole distance.

Why we need to port
There are three main reasons why a port might be more than a simple recompilation:

« Different operating system. Depending on what features the operating system offers, the
program may need to be modified. For example, when porting a program from UNIX to
DOS, | will definitely have to do something about file naming conventions. If | port a
System V.4 program to BSD | may find | need to replace STREAMS calls with sockets
calls.

« Different hardware. This is obvious enough with something like a display driver. If the
driver you have is designed for a Sun workstation and you’re porting it to a PC, you will
be involved in some serious rewriting. Even in more mundane circumstances, things like
the kind of CPU involved might influence the program design.

« Local choices. These includes installation pathnames and cooperation with other
installed software. For example, if | use the emacs editor, | may choose to use the etags
program to cross-reference my source files; if | use vi, | would probably prefer to use
ctags. Depending on the C compiler, | may need to use different compilation options. In
many cases, this seems to be similar to the choice of operating system, but there is a sig-
nificant difference: in general, changing your kernel means changing your operating sys-
tem. You can change the C compiler or even the system library without changing the
basic system.

Unix flavours

UNIX spent the first ten years of its existence as the object of computer science research.
Developed in Bell Labs (part of AT&T), it was significantly extended in the University of Cal-
ifornia at Berkeley (UCB), which started releasing significant updates, the so-called Berkeley
Software Distribution (BSD) in 1977. By the time AT&T decided to commercialize UNIX
with System Il1 in the early 80’s, the fourth BSD was already available, and both System Il
and System V drew heavily from it. Nevertheless, the differences were significant, and

5 February 2005 02:09

despite the advent of System V.4, which basically just added all features available in any
UNIX dialect into one package, the differences remain. A good overview of the relationship
between the Unixes can be found on page 5 of The Design and the Implementation of the
4.3BSD UNIX Operating System by Sam Leffler, Kirk McKusick, Mike Karels and John
Quarterman. In this book | will concentrate on the differences that can be of importance when
porting from one flavour to another.

Research UNIX

Research UNIX is the original UNIX that has been developed inside Bell Labs since 1969.
The last version that became widely available was the Seventh Edition, in 1978. This version
can be considered the granddaddy of them all”, and is also frequently called Version 7. In this
book, I’ll make frequent references to this version. Work on Research UNIX continued until
1993, by which time it had reached the Tenth Edition. It’s unlikely that you’ll have much to
do with it directly, but occasionally ideas from Research UNIX trickle into other flavours.

Berkeley UNIX (BSD)

The first Berkeley Software Distribution was derived from the 6th edition in 1977 and ran on
PDP-11s only. 2BSD was the last PDP-11 version: 2.11BSD is still available for PDP-11s, if
you have a need (and a UNIX source licence). 3BSD was derived from 2BSD and the 7th edi-
tion—via a short-lived version called 32V—in 1979. Since then, BSD has evolved relatively
free of outside borrowings. With the closure of the Computer Science Research Group in
Berkeley in autumn 1993 and the release of 4.4BSD in early 1994, the original BSD line has
died out, but the public release of the complete sources will ensure the continued availability
of Berkeley UNIX for a long time to come.

Current BSD systems include BSD/OS (formerly called BSD/386), 386BSD, NetBSD and
FreeBSD. These were all originally ports of the BSD Net-2 tape, which was released in 1991,
to the Intel 386 architecture. These ports are interesting because they are almost pure BSD
and contain no AT&T licensed code. BSD/OS is a commercial system that costs money and
supplies support; the other three are available free of charge. It is not clear how long all three
free versions will continue to exist side-by-side. 386BSD may already be dead, and the differ-
ence between NetBSD and FreeBSD is difficult to recognize.

At the time of writing, current versions of BSD/OS and FreeBSD are based on 4.4BSD, and
NetBSD is planning to follow suit.

XENIX

XENIX is a version of UNIX developed by Microsoft for Intel architectures in the early 80s.
It was based mainly on the System Il versions available at the time, though some ideas from
other versions were included and a significant amount of work was put into making it an eas-
ier system to live with. Not much effort was put into making it compatible with other versions
of UNIX, however, and so you can run into a few surprises with XENIX. SCO still markets it,

* In fact, a number of UNIX flavours, including System V and BSD, can trace their origins back to the
Sixth Edition of 1976, but they all benefitted from modifications made in the Seventh Edition.

5 February 2005 02:09

Chapter 1: Introduction 5

but development appears to have stopped about 1989.

System V

System V was derived from the 6th and 7th editions via System 11, with a certain amount bor-
rowed from 4.0BSD. It has become the standard commercial UNIX, and is currently the only
flavour allowed to bear the UNIX trademark. It has evolved significantly since its introduc-
tion in 1982, with borrowings from Research UNIX and BSD at several points along the way.
Currently available versions are V.3 (SCO Open Desktop) and V.4 (almost everybody else).
System V.3 lacked a number of features available in other Unixes, with the result that almost
all V.3 ports have borrowed significantly from other versions, mainly 4.2BSD. The result is
that you can’t really be sure what you have with System V.3—you need to consult the docu-
mentation for more information. In particular, vanilla System V.3 supports only the original
UNIX file system, with file names length limited to 14 characters and with no symbolic links.
It also does not have a standard data communications interface, though both BSD sockets and
System V STREAMS have been ported to it.

System V.3.2 is, as its name suggests, a version of System V.3. This version includes compati-
bility with XENIX system calls. As we saw above, XENIX went its own way for some time,
resulting in incompatibilities with System V. These XENIX features should be supported by
the kernel from System V.3.2 onwards. SCO UNIX is version V.3.2, and includes STREAMS
support.

System V.4 is the current version of System V. Previous versions of System V were often criti-
cized for lacking features. This cannot be said of System V.4: it incorporates System V.3.2
(which already incorporates XENIX), 4.3BSD, and SunOS. The result is an enormous system
which has three different ways to do many things. It also still has significant bugs.

Developing software under System V.4 is an interesting experience. Since the semantics of
System V.3 and BSD differ in some areas, System V.4 supplies two separate sets of libraries,
one with a System V personality and one with a BSD personality. There are no prizes for
guessing which is more reliable: unless you really need to, you should use the System V
libraries. When we discuss kernel and library differences in Part 2 of the book, the statement
“This feature is supported by System V.4” will mean that the System V library interface sup-
ports it. The statement “This feature is supported by BSD” also implies that it should be sup-
ported by the BSD library interface of System V.4.

OSF/1

OSF/1 is a comparatively recent development in the UNIX market. It was developed by the
Open Systems Foundation, an industry consortium formed as a result of dissatisfaction with
AT&T’s policy on UNIX. The kernel is based on CMU’s Mach operating system, a so-called
microkernel”. The original Mach operating system was styled on Berkeley UNIX. OSF/1
attempts to offer the same functionality as System V, though inevitably some incompatibilities

* A microkernel operating system is an operating system that leaves significant operating system func-
tionality to external components, usually processes. For example, device drivers and file systems are fre-
quently implemented as separate processes. It does not imply that the complete system is any smaller or
less functional than the monolithic UNIX kernel.

exist.

POSIX.1

POSIX is a series of emerging |IEEE standards applying to operating systems, utilities, and
programming languages. The relevant standard for operating systems is |EEE 1003.1-1990,
commonly called POSIX.1. It has aso been adopted by the International Standards Organiza-
tion (1SO) as standard 1SO/IEC 9945.1:1990.

POSIX.1 defi nes the interface between application programs and the operating system, and
makes no demands on the operating system except that it should supply the POSIX.1 inter-
face. POSIX.1 looks very much like a subset of UNIX. In fact, most users wouldn’'t notice
the difference. Thismakesit easy for UNIX operating systems to supply a POSIX.1 interface.
Other operating systems might need much more modifi cation to become POSIX.1 compliant.
From a UNIX viewpoint, POSIX.1 does not supply as rich a set of functions as any of the
commercialy available UNIX flavours, so programming to POSIX specifi cations can feel
somewhat restrictive. This matter is discussed in the POS X Programmer’s Guide by Donald
Lewine.

Despite these dight disadvantages, POSIX has a great infuence on operating system devel op-
ment: all modern flavours of UNIX claim to be POSIX-compliant, although the degree of suc-
cess varies somewhat, and other systems are also attempting to supply a POSIX.1 interface.
The trend is clear: future UNIX-like operating systems will be POSIX-compliant, and if you
stick to POSIX features, your porting problems will be over. And | have a supply of bridges
for sale, fi rst come, fi rst served.

Other flavours

It doesn’t take much effort to add a new feature to a kernel, and people do it all thetime. The
result is a proliferation of systems that mix various features of the leading products and addi-
tional features of their own. On top of that, the release of kernel sources to the net has caused
aproliferation of “free” operating systems. Systems that you might well run into include:

e AIX, IBM’s name for its UNIX versions. Current versions are based on System V.3, but
IBM has stated an intent to migrate to OSF/1 (IBM is a leading member of the OSF).
Compared to System V, it has a large number of extensions, some of which can cause
signifi cant pain to the unwary.

e HP-UX, Hewlett Packard’'s UNIX system. It isbased on System V.3, but contains alarge
number of so-called BSD extensions. Within HP, it is considered to be about 80% BSD-
compliant.

e Linux, aUNIX clonefor the Intel 386 architecture written by Linus Torvalds, a student in
Helsinki. It has absolutely no direct connection with traditional UNIX flvours, which
gives it the unique advantage amongst free UNIXes of not being a potential subject for
litigation. Apart from that, it has a vaguely System V-like feeling about it. If you are
porting to Linux, you should defi nitely subscribe to the very active network news groups
(conp. os. i nux. *).

5 February 2005 02:09

Chapter 1: Introduction 7

e aNnOS is the generic name of Sun Microsystems operating systems. The original
SUNOSwas derived from 4.2BSD and 4.3BSD, and until release 4.1 it was predominantly
BSD-based with a signifi cant System V infuence. Starting with version 5.0, it is a some-
what modifi ed version of System V.4. These later versions are frequently referred to as
Solaris, though this term properly applies to the complete system environment, including
windowing system (OpenWindows), development tools and such, and does not apply
only to the System V based versions. Solaris 1.x includes the BSD-based SunOS 4.1 as
its kernel; Solaris 2.x includes the System V.4-based SunOS 5.x asits kernel.

e Ultrix is DEC's port of 4.1BSD and 4.2BSD to the VAX and MIPS-based workstations.
It is now obsolete and has been replaced by OSF/1.

| would have liked to go into more detail about these versions of UNIX, but doing so would
have increased the size of the book signifi cantly, and even then it wouldn’'t be possible to
guarantee the accuracy: most systems add functionality in the course of their evolution, and
information that is valid for one release may not apply to an earlier or a later release. As a
result, I've made a compromise: nearly all UNIX features were introduced either in BSD or
System V, so | will distinguish primarily between these two. Where signifi cant differences
exist in other operating system—SunOS 4 is a good example— will discuss them separately.
Where does this leave you with, say, NonStop UX version B30? NonStop UX version B isa
version of UNIX System V.4 that runs on Tandem’s Integrity series of fault-tolerant MIPS-
based UNIX systems. It includes some additional functionality to manipulate the hardware,
and some of the header fi les differ from the standard System V.4. In addition, it includes a
minimal carry-over of BSDisms from the System V.3 version. Obviously, you can start by
treating it as an implementation of System V.4, but occasionally you will fi nd things that don’t
quite seem to fit in. Since it's a MIPS-based system, you might try to consider it to be like
SGI's IRIX operating system version 5, which is System V.4 for SGI’s MIPS-based hardware.
Indeed, most IRIX 5.x binaries will aso run unchanged on NonStop UX version B, but you
will notice signifi cant differences when you try to port packages that already run on IRIX 5.x.
These differences are typical of a port to just about every rea-life system. There are very few
pure System V.4 or pure BSD systems out there—everybody has added something to their
port. Ultimately, you will need to examine each individual problem as it occurs. Hereis a
strategy you can use to untangle most problems on UNIX systems:

* Interpret the error messages to fi gure out what feature or function cal is causing the
problem. Typically, the error message will come from the compiler and will point to a
specifi ¢ line in a specifi cfi le.

e Look up the feature or call in this book. Use the description to fi gure out what the origi-
nal programmer intended it to do.

e Figure out how to achieve the same effect on your own system. Sometimes, | recom-
mend a change which you can make and try the program again. If you're not sure how
your system works, you can probably fi nd a manual page for the feature or call, and this
book will help you interpret it.

5 February 2005 02:09

5 February 2005 02:09

» Reconfi gure or change the code as necessary, then try building again.

Where you fitin

The effort involved in porting software depends a lot on the package and the way it is main-
tained. It doesn't make much difference whether the software is subject to a commercial
license or is freely available on the net: the people who write and maintain it can never hope
to port it to more than afraction of the platforms available. The result is that there will always
be problems that they won't know about. There is also a very good chance that the well-
known and well-used package you are about to port may never have been ported quite that
way before. This can have some important consequences:

* You may run into bugs that nobody has ever seen before in a well-known and well-used
package.

* The package that you ported in ten minutes last year and have been using ever since has
been updated, and now you can't get the @& * (& @$(to compile or run.

This aso means that if you do run into problems porting a package, your feedback is impor-
tant, whether or not you can supply afi x. If you do supply afix, it should fi t into the package
structure so that it can be included in a subsequent release.

To reiterate: it makes very little difference here whether we are talking about free or licensed
software. The players involved are different, but the problems are not. In many ways, free
software is easier, since there are fewer restrictions in talking about it (if you run into prob-
lems porting System V.4, you can’t just send the code out on the net and ask for suggestions),
and there’s a chance that more people will have ported it to more platforms already. Apart
from that, everything stays the same.

But can | doit?

Of course, maybe your concern is whether you can do it at all. If you've never ported a pro-
gram before, you might think that this is altogether too diffi cult, that you'll spend days and
weeks of effort and confusion and in the end give it up because you don’t understand what is
going on, and every time you solve a problem, two new ones spring up in its place.

I'd like to say “Don’t worry, with this book nothing can go wrong”, but unfortunately things
aren't aways like that. On the other hand, it's easy too overestimate the things that can go
wrong, or how diffi cult a port might be. Let's look at the bad news fi rst: in most cases, you
can assume that the worst thing that can happen when you try to port a package is that it won't
work, but in some unfortunate cases you may cause your system to panic, especially if you are
porting kernel software such as device drivers. In addition, if you are porting system utilities,
and they don’t work, you could fi nd that you can no longer perform such essential system
functions as starting or shutting down the system. These problems don’'t occur very often,
though, and they should not cause any lasting damage if you religiously back up your system
(you do perform regular backups, don’'t you?).

5 February 2005 02:09

Chapter 1: Introduction 9

Apart from such possible dangers, there is very little that can go wrong. If you are building a
package that has already had been ported to your platform, you should not run into any prob-
lems that this book can’t help you solve, even if you have negligible background in program-
ming and none in porting.

How to use this book

The way you approach porting depends on how diffi cult it is. If it's a straightforward busi-
ness, something that has been done dozens of times before, like our example of porting bison
above, it'sjust a matter of following the individual steps. Thisis our approach in the fi rst part
of this book, where we look at the following topics:

« Getting the software. You might get the sources on tape, on CD-ROM, or by copying
them from the Internet. Getting them from this format into a format you can use to com-
pile them may not be as simple as you think. We'll ook at this subject in Chapter 2,
Unpacking the goodies and Chapter 3, Care and feeding of source trees.

» Confi gure the package for building. Although UNIX is arelatively well defi ned operat-
ing system, some features are less well defi ned. For example, there are a number of dif-
ferent ways to perform interprocess communication. Many packages contain alternative
code for a number of operating systems, but you still need to choose the correct alterna-
tive. People often underestimate this step: it seems simple enough, but in many cases it
can be more work than all the rest put together.

Confi guration is a complicated subject, and various methods have evolved. In Chapter 4,
Package confi guration, we'll ook at manual confi guration, shell scripts, and imake, the
X11 confi guration solution.

e Build the package. Thisiswhat most people understand by porting. We'll look at prob-
lems running make in Chapter 5, Building the package, and problems running the C com-
piler in Chapter 6, Running the compiler.

e Format and print the documentation, which we'll investigate in Chapter 7, Documenta-
tion.

e Test the results to make sure that they work. We'll look at this in Chapter 8, Testing the
package.

« WE'I discuss how to do installation correctly, accurately and completely in Chapter 9,
Installation.

e Tidy up after the build. In Chapter 10, Where to go from here, we'll look at what this
entails.

Fortunately, almost no package gives you trouble all the way, but it's interesting to follow a
port through from getting the software to the fi nished installation, so as far asis possible I'll
draw my examples in these chapters from a few free software packages for electronic mail and
Usenet news. Specifi cally, we'll consider Taylor uucp, the electronic mail reader elm, and C
news. In addition, we'll look at the GNU C compiler gcc, since it is one of the most

5 February 2005 02:09

10

frequently ported packages. We'll port them to an Intel 486DX/2-66 machine running
BSD/386 Version 1.1."

Part 2

Aslong as things go smoothly, you can get through the kind of port described in the fi rst part
of this book with little or no programming knowledge. Unfortunately, things don’t always go
smoothly. If they don't, you may need to make possibly far-reaching changes to the sources.
Part 1 doesn’'t pay much attention to this kind of modifi cation—that’s the topic of part 2 of
this book, which does expect a good understanding of programming:

e In Chapter 11, Hardware dependencies, we'll look at problems caused by differences in
the underlying hardware platform.

* In the following fi ve chapters, we'll look at some of the differences in different UNIX
fevours. First we'll look at a number of smaller differences in Chapter 12, Kernel
dependencies, then we'll look at some of the more common problem areasin Chapter 13,
Signals, Chapter 14, File systems, Chapter 15, Terminal drivers, and Chapter 16, Time-
keeping.

« We'll look at the surprising number of headaches caused by header fi les in Chapter 17,
Header files, and at system library functionality in Chapter 18, Function libraries.

* We'll examine the differences between various flvours of the more important tools in
Chapter 19, Make, Chapter 20, Compilers, and Chapter 21, Object files and friends.

Finally, there are a number of appendixes:

e Appendix A, Comparative reference to UNIX data types, describes the plethora of data
types that have devel oped since the advent of ANSI C.

* Appendix B, Compiler flags, gives you a comparative reference to the compiler flags of
many common systems.

« Appendix C, Assembler directives and flags, gives you a comparative reference to assem-
bler directives and fbgs.

* Appendix D, Linker flags, gives you a comparative reference to linker flbgs.

* Appendix E, Where to get sources, gives you information on where to fi nd useful source
fi les, including a number of the packages we discussin this book.

* With the exception of Taylor uucp, BSD/OS, which at the time was called BSD/386, is supplied with
all these packages, so you would only be need to port them if you wanted to modify them or port a new
version.

5 February 2005 02:09

Chapter 1: Introduction 11

Preparations

You don’t need much to port most packages. Normally everything you need—a C compiler, a
C library, make and some standard tools—should be available on your system. If you have a
system that doesn’t include some of these tools, such as a System V release where every indi-
vidual program seems to cost extra, or if the tools are so out-of-date that they are almost use-
less, such as XENIX, you may have problems.

If your tools are less than adequate, you should consider using the products of the Free Soft-
ware Foundation. In particular, the GNU C compiler gcc is better than many proprietary com-
pilers, and is the standard compiler of the Open Software Foundation. You can get many
packages directly from the Internet or on CD-ROM. If you are going to be doing any serious
porting, | recommend that you get at least the GNU software packages, 4.4BSD Lite, and
TEX, preferably on CD-ROM. In particular, the GNU software and 4.4BSD Lite contain the
sources to many library functions that may be missing from your system. In addition, many
of the GNU packages are available in precompiled binary form from a number of sources. I'll
refer to these packages frequently in the text.

5 February 2005 02:09

Unpacking the goodies

Before you can start porting, you need to put the sources on disk. We use the term source tree
to refer to the directory or hierarchy of directories in which the package is stored. Unpacking
the archives may not be as trivial as it seems: software packages are supplied in many differ-
ent formats, and it is not always easy to recognize the format. In this chapter, we’ll look at
how to extract the sources to create the source tree. In Chapter 3, Care and feeding of source
trees, we’ll see how the source tree changes in the course of a port, and what you can do to
keep it in good shape.

Getting the sources

The standard way to get software sources is on some form of storage medium, such as CD-
ROM or tape. Many packages are also available online via the Internet. The choice is not as
simple as it seems:

Software from the Internet

If you have an Internet connection, and if the software is available on the net, it’s tempting to
just copy it across the net with ftp. This may not be the best choice, however. Some packages
are very big. The compressed sources of the GNU C compiler, for example, occupy about 6
MB. You can’t rely on a typical 56 kb/s line to transfer more than about 2 kilobytes per sec-
ond.” At this speed, it will take nearly an hour to copy the archives. If you’re connected via a
SLIP line, it could take several hours.

Gaining access to the archive sites is not always trivial: many sites have a maximum number
of users. In particular, prep. ai . mt. edu, the prime archive site for gcc, is frequently over-
loaded, and you may need several attempts to get in.

In addition, copying software over the net is not free. It may not cost you money, but some-
body has to pay for it, and once you have the software, you need somewhere to store it, so you
don’t really save on archive media.

* Of course, it should approach 7 kilobytes per second, but network congestion can pull this figure down
to a trickle.

13

5 February 2005 02:09

14

Choice of archive medium

If you do choose to get your software on some other medium, you have the choice between
CD-ROM and tape. Many archive sites will send you tapes if you ask for them. This may
seem like a slow and old-fashioned way to get the software, but the bandwidth is high:” DAT
and Exabyte tapes can store 2 GB per tape, so a single tape could easily contain as much soft-
ware as you can duplicate in a week. In addition, you don’t need to make a backup before
you start.

Software on CD-ROM is not as up-to-date as a freshly copied tape, but it’s easy to store and
reasonably cheap. Many companies make frequent CD editions of the more widely known ar-
chive sites—for example, Walnut Creek CD-ROM has editions of most commonly known
software, frequently pre-ported, and Prime Time Freeware issues a pair of CD-ROMs twice a
year with 5 GB of compressed software including lesser-known packages. This can be worth
it just to be able to find packages that you would otherwise not even have known about.

If you have already ported a previous version of the package, another alternative is to use diffs
to bring the archive up to date. We’ll look at this on page 29.

Archives

You frequently get pure source trees on CD-ROM, but other media, and also many CD-ROMs,
transform the source tree several times:

e Asource tree is usually supplied in an archive, a file containing a number of other files.
Like a paper bag around groceries, an archive puts a wrapper around the files so that you
can handle them more easily. It does not save any space—in fact, the wrapper makes it
slightly larger than the sum of its files.

e Archives make it easier to handle files, but they don’t do anything to save space. Much
of the information in files is redundant: each byte can have 256 different values, but typi-
cally 99% of an archive of text or program sources will consist of the 96 printable ASCII
characters, and a large proportion of these characters will be blanks. It makes sense to
encode them in a more efficient manner to save space. This is the purpose of compres-
sion programs. Modern compression programs such as gzip reduce the size of an archive
by up to 90%.

< If you want to transfer archives by electronic mail, you may also need to encode them to
comply with the allowable email character set.

e Large archives can become very unwieldy. We have already seen that it can take several
hours to transfer gcc. If the line drops in this time, you may find that you have to start
the file again. As a result, archives are frequently split into more manageable chunks.

The most common form of archive you’ll find on the Internet or on CD-ROM is gzipped tar, a
tar archive that has been compressed with gzip. A close second is compressed tar, a tar

* To quote a fortune from the fortune program: Never underestimate the bandwidth of a station wagon
full of tapes..

5 February 2005 02:09

Chapter 2: Unpacking the goodies 15

archive that has been compressed with compress. From time to time, you’ll find a number of
others. In the following sections we’ll take a brief look at the programs that perform these
tasks and recover the data.

Archive programs
A number of archive programs are available:

« tar, the tape archive program, is the all-time favourite. The chances are about 95% that
your archive will be in tar format, even if it has nothing to do with tape.

« cpiois a newer file format that once, years ago, was intended to replace tar. cpio ar-
chives suffer from compatibility problems, however, and you don’t see them very often.

« ar is a disk archive program. It is occasionally used for source archives, though
nowadays it is almost only used for object file archives. The ar archive format has never
been completely standardized, so you get an ar archive from a different machine, you
might have a lot of trouble extracting it. We’ll look at ar formats again in , on page 383.

+ ghar is the shell archive program. It is unique amongst archive programs in never using
non-printing characters, so shar archives can be sent by mail. You can extract shar ar-
chives simply by feeding them to a (Bourne) shell, though it is safer to use a program
like unshar.

Living with tar

tar is a relatively easy program to use, but the consequences of mistakes can be far-reaching.
In the following sections, we’ll look at how to use tar and how to avoid trouble.

Basic use

When it comes to unpacking software, one or two tar commands can meet all your needs.
First, you often want to look at the contents before unpacking. Assuming that the archive is
named et1.3.tar, the following command lists the files in the archive:

$tar tf etl. 3. tar
etl. 3/
etl.3/bell.c

pet 1. 3/ bl t graph. c
et 1. 3/ BLURB

The t option stands for table of contents, and the f option means “use the next parameter in
the command (etl.3.tar) as the name of the archive to list.”

To read in the files that were listed, use the command:

$ tar xfv etl. 3. tar
etl. 3/

etl.3/bell.c

pet 1. 3/ bl t graph. c
et 1. 3/ BLURB

5 February 2005 02:09

16

The list looks the same, but this time the command actually creates the directory et1.3 if nec-
essary, and then creates the contents. The x option stands for extract, and the f option has the
same meaning as before. The v option means “verbose” and is responsible for generating the
list, which gives you the assurance that the command is actually doing something.

To bundle some files into an archive, use a command like:
$tar cvf etl. 3. tar etl. 3

This command packs everything in the et1.3 directory into an archive named et1.3.tar (which
is where we started). The ¢ option stands for “create” and the v option for “verbose.” This
time, the f means “use the next parameter in the command (et1.3.tar) as the archive to create.”

Absolute pathnames

Many versions of tar have difficulties with absolute pathnames. If you back up a directory
lusr/foo, they will only be able to restore it to exactly this directory. If the directory is
lusr/bin, and you’re trying to restore programs like sh, this could give you serious problems.
Some versions of tar have an option to ignore the leading /, and others, such as GNU tar,
ignore it unless you tell them otherwise.

Symbolic links

Many versions of tar will only back up a symbolic link, not the file or directory to which it
points. This can be very embarrassing if you send somebody a tape with what should be a
complete software package, and it arrives with only a single symbolic link.

Tape block size

Many DDS (DAT) drives work better with high blocking factors, such as 65536 bytes per
block (128 “tape blocks™). You can do this with the option b (block size):

$ tar cvfb /dev/tape 128 foo-dir

Unfortunately, this can cause problems too. Some DDS drives cannot read tapes with block
sizes of more than 32768 bytes, and some versions of tar, such as SGI IRIS 5.x, cannot handle
tapes blocked larger than 20 tape blocks (10240 bytes). This is a show-stopper if you have a
tape which is really blocked at more than this size: you just won’t be able to read it directly.
You can solve this problem by installing GNU tar or piping the archive through dd:

$ dd if=/dev/rm/ctape0 i bs=128b obs=2b | tar xvf -

File names

Most versions of tar perform filename matching based on the exact text as it appears on the
tape. If you want to extract specific files, you must use the names by which they are known in
the archive. For example, some versions of tar may end up writing absolute names with two
leading slashes (like //usr/bin/sh, for example). This doesn’t worry the operating system,
which treats multiple leading slashes the same as a single leading slash, but if you want to

5 February 2005 02:09

Chapter 2: Unpacking the goodies 17

extract this file, you need to write:

$ tar x //usr/bin/sh

File name sorting

A tar archive listing with tar tv deliberately looks very much like a listing done with Is -I.
There is one big difference, however: Is -l sorts the file names by name before displaying
them, whereas tar, being a serial archive program, displays the names in the order in which
they occur in the archive. The list may look somewhat sorted, depending on how the archive
was created, but you can’t rely on it. This means that if you are looking for a file name in an
archive, you should not be misled if it’s not where you expect to find it: use tools like grep or
sort to be sure.

tar: dir - cannot create
With System V systems, you may see things like:

$ tar xvf shellutils-1.9.4.tar

tar: shellutils-1.9.4/ - cannot create

x shel lutils-1.9.4/ QCPYING 17982 bytes, 36 tape bl ocks

x shel lutils-1.9.4/ QCPYING LI B, 25263 bytes, 50 tape bl ocks
tar: shellutils-1.9.4/1ib/ - cannot create

x shel lutils-1.9.4/1ib/Makefile.in, 2868 bytes, 6 tape bl ocks
x shellutils-1.9.4/1ib/getopt.h, 4412 bytes, 9 tape bl ocks

This “bug” has been around so long that you might suspect that it is an insider joke. In fact, it

is a benign compatibility problem. The POSIX.2 standard tar format allows archives to con-
tain both directory and file names, although the directory names are not really necessary:
assuming it has permission, tar creates all directories necessary to extract a file. The only use
of the directory names is to specify the modification time and permissions of the directory.
Older versions of tar, including System V tar, do not include the directory names in the ar-
chive, and don’t understand them when they find them. In this example, we have extracted a
POSIX.2 tar archive on a System V system, and it doesn’t understand (or need) the directory
information. The only effect is that the directories will not have the correct modification time-
stamps and possibly not the correct permissions.

Losing access to your files

Some versions of tar, notably System V versions, have another trick in store: they restore the
original owner of the files, even if that owner does not exist. That way you can lose access to
your files completely if they happen to have permissions like rw - - - - - - . 'You can avoid this
by using the o flag (restore ownership to current user).

It would be nice to be able to say “make a rule of always using the o flag”. Unfortunately,
other versions of tar define this flag differently—check your man pages for details.

5 February 2005 02:09

18

Multivolume archives

tar can also handle multi-volume archives, in other words archives that go over more than one
tape. The methods used are not completely portable: one version of tar may not be able to
read multivolume archives written by a different version. Some versions of tar just stop writ-
ing data at the end of one tape and continue where they left off at the beginning of the next
reel, whereas others write header information on the second tape to indicate that it is a contin-
uation volume. If possible, you should avoid writing multivolume archives unless you are
sure that the destination system can read them. If you run into problems with multivolume ar-
chives you can't read, you might save the day with something like:

$ (dd i f=$TAPE
++ echo 1>&2 Change tapes and press RET
++ read confirmnation the nane of the variable isn’'t inportant

++ dd i f =$TAPE

++ echo 1>&2 Change tapes and press RET
++ read confirmnation

++ dd i f=$TAPE) | tar xvf -

This uses dd to copy the fi rst tape to stdout, then prints a message and waits for you to press
the enter key, copies a second tape, prompts and waits again, and then copies a third tape.
Since all the commands are in parentheses, the standard output of all three dd commands is
piped into the tar waiting outside. The echo commands need to go to stderr (that's the 1>82)
to get displayed on the terminal —otherwise they would be piped into the tar, which would
not appreciateit.

This only works if the version of tar you use doesn't put any header information (like reel
number and arepeat of the fi le header) at the beginning of the subsequent reels. If it does, and
you can't fi nd a compatible tar to extract it again, the following method may help. Assuming
a user of an SCO system has given you a large program foo spread over 3 diskettes, each of
which contains header information that your tar doesn’t understand, you might enter

$ tar x foo extract first part fromfirst floppy
$ nv foo foo.0 save the first part

$ tar x foo extract second part fromsecond fl oppy
$ nv foo foo.1 save the second part

$ tar x foo extract third part fromthird floppy
$ nv foo foo.2 save the third part

$ cat foo.* >foo concat enat e t hem

$ rmfoo.* and renove the internediate files

Extracting an archive with tar

Using tar to extract afi leisnormally pretty straightforward. You can cause alot of confusion,
however, if you extract into the wrong directory and it already contains other fi les you want to
keep. Most archives contain the contents of a single directory as viewed from the parent
directory—in other words, the name of the directory is the fi rst part of al fi le names. All
GNU software follows this rule:

Chapter 2: Unpacking the goodies 19

$ tar tvf groff-1.09.tar

drwxr-xr-x jjc/staff 0 Feb 19 14:15 1994 groff-1.09/

drwxr-xr-x jjc/staff 0 Feb 19 14:13 1994 groff-1.09/include/

-rw-r--r—- jjc/staff 607 Sep 21 12:03 1992 groff-1.09/include/Makefile.sub
-rw-r--r-- jjc/staff 1157 Oct 30 07:38 1993 groff-1.09/include/assert.h
-rw-r--r-- jjc/staff 1377 Aug 3 12:34 1992 groff-1.09/include/cmap.h
-rw-r--r—- jjc/staff 1769 Aug 10 15:48 1992 groff-1.09/include/cset.h

Others, however, show the fi les from the viewpoint of the directory itself —the directory name
ismissing in the archive:

$ tar tvf blaster.tar

-rw-r--r-- 400/1 5666 Feb 14 01:44 1993 README
-rw-r--r-—- 400/1 3638 Feb 14 01:44 1993 INSTALL
-r--r--r—- 400/1 2117 Feb 14 01:44 1993 LICENSE
-rw-r--r-- 400/1 2420 Feb 14 15:17 1993 Makefile
-rw-r--r—- 400/1 3408 Feb 14 01:44 1993 sb_asm.s
—W——————— 400/1 10247 Feb 14 01:44 1993 stream.c
-rw-r--r-- 400/1 1722 Feb 14 04:10 1993 apps/Makefile

If you have an archive like the fi rst example, you want to be in the parent directory when you
extract the archive; in the second case you need to fi rst create the directory and then cd to it.
If you extract the second archive while in the parent directory, you will face alot of cleaning
up. In addition, there is a good chance that fi les with names like README, INSTALL and
LICENSE may aready be present in that directory, and extracting this archive would over-
write them. There are a couple of waysto avoid these problems:

« Alwayslook at the archive contents with tar t before extracting it. Once you have looked
at the archive contents, you can change to the correct directory into which to extract it.
In the case of groff above, you might choose a directory name like “/mysources’. In the
case of blaster, you could create a directory “/mysources/blaster and extract into that
directory.

* Alternatively, you can always create a subdirectory and extract there, and then rename
the directory. In the fi rst example, you might create a directory “/mysources/temp. After
extraction, you might fi nd that the fi les were in a directory “/mysources/temp/groff-1.09,
so you could move them with

$nv groff-1.09 ..
If they extract directly into temp, you can rename the directory:
$cd..
$ nv tenp groff-1.09
This method may seem easier, but in fact there are a couple of problems with it:

¢ You need to choose a directory name that doesn't clash with the real name. That's
why we used the name temp in this example: otherwise it won't be possible to
rename the directory in the fi rst example, since you would be trying to overwrite the
directory with one of its own subdirectories.

* A number of shells use the shorthand notation ~/ to refer to your home directory.

5 February 2005 02:09

5 February 2005 02:09

20

¢ Not al fevours of UNIX alow you to move directories.

The command to extract is almost identical to the command to list the archive—a clear case
for a shell with command line editing:

$ tar tvf groff-1.09.tar list the archive
$ tar xvf groff-1.09.tar extract the archive

Frequently your tar archive will be compressed in some way. There are methods for extract-
ing fi les directly from compressed archives. We'll examine these when we look at compres-
sion programs on page .

Compr on programs
If the archive is compressed, you will need to uncompress it before you can extract fi les from
it. UNIX systems almost invariably use one of three compression formats:

« compressed fi les are created with the compress program and extracted with uncompress.
They can be up to 70% smaller than the original fi le. The zcat program will uncompress
a compressed fi le to the standard outpuit.

e gzpped files are created by gzip and extracted by gunzip. They can be up to 90%
smaller than the original fi le. gunzip will also uncompress compressed or packed fi les.

« packed fi les are obsolete, though you still occasionally see packed man pages. They are
created by the pack program and uncompressed by the unpack program. The pcat pro-
gram will uncompress a packed fi le to the standard output.

Each of these programs is installed with three different names. The name determines the
behavior. For example, gzip is also known as gunzip and zcat:

$1s -li /opt/bin/gzip /opt/bin/gunzip /opt/bin/zcat

13982 -rwxr-xr-x 3 grog wheel 77824 Nov 5 1993 /opt/bin/gunzip
13982 -rwxr-xr-x 3 grog wheel 77824 Nov 5 1993 /opt/bin/gzip
13982 -rwxr-xr-x 3 grog wheel 77824 Nov 5 1993 /opt/bin/zcat

The-i option to Istellsit to list the inode number, which uniquely identifi es the file. In this
case, you will see that all three names are linked to the same fi le (and that the link count fi eld
is 3 as a result). You will notice that gzip has also been installed under then name zcat,

replacing the name used by compress. This is not a problem, since gzcat can do everything

that zcat can do, but it can lead to confusion if you rely on it and one day try to extract a

gzipped fi le with the real zcat.

Encoded files

Most archive programs and all compression programs produce output containing non-print-
able characters. This can be a problem if you want to transfer the archive via electronic mail,
which cannot handle all binary combinations. To solve this problem, the fi les can be encoded:
they are transformed into a representation that contains only printable characters. This hasthe
disadvantage that it makes the fi le signifi cantly larger, so it is used only when absolutely

5 February 2005 02:09

Chapter 2: Unpacking the goodies 21

necessary. TwWo programs are in common Use:

e uuencode is by far the most common format. The companion program uudecode will
extract from standard input.

* btoa format is used to some extent in Europe. It does not expand the fi le as much as
uuencode (25% compared to 33% with uuencode), and is more resistant to errors. You
decode the fi le with the atob program.

Split archives

Many ftp sites split large archives into equal-sized chunks, typically between 256 kB and 1.44
MB (a fbppy disk image). It's trivial to combine them back to the original archive: cat will
dojust that. For example, if you have a set of fi les base09.000 through base09.013 represent-
ing a gzipped tar archive, you can combine them with:

$ cat base09.* > base09.tar.gz

This will, of course, require twice the amount of storage, and it takes time. It's easier to
extract them directly:

$ cat base09.* | gunzip | tar xvf -

drwxr - xr-x root/wheel 0 Aug 23 06:22 1993 ./shin/

-r-xr-xr-x bin/bin 106496 Aug 23 06:21 1993 ./sbi n/ chown

-r-xr-xr-x bin/bin 53248 Aug 23 06:21 1993 ./sbin/mount_nfs
etc

cat pipes all archives in alphabetical fi le name order to gunzip. gunzip uncompresses it and
pipes the uncompressed data to tar, which extracts the fi les.

Extracting alinked file

tar is clever enough to notice when it is backing up multiple copies of a fi le under different
names, in other words so-called hard links. When backing up, the fi rst time it encounters a
fi le, it copies it to the archive, but if it encounters it again under another name, it simply cre-
ates an entry pointing to thefi rst fi le. This saves space, but if you just try to extract the second
fi le, tar will fail: in order to extract the second name, you also need to extract the fi le under
the fi rst name that tar found. Most versions of tar will tell you what the name was, but if you
are creating archives, it helps to back up the most-used name fi rst.

What's that archive?

All the preceding discussion assumes that you know the format of the archive. The fun begins
when you don’t. How do you extract it?

Your primary indication of the nature of the file is its fi lename. When archives are created,
compressed and encoded, they usually receive a file name suffix to indicate the nature of the
file. You may also have come across the term extension, which comes from the MS-DOS
world. These suffi xes accumulate as various steps proceed. A distribution of gcc might come
in afilecalled gcc-2.5.8.tar.gz.uue. This name gives you the following information:

5 February 2005 02:09

22

« The name of the package: gcc.

e Therevision level: -2.5.8. You would expect the name of the root directory for this pack-
agetobegcc-2.5.8.

e The archive format: .tar. Since thisis a GNU package, you can expect the name of the
uncompressed archive to be gcc-2.5.8.tar.

e The compression format: .gz (gzip format). The name of the compressed archive would
be gcc-2.5.8.tar.gz.

e Theencoding format: .uue (encoded with uuencode).

Some operating systems, notably System V.3 and Linux, still provide fi le systems which
restrict fi le names to 14 characters. This can lead to several problems.” Archives distributed
for these systems frequently use variants on these names designed to make them shorter;
gcc-2.5.8.tzue might be an alternate name for the same package.

The following table gives you an overview of archive fi le suffi xes you might encounter. We'll
look at source fi le suffi xes in Chapter 20, Compilers, page

Table 2—1: Common file name suffixes

Name | Format

suffi x

Alternate patch reject fi le name.

- emacs backup fi les, also used by some versions of patch.
Y RCSfile. Created by ci, extracted by co.

a ar format. Created by and extracted with ar.

.arc Created by and extracted with arc.

arj DOS arj format

.cpio Created by and extracted with cpio.

diff Differencefi le, created by diff, can be applied by patch.
gif Graphics Interchange Format

.0z gzip format. Created by gzip, extracted with gunzip.

.hgx HQX (Apple Macintosh)

Jpg JPEG (graphics format)

Azh LHa, LHarc, Larc

.orig Original fi le after processing by patch.

rej patch regject fi le.

.shar Shell archive: created by shar, extracted with any Bourne-compatible shell.
Sit Stuff-It (Apple Macintosh)

tar tar format. Created by and extracted with tar.

.uu uuencoded fi le. Created by uuencode, decoded with uudecode.

* |f you have one of these systems, and you have a choice of fi le systems, you can save yourself alot of
trouble by installing one that allows long fi le names.

5 February 2005 02:09

Chapter 2: Unpacking the goodies 23

Table 2—1: Common file name suffixes (continued)
Name | Format

suffi x

.uue Alternative for .uu

A Compressed with compress, uncompressed with uncompress, zcat or gunzip.

.z Two different formats. either pack format, compressed by pack, extracted with

pcat, or old gzip format, compressed by gzip, extracted with gunzip.
.Zip Zip (either PKZip or Zip/Unzip)
.Z00 Zoo

|dentifying archives

Occasionally you'll get an archive whose name gives you no indication of the format. Under
these circumstances, fi nding the kind of archive can be a matter of trial and error, particularly
if itiscompressed. Here are a couple of ideas that might help:

file

The UNIX file command recognizes a lot of standard fi le types and prints a brief description
of the format. Unfortunately, the fi le really needs to be afi le: file performs some fi le system
checks, so it can’t read from standard input. For example,

$file~*

Oinstall.txt: Engl i sh text

base09. 000: gzi p conpressed data - deflate nethod , origi nal
file name , last nodified: Mon Aug 23 07:53:21 1993 , nax conpressi on o0s:
Uni x

base09. 001: dat a

...nmore of sane

base09. 011: DCB execut abl e (GV)

nman- 1. 0. cpi o: cpi o archive

tcl7.3.tar. gz: enpty

tex: directory

tk3.6.tar: PCB X tar archive

The information for base09.000 was one output line that wrapped around onto 3 output lines.

Most fi les have certain special values, so-called magic numbers, in specifi ¢ locations in their
headers. file uses afile, usualy /etc/magic, which describes these formats. Occasionaly it
makes a mistake—we can be reasonably sure that the file base09.011 is not a DOS
executable, but it has the right number in the right place, and thus fools file.

This version of file (from BSD/OS) recognizes base09.000—and none of the following pieces
of the archive—as a gzip archive fi le, and even extracts alot of information. Not al versions
of file do this. Frequently, it just tells you that the archive is data—in this case, the fi rst
assumption should be that the archive is compressed in a format that your version of file
doesn’t recognize. If thefi leis packed, compressed or gzipped, gzip expands it, and otherwise
it prints an error message, so the next step might look something like:

5 February 2005 02:09

24

$ gunzip < nystery > /tnp/junk

$ aha! it didn’t conplain
$file /tnp/junk

/tmp/junk: POSIX tar archive

In this case, we have established that the fi le mystery is, in fact, a compressed tar archive,
though we don’t know what kind of compression, since gzip doesn't tell.

If fi le tells you that the fi leis ASCII or English text, then you can safely look at it with more
or less:

$ nore strange-file

Newsgroups: comp.sources.unix

From: clewis@ferret.ocunix.on.ca (Chris Lewis)
Subject: v26i014: psroff 3.0, Patch09

Sender: unix-sources-moderator@pa.dec.com
Approved: vixie@pa.dec.com

Submitted-By: clewis@ferret.ocunix.on.ca (Chris Lewis)
Posting-Number: Volume 26, Issue 14
Archive-Name: psroff3.0/patch9

This is official patch 09 for Psroff 3.0.
intervening |ines skipped
clewis@ferret.ocunix.on.ca (Chris Lewis)

Patchwrapped: 920128230528
Index: ./lib/1j3.fonts

> /tmp/PATCHold/ ./1ib/1j3.fonts Tue Jan 28 23:03:45 1992
-—— ./1ib/1j3_fonts Tue Jan 28 23:03:46 1992

Thisis aplain text patch fi le: you can pass it straight through the patch program, since patch
doesn’'t worry about junk at the beginning or the end of the file. We'll ook at patch in depth
in Chapter 3, Care and feeding of source trees, page 30.

Newsgroups: comp.sources.unix From: Im@Sunburn.Stanford.EDU (Larry McVoy)
Subject: v26i1020: perfmon - interface to rstatd(8)

Sender: unix-sources-moderator@pa.dec.com

Approved: vixie@pa.dec.com ... nore stuff omtted

#1 /bin/sh

This is a shell archive. Remove anything before this line,

then unpack It by saving it into a file and typing "'sh file".

Asthetext tellsyou, thisisashell archive. To extract it, you can remove al text up to the line
starting with #!/bin/sh and extract it with the Bourne shell, or passit through unshar asit is.

begin 666 magic.gz

MZXL(C"“_INRT“ “VBA<WIE<@I-4KV_VS*“ ,WO0,4W” (’N“; :\9:B+3) T . *1HT*DH
M<+3$V-+1 (HB”*2?2/V) 14W=YMED-\OGWSHEOKO . #[! [V/A! *4B<(M4_>1C>ZTS
MNW&SB:<D5>1J9_(O\@:@C?SIHSU@] I “P7V’ &AL6V=TOAF?Y“ [N%CH#U\@DOB -
MI%/PGK+NVDAV/ I*KH)C3[= 7, 1<>""R9“ T<<KGZC3Z4K9*VUEL “B .0 "C?H&Q4
MA+,8C ™" (12887 ((7&<H?1 7 [; IX400?2X]$Y) '\HR3\UU . FT(TE#I >H#OYES*M

5 February 2005 02:09

Chapter 2: Unpacking the goodies 25

MUSCSUHUPT>8L 2WNZQKNU™_[*_S</S™N@1226061"'15.. 1 “K) ; DF4#4RHFD7”
M2;/R8B1/=)5:U*1TMG\W>C=00PIF]N: (U[LA5\B>*N1 IGPDNb. . *4"9+$TU8
MXA7>ZEWS''B; <\3+%0370* (. %[U%8) TK&<1/06 [6\ IM>TPDM "UL+Y3UNXAHK !
M2~ 8*URR?MZKAG :NWISL28&UM7 118, (SOSK<! (D+< 44<N&“E$R ; OKDYH7 1 -P
M<?”66PQR.R73X>E , DOU_"'QFUP@YFCJI$&IVST=")2L0: ~OH%(QNHF :NMI$>08
I3HPHAM<HHA>]<O$)*>PYU)JIPIET>;*:>51)4S]90, /(PQ?1S4#* “ 11

end

This is a uuencoded fi le. The fi rst line contains the word begin, the default security (which
you can’'t change) and the name of the archive (magic.gz). The following lines usually have
the same length and begin with the same letter (usually M)—this is the encoded length specifi -
cation for the line. If they don't, something has probably gone wrong in the transmission.
The last datalineis usually shorter, and thus has a different fi rst character. Finaly, the archive
contains two end lines: the fi rst is usually the single character “, and the second is the word
end on aline by itself.

To extract thefi lg, fi rst pass it through uudecode, which will create the fi le magic.gz, then gun-
zip it to create the fi lemagic. Then you might need to usefi leto fi nd out what it is.

$ uudecode < nagi c. uue
$ gunzi p nagi c. gz

$ file magic

magic: English text

Don’t confuse uuencode format with this:

xbtoab5 78 puzzle.gz Begin

+,7CL(W%L ; 1 1?e@F*(u61)690DSN .. :h/s&KF-$KGIWABMP ,, 0BTe$ “ Y<$gSODDAUZO:_0ign&P/S%8H
[AX_&10:KkO$SN BWjWIKG?U*XLRJ6' 1S E ;mJ . k” Ea#$EL9g3*Bb . c9J@t/K/ *N>62BM=7Ujbp7$YHN
,M""%IZ93t155%0V""_S#NMI4;GC_N"=%+k5LX, A*ul i>1BE@Qi0T4cP/A#coB " “a] 1 [8jgS1L=p6Kit
X9EUSNY+(>-N=YU4 (ae0GoFHISgME#CL (I ; ;K<”aBE/aZRX/": .cbh&9[r . f3bpQJQ&FW:*S_7DW9
B6NoOQkC7@A0?=YLSY IAc@01eeX; bF/9%4E627AABCR U] 3?7Zhke . 14*T=U@TF9@1Gs4\jQPjbBm\H
K24N: $HKre7#7#jG "KFme " djsi<<*"'N

xbtoa End N 331 14b E 5c S 75b7 R b506b514

This is a btoa encoded fi le, probably also gzipped like the previous example. Extract it with
btoa -a and then proceed as with uuencoded fi les.

What's in that archive?

Now you have discovered the format of the archive and can extract the fi lesfrom it. There'sa
possibility, though, that you don’t know what the archive is good for. This is frequently the

case if you have atape or a CD-ROM of an ftp server, and it contains some cryptic names that

suggest the fi les might possibly be of interest. How do you fi nd out what the package does?

README

By convention, many authors include a fi le README in the main directory of the package.
README should tell you at least:

26

e Thename of the package, and what it is intended to do.
* The conditions under which you may useit.
For example, the README fi le for GNU termcap reads:

This is the QW terncap library -- a library of Cfunctions that enabl e prograns
to send control strings to termnals in a way independent of the termnal type.

Most of this package is also distributed with G\U BEmacs, but it is available in
this separate distribution to nmake it easier to install as -lternctap.

The G\U terntap library does not place an arbitrary limt on the size of terntap
entries, unlike nost other terntap libraries.

See the file INSTALL for conpilation and installation instructions.

P ease report any bugs in this library to bug-gnu-enacs@rep.ai.mt.edu. You
can check which version of the library you have by using the RCS ‘ident’ command
on |ibterncap. a.

In some cases, however, there doesn’t seem to be any fi le to tell you what the package does.
Sometimes you may be lucky and fi nd a good man page or even documentation intended to be
printed as hardcopy—see Chapter 7, Documentation for more information. In many cases,
though, you might be justifi ed in deciding that the package is so badly documented that you
give up.

There may also be fi les with names like README.BSD, README.SYSV, README.X11 and
such. If present, these will usually give specifi ¢ advice to people using these platforms.

INSTALL file

There may be a separate INSTALL fi le, or the information it should contain might be included
in the README fi le. It should tell you:

e A ligt of the platforms on which the package has been ported. This list may or may not
include your system, but either way it should give you afi rst inkling of the effort that lies
in store. If you're running System V.4, for example, and it has aready been ported to
your hardware platform running System V.3, then it should be easy. If it has been ported
to V.4, and you're running V.3, this can be a completely different matter.

e A description of how to confi gure the package (we'll look at this in Chapter 4, Package
confi guration).

e A description of how to build the package (see Chapter 4, Package confi guration and
Chapter 19, Make for more details on this subject).

It may, in addition, offer suggestions on how to port to other platforms or architectures.

5 February 2005 02:09

5 February 2005 02:09

Chapter 2: Unpacking the goodies 27

Other files

The package may include other information fi les as well. By convention, the names are writ-
ten in upper case or with an initial capital letter, so that they will be stand out in a directory
listing. The GNU project software may include some or al of the following fi les:

e ABOUT isan alternative name used instead of README by some authors.

e COPYING and COPYING.LIB are legal texts describing the constraints under which you
may use the software.

e Changelogisalist of changes to the software. This name is hard-coded into the emacs
editor macros, so it's a good chance that a fi le with this name will really be an emacs-
style change log.

« MANIFEST may giveyou alist of the fi lesintended to be in the package.
« PROBLEMSmay help you if you runinto problems.

e SERVICE is supplied by the Free Software Foundation to point you to companies and
individuals who can help you if you run into trouble.

A good example of these fi lesisthe root directory of Taylor uucp:

$ gunzi p </ cd0/ gnu/ uucp/ uucp-1.05.tar. gz |tar tvf -

dr vir wkr - x 269/ 15 0 My 6 06:10 1994 uucp-1. 05/
-r--r--r-- 269/ 15 17976 May 6 05:23 1994 uucp- 1. 05/ QPYI NG
-r--r--r-- 269/ 15 163997 May 6 05:24 1994 uucp- 1. 05/ ChangelLog
e

This archive adheres to the GNU convention of including the name of the top-level directory
in the archive. When we extract the archive, tar will create a new directory uucp-1.05 and put
al thefilesinit. Sowe continue:

$ cd /porting/src the directory in which | do ny porting
$ gunzi p </ cd0/ gnu/ uucp/ uucp-1.05.tar. gz |tar xf -
$

After extraction, the resultant directory contains most of the “standard” fi les that we discussed
above:

$ cd uucp-1.05

$1s -1
total 1724
drwkrwkr-x 7 grog wheel 1536 May 6 06:10 .
drwxrwkrws 44 grog wheel 3584 Aug 19 14:34 ..
-r--r--r-- 1 grog wheel 17976 May 6 05:23 QOPYI NG
-r--r--r-- 1 grog wheel 163997 May 6 05:24 Changelog
-r--r--r-- 1 grog wheel 499 May 6 05:24 MAN FEST
SFWr--T-- 1 grog wheel 14452 May 6 06: 09 Makefile.in
-r--r--r-- 1 grog wheel 4283 May 6 05:24 NEWB
-r--r--r-- 1 grog wheel 7744 May 6 05:24 README
-r--r--r-- 1 grog wheel 23563 My 6 05:24 TADO
-r--r--r-- 1 grog wheel 32866 May 6 05:24 chat.c

5 February 2005 02:09

28

“r=-r--r-- 1 grog

-rwKrwkr-x 1 grog

-r--r--r-- 1 grog
...etc

wheel
wheel
wheel

19032 My 6 05:24 config.h.in
87203 May 6 05:27 configure
11359 May 6 05:24 configure.in

5 February 2005 02:09

Care and feeding of source trees

In Chapter 2, Unpacking the goodies, we saw how to create an initial source tree. It won’t
stay in this form for long. During a port, the source tree is constantly changing:

< Before you can even start, you may apply patches to the tree to bring it up to date.

e After unpacking and possibly patching, you may find that you have to clean out junk left
behind from a previous port.

e Inorder to get it to compile in your environment, you perform some form of configura-
tion, which modifies the tree to some extent. We’ll look at package configuration in
Chapter 4, Package configuration.

e During compilation, you add many new files to the tree. You may also create new subdi-
rectories.

e After installation, you remove the unneeded files, for example object files and possibly
the final installed files.

e After cleaning up, you may decide to archive the tree again to save space on disk.

Modifying the source tree brings uncertainty with it: what is original, what have | modified,
how do | remove the changes | have made and get back to a clean, well-defined starting point?
In this chapter we’ll look at how to get to a clean starting point. Usually this will be the case
after you have extracted the source archive, but frequently you need to add patches or remove
junk. We’ll also look at how to build a tree with sources on CD-ROM, how to recognize the
changes you have made and how to maintain multiple versions of your software.

Updating old archives

You don’t always need to get a complete package: another possibility is that you might
already have an older version of the package. If it is large—again, for example, the GNU C
compiler—you might find it better to get patches and update the source tree. Strictly speak-
ing, a patch is any kind of modification to a source or object file. In UNIX parlance, it’s
almost always a diff, a file that describes how to modify a source file to produce a newer ver-
sion. Diffs are almost always produced by the diff program, which we describe in Chapter 10,

29

5 February 2005 02:09

30

Where to go from here, page 144. In our case study, we have gcc version 2.5.6 and want to
update to 2.5.8. We discover the following files on the file server:

ftp>1Is

200 PCRT command successful .

150 (pening ASA | node data connection for /bin/ls.

-rwrwr-- 1 117 1001 10753 Dec 12 19:15 gcec-2.5.6-2.5.7.diff. gz
Srwrwr-- 1 117 1001 14726 Jan 24 09:02 gcc-2.5.7-2.5.8.diff.gz
-rwrwr-- 1 117 1001 5955006 Dec 22 14:16 gcec-2.5.7.tar. gz
-rwrwr-- 1 117 1001 5997896 Jan 24 09: 03 gcc-2.5.8.tar. gz

226 Transfer conpl ete.

ftp>

In other words, we have the choice of copying the two diff files gcc-2.5.6-2.5.7.diff.gz and
gce-2.5.7-2.5.8.diff.gz, a total of 25 kB, and applying them to your source tree, or copying the
complete 6 MB archive gcc-2.5.8.tar.gz

Patch

diff files are reasonably understandable, and you can apply the patches by hand if you want,
but it’s obviously easier and safer to use a program to apply the changes. This is the purpose
of patch. patch takes the output of the program diff and uses it to update one or more files. To
apply the patch, it proceeds as follows:

1. First, it looks for a file header. If it finds any junk before the file header, it skips it and
prints a message to say that it has done so. It uses the file header to recognize the kind of
diff to apply.

2. It renames the old file by appending a string to its name. By default, the string is .orig,
so foo.c would become foo.c.orig.

3. It then creates a new file with the name of the old file, and copies the old file to the new
file, modifying it with the patches as it goes. Each set of changes is called a hunk.

The way patch applies the patch depends on the format. The most dangerous kind are ed style
diffs, because there is no way to be sure that the text is being replaced correctly. With context
diffs, it can check that the context is correct, and will look a couple of lines in each direction
if it doesn’t find the old text where it expects it. You can set the number of lines it will look
(the fuzz factor) with the - F flag. It defaults to 2.

If the old version of the file does not correspond exactly to the old version used to make the
diff, patch may not be able to find the correct place to insert the patch. Except for ed format
diffs, it will recognize when this happens, and will print an error message and move the corre-
sponding hunk to a file with the suffix .rgj (for reject).

A typical example are the patches for X11R5. You might start with the sources supplied on
the companion CD-ROM to X Window System Administrator’s Guide by Linda Mui and Eric
Pearce. This CD-ROM includes the complete X11R5 sources to patch level 21. At the time
of writing, five further patches to X11R5 have been released. To bring the source tree up to
patch level 26, you would proceed as follows:

5 February 2005 02:09

Chapter 3: Care and feeding of source trees 31

First, read the header of the patch fi le. As we have seen, patch allows text before the first file
header, and the headers frequently contain useful information. Looking at patch 22, we see:

$ gunzip < /cd0/x11r5/fix22.gz | nore
X11 R5 Public Patch #22
MT X Gonsortium

To apply this patch:

cd to the top of the source tree (to the directory containing the
"mt" and "contrib" subdirectories) and do:

patch -p -s < ThisFile

Patch works silently unless an error occurs. You are likely to get the
fol | owi ng warni ng nessages, whi ch you can i gnore:

In this example we have used gunzip to look at the file directly; we could just as well have
used GNU zcat. The patch header suggests the flags - s and - p. The - s flag to patch tells it
to perform its work silently—otherwise it prints out lots of information about what it is doing
and why. The -p flag is one of the most complicated to use: it specifies the pathname strip
count, how to treat the directory part of the file names in the header. We’ll look at it in more
detail in the section Can’t fi nd fi le to patch on page 36.

This information is important: patch is rather like a chainsaw without a guard, and if you start
it without knowing what you are doing, you can make a real mess of its environment. In this
case, we should find that the root of our source tree looks like:

$ cd /usr/x11r5

$1s -FCnit

I makefile RELNOTES. ns ext ensi ons/ rgb/
LABEL bug- r epor t fonts/ server/
Makefil e clients/ har dcopy/ util/
Makefile.ini config/ i ncl ude/

RELNOTES. PS denos/ l'ib/

RELNOTES. TXT doc/ nan/

that looks CK, we're in the right place
$ gunzip < /cd0/x11r5/fix22.gz | patch -p -s

We’ve taken another liberty in this example: since the patch file was on CD-ROM in com-
pressed form, we would have needed to extract it to disk in order to patch the way the file
header suggests. Instead, we just gunzp directly into the patch program.

It’s easy to make mistakes when patching. If you try to apply a patch twice, patch will notice,
but you can persuade it to reapply the patch anyway. In this section, we’ll look at the havoc
that can occur as a result. In addition, we’ll disregard some of the advice in the patch header.
This is the way | prefer to do it:

$ gunzip < /cd0/x11r5/fix23.gz | patch -p & patch.|og

This invocation allows patch to say what it has to say (no - s flag), but copies both the stan-
dard output and the error output to the file patch.log, so nothing appears on the screen. You
can, of course, pipe the output through the tee program, but in practice things happen so fast

5 February 2005 02:09

32

that any error message will usually run off the screen before you can read it. It certainly
would have done so here: patch.log had alength of 930 lines. It starts with

Hm.. Looks like a newstyle context diff to me...
The text leading up to this was:
| Rel ease 5 Public Patch #23
| MT X Consortium
foll oned by the conpl ete header
| Prereqg: public-patch-22

Thislast line is one safeguard that patch offers to ensure that you are working with the correct
source tree. If patch fi nds a Prereq: line in the fi le header, it checks that this text appears in
theinput fi le. For comparison, here’s the header of mit/bug-report:

To: xbugs@xpo.lcs.mt.edu
Subj ect: [area]: [synopsis] [repl ace with actual area and short description]

VERSI O\
R5, publ i c-pat ch-22
[MT public patches will edit this line to indicate the patch |evel]

In this case, patch fi ndsthe text. When it does, it prints out the corresponding message:

|
| *** /tnp/, RCX 1006225 Tue Mar 9 14:40:48 1993
| --- mt/bug-report Tue Mar 9 14:37: 04 1993

God. This file appears to be the public-patch-22 version.

This message shows that it has found the text in mit/bug-report. Thefi rst hunk in any X11 diff
changes this text (in this case to public-patch-23), so that it will notice a repeated application
of the patch. Continuing,

Patching file nit/bug-report using Plan A ..

Hunk #1 succeeded at 2.

Hm.. The next patch | ooks |ike a newstyle context diff to ne...
The text leading up to this was:

| *** /tnp/, RC3t 1005203 Tue Mar 9 13:45:42 1993

|--- mt/lib/ X1 makefile Tue Mar 9 13:45:45 1993

Patching file mt/lib/ X Inmakefile using Plan A ..

Hunk #1 succeeded at 1.

Hunk #2 succeeded at 856.

Hunk #3 succeeded at 883.

Hiunk #4 succeeded at 891.

Hunk #5 succeeded at 929.

Hunk #6 succeeded at 943.

Hunk #7 succeeded at 968.

Hunk #8 succeeded at 976.

Hm.. The next patch | ooks |ike a newstyle context diff to ne...

This output goes on for hundreds of lines. What happens if you make a mistake and try

5 February 2005 02:09

Chapter 3: Care and feeding of source trees 33

again?

$ gunzip < /cd0/x11r5/Fix23.gz | patch -p &> patch.log

This file doesn’t appear to be the public-patch-22 version--patch anyway? [n] y
bad choi ce. ..

Reversed (or previously applied) patch detected! Assume -R? [y] RETURN pressed
Reversed (or previously applied) patch detected! Assume -R? [y] RETURN pressed
Reversed (or previously applied) patch detected! Assume -R? [y] “C$

The fi rst message is printed because patch didn't fi nd the text public-patch-22 in the fi le
(in the previous step, patch changed it to read public-patch-23). This message also
appears in patch.log. Of course, in any normal application you should immediately stop and
check what's gone wrong. In this case, | make the incorrect choice and go ahead with the
patch. Worse till, | entered RETURN to the next two prompts. Finally, | came to my senses
and hit CTRL-C, the interrupt character on my machine, to stop patch.

Theresult of thisisthat patch removed the patches in the fi rst two fi les (the -R flg tells patch
to behave as if the fi les were reversed, which has the same effect as removing aready applied
patches). | now have the fi rst two fi les patched to patch level 22, and the others patched to
patch level 23. Clearly, | can't leave things like this.

Two wrongs don’t normally make a right, but in this case they do. We do it again, and what
we get this time looks pretty much the same as the time before:

$ gunzip < /cd0/x11r5/Fix23.9z | patch -p &> mit/patch.log
Reversed (or previously applied) patch detected! Assume -R? [y] “C$

In fact, this time things went right, as we can see by looking at patch.log:

|** /tmp/,RCSt1006225 Tue Mar 9 14:40:48 1993
|--- mit/bug-report Tue Mar 9 14:37:04 1993

Good. This file appears to be the public-patch-22 version.
Patching file mit/bug-report using Plan A...

Hunk #1 succeeded at 2.

Hmm... The next patch looks like a new-style context diff to me...
The text leading up to this was:

|** /tmp/,RCSt1005203 Tue Mar 9 13:45:42 1993
|-—- mit/lib/X/Imakefile Tue Mar 9 13:45:45 1993

Patching file mit/lib/X/Imakefile using Plan A. ..

Hunk #1 succeeded at 1.

(lots of hunks succeed)

Hmm... The next patch looks like a new-style context diff to me...
The text leading up to this was:

|*** /tmp/d03300 Tue Mar 9 09:16:46 1993
|-—- mit/lib/X/Ximp/XimpLCUtil.c Tue Mar 9 09:16:41 1993

Patching file mit/lib/X/Ximp/XimpLCUtil.c using Plan A...
Reversed (or previously applied) patch detected! Assume -R? [v]

This time the fi rst two fi les have been patched back to patch level 23, and we stop before

34

doing any further damage.

Hunk #3 failed

Patch makes an implicit assumption that the patch was created from an identical source tree.
This is not aways the case—you may have changed something in the course of the port. The
differences frequently don’'t cause problems if they are an area unrelated to the patch. In this
example, we'll ook at how things can go wrong. Let’s consider the following situation: dur-
ing a previous port of X11R5 pl 22,” you ran into some problems in mit/lib/Xt/Selection.c and
fi xed them. The original text read:

if (XtWndoww dget) == w ndow)

Xt AddEvent Handl er (wi dget, nask, TRUE, proc, closure);
el se {

Wdget w = Xt WndowToW dget (dpy, w ndow);

Request WndowRec *r equest W ndowRec;

if (w!=NJLL & w!= widget) widget =w

if (sel ect WndowCont ext == 0)

sel ect WndowGont ext = Xuni queCont ext () ;

You had problems with this section, so you commented out a couple of lines:

if (XtWndoww dget) == w ndow)

Xt AddEvent Handl er (wi dget, nmask, TRUE, proc, closure);
el se {
/* This doesn’t make any sense at all - ignore
* Wdget w = Xt WndowToW dget (dpy, w ndow); */

Request WndowRec *r equest W ndowRec;

[* if (w!=NJLL & w!= widget) widget = w */

if (sel ect WndowGontext == 0)

sel ect WndowGont ext = Xunhi queCont ext () ;

Back in the present, you try to apply patch 24 to thisfi le;

$ gunzip < /cd0/x11r5/fix24.gz | patch -p & mt/patch.|og
$

So far so good. But in patch.log we fi nd

| *** /tnp/ da4854 Mon May 17 18:19: 57 1993

|--- mt/lib/Xt/Selection.c Mon May 17 18:19: 56 1993

Patching file mt/lib/Xt/Selection.c using Pan A ..

Hunk #1 succeeded at 1.

Hunk #2 succeeded at 70.

Hunk #3 failed at 361.

Hunk #4 succeeded at 1084.

Hunk #5 succeeded at 1199.

1 out of 5 hunks failed--saving rejects to nit/lib/Xt/Selection.c.rej

What does this mean? There's nothing for it but to look at the fi les concerned. In fi x24 we
find

* The abbreviation pl is frequently used to mean patch level.

5 February 2005 02:09

Chapter 3: Care and feeding of source trees 35

*** [t np/ da4854 Mon May 17 18:19:57 1993
--- mt/lib/Xt/Selection.c Mon May 17 18:19:56 1993

kkhkkkkkkkkkkkkkkx

* kK 1’4 *kkKk

this nust be hunk 1
I /* $XConsortium Selection.c,v 1.74 92/11/13 17: 40: 46 converse BExp $ */

/***

Copyright 1987, 1988 by Digital Equi pment Corporation, Maynard, Mssachusetts,
-e- 1,4 ----
I /* $XConsortium Selection.c,v 1.78 93/05/13 11:09: 15 converse Exp $ */

AR AR EEEEEEEEEEEEEEEEEEEE LSRR

Gopyright 1987, 1988 by D gital Equi pment Corporation, Mynard, Mssachusetts,
khkkhkkhkkkkhkkhkkkkk
* k% 70’ 75 *kkk
--- 70,90 ----
this nust be hunk 2
Wdget w, /* unused */
K*hkkkkkhkkhkhkkkkkkk
* k% 346’359 * Kk kK
and this nust be hunk 3, the one that failed
{
D spl ay *dpy = reg->ctx->dpy;
Wndow w ndow = reg->requestor;
! Wdget wi dget = reg->wi dget;
etc
*hkkhkkkhkhkkhkhkkhkkkhkk
x 1068, 1073 **
--- 1084, 1096 ----
hunk 4
K*hkkkkkhkkhkhkkkkkkk
*x% 1176, 1181 ****
--- 1199, 1213 ----
and hunk 5--at |east the count is correct

patch put the rejectsin Selection.c.rej. Let'slook at it:

EEE RS R TR R
*kk 346’359 *kkk
{
D splay *dpy = reg->ctx->dpy;
Wndow w ndow = reg->requestor;
! Wdget wi dget = reg->w dget;

if (XtWndow(w dget) == w ndow)
! Xt AddEvent Handl er (wi dget, mask, TRUE, proc, closure);
el se {
- Wdget w = Xt WndowToW dget (dpy, w ndow);
Request WndowRec *r equest W ndowRec;
- if (w!=NJLL & w != widget) widget =w
if (sel ect WndowCont ext == 0)
sel ect WndowCont ext = Xuni queCont ext () ;
i f (XF ndCont ext (dpy, w ndow; sel ect WndowCont ext,

5 February 2005 02:09

36

-—- 361,375 ———-
{
Display *dpy = reg->ctx->dpy;
Window window = reg->requestor;

1 Widget widget = XtWindowToWidget(dpy, window);
+ if (widget != NULL) reg->widget = widget;
+ else widget = reg->widget;

i (XtWindow(widget) == window)
1 XtAddEventHandler(widget, mask, False, proc, closure);
else {
RequestWindowRec *requestiWindowRec;
if (selectWindowContext == 0)
selectWindowContext = XUniqueContext();
it (XFindContext(dpy, window, selectWindowContext,

The characters + and - at the beginning of the lines in this hunk identify it as a unifi ed context
diff. We’ll look at them in more detail in Chapter 10, Where to go from here, page 147. Not

surprisingly, they are the contents of hunk 3. Because of our fix, patch couldn’t find the old
text and thus couldn’t process this hunk. In this case, the easiest thing to do is to perform the

fix by hand. To do so, we need to look at the partially fixed file that patch created,
mit/lib/Xt/Selection.c. The line numbers have changed, of course, but since hunk 3 wasn’t

applied, we find exactly the same text as in mit/lib/Xt/Selection.c.orig, only now it starts at
line 366. We can effectively replace it by the “after” text in Selection.c.rgj, remembering of

course to remove the indicator characters in column 1.

Can’t find file to patch

Sometimes you’ll see a message like:

$ patch -p <hotstuff.diff &wpatch.|og
Enter name of file to patch:

One of the weaknesses of the combination of diff and patch is that it’s easy to get the file
names out of sync. What has probably happened here is that the file names don’t agree with
your source tree. There are a number of ways for this to go wrong. The way that patch treats
the file names in diff headers depends on the —p flag, the so-called pathname strip count:

« If you omit the —p flag, patch strips all directory name information from the file names
and leaves just the filename part. Consider the following diff header:

*** config/sunos4.h™ Wed Feb 29 07:13:57 1992
—-—- config/sunos4.h Mon May 17 18:19:56 1993

Relative to the top of the source tree, the file is in the directory confi g. If you omit the -p
flag, patch will look for the file sunos4.h, not confi g/sunos4.h, and will not find it.

+ If you specify —p, patch keeps the complete names in the headers.

« If you specify —pn, patch will remove the first n directory name components in the path-
name. This is useful when the diffs contain incorrect base path names. For example, you

5 February 2005 02:09

5 February 2005 02:09

Chapter 3: Care and feeding of source trees 37

may fi nd a diff header which looks like:

*** /src/freesoft/gcc-patches/config/sunos4d.h™ Wed Feb 29 07:13:57 1992

—-—- /src/freesoft/gcc-patches/config/sunos4.h Mon May 17 18:19:56 1993
Unless your source tree also happens to be called /src/freesoft/gcc-patches, patch won't
be able to fi nd the fi les if you use the —p flag with no argument. Assuming that you are
in the root directory of the package (in other words, the parent directory of config), you
really don’t want to know about the /src/freesoft/gcc-patches/ component. This path-
name consists of four parts: the leading / making the pathname absolute, and the three
directory names src, freesoft and gcc-patches. In this case, you can enter

$ patch -p4 <hotstuff.diff &patch.log
The —p4 tells patch to ignore the fi rst four pathname components, so it would read thes
fi lenames just as config/sunos4.h™ and config/sunos4.h.

In addition to the problem of synchronizing the path names, you may run into broken diffs
which don’t specify pathnames, even though the fi les belong to different directories. We'll
see how easy it is to make this kind of mistake in Chapter 10, Where to go from here, page .
For example, you may fi nd that the diff headers ook like:

*** sunos4.h™ Wed Feb 29 07:13:57 1992
-—- sunos4.h Mon May 17 18:19:56 1993

This kind of diff is a real nuisance: you at least need to search for the fi le sunos4.h, and if
you're unlucky you'll fi nd more than one and have to examine the patches to fi gure out which
oneisintended. Then you need to give this name to the prompt, and patch should perform the
patches. Unfortunately, in alarge collection of diffs, this can happen dozens of times.

| can’'t seem to find a patch in there

Sometimes you will get what 10oks like a perfectly good unifi ed context diff, but when you
run patch against it, you get a message:
$ patch <diffs

Hmm... 1 can’t seem to find a patch in there anywhere.
$

Some versions of patch don't understand unifi ed diffs, and since al versions skip anything
they don’t understand, this could be the result. The only thing for it is to get a newer version
of patch—see Appendix E, Where to get sources, for details.

Malformed patch

If patch fi nds the fi les and understands the headers, you could still run into problems. One of
the most common is really a problem in making the diffs:

$ patch <diffs
Hmm... Looks like a unified diff to me...
The text leading up to this was:

5 February 2005 02:09

38

| --- real - programers. ns” VWd Dec 7 13:17:47 1994
| +++ real - progr amvers. ns Wd Dec 7 14:53:19 1994

Patching file real -programmers.ns using Plan A ..

Huink #1 succeeded at 1.

Hunk #2 succeeded at 54.

patch: **** palformed patch at line 398: No newine at end of file

Well, it tells you what happened: diff will print this message if the last character in a file is not
\'n. Most versions of patch don’t like the message. You need to edit the diff and remove the
offending line.

Debris left behind by patch

At the end of a session, patch leaves behind a number of files. Files of the form fi lename.orig
are the original versions of patched files. The corresponding fi lenames are the patched ver-
sions. The length of the suffix may be a problem if you are using a file system with a limited
filename length; you can change it (perhaps to the enacs standard suffix ™) with the - b flag.
In some versions of patch, ™ is the default.

If any patches failed, you will also have files called fi lename.rgj (for “rejected”). These con-
tain the hunks that patch could not apply. Another common suffix for rejects is #. Again, you
can change the suffix, this time with the - r flag. If you have any .rej files, you need to look at
them and find out what went wrong. It’s a good idea to keep the .orig files until you’re sure
that the patches have all worked as indicated.

Pruning the tree

Making clean distribution directories is notoriously difficult, and there is frequently irrelevant
junk in the archive. For example, all emacs distributions for at least the last 6 years have

included a file etc/COOKIES As you might guess from the name, this file is a recipe for
cookies, based on a story that went round Usenet years ago. This file is not just present in the
source tree: since the whole subdirectory etc gets installed when you install emacs, you end

up installing this recipe as well. This particular directory contains a surprising number of

files, some of them quite amusing, which don’t really have much to do with emacs.

This is a rather extreme case of a common problem: you don’t need some of the files on the
distribution, so you could delete them. As far as | know, emacs works just as well without the

cookie recipe, but in many cases, you can’t be as sure. In addition, you might run into other

problems: the GNU General Public License requires you to be prepared to distribute the com-

plete contents of the source tree if so requested. You may think that it’s an accident that the

cookie recipe is in the source tree, but in fact it’s a political statement”, and you are required

by the terms of the GNU General Public License to keep the file in order to give it to anybody
who might want it.

* To quote the beginning of the file: Someone sent this in from California, and we decided to extend our
campaign against information hoarding to recipes as well as software. (Recipes are the closest thing,
not involving computers, to software.)

5 February 2005 02:09

Chapter 3: Care and feeding of source trees 39

Thisis arather extreme example, but you might fi nd any of the following in overgrown trees:

e Old objects, editor backups and core dumps from previous builds. They may or may not
go away with a make clean.

» Test programs left behind by somebody trying to get the thing to work on his platform.
These probably will not go away with a make clean.

« Formatted documentation. Although the Makefi le should treat documents like objects
when cleaning the tree, a surprising number of packages format and install documenta-
tion, and then forget about it when it comes to tidying it away again.

e Old mail messages, only possibly related to the package. | don't know why this is, but
mail messages seem to be the last thing anybody wants to remove, and so they continue
to exist for yearsin many trees. This problem seems to be worse in proprietary packages
than in free packages.

The old objects are defi nitely the worst problem: make can’t tell that they don’t belong to this
confi guration, and so they just prevent the correct version of the object being built. Depend-
ing on how different the architectures are, you may even fi nd that the bogus objects fool the
linker, too, and you run into bizarre problems when you try to execute.

Save the cleaned archive

If you had to go to any trouble (patches or cleanup) to get to a clean starting point for the port,
save the cleaned archive. You won't need it again, of course, but Murphy’s law will ensure
that if you don’t save it, you will need it again.

Handling trees on CD-ROM

It's convenient to have your source tree on CD-ROM: you save disk space, and you can be
sure that you don’t accidentally change anything. Unfortunately, you also can't deliberately
change anything. Normal Makefi les expect to put their objects in the source tree, so this com-
plicates the build process signifi cantly.

In the next two sections, we'll look at a couple of techniques that address this problem. Both
use symbolic links.

Link trees

You can simulate a writeable tree on disk by creating symbolic links to the sources on CD-
ROM. This way, the sources remain on the CD-ROM, but the objects get written to disk.
From your viewpoint, it looks asif all the fi les are in the same directory. For example, assume
you have a CD-ROM with a directory /cd0/src/fi nd containing the sourcesto fi nd:

$1s -FC/cd0/src/find

QCPYI NG Makefil e config.status* |ib/
QPYING LI B Makefile.in confi gur e* | ocat e/
Changel.og NEVB configure.in nman/

5 February 2005 02:09

40

| NSTALL READMVE find/ xar gs/

The / at the end of the fi le names indicate that these fi les are directories; the * indicates that
they are executables. You could create alink tree with the following commands:

$ cd /home/mysrc/find put the links here
$ for 1 in /cdO/src/find/*; do

> In -s $i .

> done

$Is -1 see what we got

total 16

| rwxr wkr wk GCPYI NG -> / ¢d0/ src/ fi nd/ GCPYI NG

| rvxrwkrwx GOPYI NG LI B -> /¢d0/ src/ find/ GOPYI NG LI B

| rvxrwxrwx ChangelLog -> /cd0/ src/ fi nd/ ChangelLog

I rwxr werwg | NSTALL -> /cd0/ src/ find/ | NSTALL

I rvxrwrwx Makefile -> /cd0/ src/find/ Makefil e

I rwxrwkrwk Makefile.in -> /cd0/src/find/ Makefile.in

I rwxr wekrwk NeVs -> /cd0/ src/ fi nd/ NEVWB

| rvxr wkr wk README - > / ¢d0/ src/ fi nd/ README

I rwkrwkrwx config.status -> /cd0/src/find/ config. status
I rvxrwrwx configure -> /cd0/src/find configure

I rvxrwxrwx configure.in -> /cd0/src/find/ configure.in
I rwkrwkrwx find -> /cdO/src/find/ find

Irwkrwkrwg lib -> /cdO/src/find/lib

I rwkrwkrwx | ocate -> /cd0/src/find/locate

I rwkrwkrwx nan -> /cdO/ src/ find/ nan

| rvxrwkrwx xargs -> /cdO/ src/find/ xargs

| omitted most of the information that is printed by Is - in order to get the information on the

page: what interests us here is that all the fi les, including the directories, are symbolic links.
In some cases, this is what we want: we don’t need to create copies of the directories on the

hard disk when a single link to a directory on the CD-ROM does it just as well. In this case,

unfortunately, that’s not the way it is: our sources are in the directory fi nd, and that's where we
will have to write our objects. We need to do the whole thing again for the subdirectory fi nd:

$ cd “mysource/find change to the source directory on disk
$ m find get rid of the directory syniink

$ mkdir find and nake a directory

$ cd find and change to it

$ for 1 in /cd0/src/find/find/*; do

> In -s $i .

> done

$1Is -1

total 18

I rwxrwkrws Makefile -> /cdO/src/find/ find Makefile

I rvxrwkrwx Makefile.in -> /cd0/src/find/ find Makefile.in
I rwkrwkrwx defs.h -> /cdO/src/find/ find/ defs.h

I rwkrwkrwx find -> /cdO/src/find/find/find

I rwkrwkrwx find.c -> /cd0/src/find/find/find. c

I rvkrwkrwx fstype.c -> /cd0/src/find/find/fstype.c

| rvwkrwkrwx parser.c -> /cd0/src/find/find/ parser.c

I rvxrwxrwx pred.c -> /cd0/src/find/ find/ pred.c

I rwkrwkrwx tree.c -> /cdO/src/find/find/tree.c

5 February 2005 02:09

Chapter 3: Care and feeding of source trees 41

I rwkrwkrwx util.c -> /cdO/src/find/ find/util.c
I rvwxrwrwx version.c -> /cd0/src/find/ find/ version.c

Yes, this tree really does have a directory called fi nd/fi nd/fi nd, but we don't need to worry
about it. Our sources and our Makefi le are here. We should now be able to move back to the
top-level directory and perform the make:

$cd..
$ nake

Thisisarelatively ssmple example, but it shows two important aspects of the technique:

* You don't need to create a symlink for every singlefi le. Although symlinks are relatively
small—in this case, less than 100 bytes—they occupy up to 1024 bytes of disk space per
link, and you can easily fi nd yourself taking up a megabyte of space just for the links.

e On the other hand, you do need to make all the directories where output from the build
processis stored. You need to make symlinks to the existing fi lesin these directories.

An additional problem with this technique is that many tools don’t test whether they have suc-
ceeded in creating their output fi les. If they try to create fi les on CD-ROM and don't notice
that they have failed, you may get some strange and misleading error messages later on.

Object links on CD-ROM

Some CD-ROMSs, notably those derived from the Berkeley Net/2 release, have a much better
idea: the CD-ROM already contains a symlink to a directory where the object fi les are stored.
For example, the FreeBSD 1.1 CD-ROM version of find is stored on
[/cdOffi lesys/usr/src/usr.bin/fi nd and contains:

total 106

drwkrwkr-x 2 bin 2048 Cct 28 1993 .
drwkrwxr-x 153 bin 18432 Nov 15 23:28 ..

STW W -- 1 bin 168 Jul 29 1993 Makefile

STWTWT-- 1 bin 3157 Jul 29 1993 extern.h
STWPWAT-- 1 bin 13620 Sep 7 1993 find. 1
STW W -- 1 bin 5453 Jul 29 1993 find.c
STWTWT-- 1 bin 4183 Jul 29 1993 find. h
STW W -- 1 bin 20736 Sep 7 1993 function.c
STW W -- 1 bin 3756 (et 17 1993 Is.c
STWTWT-- 1 bin 3555 Jul 29 1993 nain.c
STW W -- 1 bin 3507 Jul 29 1993 nmisc.c
lrwkrwer-x 1 root 21 Ot 28 1993 obj -> /usr/obj/usr.bin/find
STWTWT-- 1 bin 7766 Jul 29 1993 operator.c
STW W -- 1 bin 4657 Jul 29 1993 option.c
STWPWAT - - 1 root 2975 Cct 28 1993 tags

All you have to do in this case is to create a directory called /usr/obj/usr.bin/fi nd. The Make-
fi les are set up to compileinto that directory.

5 February 2005 02:09

42

Tracking changes to the tree

The most obvious modification that you make to a source tree is the process of building: the
compiler creates object files™ and the loader creates executables. Documentation formatters
may produce formatted versions of the source documentation, and possibly other files are cre-
ated as well. Whatever you do with these files, you need to recognize which ones you have
created and which ones you have changed. We’ll look at these aspects in the following sec-
tions.

Timestamps

It’s easy enough to recognize files that have been added to the source tree since its creation:
since they are all newer than any file in the original source tree, the simple command Is -It
(probably piped into more or less) will display them in the reverse order in which they were
created (newest first) and thus separate the new from the old.

Every UNIX file and directory has three timestamps. The file system represents timestamps
in the ti ne_t format, the number of seconds elapsed since January 1, 1970 UTC. See Chap-
ter 16, Timekeeping, page 270, for more details. The timestamps are:

« The last modifi cation timestamp, updated every time the file or directory is modified.
This is what most users think of as the file timestamp. You can display it with the Is -I
command.

« The last access timestamp, updated every time a data transfer is made to or from the file.
You can display it with the Is-lu command. This timestamp can be useful in a number of
different places.

« The status change timestamp (at least, that’s what my header files call it). This is a sort
of kludged® last modification timestamp for the inode, that part of a file which stores
information about the file. The most frequent changes which don’t affect the other time-
stamps are change in the number of links or the permissions, which normally isn’t much
use to anybody. On the other hand, the inode also contains the other timestamps, so if
this rule were enforced rigidly, a change to another timestamp would also change the sta-
tus change timestamp. This would make it almost completely useless. As a result, most
implementations suppress the change to the status change timestamp if only the other
timestamps are modified. If you want, you can display the status change timestamp with
the Is-Ilc command.

Whichever timestamp you choose to display with Is -I, you can cause Is to sort by it with the
-t flag. Thus, Is-lut displays and sorts by the last access timestamp.

Of these three timestamps, the last modification timestamp is by far the most important.
There are a number of reasons for this:

* To be pedantic, usually the assembler creates the object files, not the compiler.
t A kludge is a programming short cut, usually a nasty, untidy one. The New Hacker’s Dictionary goes
to a lot of detail to explain the term, including why it should be spelt kluge and not kiudge.

Chapter 3: Care and feeding of source trees 43

make relies on the last modifi cation timestamp to decide what it needs to compile. If you
move the contents of a directory with cp, it changes all the modifi cation timestamps to
the time when the copy was performed. If you then type make, you will perform a sig-
nifi cant amount of needless compilation.

It's frequently important to establish if two fi les are in fact the same, in other words, if
they have identical content. In the next section we'll see some programmatic tools that
help us with this, but as afi rst approximation we can assume that two fi les with the same
name, length and modifi cation timestamp have an identical content, too. The modifi ca-
tion timestamp is the most important of these three: you can change the name, but if
length and timestamp are the same, there's still a good chance it’s the same fi le. If you
change the timestamp, you can’t rely on the two fi les being the same just because they
have the same name and length.

As we have seen above, the last modifi cation timestamp is useful for sorting when you
list directories. If you're looking for afi le you made the week before last, it helpsif itis
dated accordingly.

Keeping timestamps straight

Unfortunately, it's not as easy to keep timestamps straight. Here are some of the things that
can go wrong:

5 February 2005 02:09

If you copy the fi le somewhere else, traditional versions of cp always set the modifi cation
timestamp to the time of copying. In does not, and neither does mv if it doesn’'t need to

make a physical copy, so either of these are preferable. In addition, more modern ver-

sions of cp offer the flag - p (preserve), which preserves the modifi cation timestamp and

the permissions.

When extracting an archive, cpio’s default behaviour isto set the modifi cation timestamp
to the time of extraction. You can avoid thiswith the - mfiag to cpio.

Editing the fi le changes the modifi cation timestamp. This seems obvious, but you fre-
quently fi nd that you make a modifi cation to a fi le to see if it solves a problem. If it
doesn’'t help, you edit the modifi cation out again, leaving the fi le exactly asit was, except
for the modifi cation timestamp, which points to right now. A better strategy is to save
the backup fi le, if the editor keeps one, or otherwise to rename the original fi le before
making the modifi cations, then to rename it back again if you decide not to keep the
modifi cations.

In anetwork, it's unusua for times to be exactly the same. UNIX machines are not very
good at keeping the exact time, and some gain or lose as much as 5 minutes per day.
This can cause problems if you are using NFS. You edit your files on one machine,
where the clocks are behind, and compile on another, where the clocks are ahead. The
result can be that objects created before the last edit still have a modifi cation timestamp
that is more recent, and make is fooled into believing that it doesn’'t need to recompile.
Similar problems can occur when one system is running with an incorrect time zone set-
ting.

5 February 2005 02:09

44

cmp

A maodifi cation timestamp isn't infallible, of course: even if EOF, timestamp and name are
identical, there still can be a lingering doubt as to whether the fi les really are identical. This
doubt becomes more pronounced if you seee something like:

$ls -1l

total 503

S FWTWEE W 1 grog wheel 1326 May 1 01:00 a29k- pi nsn.c

S WEWEE W 1 grog wheel 28871 May 1 01:00 a29k-tdep.c

ST W W 1 grog wheel 4259 May 1 01:00 a68v-nat.c

S FWTWEE W 1 grog wheel 4515 May 1 01: 00 al pha-nat.c

S WEWEE W 1 grog wheel 33690 May 1 01:00 al pha-tdep.c
etc

It's afairly clear bet that somebody has done a touch on all the fi les, and their modifi cation
timestamps have all been set to midnight on May 1." The cmp program can give you certainty:

$ cnp foo.c ../orig/foo.c conpare with the original
$ echo $? show exit status
0 0 all &K

$ cnp bar.c ../orig/bar.c

bar.c ../orig/bar.c differ: char 1293, |ine 39

$ echo $? show exit status
1 1: they differ

Remember you can tell the shell to display the exit status of the previous command with the
shell variable $?. In the C shell, the corresponding variable is called $st at us. If the con-

tents of the fi les are identical, cmp says nothing and returns an exit status 0. If they are, it tells
you where they differ and returns 1. You can use the exit status in a shell script. For example,

the following Bourne shell script (it doesn’t work with csh) compares fi les that are in both the
current tree (which is the current working directory) and the origina tree (../orig) and makes a
copy of the ones that have changed in the directory ../changed.

$for i in*; do check all files in the directory
> if [-f ../orig/$i]; then it is present inthe orig tree
> cnp $i ../origl$i 2>&1 >/dev/null conpar e them

> if [$2-ne 0]; then they' re different

> cp -p $i ../changed nmake a copy

> fi

> fi

> done

There are a couple of points to note about this example:

« We're not interested in where the fi les differ, or in even seeing the message. We just
want to copy the fi les. As a result, we copy both stdout and stderr of cmp to /dev/null,
the UNIX hit bucket.

* Midnight? That looks like 1 am. But remember that UNIX timestamps are al in UTC, and that’s 1
am. inmy time zone. Thisexample really was done with touch.

5 February 2005 02:09

Chapter 3: Care and feeding of source trees 45

¢ When copying, we use - p to ensure that the timestamps don’t get changed again.

An example—updating an existing tree

Chances are that before long you will have an old version of gcc on your system, but that you
will want to install a newer version. As we saw on page 29, the gzipped archive for gcc is
around 6 MB in size, whereas the patches run to 10 KB or 15 KB, so we opt to get diffs from
prep. ai . nt. edu to update version 2.6.1 to 2.6.3. That's pretty straightforward if you have
enough disk space: we can duplicate the complete source tree and patch it. Before doing so,
we should check the disk space: the gcc source tree with all objects takes up 110 MB of disk
space.

$ cd /porting/srcnove to the parent directory

$ nkdir gcc-2.6.3 nake a directory for the newtree

$ cd gecc-2.6.1 nove to the old directory

$tar cf - . | (cd../gcc-2.6.3;tar xf -) and copy all files”
$cd../gcc-2.6.3 nmove to new directory

$ nake cl ean and start off with a clean slate

$ gunzip < /Qincomng/gcc-2.6.1-2.6.2.tar.gz | patch -p | tee patch.log
Hm.. Looks Iike a newstyle context diff to ne...

The text leading up to this was:

| Changes for GOC version 2.6.2 fromversion 2.6. 1

|
| Before applying these diffs, go to the directory gcc-2.6.1. Renove all
|files that are not part of the distribution with the conmand
nmake di stcl ean
Then use the command

patch -pl

feeding it the following diffs as input. Then renane the directory to
gcc-2.6.2, re-run the configure script, and rebuild the conpiler.

|diff -rc2P -x c-parse.y -x c-parse.c -x c-parse.h -x c-gperf.h -x cexp.c -x
bi - parser.c -x objc-parse.y -x objc-parse.c

| -x TAGS -x gcc. ?? -x gcc. ??s -X gcc.aux -Xx gcc.info* -x cpp. ?? -x cpp. ??s -X
cpp. aux -x cpp.info* -x cp/parse.c -x cp/pa

| rse. h gce-2. 6. 1/ ChangeLog gcc- 2. 6. 2/ ChangelLog

| *** gcc-2. 6.1/ ChangeLog Tue Nov 1 21:32:40 1994

| --- gce-2. 6.2/ ChangeLog Sat Nov 12 06: 36: 04 1994

File to patch:

Oops, these patches contain the directory name as well. As the diff header indicates, we can
solve this problem by supplying the - pl flg to patch. We can aso solve the problem by

* When moving directories with tar, it may not seem to be important whether yousaytar ¢ . ortar
c *--butitis. If yousay*, you will missout any fi le names starting with . (period).

5 February 2005 02:09

46

moving up one level in the directory hierarchy, since we have stuck to the same directory
names. This message also reminds us that patch is very verbose, so this time we enter:

$ gunzip < /Qinconmng/gcc-2.6.1-2.6.2.tar.gz | patch -pl -s | tee patch.log

1 out of 6 hunks failed--saving rejects to cccp.c.rej
$

What went wrong here? Let's take a look at cccp.c.rgf and ccep.c.orig. According to the
hunk, line 3281 should be

if (ip->macro != 0)
The hunk wants to change it to

i f (output_marks)
However, line 3281 of ccep.origis

i f (output_marks)
In other words, we had already applied this change, probably from a message posted in
gnu. gcc. bugs. Although the patch failed, we don’t need to worry: al the patches had been
applied.

Now we have a gcc-2.6.2 source tree in our directory. To upgrade to 2.6.3, we need to apply
the next patch:

$ gunzip < /Qincomng/gcc-2.6.2-2.6.3.diff.gz | patch -pl -s | tee -a patch.|og

We use the - a option to patch here to keep both logs—possibly overkill in this case. This
time there are no errors.

After patching, there will be alot of origina fi lesin the directory, along with the one .rgj fi le.
We need to decide when to delete the .orig fi les: if something goes wrong compiling one of
the patched fi les, it's nice to have the original around to compare. In our case, though, we
have a complete source tree of version 2.6.2 on the same disk, and it contains all the original

fi les, so we can remove the .orig fi les:

$find . -nane "*.orig" -print | xargs rm

We use xargs instead of -exec rm{} \; becauseit’sfaster: - exec rmstarts arm process

for every fi le, whereas xargs will put as many fi le names onto the rm command line as possi-
ble. After cleaning up the tree, we back it up. It's taken us a while to create the tree, and if

anything goes wrong, we'd like to be able to restore it to its initial condition as soon as possi-

ble.

5 February 2005 02:09

Package configuration

Programs don’t run in a vacuum: they interface with the outside world. The view of this out-
side world differs from location to location: things like host names, system resources, and
local conventions will be different. Theoretically, you could change the program sources
every time you install a package on a new system, but besides being a pain, it’s very error-
prone. All modern packages supply a method of configuration, a simplified way of adapting
the sources to the environment in which the program will run. In this chapter, we’ll look at
common configuration conventions. We can divide system differences into one of three cate-
gories:

The kind of hardware the package will run on. A compiler needs to generate the correct
machine instructions, and an X server needs to know how to transfer data to the display
hardware. Less well-written programs have hardware dependencies that could have been
avoided with some forethought. We’ll look at this in more detail in Chapter 11, Hard-
ware dependencies.

The system software with which it will interact. Differences between UNIX systems are
significant enough that it will be necessary to make certain decisions depending on the
system flavour. For example, a communications program will need to know what kind of
network interface your system has. Programs that come from other systems may need
significant rewriting to conform with UNIX library calls. We’ll look at these dependen-
cies in part 2 of this book, from Chapter 12, Kernel dependencies to Chapter 21, Object
files and friends.

The local configuration. These may include obvious things like the system name, aspects
of program behaviour, information about tools used locally, or local system conventions.

In this chapter, we’ll look at what local configuration entails, and how we tell the package
about our chosen configuration.

47

5 February 2005 02:09

48

Installation paths

Your system configuration may place constraints on where you can install the software. This
is not normally a problem for individual systems, but on a large, heterogeneous network it
could require more consideration.

Traditionally, non-system software has been installed in the hierarchy /usr/local. This is not
an asthetically pleasing location: the hierarchy can become quite large, and in a network
many systems might share the directory.

One of the best thought-out descriptions of a modern file system structure is in the UNIX Sys-
tem V Application Binary Interface, which is also similar to structures used by SunOS and the
newer BSD variants. In brief, it specifies the following top-level directories:

/

/dev
letc
/opt
lusr

Jusr/bin

lusr/share

Ivar

The root directory.

The directory tree containing device files.
Directory for machine-specific configuration files.
Directory for add-on software.

This directory used to be the other file system on a UNIX machine. In the
System V ABI it has lost most of its importance. The ABI states uses only

for /usr/bin and /usr/share, and the name /usr has lost its original meaning:

the ABI specifies /usr only as a location for system files that users may wish
to access.

is intended for “Utility programs and commands for the use of all applica-

tions and users”. In practice, it’s better to use this directory for system pro-

grams only.

The System V ABI states that /usr/share is intended for “architecture-inde-

pendent shareable files”. In practice, those versions of System V that still
have man pages put them in /usr/share/man, and terminfo data are stored in

Jusr/share/lib/terminfo. The rest of the directory may contain a few other

odds and ends, but these two directories make up over 99% of the content.

The choice of the location /usr/share is not a happy choice: firstly, it is fre-
quently a separate file system, but it must be mounted on a non-root file sys-
tem, and secondly the man pages aren’t really architecture-independent.

The choice makes more sense from the point of view of the Unix Systems

Group, who are concerned only with pure System V: the man pages are

mainly independent of hardware architecture. However, in a real-world net

you probably have two or three different operating systems, each with their

Own man pages.

This directory contains files that are frequently modified. Typical subdirec-

tories are /var/tmp for temporary files and /var/spool for printer output, uucp
and news.

The System V ABI does not say anything about where to store user files. The Seventh Edition
typically stored them as a subdirectory of /usr, but newer systems have tended to store them in
a directory called /home.

5 February 2005 02:09

Chapter 4: Package configuration 49

The /opt hierarchy resembles that of /usr. A typical structure is:

[opt/bin for executables.

/opt/man for man pages—not /opt/share/man, unlike the structure in /usr.

/opt/lib for additional files used by executables. In particular, this directory could
contain library archives for compilers, as well as the individual passes of the
compilers.

{opt/< pkg> This is where the System V ABI places individual package data. Not many
other systems follow it.

lopt/lib/<pkg> This is where most packages place private data.

Using the /opt hierarchy has one disadvantage: you may not want to have a separate file sys-
tem. In modern systems, the solution is simple enough: place the directory where you want it,
and create a symbolic link /opt that points to it. This works only if your system has symbolic
links, of course, so | have come to a compromise: | use /opt on systems with symbolic links,
and /usr/local on systems without symbolic links.

Many packages compile pathnames into the code, either because it’s faster that way, or
because it’s easier. As a result, you should set the path names before compilation—don’t put
off this task until you’re ready to install, or you may run into problems where the packages are
all nicely installed in the correct place and look for data in the wrong directories.

Preferred tools

Many of the most popular software packages are alternative tools. Free software such as gcc,
emacs and perl have become so popular that they are frequently supplied with proprietary sys-
tem releases, and many other systems have ported them and use them as standard tools. If
you want to use such programs, you need to tell the configuration routines about them.

Depending on the tools you use, you may also need to change the flags that you pass to them.
For example, if you compile with gcc, you may choose to include additional compiler flags
such as - f st r engt h-r educe, which is specific to gcc.

Conveying configuration information

The goal of configuration is to supply the configuration information to the program sources.
A good configuration mechanism will hide this from you, but it’s helpful to understand what
it’s doing. In this section, we’ll look under the covers—you can skip it if it looks too techni-
cal.

There are a number of possible ways to use configuration information: for example, the pack-
age may have separate communication modules for STREAMS and sockets, and the configu-
ration routines may decide which of the two modules to compile. More typically, however,
the configuration routines convey configuration information to the package by defining pre-
processor variables indicating the presence or absence of a specific feature. Many packages
provide this information in the make variable CFLAGS—for example, when you make bash,
the GNU Bourne Again Shell, you see things like

5 February 2005 02:09

50

$ make

gcc -DCS NAME=' "FreeBSD'' - DPr ogr an¥bash - DSYSTEM NAME=' "i 386"" \

- DVAl NTAI NER=' "bug- bash@r ep. ai . mt.edu"’ -O-g - DHAVE SETLI NEBUF - DHAVE VFPR NTF \
-DHAVE N STD H -DHAVE STOLIB H -DHAVE LIM TS H - DHAVE GETGROUPS \

- DHAVE_RESOURCE - DHAVE _SYS PARAM - DVA D S| GHANDLER - DCPEND R_NOT_RCBUST |\

- DI NT_GROUPS ARRAY -DHAVE WA T_H - DHAVE GETWD - DHAVE DUP2 - DHAVE STRERRCR \

- DHAVE D RENT - DHAVE DI RENT_H - DHAVE STRING H - DHAVE VARARGS H - DHAVE STROHR \
- DHAVE_STRCASEQW - DHAVE DEV_FD -D'i 386" -D'FreeBSD' - DSHELL - DHAVE ALLCCA \

-1, -1. -1././lib/ -c shell.c

The - D arguments pass preprocessor variables that defi ne the confi guration information.

An dternative method is to put this information in a fi le with a name like confi g.h. Taylor
uucp doesit thisway: in confi g.h you will fi nd things like:

/* 1f your conpiler supports prototypes, set HAVE PROTOTYPES to 1. */
#def i ne HAVE PROTOTYPES 1

/* Set ECHO PROGRAMto a programwhi ch echoes its argunents; if echo
is ashell builtin you can just use "echo". */
#def i ne ECHO PROGRAM " echo"

/* The fol l owing nacros indicate what header files you have. Set the
macro to 1 if you have the correspondi ng header file, or O if you
do not. */

#define HAVE STCDEF H 1 /* <stddef. h> */

#define HAVE STDARG H 1 /* <stdarg. h> */

#define HAVE STRNGH 1 /* <string. h> */

| prefer this approach: you have all the confi guration information in one place, it is docu-
mented, and it's more reliable. Assuming that the Makefi le dependencies are correct, any
change to confi g.h will cause the programs to be recompiled on the next make. Aswe will see
in Chapter 5, Building the package, page 68, this usually doesn’'t happen if you modify the
Makefi le.

Typicaly, confi guration information is based on the kind of operating system you run and the
kind of hardware you use. For example, if you compile for a Sparc Il running SunOS 4.1.3,

you might defi ne spar ¢ to indicate the processor architecture used and sunos4 to indicate the
operating system. Since SunOS 4 is basically UNIX, you might also need to defi neuni x. On
an Intel 486 running UnixWare you might need to defi nei 386 for the processor architecture,”
and SVR4 to indicate the operating system. Thisinformation is then used in the source fi les as
arguments to preprocessor #i f def commands. For example, the beginning of each source

fi le, or ageneral confi guration fi le, might contain:

#i fdef i 386
#i ncl ude "nii 386. h"
#endi f

#i fdef sparc
#i ncl ude " sparc. h"
#endi f

* Why not i 4867 The processor is an Intel 486, but the architecture is called the i386 architecture. You
also usei 386 when compiling for a Pentium.

5 February 2005 02:09

Chapter 4: Package confi guration 51

#i fdef sunos4

#i ncl ude "s/ sunos4. h"
#endi f

#i fdef SVR4

#i ncl ude "s/usg-4.0.h"
#endi f

You can get yourself into real trouble if you defi ne more than one machine architecture or
more than one operating system. Since confi guration is usually automated to some extent, the
likelihood of this is not very great, but if you end up with lots of double defi nitions when
compiling, thisis a possible reason.

Confi guration through the preprocessor works nicely if the hardware and software both
exactly match the expectations of the person who wrote the code. In many cases, this is not

the case: looking at the example above, note that the fi le included for SVR4 is s/usg-4.0.h,
which suggests that it is intended for UNIX System V release 4.0. UnixWare is System V

release 4.2. Will this work? Maybe. It could be that the confi guration mechanism was last
revised before System V.4.2 came out. If you fi nd afi le Susg-4.2.h, it's a good idea to use it
instead, but otherwise it’'s amatter of trial and error.

Most software uses this approach, although it has a number of signifi cant drawbacks:

* The choices are not very detailed: for example, most packages don’t distinguish between
Intel 386 and Intel 486, although the latter has a floating point coprocessor and the for-
mer doesn't.

e There is no general consensus on what abbreviations to use. For UnixWare, you may
fi nd that the correct operating system information is determined by USG (USG is the
Unix Systems Group, which, with some interruption,” is responsible for System V),
SYSV, SVR4, SYSV 4, SYSV 4 2 or even SVR3. Thislast can happen when the confi gu-
ration needed to be updated from System V.2 to System V.3, but not again for System
V4.

* Thechoice of operating system is usually determined by just a couple of differences. For
example, base System V.3 does not have the system call r enare, but most versions of
System V.3 that you will fi nd today have it. System V.4 does have r enane. A software
writer may use#i f def SVR4 only to determine whether the system has ther enane sys-
tem call or not. If you are porting this package to a version of System V.3.2 with
r enane, it might be a better ideato defi ne SVR4, and not SVR3.

« Many aspects attributed to the kernel are in fact properties of the system library. As we
will see in the introduction to Part 2 of this book, there is a big difference between kernel
functionality and library functionality. The assumption is that a specifi ¢ kernel uses the
library with which it is supplied. The situation is changing, though: many companies sell
systems without software development tools, and alternative libraries such as the GNU C
library are becoming available. Making assumptions about the library based on the ker-
nel was never a good idea—now it's completely untenable. For example, the GNU C

* The fi rst USG was part of AT&T, and was superseded by UNIX Systems Laboratories (USL). After
the sale of USL to Novell, USL became Novell’s UNIX Systems Group.

5 February 2005 02:09

52

library supplies a function r ename where needed, so our previous example would fail
even on a System V.3 kernel without ar enane system call if it uses the GNU C library.
As you can imagine, many packages break when compiled with the GNU C library,
through their own fault, not that of the library.

In the example above, it would make a whole lot more sense to defi ne a macro HAS RENAME
which can be set if the r enane function is present. Some packages use this method, and the
GNU project is gradually working towards it, but the majority of packages base their deci-
sions primarily on the combination of machine architecture and operating system.

The results of incorrect confi guration can be far-reaching and subtle. In many cases, it looks
asif thereis abug in the package, and instead of reconfi guring, you can fi nd yourself making
signifi cant changes to the source. This can cause it to work for the environment in which it is
compiled, but to break it for anything else.

What do | need to change?

A good confi guration mechanism should be able to decide the hardware and software depen-
dencies that interest the package, but only you can tell it about the local preferences. For

example, which compiler do you use? Where do you want to install the executables? If you

don’t know the answers to these questions, there's a good chance that you'll be happy with the

defaults chosen by the confi guration routines. On the other hand, you may want to use gcc to
compile the package, and to install the package in the /opt hierarchy. In al probability, you'll

have to tell the confi guration routines about this. Some confi guration routines will look for
gce explicitly, and will take it if they fi nd it. In this case, you may have a reason to tell the
confi guration routines not to use gcc.

Some packages have a number of local preferences: for example, do you want the package to

run with X11 (and possibly fail if X isn't running)? This sort of information should be in the

README fi le.

Creating configuration information

A number of confi guration methods exist, none of them perfect. In most cases you don't get a
choice: you use the method that the author of the package decided upon. The fi rst signifi cant
problem can arise at this point; what method does he use? This is not always easy to fi gure
out—it should be described in afi le called README or INSTALL or some such, but occasion-
aly you just fi nd cryptic comments in the Makefi le.

In the rest of this chapter we'll look at confi guration via multiple Makefi le targets, manual
confi guration, shell scripts, and imake, the X11 confi guration mechanism. In addition, the
new BSD make system includes a system of automatic confi guration: once it is set up, you
don’'t have to do anything, assuming you already have a suitable Makefi le. We'll look at this
method in more detail in Chapter 19, Make, page 323.

5 February 2005 02:09

Chapter 4: Package configuration 53

Multiple Makefile targets

Some packages anticipate every possibility for you and supply a customized Makefi le. For
example, when building unzip, a free uncompression utility compeatible with the DOS package
PK-ZIP, you would fi nd:

$ make
If you're not sure about the characteristics of your system try typing "nake
generic". If the conpiler barfs and says somet hi ng unpl easant about "tinezone

redefined," try typing "nake clean" followed by "nake generic2'. e of these
actions should produce a working copy of unzip on nost Uhix systens. |f you
know a bit nore about the nachi ne on whi ch you work, you might try "make list"
for alist of the specific systens supported herein. And as a last resort, feel
free to read the numerous comments within the Makefile itself. Note that to
conpi | e the decryption version of WZip, you nust obtain the full versions of
crypt.c and crypt.h (see the "Were" file for ftp and nail -server sites). Have
an excruci atingly pl easant day.

As the comments suggest, typing make generic should work most of the time. If it doesn't,
looking at the Makefi le reveals a whole host of targets for a number of combined hard-
ware/software platforms. 1f one of them works for you, and you can fi nd which one, then this
might be an easy way to go. If none does, you might fi nd yourself faced with some serious
Makefi le rewriting. This method has an additional disadvantage that it might compile with no
problems and run into subtle problems when you try to execute it—for example, if the pro-
gram expects System V si gpause and your system supplies BSD si gpause,” the build
process may complete without detecting any problems, but the program will not run correctly,
and you might have alot of trouble fi nding out why.

Manual configuration

Modifying the Makefi le or confi g.h manually is a better approach than multiple Makefi le tar-
gets. This seemingly arduous method has a number of advantages:

e You get to see what is being changed. If you have problems with the resultant build, it's
usually relatively easy to pin-point them.

* Assuming that the meanings of the parameters are well documented, it can be easier to
modify them manually than run an automated procedure that hides much of what it is
doing.

« If you fi nd you do need to change something, you can usualy do it fairly quickly. With
an automated script, you may need to go through the whole script to change a single
minor parameter.

On the down side, manual confi guration requires that you understand the issues involved: you
can't do it if you don’'t understand the build process. In addition, you may need to repeat it
every time you get an update of the package, and it is susceptible to error.

* See Chapter 13, Sgnals, pages 190 and 192 for further information.

54

Configuration scripts

Neither multiple Makefi le targets nor manua modifi cation of the Makefi le leave you with the
warm, fuzzy feeling that everything is going to work correctly. It would be nice to have a
more mechanized method to ensure that the package gets the correct information about the
environment in which it is to be built. One way to do this is to condense the decisions you
need to make in manual confi guration into a shell script. Some of these scripts work very
well. A whole family of confi guration scripts has grown up in the area of electronic mail and
news. Here's part of the confi guration script for C news, which for some reason is called
build:

$ cd conf

$ build

This interactive command will build shell files named doit.root,
doit.bin, doit.news, and again.root to do all the work. It wll not
actual ly do anything itself, so feel free to abort and start again.

C News wants to keep nost of its files under a uid which preferably
should be all its own. |Its prograns, however, can and probably shoul d
be owned by anot her user, typically the same one who owns nost of the
rest of the system (Note that on a systemrunning NFS, any program
not owned by "root" is a gaping security hole.)

What user id should be used for news files [news]? RETURN pressed
What group id shoul d be used for news files [news]? RETURN pressed
What user id should be used for news prograns [bin]? RETURN pressed
What group id shoul d be used for news prograns [bin]? RETURN pressed
Do the C News sources belong to bin [yes]? no

You nmay need to do sone of the installation procedures by hand

after the software is built; doit.bin assunes that it has the

power to create files in the source directories and to update

the news prograns.

It woul d appear that your systemis anong the victins of the
4.4BSD/ SWR4 directory reorgani zation, with (e.g.) shared
data in /usr/share. |Is this correct [yes]? RETURN pressed
This will affect where C News directories go. V¢ recomend
maki ng the directories wherever they have to go and then maki ng
synbolic links to themunder the standard names that are used
as defaults in the foll owing questions. Shoul d such Iinks

be made [yes]? no

We chose not to use the symbolic links: the script doesn’'t say why this method is recom-
mended, they don’t buy us anything, and symbolic links mean increased access time.

The confi guration script continues with many more questions like this. We'll pick it up at var-
ious places in the book.

The fexibility of a shell script is an advantage when checking for system features which are
immediately apparent, but most of them require that you go through the whole process from
start to fi nish if you need to modify anything. This can take up to 10 minutes on each occa
sion, and they are often interactive, so you can’t just go away and let it do itsthing.

5 February 2005 02:09

5 February 2005 02:09

Chapter 4: Package configuration 55

GNU package configuration

Most GNU project packages supply another variety of confi guration script. For more details,
see Programming with GNU Software, by Mike Loukides. GNU confi guration scripts some-
times expect you to know the machine architecture and the operating system, but they often
attempt to guess if you don’t tell them. The main intention of the confi guration utility is to
fi gure out which features are present in your particular operating system port, thus avoiding
the problems with functions like r enane discussed on page 51. Taylor uucp uses this method:

$ sh configure
checki ng how to run the C preprocessor
checki ng whether -traditional is needed see page 351

checking for install the install program page 128
checking for ranlib see page

checking for PGBl Xi zed |1 SC Interactive PCBl X extensi ons?
checking for minix/config.h MN X specific

checking for Al X 1 BV UN X

checking for -1seq |'i bseq. a needed?

checking for -1sun I'i bsun. a?

checki ng whet her cross-conpiling

checking for lack of working const see page 339

checking for prototypes does the conpil er understand function prototypes?
checking if ‘#!' works in shell scripts

checki ng for echo program is echo a programor a builtin?
checking for In -s do we have synbolic |inks? (page 218)

This method makes life awhole lot easier if the package has already been ported to your par-
ticular platform, and if you are prepared to accept the default assumptions that it makes, but
can beareal painif not:

* You may end up having to modify the confi guration scripts, which are not trivial.

e It'snot always easy to confi gure things you want. In the example above, we accepted the
default compiler fiegs. If you want maximum optimization, and the executables should
be installed in /opt/bin instead of the default /usr/local/bin, running confi gure becomes
signifi cantly more complicated:”

$ CFLAGS="-@B -g" sh configure --prefix=/opt

e The scripts aren’t perfect. You should really check the resultant Makefi les, and you will
often fi nd that you need to modify them. For example, the confi guration scripts of many
packages, including the GNU debugger, gdb, do not allow you to override the preset
value of GFLAGS. In other cases, you can run into a lot of trouble if you do things that
the script didn’t expect. | once spent a couple of hours trying to fi gure out the behaviour
of the GNU make confi guration script when porting to Solaris 2.4:

* This example uses the feature of modern shells of specifying environment variables at the beginning of
the command. The program being run is sh, and the defi nition of CFLAGS is exported only to the pro-
gram being started.

56

$ CGFLAGS="CB -g" configure --prefix=/opt

creating cache ./config. cache

checking for gcc... gcc

checki ng whether we are using QU C .. yes

checki ng how to run the C preprocessor... gcc -E

checki ng whet her cross-conpiling... yes
Although this was a normal port, it claimed | was trying to cross-compile. After alot of
experimentation, | discovered that the confi guration script checks for cross-compilation
by compiling a simple program. If this compilation fails for any reason, the script
assumes that it should set up a cross-compilation environment. In this case, | had mis-
takenly set my GFLAGS to @B - g—of course, | had meant to write- B -g. The com-
piler looked for afi le O3 and couldn’t fi nd it, so it failed. The confi guration script saw
this failure and assumed | was cross-compiling.

In most cases, you need to re-run the confi guration script every time a package is

updated. If the script runs correctly, thisis not a problem, but if you need to modify the

Makefi le manually, it can be apain. For example, gdb creates 12 Makefi les. If you want
to change the GFLAGS, you will need to modify each of them every time you run confi g-
ure.

Like all confi guration scripts, the GNU scripts have the disadvantage of only confi guring
things they know about. If your man program requires pre-formatted man pages, you
may fi nd that there is no way to confi gure the package to do what you want, and you end
up modifying the Makefi le after you have built it.

Modifying automatically build Makefi les is a pain. An dternative is to modify Makefi lein,
the raw Makefi le used by confi gure. That way, you will not have to redo the modifi cations
after each run of confi gure.

imake
imake is the X11 solution to package confi guration. It uses the C preprocessor to convert a
number of confi guration fi lesinto a Makefi le. Here are the standard fi les for X11R6:

5 February 2005 02:09

Imake.tmpl is the main confi guration fi le that is passed to the C preprocessor. It is
responsible for including all the other confi guration fi les via the preprocessor #i ncl ude
directive.

Imake.cf determines the kind of system upon that imake is running. This may be based
on preprocessor variables supplied by default to the preprocessor, or on variables com-
piled in to imake.

site.def describes local preferences. Thisis one of the few fi les that you should normally
consider modifying.

As its name implies, <vendor>.cf has a different name for each platform. Imake.tmpl
decides which fi le to include based on the information returned by Imake.cf. For exam-
ple, on BSD/OS the fi le bsdi.cf will be included, whereas under SUnOS 4 or Solaris 2 the
fi le sun.cf will be included.

5 February 2005 02:09

Chapter 4: Package confi guration 57

* Imakerules contains preprocessor macros used to defi ne the individual Makefi |e targets.

* Imakefi le is part of the package, not the imake confi guration, and describes the package
to imake.

You don't normally run imake directly, since it needs a couple of pathname parameters:
instead you have two possibilities:

¢ Run xmkmf, which is a one-line script that supplies the parameters to imake.

* Run make Makefi le. This assumes that some kind of functinoal Makefi le is already
present in the package.

Strangely, make Makefi le is the recommended way to create a new Makefile. | don’t agree:
one of the most frequent reasons to make a new Makefi le is because the old one doesn’t work,

or because it just plain isn't there. If your imake confi guration is messed up, you can easily

remove all traces of a functional Makefi le and have to restore the original version from tape.

xmkmf always works, and anyway, it's less effort to type.

Once you have a Makefi le, you may not be fi nished with confi guration. If your package con-
tains subdirectories, you may need to create Makefi les in the subdirectories as well. In gen-

eral, the following sequence will build most packages:

$ xnknf run i make agai nst the | nmakefile

$ nake Makefiles create subordi nate Makefiles

$ nake depend run nmakedepend agai nst al | Mkefiles
$ nake nake the packages

$ nake install install the packages

These commands include no package-dependent parameters—the whole sequence can be run
as a shell script. Well, yes, there are minor variations: make Makefi les fails if there are no
subordinate Makefi les to be made, and sometimes you have targets like a make World instead
of make or make all, but in general it's very straightforward.

If your imake confi guration fi les are set up correctly, and the package that you are porting con-
tains no obscenities, thisisall you need to know about imake, which saves alot of time and is
good for your state of mind. Otherwise, check Software Portability with imake, by Paul
DuBais, for the gory details.

5 February 2005 02:09

Building the package

Now we have configured our package and we’re ready to build. This is the Big Moment: at
the end of the build process we should have a complete, functioning software product in our
source tree. In this chapter, we’ll look at the surprises that make can have in store for you.
You can find the corresponding theoretical material in Chapter 19, Make.

Preparation

If you’re unlucky, a port can go seriously wrong. The first time that error messages appear
thick and fast and scroll off the screen before you can read them, you could get the impression
that the packages were built this way deliberately to annoy you.

A little bit of preparation can go a long way towards keeping you in control of what’s going
on. Here are some suggestions:

Make sure you have enough space

One of the most frequent reasons of failure of a build is that the file system fills up. If possi-
ble, ensure that you have enough space before you start. The trouble is, how much is enough?
Hardly any package will tell you how much space you need, and if it does it will probably be
wrong, since the size depends greatly on the platform. If you are short on space, consider
compiling without debugging symbols (which take up a lot of space). If you do run out of
space in the middle of a build, you might be able to save the day by stripping the objects with
strip, in other words removing the symbols from the file.

Use a windowing system

The sheer size of a complicated port can be a problem. Like program development, porting
tends to be an iterative activity. You edit a file, compile, link, test, go back to edit the file, and
so on. It’s not uncommon to find yourself having to compare and modify up to 20 different
files in 5 different directories, not to mention running make and the debugger. In adddition, a
single line of output from make can easily be 5000 or 10000 characters long, many times the
screen capacity of a conventional terminal.

59

5 February 2005 02:09

60

All of these facts speak in favour of a windowing system such as X11, preferably with a high-
resolution monitor. You can keep your editor (or editors, if they don’t easily handle multiple
files) open all the time, and run the compiler and debugger in other windows. If multiple
directories are involved, it’s easier to maintain multiple xterms, one per directory, than to con-
tinually change directories. A correctly set up xterm will allow you to scroll back as far as
you want—I find that 250 lines is adequate.

Keep a log file

Sooner or later, you’re going to run into a bug that you can’t fix immediately: you will have to
experiment a bit before you can fix the problem. Like finding your way through a labyrinth,
the first time through you will probably not take the most direct route, and it’s nice to be able
to find your way back again. In the original labyrinth, Theseus used a ball of string to find his
way both in and out. The log file, a text file describing what you’ve done, is the computer
equivalent of the ball of string, so you should remember to roll it up again. If you’re running

an editor like emacs, which can handle multiple files at a time, you can keep the log in the edi-
tor buffer and remove the notes again when you back out the changes.

In addition to helping you find your way out of the labyrinth, the log will also be of use later
when you come to install an updated version of the software. To be of use like this, it helps to

keep additional information. For example, here are some extracts from a log file for the gcc:

Platform: SCO UNIX System V.3.2.2.0
Revision: 2.6.0

Date ported: 25 August 1994

Ported by: Greg Lehey, LEMIS
Compiler used: rcc, gcc-2.6.0

Library: SCO

0. configure 1386-unknown-sco --prefix=/opt. It sets local_prefix to
/usr/local anyway, and won’t listen to --local_prefix. For some
reason, config decides that it should be cross-compiling.

1. function.c fails to compile with the message function.c: 59: no
space. Compile this function with ISC gcc-2.5.8.

2. libgcc.a was not built because config decided to cross-compile.
Re-run config with configure i1386-*-sco --prefix=/opt, and do an
explicit make libgcc.a.

3. crtbegin.o and crtend.o were not built. Fix configure:

-—- configure™ Tue Jul 12 01:25:53 1994
+++ configure Sat Aug 27 13:09:27 1994
@@ -742,6 +742,7 @@
else
tm_File=i386/sco.h
tmake_file=1386/t-sco
+ extra_parts="crtbegin.o crtend.o"

5 February 2005 02:09

Chapter 5: Building the package 61

fi
truncat e_t ar get =yes

Keeping notes about problems you have with older versions helps a lot: this example repre-
sents the results of a considerable time spent debugging the make procedure. If you didn’t
have the log, you’d risk tripping over this problem every time.

Save make output
Typically, to build a package, after you have configured it, you simply type
$ nake

Then the fireworks start. You can sit and watch, but it gets rather boring to watch a package
compile for hours on end, so you usually leave it alone once you have a reasonable expecta-
tion that it will not die as soon as you turn your back. The problem is, of course, that you may
come back and find a lot of gobbldegook on the screen, such as:

make[5] : execve: ../../config/ makedepend/ nakedepend: No such file or directory
make[5]: *** [depend] Error 127

make[5] : Leaving directory ‘/cdcopy/ SOURCH X11/ X11R6/ xc/ pr ogr ans/ xset r oot ’
dependi ng in prograns/ xstdcnap. . .

nmake[5]: Entering directory ‘/cdcopy/ SORCH X11/ X11R6/ xc/ pr ogr ans/ xst dcrnap’
checking ../../config/ makedepend/ nakedepend over in ../../confi g/ makedepend first...
nmake[6] : Entering directory ‘/cdcopy/ SORCH X11/ X11R6/ xc/ conf i g/ makedepend’
gcc -DNO ASM -fstrengt h-reduce -fpcc-struct-return -fwitable-strings -O \
-1../../config/linmake -1../.. OBDefines -DSYSV - DSYSV386 -c include.c
gcc: CeDefines: No such file or directory

In file included fromincl ude. c: 30:

def.h:133: conflicting types for ‘getline

/opt/include/stdio. h:505: previous declaration of ‘getline

Broken pi pe

This is from a real life attempt to compile X11R6, normally a fairly docile port. The target
makedepend failed to compile, but why? The reason has long since scrolled off the screen.”
You can have your cake and eat it too if you use tee to save your output:

$ nake 2>81 | tee -a Make.log
This performs the following actions:

e It copies error output (file descriptor 2) to standard output (file descriptor 1) with the
expression 2>&1.

e It pipes the combined standard output to the program tee, which echos it to its standard
output and also copies it to the file Make.log.

*Well, there is a clue, but it’s very difficult to see unless you have been hacking X11 configurations
longer than is good for your health. C8Def i nes is a symbol used in X11 configuration. It should have
been replaced by a series of compiler flags used to define the operating system to the package. In this
case, the X11 configuration was messed up, and nothing defined C8Def i nes, so it found its way to the
surface.

5 February 2005 02:09

62

« Inthis case, | specified the - a option, which tells tee to append to any existing Make.log.
If I don’t supply this flag, it will erase any previous contents. Depending on what you’re
doing, you may or may not want to use this flag.

If you’re not sure what your make is going to do, and especially if the Makefile is complicated,
consider using the - n option. This option tells make to perform a “dry run”: it prints out the
commands that it would execute, but doesn’t actually execute them.

These comparatively simple conventions can save a lot of pain. | use a primitive script called
Make which contains just the single line:

nmake 2>&1 $* | tee -a Mike.log

It’s a good idea to always use the same name for the log files so that you can find them easily.

Standard targets

Building packages consists of more than just compiling and linking, and by convention many
Makefiles contain a number of targets with specific meanings. In the following sections we’ll
look at some of the most common ones.

make depend

make depend creates a list of dependencies for your source tree, and usually appends it to the
Makefile. Usually it will perform this task with makedepend, but sometimes you will see a
depend target that uses gcc with the -M flag or cpp. depend should be the first target to run,
since it influences which other commands need to be executed. Unfortunately, most Makefiles
don’t have a depend target. It’s not difficult to write one, and it pays off in the reduction of
strange, unaccountable bugs after a rebuild of the package. Here’s a starting point:

depend:
makedepend *.[ch]

This will work most of the time, but to do it correctly you need to analyze the structure of the
package: it might contain files from other languages, or some files might be created by shell
scripts or special configuration programs. Hopefully, if the package is this complicated, it will
also have a depend target.

Even if you have a depend target, it does not always work as well as you would hope. If you
make some really far-reaching changes, and things don’t work the way you expect, it’s worth
starting from scratch with a make clean to be sure that the make still works.

make all

make all is the normal way to perform the build. Frequently, it is the default target (the first
target in the Makefile), and you just need to enter make. This target typically rebuilds the
package but does not install it.

5 February 2005 02:09

Chapter 5: Building the package 63

make install

make install installs the compiled package into the local system environment. The usage
varies considerably; we’ll look at this target in more detail in Chapter 9, Installation, page
126.

make clean

make clean normally removes everything that make all has made—the objects, executables
and possibly auxiliary files. You use it after deciding to change a compiler, for example, or to
save space after you have finished an installation. Be careful with make clean: there is no
complete agreement about exactly what it removes, and frequently you will find that it doesn’t
remove everything it should, or it is too eager and removes lots of things it shouldn’t. make
clean should remove everything that make all can make again—the intermediate and instal-
lable files, but not the configuration information that you may have taken days to get right.

make stamp-halfway

Occasionally you see a target like make stamp-halfway. The commands perform a lot of other
things, and at the end just create an empty file called stamp-halfway. This is a short cut to
save lots of complicated dependency checking: the presence of this file is intended to indicate
that the first half of the build is complete, and that a restart of make can proceed directly to the
second half. Good examples of this technique can be found in the Makefi le for the GNU C
compiler, and in the X11 source tree, which uses the name DONE for the stamp file.

Problems running make
Ideally, running make should be simple:

$ make all
lots of good messages from nake

Things don’t always go this smoothly. You may encounter a number of problems:

« You may not be able to find a Makefi le, or the targets don’t work the way you expect.
« make may not be able to make any sense of the Makefi le.

« The Makefi le may refer to non-existent files or directories.

+ make seems to run, but it doesn’t rebuild things it should, or it rebuilds things it
shouldn’t.

« You can’t find anything that’s wrong, but make still produces obscure error messages.

In the following sections we’ll look at each of these problems. Here’s an overview of the

5 February 2005 02:09

64

types of error message we'll consider:

Table 5—1: Problems running make

Problem page
Argument list too long 74
"$! nulled, predecessor circle" 71
"Circular dependency dropped" 71
"Commands commence before first target” | 70
Comments in command lists 69
"Graph cycles through target 71
Incorrect continuation lines 73
Incorrect dependencies 68
make forgets the current directory 70
"Missing separator - stop" 70
Missing targets 66
No dependency on Makefile 68
No Makefile 64
Nonsensical targets 71
Problems with make clean 72
Problems with subordinate makes 68
Prompts in Makefiles 74
Subordinate makes 72
Syntax errors from the shell 71
Trailing blanks in variables 69
Unable to stop make 71
Wrong flavour of make 66
Wrong Makefile 66

Missing Makefile or targets

Sometimes make won't even let you in the door—it prints a message like:

$ nake all
Don't know how to make all. Stop.

The fi rst thing to check here is whether there is a Makefile. If you don't fi nd Makefile or
makefile, check for one under a different name. If thisis the case, the author should have doc-
umented where the Makefile comes from—check the README fi les and other documentation
that came with the package. You may fi nd that the package uses separate Makefiles for differ-
ent architectures. For example, Makefile may be correct only if you are compiling in a BSD
environment. If you want to compile for a System V machine, you may need to specify a dif-

ferent Makefile:

Chapter 5: Building the package 65

$ make -f Makefile. sysv

Thisis apain because it's so easy to make a mistake. In extreme cases the compiler will suc-
cessfully create objects, but they will fail to link.

Other possibilitiesinclude:

e The Makefile is created by the confi guration process, and you haven't confi gured yet.
This would be the case if you fi nd an Imakefile (from which you create a Makefile with
xmkmf—see Chapter 4, Package configuration, page 57), or Makefile.in (GNU config-
ure—see page 55).

e The directory you are looking at doesn't need a Makefile. The Makefile in the parent
directory, also part of the source tree, could contain rules like:

f ool f oo: fool*.c
${QG foo/*.c -o fool foo

In other words, the executable is made automatically when you execute make foo/foo in
the parent directory. Asarule, you start building in the root directory of a package, and
perform explicit buildsin subdirectories only if something is obviously wrong.

e The author of the package doesn’'t believe in Makefiles, and has provided a shell script
instead. You often see this with programs that originated on platforms that don't have a
make program.

e Thereisrealy nothing to build the package: the author is used to doing the compilation
manually. In this case, your best bet isto write a Makefile from scratch. The skeleton in
Example 5-1 will get you a surprisingly long way. The empty targets are to remind you
what you need to fi Il in:

Example 5—1:

SRCS = list of Csource files
BIS = ${SRCS. . c=. 0} correspondi ng object files
QC=gcc file name of conpiler
CFLAGS=-g -&B flags for conpiler
LDFLAGS=-¢g flags for |inker

Bl NDI R=/ opt/ bi n

LIBD R=/opt/lib

MANDI R=/ opt / man

MANLD R=nanl

INFQD R=/ opt /i nfo

PROGRAMVE nane of finished program

all: $(PROGRAV)
${03 ${LDFLAGS} -0 ${PROCRAM ${CBIS}

nan:
doc:

install: all

5 February 2005 02:09

5 February 2005 02:09

66

Example 5—-1: (continued)

depend:
makedepend ${SRCS}

clean:
m -F \#* *~ core $(PROGRAM) *.o

Missing targets

Another obvious reason for the error message might be that the target al l doesn't exist: some
Makefiles have a different target name for each kind of system to which the Makefile has been
adapted. The README fi le should tell you if thisisthe case. One of the more unusual exam-
plesisgnuplot. You need to enter

$ nake Al
$ make x11 TARGET=Instal |

The better ones at least warn you—see Chapter 4, Package configuration, page 53, for an
example. | personally don't like these solutions: it's so much easier to add the following line
at the top of the Makefile:

BUILD-TARGET = bui Id-bsd
Thefi rst target would then be:
all: ${BUILD-TARGET}

If you then want to build the package for another architecture, you need only change the sin-
gleline defi ning BUILD-TARGET.

make doesn’t understand the M akefile

Sometimes make produces messages that make no sense at al: the compiler tries to compile
the same fi le multiple times, each time giving it a different object name, or it claims not to be
able to fi nd fi les that exist. One possible explanation is that various flavours of make have
somewhat different understandings of default rules. In particular, as we will see in Chapter
19, Make, there are a number of incompatibilities between BSD make and GNU make.

Alternatively, make may not even be tryining to interpret the Makefile. Somebody could have
hidden a fi le called makefile in the source tree. Most people today use the name Makefile for
make’s description fi le, probably because it's easier to see in an Is listing, but make always
looks for a fi le called makefile (with lower case m) first. If you are using GNU make, it fi rst
looks for afi le called GNUmakefile before checking for makefile and Makefile.

5 February 2005 02:09

Chapter 5: Building the package 67

make refers to non-existent files

Building a package refers to a large number of fi les, and one of the most frequent sources of
confusion is afi le that can’'t be found. There are various flavours of this, and occasionally the
opposite happens, and you have trouble with afi le that make fi nds, but you can’t fi nd.

To analyse this kind of problem, it's helpful to know how make is referring to afi le. Here are
some possihilities:

« make may be looking for a dependent fi le, but it can't fi nd it, and it can't fi nd arule to
build it. Inthiscase you get amessage like:

$ nmake
make: *** No rule to nake target ‘config.h’'. Stop.

« make may not be able to locate a program specifi ed in a command. You get a message
like:

$ nake foo.0

/bin/cc -c foo.o -0 foo.c

make: execve: /bin/cc: No such file or directory
make: *** [foo.0] Error 127

e The compilers and other programs started by make also access fi les specifi ed in the
source. |If they don’t fi nd them, you'll see a message like

$ nmake foo.o

gce -c foo.c -0 foo.o

foo.c:1: bar.h: No such file or directory
nmake: *** [foo.0] Eror 1

No matter where the fi le is missing, the most frequent reasons why it is not found are:

* The package has been confi gured incorrectly. Thisis particularly likely if you fi nd that
the package is missing afi le like confi g.h.

e The search paths are incorrect. This could be because you confi gured incorrectly, but it
also could be that the confi guration programs don’t understand your environment. For
example, it's quite common to fi nd Makefi les with contents like:

AR = /bin/ar
AS = /bin/as
QC = /bin/cc
LD = /bin/cc

Some older versions of make need this, since they don’t look at the PATH environment
variable. Most modern versions of make do look at PATH, so the easiest way to fi X such a
Makefi le isto remove the directory component of the defi nitions.

5 February 2005 02:09

68

Problems with subordinate makes

Occasionally while building, the compiler complains about afi le that doesn’t seem to be there.
This can be because the make is running in a subdirectory: large projects are frequently split

up into multiple subdirectories, and all the top level Makefi le does is to run a number of subor-
dinate makes. If it isfriendly, it also echos some indication of whereiit is at the moment, and

if it dies you can fi nd the fi le. Newer versions of GNU make print messages on entering and
leaving adirectory, for example:

make[1]: Entering directory ‘/cdcopy/ SORCE Core/ glibc-1.08. 8/ assert’
make[1] : Nothing to be done for ‘subdir_lib'.
make[1]: Leaving directory ‘/cdcopy/ SOURCH Corel/ gl i bc-1.08. 8/ assert’

If neither of these methods work, you have the option of searching for thefi le:
$ find . -nane foo.c -print

or modifying the Makefi le to tell you what’s going on.

make doesn’t rebuild correctly

One of the most insidious problems rebuilding programs occurs when make doesn't rebuild
programs correctly: there's no easy way to know that a module has been omitted, and the
results can be far-reaching and time-consuming. Let's look at some possible causes of this
kind of problem.

Incorrect dependencies

One weakness of make is that you have to tell it the interdependencies between the source

fi les. Unfortunately, the dependency specifi cations are very frequently incorrect. Even if they
were correct in the source tree as delivered, changing confi guration fags frequently causes

other header fi lesto be included, and as a result the dependencies change. Make it a matter of
course to run a make depend after reconfi guring, if this target is supplied—see page 62 for

details on how to make one.

No dependency on Makefile

What happens if you change the Makefi le? If you decide to change a rule, for example, this
could require recompilation of a program. To put it in make terms: all generated fi les depend

on the Makefi le. The Makefi le itself is not typically included in the dependency list. It really
should be, but that would mean rebuilding everything every time you change the Makefi le, and

in most casesit’s not heeded. On the other hand, if you do change your Makefi le in the course
of aport, it's agood idea to save your fi les, do a make clean and start al over again. If every-

thing is OK, it will build correctly without intervention.

5 February 2005 02:09

Chapter 5: Building the package 69

Other errors from make

The categories we have seen above account for a large proportion of the error messages you
will see from make, but there are many others as well. In this section, we’ll look at other fre-
quent problems.

Trailing blanks in variables
You define a make variable with the syntax:
NAME = Definition # optional comrent

The exact Defi nition starts at the first non-space character after the = and continues to the end
of the line or the start of the comment, if there is one. You can occasionally run into problems
with things like:

MAKE = / opt/ bi n/ make # in case sonething else is in the path

When starting subsidiary makes, make uses the value of the variable MAKE as the name of the
program to start. In this case it is “/opt/bin/make "—it has trailing blanks, and the exec call
fails. If you’re lucky, you get:

$ nmake
make: don't know how to nake nmake . stop.

This message does give you a clue: there shouldn’t be any white space between the name of
the target and the following period. On the other hand, GNU make is “friendly” and tidies up
trailing blanks, so it says:

$ nmake

[opt / bi n/ make subdi r note the space before the target name "subdir"
nmake: execve: /opt/bin/make: No such file or directory

make: *** [suball] Error 127

The only clue you have here is the length of the space on the first line.
It’s relatively easy to avoid this sort of problem: avoid comments at the end of definition lines.

Comments in command lists
Some versions of make, notably XENIX, can’t handle rules of the form

doc. dvi : doc. t ex
tex doc.tex

do it again to get the references right
tex doc.tex # sane thing again

The first comment causes make to think that the rule is completed, and it stops. When you fix
this problem by removing the comment, you run into a second one: it doesn’t understand the
second comment either. This time it produces an error message. Again, you need to remove
the comment.

5 February 2005 02:09

70

make forgets the current directory
Occasionally, it looks as if make has forgotten what you tell it. Consider the following rule:

docs:
cd doc
${ROFF} ${ RFLAGS} doc. ns > doc. ps

When you run it, you get:

$ nmake docs

cd doc

groff -ns doc. ns >doc. ps

gtroff: fatal error: can't open ‘doc.ns’: No such file or directory
make: *** [docs] Error 1

So you look for doc.ms in doc, and it's there. What's going on? Each command is run by a
new shell. The fi rst one executes the cd doc and then exits. The second one tries to execute
thegr of f command. Since the cd command doesn’t affect the parent environment, it has no
further effect, and you're till in the original directory. To do this correctly, you need to write
theruleas:

docs:
cd doc; \
${ROFF} ${ RFLAGS} doc. ns > doc. ps

This causes make to consider both lines as a single line, which is then passed to a single shell.
The semicolon after the cd is necessary, since the shell seesthe command asasingleline.

Missing separator - stop

This strange message is usually made more complicated because it refers to a line that looks
perfectly normal. In al probability it is trying to tell you that you have put leading spaces
instead of a tab on a command line. BSD make expects tabs, too, but it recovers from the
problem, and the message it printsif they are missing is much moreintelligible:

"Makefile", line 21: warning: Shell command needs a | eadi ng tab

Commands commence before first target

This message, from System V make, is trying to tell you that you have used a tab character
instead of spaces at the beginning of the defi nition of a variable. GNU make does not have a
problem with this—it doesn’t even mention the fact—so you might see this in a Makefi le
written for GNU make when you try to run it with System V make. BSD make cannot handle
tabs at the beginning of defi nitions either, and produces the message:

"Makefile", line 3: Uhassociated shell comrand " QC=gcc"
Fatal errors encountered -- cannot continue

5 February 2005 02:09

Chapter 5: Building the package 71

Syntax errors from the shell

Many Makefi les contain relatively complicated shell script fragments. As we have seen, these
are constrained to be on one line, and most shells have rather strange relationship between
new line characters and semicolons. Here's atypical example:

if test -d $(texpooldir); then exit 0; else nkdir -p $(texpooldir); f

Thisexampleisall on one ling, but you can break it anywhere if you end each partial line with
abackslash (\). The important thing here is the placement of the semicolons: arule of thumb
is to put a semicolon where you would otherwise put a newline, but not after t hen or el se.
For more details, check your shell documentation.

Circular dependency dropped

This message comes from GNU make. In System V make, it is even more obscure;
$! nulled, predecessor circle

BSD make isn’'t much more help:
G aph cycl es through docs

In each case, the message is trying to tell you that your dependencies are looping. This partic-
ular example was caused by the dependencies:

docs: nan- pages
nman- pages: docs

In order to resolve the dependency docs, make fi rst needs to resolve man-pages. But in order
to resolve man-pages, it fi rst needs to resolve docs—areal Catch 22 situation. Real-life loops
are, of course, usually more complex.

Nonsensical targets

Sometimes the fi rst target in the Makefi le does nothing useful: you need to explicitly enter
nake al | inorder to make the package. Thereisno good reason for this, and every reason to
fi x it—send the mods back to the original author if possible (and be polite).

Unable to stop make

Some Makefi les start a number of second and third level Makefi les with the - k option, which
tells make to continue if the subsidiary Makefi le dies. Thisis quite convenient if you want to
leave it running overnight and collect al the information about numerous failures the next
morning. It also makes it amost impossible to stop the make if you want to: hitting the QUIT
key (CTRL-C or DEL on most systems) kills the currently running make, but the top-level
make just starts the next subsidiary make. The only thing to do here isto identify the top-level
make and stop it fi rst, not an easy thing to do if you have only a single screen.

5 February 2005 02:09

72

Problems with make clean

make clean is supposed to put you back to square one with a build. It should remove al the
fi les you created since you fi rst typed make. Frequently, it doesn’t achieve this result very
accurately:

e It goes back further than that, and removes fi les that the Makefi le doesn’t know how to
make.”

e Other Makefi les remove confi guration information when you do a make clean. Thisisn't
quite as catastrophic, but you still will not appreciate it if this happens to you after you
have spent 20 minutes answering confi guration questions and fi xing incorrect assump-
tions on the part of the confi guration script. Either way: before running a make clean for
the fi rst time, make sure that you have a backup.

+ make clean can also start off by doing just the opposite: in early versions of the GNU C
library, for example, it fi rst compiled some things in order to determine what to clean up.
This may work most of the time, but is still a Bad Idea: make clean is frequently used to
clean up after some catastrophic mess, or when restarting the port on a different platform,
and it should not be able to rely on being able to compile anything.

e Yet another problem with make clean is that some Makefi les have varying degrees of
cleanliness, from clean viarealclean all the way to squeakyclean. There may be a need
for this, but it's confusing for casual users.

Subordinate makes

Some subordinate makes use a different target name for the subsidiary makes: you might
write make all, but make might start the subsidiary makes with make subdirs. Although this
cannot always be avoided, it makes it diffi cult to debug the Makefi le. When modifying Make-
fi les, you may frequently come across a situation where you need to modify the behaviour of
only one subsidiary make. For example, in many versions of System V, the man pages need to
be formatted before installation. It's easy to tell if this applies to your system: if you install
BSD-style unformatted man pages, the man program will just display a lot of hard-to-read
nroff source. Frequently, fi xing the Makefi le is more work than you expect. A typical Make-
fi le may contain atarget install that looks like:

install:
for dir in ${SUBDORS}; do \
echo making $@in $dir; \
cd $$dir; ${MKE ${MEFI NES} $@ \
cd ..; \
done

nake $@expands to nake install. One of these subdirectories is the subdirectory doc,

* |f this does happen to you, don't despair just yet. Check fi rst whether this is just simple-mindedness
on the part of the Makefi le—maybe there is arelatively simple way to recreate the fi les. If not, and you
forgot to make a backup of your source tree before you started, then you can despair.

5 February 2005 02:09

Chapter 5: Building the package 73

which contains the documentation and requires special treatment for the catman pages: they
need to be formatted before installation, whereas the man pages are not formatted until the
fi rst time they are referenced—see Chapter 7, Documentation, page 99 for further informa-
tion. The simplest solution is a different target that singles out the doc and makes a different
target, say install-catman. This is untidy and requires some modifi cations to the variable
SUBD RS to exclude doc. A simpler way is to create a new target, install-catman, and modify
all Makefi lesto recognizeit:

install-catnman install - mannan:
for dir in ${SWBORS}; do \
echo nmaking $@in $$dir; \

cd $$dir; ${MKE ${MEFINES} $@ \
cd..; \
done

In the Makefi les in the subdirectories, you might then fi nd targets like

install-catman: ${ MANPAGES}
for i in $<; do ${NRCFF} -nan $3i > ${CATMWN}/ $i; done

install-manman: ${ MANPAGES}
for i in $<; do cp $$i > H{MANVAN/ $i; done

Therule in the top-level Makefi le is the same for both targets: you just need to know the name
to invoke it with. In this example we have also renamed the original i nstal | target so that it

doesn’'t get invoked accidentally. By removing the i nstal | target atogether, you need to

make a conscious decision about what kind of man pages that your system wants.

We're not done yet: we now have exactly the situation we were complaining about on page
66: it is till a nuisance to have to remember make install-catman or make install-manman.

We can get round this problem, too, with

I NSTALL_TYPE=i nst al | - cat nan

install: ${INSTALL _TYPE}

After this, you can just enter make install, and the target install performs the type of installa-
tion specifi ed in the variable | NSTALL_TYPE. This variable needs to be modifi ed from time to
time, but it makes it easier to avoid mistakes while porting.

Incorrect continuation lines

Makefi les frequently contain numerous continuation lines ending with\ . Thisworks only if it
is the very last character on the line. A blank or a tab following the backslash is invisible to
you, but it really confuses make.

Alternatively, you might continue something you don't want to. Consider the following
Makefi e fragment, taken from an early version of the Makefi le for this book:

PART1 = partl.ns config.ns i make. ns nake.ns tool s.ns conpiler.ns obj.ns \
docunentation.ns testing.ns install.ns epilogue. ns

5 February 2005 02:09

74

At some point | decided to change the sequence of chapters, and removed the fi le tools.ms. |
was not completely sure | wanted to do this, so rather than just changing the Makefi le, | com-
mented out the fi rst line and repeated it in the new form:

PART1 = part1l.ns config.ns i make. ns nake.ns tool s.ns conpiler.ns obj.ns \
PART1 = partl.ns config.ns i make. ns nake.ns conpiler.ns obj.ns \
docurentation.ns testing.ns install.ns epil ogue. ns

This works just fi ne—at fi rst. In fact, it turns out that make treats al three lines as a com-
ment, since the comment fi nished with a \ character. As a result, the variable PART1
remained undefi ned. |f you comment out alinethat endsin\ , you should also removethe\ .

Promptsin Makefiles

If you do the Right Thing and copy your make output to alog fi le, you may fi nd that make just
hangs. The following kind of Makefi e can cause this problem:

all: checkcl ean prog

checkcl ean:
@cho -n "Mike clean first? "
@ead reply; if ["$$reply" ="'y]; then nake clean; fi

If you run make interactively, you will see:

$ nake
Make clean first?

If you copy the output to afile, of course, you don’t see the prompt, and it looks as if make is
hanging. This doesn't mean it's a bad idea to save your make output: it's generally a bad idea
to put prompts into Makefi les. There are some exceptions, of course. The Linux confi gura-
tion program is a Makefi le, and to interactively confi gure the system you enter make confi g.

Arg list too long

Sometimes make fails with this message, especialy if you are running a System V system.
Many versions of System V limit the argument list to 5120 bytes—we'll look at thisin more
detail in Chapter 12, Kernel dependencies, page 169. Modern versions of System V allow
you to rebuild the kernel with alarger parameter list: modify the tuneable parameter ARG MAX
to avalue in the order of 20000. If you can't do this, there are a couple of workarounds:

e The total storage requirement is the sum of the length of the argument strings and the
environment strings. It's very possible that you have environment variables that aren’t
needed in this particular situation (in fact, if you're like me, you probably have environ-
ment variables that you will never need again). If you remove some of these from your
shell startup fi le, you may get down below the limit.

e You might be able to simplify expressions. For example, if your Makefi le contains aline
like

Chapter 5: Building the package 75

clean:
m -rf *.o *.a *.depend *~ core ${INTERMEDIATES}

you can splitit into
clean:
m -rf *.o
m -rf *_.a *_.depend *~ core ${INTERMEDIATES}
In most large trees, the *.o fi lenames constitute the majority of the arguments, so you
don’t need more than two lines.

e Even dafter the previous example, you might fi nd that the length of the *.0 parametersis
toolong. In thiscase, you could try naming the objects explicitly:

clean:
m -rf [a-f]*.0
m -rf [g-p]*.o
m -rf [r-z]*.o
m -rf *_.a *_.depend *~ core ${INTERMEDIATES}

* Alternatively, you could specify the names explicitly in the Makefi le:

OBJ1S = absalom.o arthur.o ... fernand.o
0BJ2S = gerard.o guillaume.o ... pierre.o
OBJ3S = rene.o roland.o ... zygyszmund.o

0BJS = ${0BJ1S} ${OBJ2S} ${OBJ3S}

clean:
m -rf ${0BJ1S}
m -rf ${0BJ2S}
m -rf ${0BJ3S}
e Yet another method involves the use of the xargs program. This has the advantage of not
breaking after new fi les have been added to the lists:

clean:
find . -name "*.0" -print | xargs m -f

This chops up the parameter list into chunks that won't overfow the system limits.

Creating executable files

The xargs method is not much help if you want to build an executable fi le. If the command
that fails looks like

${PROG}:
${CC} ${ALLOBIS} -0 ${PROG}

there are some other possibilities. You might be able to shorten the pathnames. If you are

building in a directory /next-release/ SOURCE/sysv/SCO/gcc-2.6.0, and every file name in

ALLOBJS is absolute, it's much easier to exceed the limit than if the directory name was, say,

/S You could use a symbolic link to solve this problem, but most systems that don’t support
ARG_MAX also don’'t have symbolic links.”

5 February 2005 02:09

76

If this doesn’t work, you could place the fi lesin alibrary, possibly using xargs:

${PROG :
rm i bkl udge. a
echo ${ALLABIS} | xargs ar cruv |ibkludge. a

${ QG libkludge.a -0 ${PROG

This looks strange, since there’s no object fi le, but it works: by the time it fi nds the name
libkludge.a, the linker has already loaded the object fi le crt0.0 (see Chapter 21, Object files
and friends, page 368), and is looking for a symbol nai n. It doesn’t care whether it fi ndsit in
an object fi le or alibrary fi le.

Modifying Makefiles

Frequently enough, you fi nd that the Makefi le is inadequate. Targets are missing, or some
error occurs that is almost untraceable: you need to fi x the Makefi le. Before you do this, you
should check whether you are changing the correct Makefi le. Some packages build a new
Makefi le every time you run make. In particular, you frequently see Makefi les that start with
text like

Makefile generated by imake - do not edit!

You can follow this advice or not: it depends on you and what you are doing: If you are just
trying to fi gure out what the Makefi le is trying (and presumably failing) to do, it's nice to
know that you can subsequently delete your modifi ed Makefi le and have it automatically
remade.

Once you have found out why the Makefi le is doing what it is, you need to fi x the source of
the Makefi le. Thisis not usualy too diffi cult: the input fi les to the Makefi |e generation phase
typically don't look too different from the fi nished Makefi le. For example, Makefi le.in in the
GNU packages is a skeleton that is processed by m4, and except for the m4 parameters Make-

fi le.in looks very similar to the fi nished Makefi le. Finding the way back to the Imakefi le from
the Makefi |e requires alittle more understanding of the imake process, but with alittle practice
it's not that diffi cult.

* |f you are on a network with other machines with more modern fi le systems, you could work around
this problem by placing the fi les on the other system and accessing them via NFS.

5 February 2005 02:09

5 February 2005 02:09

Running the compiler

In the previous chapter, we looked at building from the viewpoint of make. The other central
program in the build process is the compiler, which in UNIX is almost always a C compiler.
Like make, the compiler can discover a surprising number of problems in what ostensibly
debugged source code. In this chapter, we’ll look at these problems and how to solve them.

In we’ll look at how the compiler works and how the various flavours of C differ. Although
we restrict our attention to the C compiler, much of what we discuss relates to other compilers
as well, particularly of course to C++. This chapter expects a certain understanding of the C
language, of course, but don’t be put of if you’re still a beginner: this is more about living
with C than writing it.

Information from the compiler can come in a number of forms:

e The compiler may issue warnings, which are informational messages intended to draw
attention to possible program errors. Their reliability and their value varies significantly:
some are a sure-fire indication that something is wrong, while others should be taken
with a pinch of salt.

e The compiler may issue error messages, indicating its conviction that it cannot produce a
valid output module. This also usually means that the compiler will not create any out-
put files, though you can’t always rely on this.

e The compiler may fail completely, either because of an internal bug or because it realizes
that it no longer understands the input sufficiently to continue.

Compiler warnings

It’s easy to make mistakes when writing programs, but it used to be even easier: nowadays,
even the worst compilers attempt to catch dubious constructs and warn you about them. In
this section, we’ll look at what they can and can’t do.

Before compilers worried about coding quality, the program lint performed this task. lint is
still around, but hardly anybody uses it any more, since it doesn’t always match the compiler
being used. This is a pity, because lint can catch a number of dubious situations that evade
most compilers.

77

78

Modern compilers can recognize two kinds of potential problems:
+ Problems related to dubious program text, like

if (a=1)
return;
The first line of this example is almost superfluous: if I allocate the value 1 to a, | don’t
need ani f to tell me what the result will be. This is probably a typo, and the text should
have been

if (a==1)
return;
« Problems related to program flow. These are detected by the flow analysis pass of the

optimizer. For example:

int a

b = a;
The second line uses the value of a before it has been assigned a value. The optimizer
notices this omission and may print a warning.

In the following sections, we’ll examine typical warning messages, how they are detected and
how reliable they are. I’ll base the sections on the warning messages from the GNU C com-
piler, since the it has a particularly large choice of warning messages, and since it is also
widely used. Other compilers will warn about the same kind of problems, but the messages
may be different. Table 6-1 gives an overview of the warnings we’ll see.

Table 6—1: Overview of warning messages

5 February 2005 02:09

5 February 2005 02:09

Chapter 6: Running the compiler 79

Table 6—1: Overview of warning messages (continued)

Kind of warning page
Changing non-volatile automatic variables | 82
Character subscripts to arrays 80
Dequalifying types 81
Functions with embedded extern definitions | 84
Implicit conversions between enums 82
Implicit return type 79
Incomplete switch statements 82
Inconsistent function returns 79
Increasing alignment requirements 81
Invalid keyword sequences in declarations 83
Long indices for switch 82
Missing parentheses 83
Nested comments 83
Signed comparisons of unsigned values 80
Trigraphs 83
Uninitialized variables 80

Implicit return type
K&R C alowed programs like
main ()

{
printf ("Hello, Wrld\n");

}
ANSI C has two problems with this program:

e Thefunction namenai n does not specify areturn type. It defaultstoi nt .
e Sincemai nisimplicitly ani nt function, it should return avalue. This one does not.

Both of these situations can be caught by specifying the - W et ur n-t ype option to gcc. This
causes the following messages:

$ gcc -c hello.c -Weturn-type

hello.c:2: warning: return-type defaults to ‘int’

hello.c: In function ‘main’:
hel 0. c:4: warning: control reaches end of non-void function

I nconsistent function returns

The following function does not always return a defi ned value:

5 February 2005 02:09

80

foo (int x)

{
if (x >3
return x - 1;

}

If X is greater than 3, this function returnsx - 1. Otherwise it returns with some uninitial-
ized value, since there is no explicit r et ur n statement for this case. This problem is particu-
larly insidious, since the return value will be the same for every invocation on a particular
architecture (possibly the value of x), but this is a by-product of the way the compiler works,
and may be completely different if you compile it with a different compiler or on some other
architecture.

Uninitialized variables
Consider the following code:

void foo (int x)
{
int a
if (x>05)
a=x-3
bar (a);
. etc

Depending on the value of x, a may or may not be initialized when you call bar . If you select
the - Wini ni ti al i zed compiler option, it warns you when this situation occurs. Some com-
pilers, including current versions of gcc place some limitations on this test.

Signed comparisons of unsigned values
Occasionally you see code of the form

int foo (unsigned x)

{
if (x >=0)
etc

Sincex isunsigned, itsvalueisalways>= 0, so thei f issuperflious. Thiskind of problemis
surprisingly common: system header fi les may differ in opinion as to whether a value is
signed or unsigned. The option - Wcauses the compiler to issue warnings for this and awhole
lot of other situations.

Character subscriptsto arrays
Frequently, the subscript to an array is a character. Consider the following code:

char iso_translate [256] = /* translate table for 1SO8859-1 to LaserJet */
{

codes for the first 160 characters

5 February 2005 02:09

Chapter 6: Running the compiler 81

Oxa0, Oxal, Oxa2, Oxa3, Oxa4, Oxa5, Oxa6, Oxa7,
Oxa8, Oxa9, Oxaa, Oxab, Oxac, Oxad, Oxae, Oxaf,
etc

b
#define xlate(x) iso_translate [X];

char *s; /* pointer in buf */
for (*s = buf; *s; s++)
*s = xlate (*s);

The intention of x| at e is to translate text to a form used by older model HP LaserJet printers.
This code works only if the char *s is unsigned. By default, the C char type is a signed
value, and so the characters 0x80 to Oxf f represent a negative array offset, and the program
attempts (maybe successfully) to access a byte outside the table i so_transl at e. gcc warns
about this if you set the option - W¢har - subscri pt s.

Dequalifying types
The following code fragment can cause problems:

char *prof ane;
void foo (const char *holy)

{

prof ane = holy;

The assignment of hol y to pr of ane loses the qualifier const, and the compiler complains
about the fact. On the other hand, this is valid:

profane = (char *) holy;

This doesn’t make it a better idea: hol y is supposed to be unchangeable, and here you are
removing this qualifier. If you specify the - W¢ast - qual option to gcc, it complains if you
use a cast to remove a type qualifier such as const.

Increasing alignment requirements

Many processors require that specific data types be aligned on specific boundaries, and the
results can be spectacular if they are not—see Chapter 11, Hardware dependencies, page 158,
for more details. We can easily outsmart the C compiler with code like:

void foo (char *x)

{

int *ip=(int *) x;
In this case, there is a good chance that the i nt * pointer i p requires a specific alignment and
is not allowed to point at any address in memory the way the char pointer x is allowed to do.
If you specify the - Wast - al i gn option to gcc, it warns you of such assignments.

5 February 2005 02:09

82

Implicit conversions between enums

One of the advantages of enums is that they make type checking easier—we’ll look at that in
more detail in Chapter 20, Compilers, page 339. If you specify the - Vnum cl ash option to
gcc, and you’re compiling C++, it warns about sloppy use of enums.

Incomplete switch statements

A frequent cause of error in a switch statement is that the index variable (the variable that
decides which case is chosen) may assume a value for which no case has been specified. If
the index variable is an i nt of some kind, there is not much you can do except include a
defaul t clause. If the index variable is an enum the compiler can check that case clauses
exist for all the possible values of the variable, and warns if they do not. It also warns if case
clauses exist for values that are not defined for the type of the index variable. Specify the
- Vgwi t ch option for these warnings.

long indices for switch
In some dialects of pre-ANSI C, you could write things like

foo (x)
long x;
{
switch (x)
{
. etc
This is no longer allowed in ANSI C: indices for swi t ch must evaluate to ani nt , even ifi nt
and | ong have the same length. gcc issues a warning about | ong indices in swi t ch unless
you specify the -t radi ti onal option.

Changing non-volatile automatic variables

Under certain circumstances, a signal handler might modify a local automatic variable if the
function has called set j np—see Chapter 13, Sgnals, page 200 for more details. gcc options
this situation as a warning if you specify the - Woption. This is a complicated problem:

« It can occur only during an optimizing compilation, since the keyword volatile has mean-
ing only in these circumstances. In addition, the situation is recognized only by the opti-
mizer.

+ The optimizer cannot recognize when a | ongj np could be performed. This depends on
semantics outside the scope of the optimizer. As a result, it could issue this warning
when there is, in fact, no danger.

5 February 2005 02:09

Chapter 6: Running the compiler 83

Invalid keyword sequences in declarations
Currently, it is permissible to write declarations like
int static bad_usage;

Here the storage class specifi er static comes after the type specifi er i nt . The ANSI Standard
still permits this, but declares the usage to be obsolescent. gcc issues a warning when it
encounters this and the option - Whas been set.

Trigraphs

Trigraphs (see Chapter 20, Compilers, page 342) are no error, at least according to the ANSI
Standard. The Free Software Foundation makes no bones about their opinion of them, and so
gce supplies the option - Wri gr aphs, which prints a warning if any trigraphs occur in the
source code. Since thisworks only if the option -t ri gr aphs is used to enable them, it is not
clear that thisis of any real use.

Nested comments
Occasionally you see code like

void foo (int x)

{

inty; /* state information
y = bar (); [* initializey */
if (y=24

etc

The code looks reasonable, and it is syntactically correct C, but in fact the comment after the
declaration of y is not terminated, so it includes the whole of the next line, which is almost
certainly not the intention. gcc recognizes this if it fi nds the sequence/* in a comment, and
warns of this situation if you specify the - Véorment option.

Missing parentheses
What value does the following code return?
int a=11<<4 &7 << 2 > 4

The result is 0, but the real question is: in what order does the compiler evaluate the expres-
sion? You can fi nd the real answer on page 53 of K&R, but you don’'t want to do that al the
time. We can re-write the code as

int a=(11<<4) &((7 << 2) > 4);

This makes it alot clearer what is intended. gcc warns about what it considers to be missing
parentheses if you select the - Vpar ent heses option. By its nature, this option is subjective,
and you may fi nd that it complains about things that look fi ne to you.

5 February 2005 02:09

84

Functions with embedded extern definitions
K&R C allowed you to write things like

int datafile;
foo (x)
{

extern open ();
datafile = open ("foo", 0777);
}

The extern declaration was then valid until the end of the source file. In ANSI C, the scope of
open would be the scope of f 0o: outside of f 0o, it would no longer be known. gcc issues a
warning about ext er n statements inside a function definition unless you supply the -t r adi -
tional option. If you are using -traditional and want these messages, you can supply
the - Whest ed- ext er ns option as well.

Compiler errors

Of course, apart from warnings, you frequently see error messages from the compiler—they
are the most common reason for a build to fail. In this section, we’ll look at some of the more
common ones.

Undefined symbols

This is one of the most frequent compiler error messages you see during porting. At first
sight, it seems strange that the compiler should find undefined symbols in a program that has
already been installed on another platform: if there are such primitive errors in it, how could it
have worked?

In almost every case, you will find one of the following problems:

« The definition you need may have been #i f def ed out. For example, in a manually con-
figured package, if you forget to specify a processor architecture, the package may try to
compile with no processor definitions, which is sure to give rise to this kind of problem.

« The symbol may have been defined in a header file on the system where it was devel-
oped. This header file is different on your system, and the symbol you need is never
defined.

« You may be looking at the wrong header files. Some versions of gcc install “fixed”
copies of the system header files in their own private directory. For example, under
BSD/386 version 1.1, gcc version 2.6.3 creates a version of unistd.h and hides it in a pri-
vate directory. This file omits a number of definitions supplied in the BSDI version of
unistd.h. You can confirm which header files have been included by running gcc with the
- Hoption. In addition, on page 86 we look at a way to check exactly what the preproces-
sor did.

The second problem is surprisingly common, even on supposedly identical systems. For

5 February 2005 02:09

Chapter 6: Running the compiler 85

example, in most versions of UNIX System V.4.2, the system header fi le link.h defi nes infor-
mation and structures used by debuggers. In UnixWare 1.0, it defi nes information used by
some Novell-specifi c communications protocols. If you try to compile gdb under UnixWare
1.0, you will have problems as aresult: the system simply does not contain the defi nitions you
need.

Something similar happens on newer System V systems with POSIX.1 compatibility. A pro-
gram that seems formally correct may fail to compile with an undefi ned symbol O NDELAY.
O NDELAY is aflkg to open, which specifi es that the call to open should not wait for comple-
tion of the request. This can be very useful, for example, when the open is on a seria line
and will not complete until an incoming call occurs. The flg is supported by almost all mod-
ern UNIX ports, but it is not defi ned in POSIX.1. The result is that the defi nition is carefully
removed if you compile defi ning - D_PCBl X_SOURCE.

You might think that this isn't a problem, and that you can replace O NDELAY with the
POSIX.1 fleg O NONBLACK. Unfortunately, the semantics of O NONBLOXK vary from those of
O NDELAY: if no datais available, O NONBLOXK returns -1, and O NDELAY returns 0. You can
make the change, of course, but this requires more modifi cations to the program, and you have
a strraighforward alternative: #undef _PCSl X SOURCE. If you do this, you may fi nd that
suddenly other macros are undefi ned, for example O NOCTTY. System V.4 only defi nes this
variableif PCHl X SOURCE is set.

There’'s no simple solution to this problem. It is caused by messy programming style: the pro-
grammer has mixed symbols defi ned only by POSIX.1 with those that are not defi ned in
POSIX.1. The program may run on your current system, but may stop doing so at the next
release.

Conflicts between preprocessor and compiler variables

Occasionaly you'll see things that seem to make absolutely no sense at al. For example,
porting gcc, | once ran into this problem:

gcc -¢c -DNQAC -g-@&B -1, -1, -1./config\
-DAOC I NCLUDE DI R\ "/ opt /| 'i b/ gce-1i b/ i 386--sysv/ 2. 6.0/include\" \
- DGPLUSPLUS | NOLUDE DI RA\ "/ opt /1 i b/ g++-i ncl ude\ " \
- DORCBS | NOLWDE DI RA\ "/ opt /1 b/ gce-1i b/ i 386- - sysv/ 2. 6. 0/ sys-i ncl ude\ " \
-DrodL_| NOLUDE D R=\"/ opt /i 386--sysv/incl ude\ " \
-DLCCAL_| NOLUCE D RA\ "/ usr/l ocal /i ncl ude\ " \
-DSTD PROTO DI RA\"/opt/1i b/ gcc-1ib/i386--sysv/2.6.0\" \
.Iprotoize.c
./protoize.c:156: nacro ‘puts’ used wthout args

Looking at this part of protoize.c, | found lots of external defi nitions:

extern int fflush ();
extern int atoi ();
extern int puts ();
extern int fputs ();
extern int fputc ();
externint link ();
extern int unlink ();

5 February 2005 02:09

86

Line 156 is, not surprisingly, the defi nition of put s. But this is a defi nition, not a call, and
certainly not amacro. And why didn’t it complain about all the other defi nitions? There were
many more than shown here.

In cases like this, it's good to understand the way the compiler works—we'll ook at thisin
more detail in Chapter 20, Compilers, on page 348. At the moment, we just need to recall that
programs are compiled in two stages: fi r<t, the preprocessor expands all preprocessor defi ni-
tions and macros, and then the compiler itself compiles the resultant output, which can look
quite different.

If you encounter this kind of problem, there's a good chance that the compiler is not seeing
what you expect it to see. You can frequently solve this kind of riddle by examining the view
of the source that the compiler sees, the output of the preprocessor. In this section, we'll ook
at the technique | used to solve this particular problem.

All compilers will alow you to run the preprocessor separately from the compiler, usually by
specifying the - E option—see your compiler documentation for more details. In this case, |
was running the compiler in an xterm’, so | was able to cut and paste the complete 8-line com-
piler invocation as a command to the shell, and all | needed to type was the text in bold face:

$gecc -c -DNGEXC -g -G8 -1. -1. ~-l./config\
-DAOC I NCLUDE DI R\ "/ opt / |'i b/ gce-1i b/ i 386--sysv/ 2. 6.0/include\" \
- DGPLUSPLUS | NOLWDE DI RA\ "/ opt /1 i b/ g++-i ncl ude\ " \
- DORCBS I NOLUWDE DI RA\ "/ opt /1 b/ gce-1i b/ i 386- - sysv/ 2. 6. 0/ sys-i ncl ude\" \
-DrodL_| NOLUDE D R=\"/ opt /i 386--sysv/incl ude\" \
-DLCCAL_| NOLUDE D RA\ "/ usr/l ocal /i ncl ude\ " \
-DSTD PROTO DI RA\"/opt/1i b/ gcc-1ib/i386--sysv/2.6.0\" \
.Iprotoize.c -E -0 junk.c
$

If you don’t have xterm, you can do the same sort of thing by editing the make log (see Chap-
ter 5, Building the package, page 60), which will contain the invocation as well.

junk.c starts with;

#1"./config.h" 1

1 "./config/i386/xmi386.h" 1
40 enpty lines

#1". /tmh" 1

19 enpty |ines

1 "./config/i386/gas.h" 1

22 enpty lines

This fi e seems to consist mainly of empty lines, and the lines that aren’t empty don’t seem to
be C! In fact, the # lines are C (see the | i ne directive in Chapter 20, Compilers, page 344),
except that in this case the keyword | i ne has been omitted. The empty lines are where com-
ments and preprocessor directives used to be. The error message referred to line 156 of pro-
toize.c, so | searched for lines with pr ot oi ze. ¢ on them. | found anumber of them:

* xterm is a terminal emulator program that runs under X11. If you don’'t use X11, you should—for
example, it makes this particular technique much easier.

5 February 2005 02:09

Chapter 6: Running the compiler 87

$ grep protoize.c junk.c

#1"./protoize.c"

39 "./protoize.c" 2

59 "./protoize.c" 2

62 "./protoize.c" 2

63 "./protoize.c" 2
etc

78 "./protoize.c" 2

222 "./protoize.c"

Clearly, the text was between lines 78 and 222. | positioned on the line after the marker for
line 78 and moved down (156 - 78) or 78 lines. There| found:

extern int fflush ();

extern int atoi ();

extern int ((fputs((), stdout) || ((stdout)->_bufp < (stdout)-> put_|limt
? (int) (unsigned char) (*(stdout)->_bufp++ = (unsigned char) ('0))
:__flshfp ((stdout), (unsigned char) ('0))) = (-1)) ? (-1 : 0) ;

extern int fputs ();

extern int fputc ();

externint link ();

extern int unlink ();

WEell, at any rate this made it clear why the compiler was complaining. But where did this
junk come from? It can be diffi cult to fi gure this out. With gcc you can use the - dD option to
keep the preprocessor defi nitions—unfortunately, the compiler still removes the other pre-

processor directives. | used - dDaswell, and found in junk.c:

491 "/opt/include/stdio.h" 2

25 lines mssing

extern int fputs (__const char *__s, FILE *__strean)
/* Wite a string, followed by a newine, to stdout. */
extern int puts (__const char *__s)

#define puts(s) ((fputs((s), stdout) || __putc(’'0, stdout) == ECF) ? ECF : 0)

This looks strange: fi rst it declares put s as an externa function, then it defi nes it as a macro.
Looking at the original source of stdio.h, | found:

/* Wite a string, followed by a newine, to stdout. */
extern int puts _ P ((__const char *__s));

#ifdef _ CPTIMZE

#define puts(s) ((fputs((s), stdout) || __putc('O, stdout) == ECF) ? ECF : 0)

#endif /* otimzing. */
No, this doesn't make sense—it's area live bug in the header fi le. At the very least, the dec-
laration of puts () should have been in an #el se clause. But that's not the real problem: it
doesn’'t worry the preprocessor, and the compiler doesn't seeit. Thereal problem isthat pro-
toize.c istrying to do the work of the header fi les and defi ne put s again. There are many pro-
grams that try to out-guess header fi les: thiskind of defi nition breaks them all.

There are at least two ways to fi x this problem, both of them simple. The real question is,
what is the Right Thing? System or library header fi les should be allowed to defi ne macros

5 February 2005 02:09

88

instead of functions if they want, and an application program has no business trying to do the
work of the header fi les, so it would make sense to fi x protoize.c by removing all these exter-
nal defi nitions: apart from this problem, they're also incompatible with ANSI C, since they
don't describe the parameters. In fact, | chose to remove the defi nition from the header fi le,
since that way | only had to do the work once, and in any case, it's not clear that the defi nition
really would run any faster.

Preprocessor output usually looks even more illegible than this, particularly if lots of clever
nested #def i nes have been performed. In addition, you'll frequently see references to non-
existant line numbers. Here are a couple of waysto make it more legible:

e Usean editor to put comments around al the #l i ne directives in the preprocessor out-
put, and then recompile. Thiswill make it easier to fi nd the line in the preprocessor out-
put to which the compiler or debugger is referring; then you can use the comments to fol-
low it back to the original source.

* Run the preprocessor output through a program like indent, which improves legibility
considerably. Thisis especially useful if you fi nd yourself in the unenviable position of
having to modify the generated sources. indent is not guaranteed to maintain the same
number of lines, so after indenting you should recompile.

Other preprocessors

There are many other cases in which the source fi le you use is hot the source fi le that the com-
piler gets. For example, yacc and bison take a grammar fi le and make a (more or less illegi-
ble) .c fi le out of it; other examples are database preprocessors like Informix ESQL, which
takes C source with embedded SQL statements and converts it into a form that the C compiler
can compile. The preprocessor’s output is intended to be read by a compiler, not by humans.
All of these preprocessors use lines beginning with # to insert information about the original
line numbers and source fi les into their output. Not all of them do it correctly: if the pre-
processor inserts extra lines into the source, they can become ambiguous, and you can run into
problems when using symbolic debuggers, where you normally specify code locations by line
number.

Syntax errors

Syntax errors in previously functional programs usually have the same causes as undefi ned
symbols, but they show their faces in a different way. A favourite one results from omitting
lusr/include/sys/types.h. For example, consider bar.c:

#i ncl ude <stdio. h>
#ifdef USG

#i ncl ude <sys/types. h>
#endi f

ushort num
int main (int argc, char *argv [])

{

5 February 2005 02:09

Chapter 6: Running the compiler 89

num= atoi (argv [1]);
printf ("First argunent: %\n", nun);
}

If you compile this under BSD/OS, you get:

$ gcc -0 bar bar.c
bar.c:6: parse error before ‘ num
bar.c:6: warning: data definition has no type or storage cl ass

There’s an error because ushort hasn’t been defined. The compiler expected a type specifier,
so it reported a syntax error, not an undefined symbol. To fix it, you need to define the type
specified—see Appendix A, Comparative reference to UNIX data types for a list of the more
common type specifiers.

Virtual memory exhausted

You occasionally see this message, particularly when you’re using gcc, which has a particular
hunger for memory. This may be due to unrealistically low virtual memory limits for your
system—by default, some systems limit total virtual memory per process to 6 MB, but gcc
frequently requires 16 or 20 MB of memory space, and on occasion it can use up to 32 MB
for a single compilation. If your system has less than this available, increase the limit accord-
ingly. Don’t forget to ensure that you have enough swap space! Modern systems can require
over 100 MB of swap space.

Sometimes this doesn’t help. gcc seems to have particular difficulties with large data defini-
tions; bit map definitions in X11 programs are the sort of things that cause problems. xphoon,
which displays a picture of the current phase of the moon on the root window, is a good exam-
ple of a gcc-breaker.

Compiler limits exceeded

Some compilers have difficulties with complicated expressions. This can cause ccl, the com-
piler itself, to fail with messages like “expression too complicated” or “out of tree space.” Fix-
ing such problems can be tricky. Straightforward code shouldn’t give the compiler indiges-
tion, but some nested #defines can cause remarkable increases in the complexity of expres-
sions: in some cases, a single line can expand to over 16K of text. One way to get around the
problem is to preprocess the code and then break the preprocessed code into simpler expres-
sions. The indent program is invaluable here: preprocessor output is not intended to be
human-readable, and most of the time it isn’t.

Running compiler passes individually

Typical compilers run four distinct passes to compile and link a program—see Chapter 20,
Compilers, page 348, for more details. Sometimes running the passes separately can be useful
for debugging a compilation:

5 February 2005 02:09

90

« If youfi nd yourself with header fi les that confuse your preprocessor, you can run a differ-
ent preprocessor, collect the output and feed it to your compiler. Since the output of the
preprocessor is not machine-dependent, you could even do this on a different machine
with different architecture, as long as you ensure that you use the correct system header
fi les. By convention, the preprocessor output for foo.c would be called foo.i—see Chap-
ter 20, Compilers, page 348 for a list of intermediate fi le suffi xes—though it usually
does no harm if you call it foo.c and pass it through the preprocessor again, since there
should no longer be anything for the second preprocessor to do.

* If you want to report a compiler bug, it's frequently a good idea to supply the preproces-
sor output: the bug might be dependent on some header fi le confict that doesn’'t exist on
the system where the compiler development takes place.

« If you suspect the compiler of generating incorrect code, you can stop compilation after
the compiler pass and collect the generated assembler output.

Incorrect code from compiler

Compilers sometimes generate incorrect code. Incorrect code is frequently diffi cult to debug
because the source code looks (and might be) perfect. For example, a compiler might gener-
ate an instruction with an incorrect operand address, or it might assign two variables to a sin-
glelocation. About the only thing you can do hereis to analyze the assembler output.

One kind of compiler bug is immediately apparent: if the code is so bad that the assembler
can't assemble it, you get messages from the assembler. Unfortunately, the message doesn’t
usualy tell you that it comes from the assembler, but the line numbers change between the
compiler and the assembler. If the line number seems completely improbable, either because
it islarger than the number of lines in your source fi le, or because it seems to have nothing to
do with the context of that line, there is a chance that the assembler produced the message.
There are various ways to confi rm which pass of the compiler produced the message. If
you're using gcc, the simplest oneis to use the - v option for the compiler, which “announces”
each pass of compilation as it starts, together with the version numbers and parameters passed
to the pass. This makes it relatively easy to fi gure out which pass is printing the error mes-
sages. Otherwise you can run the passes individually—see Chapter 20, Compilers, page 348
for more details.

5 February 2005 02:09

Documentation

Ask any real guru a question, so the saying goes, and he will reply with a cryptic “RTFM”.”
Cynics claim this is even the answer to the question “Where can | find the manual?” All too
often, programmers consider documentation a necessary (or even unnecessary) evil, and if it
gets done at all, it’s usually the last thing that gets done. This is particularly evident when you
look at the quality of documentation supplied with some free software packages (though many
free packages, such as most of those from the Free Software Foundation, are very well docu-
mented). The quality and kind of the documentation in source packages varies wildly. In
Chapter 2, Unpacking the goodies, page 25, we looked at the documentation that should be
automatically supplied with the package to describe what it is and how to install it. In this
chapter, we’ll look at documentation that is intended for use after you have installed the pack-
age.

The documentation you get with a package is usually in one of the following formats:

e man pages, the traditional on-line documentation for UNIX, which are formatted with
nroff.

« infofiles, used with the GNU project’s info on-line documentation reader.
e Unformatted roff, TEX, or texinfo hardcopy documentation.

« Preformatted documentation in PostScript or .dvi format, or occasionally in other formats
such as HP LaserJet.

We know where we want to get to—the formatted documentation—but we don’t always
know where to start, so it’s easier to look at documentation in reverse order: first, we’ll look at
the end result, then at the formatters, and finally at the input files.

Preformatted documentation

Occasionally you get documentation that has been formatted so that you can print it on just
about any printer, but this doesn’t happen very much: in order to achieve this, the text must be
free of any frills and formatted so that any typewriter can print it. Nearly any printer

* “Read The Manual”—the F is usually silent.

91

5 February 2005 02:09

92

nowadays is capable of better results, so preformatted files are usually supplied in a format
that can print high quality printout on a laser printer. The following three are about the only
ones you will come across:

« PostScript is a specialized programming language for printers, and the printed data are in
fact embedded in the program. This makes it an extremely flexible format.

« .dvi is the format that is output by TEX. In order to print it, you need a TEX driver.

« Unlike PostScript and .dvi, the Hewlett-Packard LaserJet format is not portable: you
need a LaserJet-compatible printer to print it. The LaserJet format is obsolescent: even
many LaserJet printers made today also support PostScript, and there are programmatic
ways to print PostScript on other laser printers, so there is little motivation for using the
much more restrictive LaserJet format.

PostScript

PostScript is the current format of choice. Because it is a programming language, it is much
more flexible than conventional data formats. For example, it is easily scalable. You can take
a file intended for a phototypesetter with a resolution of 2540 bpi and print it on a laser
printer, and it will come out correctly.” In addition, better quality printers perform the format-
ting themselves, resulting in a considerable load reduction for the computer. A large number
of printers and all modern phototypesetters can process PostScript directly.

If your printer doesn’t handle PostScript, you can use programs like ghostscript, which inter-
pret PostScript programs and output in a multitude of other formats, including LaserJet, so
even if you have a LaserJet, it can be a better idea to use PostScript format. ghostscript is dis-
tributed by the Free Software Foundation—see Appendix E, Where to get sources.

ghostscript can also display PostScript files on X displays.

Most PostScript files are encoded in plain ASCII without any control characters except new-
line (though that doesn’t make them easy to read). Even when you include special characters
in your text, they appear in the PostScript document as plain ASCII sequences. It’s usually
pretty easy to recognize PostScript, even without the file program. Here’s the start of a draft
version of this chapter:

% PS- Adobe- 3. 0

%Ereator: groff version 1.09
%&xeationDate: Thu Aug 18 17: 34:24 1994
9%%eocunent NeededResour ces: font Ti nes- Bol d

The data itself is embedded in parentheses between the commands. Looking at a draft of this
text, we see things like

(1t")79.8 273.6 Q 2.613(su)-.55 G. 113

(sually pretty easy to recogni ze a Post Script program e)-2.613 F -.15

(ve)-.25 G 2.614(nw) .15 G.114(ithout the)-2.614 F F2(\214le)2.614 E F1
(program-here’)79.8 285.6 Q 2.5(st)-.55 @ he start of a draft v)-2.5 E

*You may have to wait a while before a few megabytes of font information are transferred and pro-
cessed, but eventually you get your document.

5 February 2005 02:09

Chapter 7: Documentation 93

Problems with PostScript

PostScript doesn’t pose too many problems, but occasionally you might see one of these:

Missing fonts
PostScript documents include information about the fonts they require. Many fonts are
built in to printers and PostScript display software, but if the fonts are not present, the
system chooses a default value which may have little in common with the font which
the document requested. The default font is typically Courier, which isfi xed-wi dt h,
and the results look terrible. If this happens, you can fi nd the list of required fonts with
the following:

$ grep '%6* font ' nunble. ps

9%%ocunent NeededResour ces: font Garanmond- Bookl tal i ¢
%4 font Ti nes- Ronan

%4 font Garanond- Li ght

%4 font Garanond-Lightltalic

%46 font Courier

%4 font Garanond- Book

%4 font Courier-Bold

94 ncl udeResour ce: font Garanond-Bookltalic

94 ncl udeResour ce: font Ti nes- Roman

9% ncl udeResour ce: font Garanond- Li ght

94 ncl udeResour ce: font Garanond-Lightltalic

94 ncl udeResour ce: font Couri er

94 ncl udeResour ce: font Gar anond- Book

94 ncl udeResour ce: font Courier-Bol d

(9%&0cunent NeededResour ces: font Ti nmes- Bol d) 131. 711 327.378 S F1 1.281

This extracts the font requests from the PostScript fi le: in this case, the document
reguires Times Roman, Courier and Garamond fonts. Just about every printer and soft-
ware package supplies Times Roman and Courier, but Garamond (the font in which this
book iswritten) isless common. In addition, most fonts are copyrighted, so you proba-
bly won’t be able to fi nd them on the net. If you have a document like this in PostScript
format, your choices are:

« Reformat it with adifferent font if you have the source.
e Get the Garamond fonts.

e Edit thefi le and change the name of the font to a font with similar metrics (in other
words, with similar size characters). The results won't be as good, but if the font
you fi nd is similar enough, they might be acceptable. For example, you might
change the text Garamond to Times Roman.

Wrong font type
Most PostScript fonts are in plain ASCII. You may aso come across Type 2 PostScript
and display PostScript, both of which include binary data. Many printers can’t under-
stand the binary format, and they may react to it in an unfriendly way. For example, my
National KX-P 4455 printer just hangsif | copy display PostScript to it. See the section
format conversion below for ways to solve this dilemma.

5 February 2005 02:09

94

.dvi format

One of the goals of TEX was to be able to create output for just about any printer. Aswe will
see, old versions of troff, the main competitor, were able to produce output only for a very
limited number of phototypesetters. Even if you have one of them in your offi ce, it's unlikely
that you will want to useit for printing out a draft of a 30-page paper.

The TeX solution, which was later adopted by troff in ditroff (device independent troff), was to
output the formatted data in a device-independent format, .dvi, and leave it to another pro-
gram, a so-called driver, to format the files in a format appropriate to the output device.
Unlike PostScript, .dvi contains large numbers of control characters and characters with the
sign bit set, and is not even remotely legible. Most versions of file know about .dvi format.

Format conversion

Not so long ago your choice of documentation software determined your output format. For
example, if you used TEX, you would get .dvi output, and you would need a TEX driver to print
it. Nowadays, it's becoming easier to handle fi le formats. GNU troff will output in .dvi for-
mat if you wish, and programs are available to convert from .dvi to PostScript and back again.
Here'salist of conversions you might like to perform—see Appendix E, Where to get sources
for how to get software to perform them.

e A number of programs convert from .dvi to PostScript—for example, dvips.

e Theré's no good reason to want to convert from PostScript to .dvi, so there are no pro-
grams available. .dvi is not much use in itself—it needs to be tranformed to a fi nal
printer form, and if you have PostScript output, you can do that directly with ghostscript
(see below) without going via .dvi.

e Todisplay .dvi fi leson an X display, use SeeTeX.
* To convert from .dvi to a printer output format, use one of the dvi2xxx programs.
e To convert from PostScript to a printer format, use ghostscript.

e Todisplay PostScript on an X display, you can aso use ghostscript, but ghostview gives
you a better interface.

* To convert PostScript with binary datainto ASCII, use tlascii.

roff and friends

The original UNIX formatting program was called roff (for run-off). It is now completely
obsolete, but it has anumber of descendents:

« nroff isacomparatively simple formatter designed to produce output for plain ASCII dis-
plays and printers.

« troff is a more sophisticated formatter designed to produce output for phototypesetters.
Many versions create output only for the obsolete APS-5 phototypesetter, and you need

Chapter 7: Documentation 95

postprocessing software to convert this output to something that modern typesetters or
laser printers understand. Fortunately, versions of troff that produce PostScript output are
now available.

» ditroff (device independent troff) is a newer version of troff that produces output in a
device-independent intermediate form that can then be converted into the fi nal form by a
conversion program. This moves the problem of correct output format from troff to the
conversion program. Despite the terminology, this device-independent format is not the
same as .dvi format.

o groff isthe GNU project troff and nroff replacement. In troff mode it can produce output
in PostScript and .dvi format.

All versions of roff share the same source fi le syntax, though nroff is more restricted in its
functionality than troff. If you have a usable version of troff, you can use it to produce prop-
erly formatted hardcopy versions of the man pages, for example. Thisis aso what xman (the
X11 manual browser) does.

formatting with nroff or troff

troff input bears a certain resemblance to the traces left behind when afly fallsinto an inkwell
and then walks across a desk. The fi rst time you run troff against a fi le intended for troff, the
results may be less than heartening. For example, consider the following passage from the
documentation of the Revision Control System RCS. When correctly formatted, the output is:

Besides the operations ci and co, RCS provides the following commands:

ident extract identifi cation markers

rcs change RCSfi |e attributes

rcsclean remove unchanged working fi les (optional)
resdiff compare revisions

rcsfreeze record a confi guration (optional)

rcsmerge mergerevisions

rlog read log messages and other information in RCSfi les
A synopsis of these commands appears in the Appendix.

2.1 Automatic Identification

RCS can stamp source and object code with specia identifi cation strings, similar to product
and serial numbers. To obtain such identifi cation, place the marker

$1d$

into the text of arevision, for instance inside acomment. The check-out operation will replace
this marker with a string of the form

$l1d: filename revisionnumber date time author state locker $
To format it, you can try

$ troff rcs.ns >rcs. ps

This assumes the use of groff or another flavour of troff that creates PostScript output (thus the

5 February 2005 02:09

5 February 2005 02:09

96

name rcs.ps for the output fi l€). 1f you do this, you get an output that looks like:

Besides the operations ci and co, RCS provides the following commands. tab(%); li I.
ident%extract identifi cation markers rcs%change RCS file attributes rcsclean%remove
unchanged working fi les (optional) rcsdiff%compare revisions rcsfreeze%orecord a confi gura-
tion (optional) rcsmerge%merge revisions rlog%read log messages and other information in
RCS fi les A synopsis of these commands appears in the Appendix. Automatic |dentifi cation
RCS can stamp source and object code with specia identifi cation strings, similar to product
and serial numbers. To obtain such identifi cation, place the marker Id into the text of a revi-
sion, for instance inside a comment. The check-out operation will replace this marker with a
string of theform Id: fi lename revisionnumber date time author state locker
Most of the text seems to be there, but it hasn’'t been formatted at all (well, it has been right
justifi ed). What happened?
Almost every troff or roff input document uses some set of macros. You can defi ne your own
macros in the source, of course, but over time a number of standard macro packages have
evolved. They are stored in a directory called tmac. In the days of no confusion, this was
{usr/lib/tmac, but nowadays it might equally well be /usr/share/tmac (for systems close to the
System V.4 ABIl—see Chapter 4, Package configuration, page 48, for more details) or
{usr/local/groffitmac for GNU roff. The name is known to troff either by environment vari-
ables or by instinct (the path name is compiled into the program). troff loads specifi ¢ macros
if you specify the name of the fi le as an argument to the - mfag. For example, to specify the
man page macros /usr/lib/tmac/an, you would supply troff with the parameter - nan. man
makes more sense than an, so these macros are called the man macros. The names of other
macro packages also usually grow an m at the beginning. Some systems change the base
name of the macros from, say, /usr/lib/tmac/an to /usr/lib/tmac/tmac.an.

Most versions of troff supply the following macro packages:
« Theman (tmac/an) and mandoc (tmac/andoc) packages are used to format man pages.

e The mdoc (tmac/doc) package is used to format hardcopy documents, including some
man pages.

e Themm (tmac/m) macros, the so-called memorandum macros, are described in the docu-
mentation as macros to “format letters, reports, memoranda, papers, manuals and books”.
It doesn’t describe what you shouldn’t use them for.

e The ms (tmac/s) macros were the original macros supplied with the Seventh Edition.
They are now claimed to be obsolescent, but you will see them again and again. This
book was formatted with a modifi ed version of the ms macros.

e The me (tmac/e) macros are another, more recent set of macros which originated in
Berkeley.

There is no sure-fi re way to tell which macros afi le needs. Here are a couple of possibilities:

« Thefi le name suffi x might give ahint. For example, our fi leiscalled rcs.ms, so thereisa
very good chance that it wants to be formatted with - ns.

Chapter 7: Documentation 97

e The program grog, which is part of groff, examines the source and guesses the kind of
macro set. It isfrequently wrong.

e Theonly other way istrial and error. There aren’t that many different macro sets, so this
might be a good solution.

In this case, our fi le name suggests that it should be formatted with the ms macros. Let's try
that:

$ troff rcs.ns >rcs. ps
Now we get:

Besides the operations ci and co, RCS provides the following commands:

tab(%); i |. ident%extract identifi cation markers rcs%change RCS file attributes
rcsclean%remove unchanged working files (optional) resdiff%compare revisions rcs-
freezeY%record a confi guration (optional) rcsmerge%omerge revisions rlog%read log messages
and other information in RCSfi les A synopsis of these commands appears in the Appendix.

2.1 Automatic Identification

RCS can stamp source and object code with specia identifi cation strings, similar to product
and serial numbers. To obtain such identifi cation, place the marker
$1d$
into the text of arevision, for instance inside acomment. The check-out operation will replace
this marker with a string of the form
$Id: filename revisionnumber date time author state locker $
Well, it doesn’t ook quite as bad, but it's still not where we want to be. What happened to
that list of program names?
troff does not do all the work by itself. The tabular layout of the program names in this exam-
pleis done by the preprocessor thl, which handles tables. Before we let troff at the document,
we need to passit through tbl, which replaces the code

.TS

tab(%;

lil.

i dent %extract identification narkers

rcs%hange RCS file attributes

rcscl ean% enove unchanged working files (optional)
rcsdi f f %onpar e revi si ons

rcsfreeze%ecord a configuration (optional)

r csner ge%hrer ge revi si ons

rlog¥%ead | og nessages and other infornation in RCS files
.TE

with a couple of hundred lines of complicated and illegible troff instructions to build the table.
To get the desired results, we need to enter:

$thl rcs.ns | troff -ns >rcs.ps

nroff, troff and groff use a number of preprocessors to perform special functions. They are:

5 February 2005 02:09

98

« soelim replaces .so statements (which correspond to C #include statements) with the con-
tents of the fi le to which the line refers. The roff programs do this too, of course, but the
other preprocessors don't, so if the contents of one of the fi les is of interest to another
preprocessor, you need to run soelim fi rst.

« refer processes references.

e pic draws simple pictures.

e tbl formats datain tabular form.
« eqn formats equations.

Unless you know that the document you're formatting doesn’'t use any of these preprocessors,
or formatting takes a very long time, it's easier to use them all. There are two possible ways
to do this:

e You can pipe from one processor to the next. Thisisthe standard way:

$soelimrcs.ns | refer | pic| tbl | egn | troff -ns
The soelim preprocessor reads in the document, and replaces any .so commands by the
contents of the fi le to which they refer. It then passes the output to refer, which pro-
cesses any textua references and passes it to pic, which processes any pictures it may
fi nd, and passes the result to thl. tbl processes any tables and passes its result to eqgn,
which processes any equations before passing the result to troff.

e Some versions of troff invoke the preprocessors themselves if passed appropriate flags.
For example, with groff:

Table 7—1: Starting preprocessors from groff

Flag | Processor
-e eqgn

-t tbl

-p | pic

-s soelim
-R refer

Starting the preprocessors from troff not only has the advantage of involving less typing—it
also ensures that the preprocessors are started in the correct sequence. Problems can arise if
you run eqn before thl, for example, when there are equations within tables. See Typesetting
tables with tbl by Henry McGilton and Mary McNabb for further details.

Other roff-related programs

As you can see, the troff system uses a large number of programs. Once they were relatively
small, and thiswas the UNIX way. Now they are large, but there are still alot of them. Apart
from the programs we have already seen, you could encounter the GNU variants, which can

5 February 2005 02:09

5 February 2005 02:09

Chapter 7: Documentation 99

optionally be installed with a name beginning in g—for example, GNU egn may be installed

as geqn if the system aready has a different version of eqn. indxbib and lookbib (sometimes
caled Ikbib) process bibliographic references, and are available in the groff package if you
don’t have them. groff also includes a number of other programs, such as grops, and grotty,
which you don’'t normally need to invoke directly.

Man pages

Almost from the beginning, UNIX had an on-line manual, traditionally called man pages.
You can peruse man pages with the man program, or you can print them out as hardcopy doc-
umentation.

Traditionally, man pages are cryptic and formalized: they were introduced at a time when disk
storage was expensive, so they are short, and they were intended as a reference for people who
aready understand the product. More and more, unfortunately, they are taking on the respon-
sibility of being the sole source of documentation. They don't perform this task very well.

man history

The UNIX man facility has had a long and varying history, and knowing it helps understand
some of the strangenesses. The Seventh Edition of the Unix Programmer’'s Manua was
divided into nine sections. Section 9, which contained the quick reference cards, has since
atrophied. Traditionally, you refer to man pages by the name of the item to which they refer,
followed by the section number in parentheses, so the man page for the C compiler would be
caled cc(1). BSD systems have substantially retained the Seventh Edition structure, but Sys-
tem V has reorganized them. There are also differences of opinion about where individual
man pages belong, so Table 7-2 can only be aguide:

Table 7—2: UNIX manual sections

Seventh | Contents System V

Edition Section

Section
1 | Commands (programs) 1
2 | System Calls (direct kernel interface) 2
3 | Subroutines (library functionsin user space) 3
4 | Specid files 7, 4
5 | File Formats and Conventions 4, 5
6 | Games 6
7 | Macro Packages and Language Conventions 7
8 | Maintenance im
9 | Quick Reference cards

What distinguished the UNIX manual from that of other systems was that it was designed to

5 February 2005 02:09

100

be kept online. Each of these sections, except for the quick reference cards, was stored in
nroff format in a directory called /usr/man/man<section>, where <section> was the section
number. Each entry was (and is) called a man page, athough nowadays some can run on for
100 pages or more.

The manua was stored in nroff format in order to be independent of the display hardware, and
because formatting the whole manual took such along time. For these reasons it was chosen
to format pages on an individual basis when they were accessed, which made access to the
manual slower and thus less attractive to use.

The speed problem was solved by saving the formatted copy of the man page in a second
directory hierarchy, /usr/man/cat<section>, the fi rst time that the page was formatted. Subse-
quent accesses would then fi nd the formatted page and display that more quickly.

This basic hierarchy has survived more or less intact to the present day. People have, of
course, thought of ways to confuse it:

e As the manua got larger, it seemed reasonable to subdivide it further. Most users
weren't interested in system administration functions, so some systems put them into a
separate directory, such as /usr/man/catlm, or gave them a fi lename suffi x such as m, so
that the manua page for shutdown might end up being called /usr/man/catl/shut-
down.1m or /usr/man/manlm/shutdown.1m or something similar.

e Various commercial implementations reorganized the sequence of the sections in the
printed manual, and reorganized the directories to coincide. For example, in System V
the description of the fi le /etc/group isin section 4, but in the Seventh Edition and BSD it
isin section 5.

* Even without the uncertainty of which section to search for a command, it was evident
that section numbers were not very informative. Some implementations, such as XENIX
and some versions of System V, chose to replace the uninformative numbers with unin-
formative letters. For example, Is(1) becomes Is(C) in XENIX.

* Some man programs have lost the ability to format the man pages, so you need to format
them before installation. You'll fi nd this problem on systems where nroff is an add-on
component.

e Thereisno longer a single directory where you can expect to put man pages. some Sys-
tem V versions put formatted man pages for users in a directory /usr/catman/u_man, and
man pages for programmers in /usr/catman/p_man. Since most programmers are users,
and the distinction between the use of the man pages is not always as clear as you would
like, this means that man has to search two separate directory hierarchies for the man

pages.

« Aswe saw in Chapter 4, Package configuration, page 48, System V.4 puts its man pages
in /usr/share/man. Many System V.4 systems require formatted man pages, and some,
such as UnixWare, don’t provide a man program at all.

e Many man programs accept compressed input, either formatted or non-formatted. For
some reason, the pack program still survives here, but other versions of man also under-
stand man pages compressed with compress or gzip. We looked at all of these programs

5 February 2005 02:09

Chapter 7: Documentation 101

in Chapter 2, Unpacking the goodies, page 20.

« Different man programs place different interpretations on the suffi x of the man page fi le-
name. They seldom document the meanings of the suffi x.

* To keep up the tradition of incompatible man pages, BSD has changed the default macro
set from man to mdoc. This means that older man page readers can’t make any sense of
unformatted BSD man pages.

This combination of affairs makes life diffi cult. For example, on my system | have a number
of different man pages in different directories. The fi le names for the man pages for printf,
which is both a command and alibrary function, are:

BSD printf comrand, fornatted:
[usr/share/ man/cat 1/ printf.0
Solaris printf comand, nroff:
/ pub/ man/ sol ari s-2. 2/ manl/printf.1
SVR4. 2 printf command, formatted, conpressed:
/pub/ man/svr4.2/cat1l/printf.1.Z
BSD printf function, fornatted:
[usr/share/ man/cat 3/ printf.0
Solaris 2.2 printf function, nroff, standard:
/ pub/ man/ sol ari s-2. 2/ man3/ printf.3s
Solaris 2.2 printf function, nroff, BSD version:
/ pub/ man/ sol ari s-2. 2/ man3/ printf. 3b
SunCs 4.1.3 printf function, nroff:
/ pub/ nan/ sunos- 4. 1. 3/ man3/ printf. 3v
SVR3 printf function, formatted, packed:
/ pub/ man/ cat man/ p_nman/ nan3/ printf. 3s.z
SVR4. 2 printf function, formatted, conpressed:
/ pub/ man/ svr4. 2/ cat3/printf.3s.Z
SVRA. 2 printf function, formatted, conpressed, BSD version:
/ pub/ man/ svr4. 2/ cat3/printf.3b.Z
XEN X printf function, nroff, packed:
/ pub/ man/ xeni x-2. 3. 2/ man. S printf.S z

Most packages assume that unformatted man pages will be installed in /usr/man. They usu-
ally accept that the path may be different, and some allow you to change the subdirectory and
the fi le name suffi x, but thisis as far as they normally go.

This lack of standardization can cause such problems that many people just give up and don’t
bother to install the man pages. This is a pity—instead, why not install a man program that
isn't as fussy? A number of alternatives are available, including one for System V.4 from
Walnut Creek and a number on various Linux distributions.

TeX

TEX is Donald Knuth’s monument to the triumph of logic over convention. To quote Knuth's
The TEX book,

Insiders pronounce the y of TEX as a Greek chi, not asan ’X', so that TEX rhymes with the word
blecchhh. It's the 'ch’ sound in Scottish words like loch or German words like ach; it's a

5 February 2005 02:09

102

Spanish ’j” and a Russian ’kh’. When you say it correctly to your computer, the terminal may
become slightly moist.
This is one of the more informative parts of The TeX book. It is, unfortunately, not a manual
but a textbook, and most of the essential parts are hidden in exercises flgged “very diffi cult”.
If you just want to fi gure out how to format a TEX document, Making TeX work, by Norman
Walsh, is amuch better option.
If troff input looks like a fly having left an inkwell, TEX input resembles more the attempts of a
drunken spider. Here's part of the fi le plain.tex which defi nes some of the things that any TEX
macro package should be able to do:

\ def\ cases#1{\ | ef t\ {\, \ vcent er {\ nor mal basel i nes\ mM@h
\ialign{$#HAhfil $& quad#A hfil\crcr#l\crer}}\right.}
\def\ natrix#1{\ nul I\, \ vcent er {\ nor nal basel i nes\ n@h
\ialign{\hfil$##$\hfil &\ quad\ hfil $##\ hfil\crcr
\'mat hstrut\ crcr\noal i gn{\ ker n-\ basel i neski p}
#1\ crcr\mat hstrut\ crcr\noal i gn{\ kern-\ basel i neski p}}}\,}

More than anywhere else in porting, it is good for your state of mind to steer clear of TEX
internals. The assumptions on which the syntax is based differ markedly from those of other
programming languages. For example, identifi ers may not contain digits, and spaces are
required only when the meaning would otherwise be ambiguous (to TEX, not to you), so the
sequence f ont si ze300 is in fact the identifi er f ont si ze followed by the number 300. On
the other hand, it is almost impossible to fi nd any good solid information in the documenta-
tion, so you could spend hours trying to solve a minor problem. | have been using TeX fre-
quently for years, and | still fi nd it the most frustrating program | have ever seen.”

Along with TeX, there are a couple of macro packages that have become so important that they
are almost text processorsin their own right:

* IATEX isamacro package that is not quite as painful as plain TEX, but also not as power-
ful. It is normally built as a separate program when installing TEX, using a technique of
dumping a running program to an object fi le that we will examine in Chapter 21, Object
files and friends, page 376.

« BIBTEX is an auxiliary program which, in conjuntion with LATEZX, creates bibliographic
references. Read all about it in Making TEX work. It usually takes three runs through the
source fi les to create the correct auxiliary fi les and format the document correctly.

» texinfo isa GNU package that supplies both online and hardcopy documentation. It uses
TeX to format the hardcopy documentation. We'll look at it along with GNU info in the
next section.

* When | wrote this sentence, | wondered if | wasn’t overstating the case. Mike Loukides, the author of
Programming with GNU Software, reviewed the fi nal draft and added a single word: Amen.

5 February 2005 02:09

Chapter 7: Documentation 103

GNU Info and Texinfo

It's unlikely that you'll break out in storms of enthusiasm about the documentation techniques
we've looked at so far. The GNU project didn't, either, when they started, though their con-
cerns were somewhat different:

e Man pages are straightforward, but the man program is relatively primitive. In particular,
man does not provide away to follow up on references in the man page.

e Man pages are intended to be stored on-line and thus tend to be cryptic. This makes
them unsuited as hardcopy documentation. Making them longer and more detailed
makes them less suited for online documentation.

e There is amost no link between man pages and hardcopy documentation, unless they
happen to be the same thing for a particular package.

e Maintaining man pages and hardcopy documentation is double the work and opens you
to the danger of omissionsin one or the other document.

As in other areas, the GNU project started from scratch and came up with a third solution,
info. Thisisacombined system of online and hardcopy documentation. Both forms of docu-
mentation are contained in the source fi le: you use makeinfo program to create info docu-
ments, which you read with the on-line browser info, and you use TEX and the texinfo macro
set are used to format the documentation for printing.

info is a menu-driven, tree-structured online browser. You can follow in-text references and
then return to the origina text. info is available both as a stand-alone program and as an
emacs macro.

If you have a package that supplies documentation in info format, you should use it. Even if
some GNU programs, such as gcc and emacs, have both info and man pages, the info is much
more detailled.

Running texinfo is straightforward: run TeX. The document reads in the fi le texinfo.tex, and
about the only problem you are likely to encounter isif it doesn’t fi nd thisfi le.

The World-Wide Web

The World-Wide Web (WWW) is not primarily a program documentation system, but it has a
number of properties which make it suitable as a manual browser: as a result of the prolifera-
tion of the Internet, it is well known and generally available, it supplies a transparent cross-
reference system, and the user interface is easier to understand. It's likely that it will gain
importance in the years to come. Hopefully it will do this without causing as much confusion
asits predecessors.

5 February 2005 02:09

Testing the results

Finally make has run through to the end and has not reported errors. Your source tree now
contains all the objects and executables. You’re done!

After a brief moment of euphoria, you sit down at the keyboard and start the program:

$ xterm
Segnentation fault - core dunped

Well, maybe you’re not quite done after all. Occasionally the program does not work as
advertised. What you do now depends on how much programming experience you have. If
you are a complete beginner, you could be in trouble—about the only thing you can do (apart
from asking somebody else) is to go back and check that you really did configure the package
correctly.

On the other hand, if you have even a slight understanding of programming, you should try to
analyze the cause of the error—it’s easier than you think. Hold on, and try not to look down.

There are thousands of possible reasons for the problems you encounter when you try to run a
buggy executable, and lots of good books explain debugging techniques. In this chapter, we
will touch only on aspects of debugging that relate to porting. First we’ll attack a typical, if
somewhat involved, real-life bug, and solve it, discussing the pros and cons on the way. Then
we’ll look at alternatives to traditional debuggers: kernel and network tracing.

Before you even start your program, of course, you should check if any test programs are
available. Some packages include their own tests, and separate test suites are available for
others. For other packages there may be test suites that were not designed for the package,
but that can be used with it. If there are any tests, you should obviously run them. You might
also consider writing some tests and including them as a target t est in the Makefile.

What makes ported programs fail?

Ported programs don’t normally fail for the same reasons as programs under development. A
program under development still has bugs that prevent it from running correctly on any plat-
form, while a ported program has already run reasonably well on some other platform. If it
doesn’t run on your platform, the reasons are usually:

105

5 February 2005 02:09

106

« A latent bug has found more fertile feeding ground. For example, a program may read
from a null pointer. This frequently doesn’t get noticed if the data at address 0 doesn’t
cause the program to do anything unusual. On the other hand, if the new platform does
not have any memory mapped at address 0, it will cause a segmentation violation or a
bus error.

» Differences in the implementation of library functions or kernel functionality cause the
program to behave differently in the new environment. For example, the function set p-
grp has completely different semantics under System V and under BSD. See Chapter
12, Kernel dependencies, page 171, for more details.

e The configuration scripts have never been adequately tested for your platform. As a
result, the program contains bugs that were not in the original versions.

A strategy for testing

When you write your own program with its own bugs, it helps to understand exactly what the
program is trying to do: if you sit back and think about it, you can usually shorten the debug-
ging process. When debugging software that you have just ported, the situation is different:
you don’t understand the package, and learning its internals could take months. You need to
find a way to track down the bug without getting bogged down with the specifics of how the
package works.

You can overdo this approach, of course. It still helps to know what the program is trying to
do. For example, when xterm dies, it’s nice to know roughly how xterm works: it opens a
window on an X server and emulates a terminal in this window. If you know something about
the internals of X11, this will also be of use to you. But it’s not time-effective to try to fight
your way through the source code of xterm.

In the rest of this chapter, we’ll use this bug (yes, it was a real live bug in X11R6) to look at
various techniques that you can use to localize and finally pinpoint the problem. The princi-
ple we use is the old GIGO principle—garbage in, garbage out. We’ll subdivide the program
into pieces which we can conveniently observe, and check which of them does not produce
the expected output. After we find the piece with the error, we subdivide it further and repeat
the process until we find the bug. The emphasis in this method is on convenient: it doesn’t
necessarily have to make sense. As long as you can continue to divide your problem area into
between two and five parts and localize the problem in one of the parts, it won’t take long to
find the bug.

So what’s a convenient way to look at the problems? That depends on the tools you have at
your disposal:

* If you have a symbolic debugger, you can divide your problem into the individual func-
tions and examine what goes in and what goes out.

* If you have a system call trace program, such as ktrace or truss, you can monitor what
the program says to the system and what the system replies.

5 February 2005 02:09

Chapter 8: Testing 107

« If you have a communications line trace program, you can try to divide your program
into pieces that communicate across this line, so you can see what they are saying to each
other.

Of course, we have all these things. In the following sections we’ll look at each of them in
more detail.

Symbolic debuggers

If you don’t have a symbolic debugger, get one. Now. Many people still claim to be able to
get by without a debugger, and it’s horrifying how many people don’t even know how to use
one. Of course you can debug just about anything without a symbolic debugger. Historians
tell us that you can build pyramids without wheels—that’s a comparable level of technology
to testing without a debugger. The GNU debugger, gdb, is available on just about every plat-
form you’re likely to encounter, and though it’s not perfect, it runs rings around techniques
like putting printf statements in your programs.

In UNIX, a debugger is a process that takes control of the execution of another process. Most
versions of UNIX allow only one way for the debugger to take control: it must start the
process that it debugs. Some versions, notably SunOS 4, but not Solaris 2, also allow the
debugger to attach to a running process.

Whichever debugger you use, there are a surprisingly small number of commands that you
need. In the following discussion, we’ll look at the command set of gdb, since it is widely
used. The commands for other symbolic debuggers vary considerably, but they normally have
similar purposes.

« A stack trace command answers the question, “Where am I, and how did | get here?”,
and is almost the most useful of all commands. It’s certainly the first thing you should
do when examining a core dump or after getting a signal while debugging the program.
gdb implements this function with the backt r ace command.

« Displaying data is the most obvious requirement: what is the current value of the vari-
able bar ? In gdb, you do this with the pri nt command.

« Displaying register contents is really the same thing as displaying program data. In gdb,
you display individual registers with the pri nt command, or all registers with the i nfo
r egi st ers command.

« Modifying data and register contents is an obvious way of modifying program execution.
In gdb, you do this with the set command.

« breakpoints stop execution of the process when the process attempts to execute an
instruction at a certain address. gdb sets breakpoints with the br eak command.

« Many modern machines have hardware support for more sophisticated breakpoint mech-
anisms. For example, the i386 architecture can support four hardware breakpoints on
instruction fetch (in other words, traditional breakpoints), memory read or memory write.
These features are invaluable in systems that support them; unfortunately, UNIX usually

5 February 2005 02:09

108

does not. gdb simulates this kind of breakpoint with a so-called watchpoint. When
watchpoints are set, gdb simulates program execution by single-stepping through the pro-
gram. When the condition (for example, writing to the global variable f 00) is fulfilled,
the debugger stops the program. This slows down the execution speed by several orders
of magnitude, whereas a real hardware breakpoint has no impact on the execution speed.”

« Jumping (changing the address from which the next instruction will be read) is really a
special case of modifying register contents, in this case the program counter (the register
that contains the address of the next instruction). This register is also sometimes called
the instruction pointer, which makes more sense. In gdb, use the j unp command to do
this. Use this instruction with care: if the compiler expects the stack to look different at
the source and at the destination, this can easily cause incorrect execution.

« Sngle stepping in its original form is supported in hardware by many architectures: after
executing a single instruction, the machine automatically generates a hardware interrupt
that ultimately causes a SI GTRAP signal to the debugger. gdb performs this function with
the st epi command.

« You won’t want to execute individual machine instructions until you are in deep trouble.
Instead, you will execute a single line instruction, which effectively single steps until you
leave the current line of source code. To add to the confusion, this is also frequently
called single stepping. This command comes in two flavours, depending on how it treats
function calls. One form will execute the function and stop the program at the next line
after the call. The other, more thorough form will stop execution at the first executable
line of the function. It’s important to notice the difference between these two functions:
both are extremely useful, but for different things. gdb performs single line execution
omitting calls with the next command, and includes calls with the st ep command.

There are two possible approaches when using a debugger. The easier one is to wait until
something goes wrong, then find out where it happened. This is appropriate when the process
gets a signal and does not overwrite the stack: the backt r ace command will show you how it
got there.

Sometimes this method doesn’t work well: the process may end up in no-man’s-land, and you
see something like:

Programrecei ved signal SI GSEQV/, Segnentation fault.

0x0 in ?? ()

(gdb) bt abbrevi ati on for backtrace
#0 0x0in ?? () nowher e

(gdb)

Before dying, the process has mutilated itself beyond recognition. Clearly, the first approach
won’t work here. In this case, we can start by conceptually dividing the program into a num-
ber of parts: initially we take the function nai n and the set of functions which rmai n calls. By
single stepping over the function calls until something blows up, we can localize the function
in which the problem occurs. Then we can restart the program and single step through this

* Some architectures slow the overall execution speed slightly in order to test the hardware registers.
This effect is negligible.

5 February 2005 02:09

Chapter 8: Testing 109

function until we fi nd what it calls before dying. This iterative approach sounds slow and tir-
ing, but in fact it works surprisingly well.

Libraries and debugging information

Let’'s come back to our xterm program and use gdb to fi gure out what is going on. We could,
of course, look at the core dump, but in this case we can repeat the problem at will, so we're
better off looking at the live program. We enter:

$ gdb xterm
(political statenent for the FSF ontted)
(gdb) r -display allegro:0 run the program

Starting program /X X11/ X11R6/ xc/ progr ans/ xt er mi xt erm -di spl ay al | egro: 0

Programrecei ved signal SI@US, Bus error.

0x3b0bc in _Xt Memmove ()

(gdb) bt | ook back down the stack
#0 0x3bObc in _X Menmove () all these functions come fromthe X tool kit
#1 0x34dcd in Xt ScreenDat abase ()

#2 0x35107 in _Xt Prepar seComrmandLi ne ()

#3 Ox4e2ef in Xt QpenDi splay ()

#4 Oxdedal in Xt Applnit ()

#5 0x35700 in Xt QoenAppl i cation ()

#6 0x357b5 in Xt Applnitialize ()

#7 0x535 in main ()

(gdb)

The stack trace shows that the main program called Xt Appl ni ti al i ze, and the rest of the
stack shows the program deep in the X Toolkit, one of the central X11 libraries. If thiswerea
program that you had just written, you could expect it to be a bug in your program. In this
case, where we have just built the complete X11 core system, there's also every possibility
that it is a library bug. As usual, the library was compiled without debug information, and
without that you hardly have a hope of fi nding it.

Apart from size constraints, there is no reason why you can’t include debugging information
in alibrary. The object fi lesin libraries are just the same as any others—we discuss them in
detail on page 369. If you want, you can build libraries with debugging information, or you
can take individual library routines and compile them separately.

Unfortunately, the size constraints are signifi cant: without debugging information, the file
libXt.a is about 330 kB long and contains 53 object fi les. With debugging information, it
might easily reach 20 MB, since all the myriad X11 globa symbols would be included with
each object fi le in the archive. It's not just a question of disk space: you also need virtua
memory during the link phase to accommodate all these symbols. Most of these fi les don’t
interest us anyway: the fi rst one that does is the one that contains _Xt Mermove. So we fi nd
whereit is and compile it alone with debugging information.

That's not as simple as it sounds: fi rst we need to fi nd the source fi le, and to do that we need
to fi nd the source directory. We could read the documentation, but to do that we need to know
that the Xt functions are in fact the X toolkit. If we're using GNU make, or if our Makefile

110

documents directory changes, an alternative would be to go back to our make log and look for
thetext Xt. If we do this, we quickly fi nd

make[4]: Leaving directory “/X/X11R6/xc/l1ib/Xext”
making Makefiles in lib/Xt...

mv Makefile Makefile.bak
make[4]: Entering directory “/X/X11R6/xc/lib/Xt’
make[4]: Nothing to be done for “Makefiles”.
make[4]: Leaving directory “/X/X11R6/xc/lib/Xt”

So the directory is /X/X11R6/xc/lib/Xt. The next step is to fi nd the fi le that contains XtMem-
move. There is a possibility that it is called XtMemmove.c, but in this case there is no such

file. We'll have to grep for it. Some versions of grep have an option to descend recursively
into subdirectories, which can be very useful if you have one available. Another useful tool is

cscope, which is supplied with System V.

$ grep Xt Menmmove *.c

Alloc.c:void _XtMemmove(dst, src, length)

Convert.c: XtMemmove(&p—>From.addr, from->addr, from->size);
. many nore references to Xt Mermove

So XtMemmove isin Alloc.c. By the same method, we look for the other functions mentioned
in the stack trace and discover that we also need to recompile Initialize.c and Display.c.

In order to compile debugging information, we add the compiler option —-g. At the same time,
we remove -0. gcc doesn't require this, but it's usually easier to debug a non-optimized pro-
gram. We have three choices of how to set the options:

e We can modify the Makefile (make World, the main make target for X11, rebuilds the
Makefiles from the corresponding Imakefiles, so thisis not overly dangerous).

« If we have aworking version of xterm, we can useitsfacilities: fi rst we start the compila-
tion with make, but we don’t need to wait for the compilation to complete: as soon as the
compiler invocation appears on the screen, we abort the build with CTRL-C. Using the
xterm copy function, we copy the compiler invocation to the command line and add the
options we want:

$rmAloc.o Initialize.o Dsplay.o renove the ol d objects

$ nake and start nake nornal |y

rm -F Alloc.o

gcc -DNO ASM -fstrengt h-reduce -fpcc-struct-return -c I R
-DNO AR N X - DSYSV - DSYSV386 -DUSE PAL Aloc.c

- interrupt make with CTR.-C

make: *** [Alloc.o] Interrupt

copy the invocation lines above with the nouse, and paste bel ow, then
nodi fy as shown in bold print

$ gcc -DNO_ASM -fstrength-reduce -fpcc-struct-return -c -1../.. \
-DNO_AF_UNIX -DSYSV -DSYSV386 -DUSE_POLL Alloc.c -g

You can aso use make -n, which just shows the commands that make would execute,
rather than aborting the make, but you frequently fi nd that make -n prints out a whole
lot of stuff you don’t expect. When you have made Alloc.o, you can repeat the process

5 February 2005 02:09

5 February 2005 02:09

Chapter 8: Testing 111

for the other two object fi les.

We could change GFLAGS from the make command line. Our fi rst attempt doesn’t work
too well, though. If you compare the following line with the invocation above, you'll see
that awhole lot of options are missing. They were al in CFLAGS; by redefi ning GFLAGS,
we |lose them all:

$ make CFLAGS=-g
rm-f Aloc.o
gcc -DNO ASM -fstrengt h-reduce -fpcc-struct-return -c -g Aloc.c

CFLAGS included all the compiler options starting from-1/../. ., so we need to write:

$ make CFLAGS= -g -¢ -1../.. -DNOAF_UN X - DSYSV - DSYSV386 - DUSE POLL’

When we have created all three new object fi les, we can let make complete the library for us.
It will not try to remake these object fi les, since now they are newer than any of their depen-
dencies:

$ nake run make to build a new library

rm-f libX.a

ar clq libxt.a ActionHook.o Alloc.o ArgList.o Callback.o QickTine.o Conposite.o \
Constraint.o Convert.o Converters.o Core.o (reate.o Destroy.o Dsplay.o Error.o \
Event.o EventWil.o Functions.o GOManager.o Geonetry.o Get Act Key. o Get ResList.o \
Get Val ues. 0 Hook(hj . 0 Hooks. o Initialize.o Intrinsic.o Keyboard. o Manage. o \

Next Event . o (bj ect. o Passiv@ab. o Pointer.o Popup. o PopupCB.o Rect(hj.o \
Resources. 0 Sel ection.o SetSens.o SetVal ues.o Set WOWo Shell.o StringDefs.o \
Threads. o TMaction.o TMyrab. o Thkey. o ThWparse.o Thprint.o TMstate.o VarQeate.o \
VarGet. o Varargs. o Vendor. o

ranlib libX.a

rm-f ../..Jusrlib/libX.a

cd ../..Jusrlib; In../lib/X/libX.a .

$

Now we have a copy of the X Toolkit in which these three fi |es have been compiled with sym-
bols. Next, we need to rebuild xterm. That's straightforward enough:

$cd../../prograns/ xtern

$ pwd

[Xl X11R6/ xc/ pr ogr ans/ xt erm

$ nmake

rm-f xterm

gcc -DNO ASM -fstrength-reduce -fpcc-struct-return -fwitable-strings -o xterm\
-L../../usrlib main.o input.o charproc.o cursor.o util.o tabs.o screen.o \
scrol | bar.o button.o Tekproc.o msc.o VIPrsThl.o TekPrsThl.o data. o nmenu.o -1 Xaw \
I Xmu -1 X -1 SM-TTCE - Xext -1 X11 -/ usr/ X11R6/lib -1pt -Itermib

Finally, we try again. Since the library is not in the current directory, we use the di r com-
mand to tell gdb where to fi nd the sources. Now we get:

$ gdb xterm

(gdb) dir ../../1ib/X11 set source paths

Source directories searched:

/ XI X11/ X11R6/ xc/ prograns/ xterni .. /../1ib/ X11: $cdir: $cwd
(gdb) dir ../../1ib/%

5 February 2005 02:09

112

Source directories searched:

/X/X11/X11R6/xc/programs/xterm/ . ./ . ./1ib/Xt/X/X11/X11R6/xc/programs/xterm/. ./ . .\
/1ib/X11:$cdir:$cwd

(gdb) r and run the program

Starting program: /X/X11/X11R6/xc/programs/xterm/xterm

Program received signal SIGBUS, Bus error.

0x3ced6 in _XtMemmove (dst=0x342d8 "BE 03", src=0x41c800 "', length=383) \
at Alloc.c:101

101 *dst++ = *src++;

(gdb)

This shows atypica byte for byte memory move. About the only thing that could cause a bus
error on that statement would be an invalid address, but the parameters show that they appear
to bevalid.

There are at two possible gotchas here:

e Thedebugger may be lying. The parameters it shows are the parameters on the stack. |If
the code has been optimized, there is a very good chance that the source and destination
addresses are stored in registers, and thus the value of dst on the stack is not up to date.

e The destination address may be in the text segment, in which case an attempt to write to
it will cause some kind of error. Depending on the system it could be a segmentation
violation or abus error.

The most reliable way to fi nd out what is really going onisto look at the machine instructions
being executed. First we tell the debugger to look at current instruction and the following fi ve
instructions:

(gdb) x/6i $eip list the next 6 instructions
0x3ced6 < XtMemmove+74>: movb %al, (%edx)

0Ox3ced8 < XtMemmove+76>: incl Oxc(%ebp)

Ox3cedb < XtMemmove+79>: incl Ox8(%ebp)

Ox3cede < XtMemmove+82>: Jmp Ox3cec2 < XtMemmove+54>
0x3cee0 < XtMemmove+84>: leave

Ox3ceel < XtMemmove+85>: ret

The fi rst instruction is a byte move, from register al to the address stored in register edx.
Let'slook at the addressin edx:

(gdb) p/x $edx
$9 = 0x342d8

WEell, thisis our dst address alright—why can't it store there? It would be nice to be able to
try to set valuesin memory and seeif the debugger can do it:

(gdb) set *dst ='Xb

(gdb) p *dst

$13 = 88 *X”
That looks writable enough. Unfortunately, you can't rely on the debugger to tell the truth.
Debuggers must be able to write to the text segment. If the write had failed, you could have
been sure that the address was not writable, but if the write succeeds, you can't be sure. What

5 February 2005 02:09

Chapter 8: Testing 113

we need to know are the exact segment limits. Some debuggers show you the segment limits,
but current versions of gdb do not. An aternativeis the size command:

$ size xterm
text data bss dec hex filenane
846204 56680 23844 926728 €2408 xterm

The text segment is 846204 decimal bytes long (0xce97c), and on this system (SCO UNIX) it
starts at address 0, so the addressis, indeed, in the text segment. But where did it come from?
To fi nd an answer to that question, we need to look at the calling function. In gdb, we do this
with thef r ame command:

(gdb) f 1 look at the calling function (frane 1)
#1 0x35129 in _Merge(ptionTabl es (srcl=0x342d8, num srcl=24,
Src2=0x400f f e, num src2=64, dst=0x7ffff9c0, numdst=0x7ffff9bc)
at Initialize.c:602
602 (voi d) nenmove(tabl e, srcl, sizeof (XrnOptionDescRec) * numsrcl);

That's funny—ast time it died, the function was called from Xt Scr eenDat abase,” not from
_MergeQot i onTabl es. Why? At the moment it's diffi cult to say for sure, but it's possible
that this difference happened because we removed optimization. In any case, we still have a
problem, so we should fi x this one fi rst and then go back and look for the other one if solving
this problem isn’t enough.

In this case, the frame command doesn't help much, but it does tell us that the destination
variableiscaledt abl e, and implicitly that menmove has been defi ned as_ Xt Mermove in this
source fi le. We could now look at the source fi le in an editor in a different X window, but it’s
easier to list the instructions around the current line with thel i st command:

(gdb) 1

597 enum {Check, NotSorted, |sSorted} sort_order = Check;

598

599 *dst = tabl e = (X nQpti onDescRec*)

600 Xt Mal | oc(si zeof (XrmOpti onDescRec) * (numsrcl + numsrc2));
601

602 (voi d) nenmove(tabl e, srcl, sizeof (XrnOptionDescRec) * numsrcl);
603 if (numsrc2 == 0) {

604 *numdst = numsrcl;

605 return;

606 }

So, the address is returned by the function Xt Mal | oc —it seemsto be allocating storage in the
text segment. At this point, we could examine it more carefully, but let’s fi rst be sure that
we're looking at the right problem. The addressin t abl e should be the same as the address
in the parameter dst of Xt Mermove. We're currently examining the environment of _Mer -
gept i onTabl es, sowe can look at it directly:

(gdb) p table
$29 = (XrnQptionDescRec *) 0x41c800

That looks just fi ne. Where did this strange dst address come from? Let’s set a breakpoint

* See frame 1 in the stack trace on page 109.

5 February 2005 02:09

114

on the call to memmove on line 602, and then restart the program:

Example 8—1:

(gdb) b 602

Breakpoint 8 at 0x35111: file Initialize.c, line 602.
(gdb) r

The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: /X/X11/X11R6/xc/programs/xterm/xterm

Breakpoint 8, _MergeOptionTables (srcl=0x342d8, num srcl=24,
src2=0x400ffe, num_src2=64, dst=0x7ffffOcO, num_ dst=0x7FffFfobc)
at Initialize.c:602

602 (void) memmove(table, srcl, sizeof(XrmOptionDe

(gdb) p table l ook again, to be sure

$31 = (XrmOptionDescRec *) 0x41c800

(gdb) s singl e step into nermove

_XtMemmove (dst=0x342d8 "PE 03", src=0x41c800 '**, length=384)
at Alloc.c:94

94 if (src < dst) {

Thisisredly strange! table has avalid address in the data segment, but the address we pass
to_XtMemmove isin the text segment and seems unrelated. It's not clear what we should look
at next:

e The source of the function calls memmove, but after preprocessing it ends up calling
_XtMemmove. memmove might simply be defi ned as_XtMemmove, but it might also be
defi ned with parameters, in which case some subtle type conversions might result in our
problem.

e If you understand the assembler of the system, it might be instructive to look at the actual
instructions that the compiler produces.

It's defi nitely quicker to look at the assembler instructions than to fi ght your way through the
thick undergrowth in the X11 source tree:

(gdb) x/8i $eip look at the next 8 instructions
0x35111 < MergeOptionTables+63>: movl Oxc(%ebp) ,%edx
0x35114 < MergeOptionTables+66>: movl Y%edx,OxFFFFFFA8(%ebp)
0x35117 < MergeOptionTables+69>: movl OXFFFFFFd8(%ebp) ,%edx
0x3511a < MergeOptionTables+72>: shll $0x4,%edx

0x3511d < MergeOptionTables+75>: pushl %edx

0x3511e < MergeOptionTables+76>: pushl OxFFFFFFfc(%ebp)
0x35121 < MergeOptionTables+79>: pushl 0x8(%ebp)

0x35124 < MergeOptionTables+82>: call 0x3ce8c < XtMemmove>

Thisisn't easy stuff to handle, but it's worth understanding, so we'll pull it apart, instruction
for instruction. It's easier to understand this discussion if you refer to the diagrams of stack
structure in Chapter 21, Object files and friends, page 377.

« movl Oxc(%ebp) ,%edx takes the content of the stack word offset 12 in the current stack
frame and places it in register edx. As we have seen, this is num_srcl, the second

Chapter 8: Testing 115

parameter passed to_Mer ge(pt i onTabl es.

* novl %dx, Oxffffffd8(%bp) stores the value of edx at offset -40 in the current
stack frame. Thisisfor temporary storage.

 novl Oxffffffd8(%bp), Yedx does exactly the opposite: it loads register edx from
the location where it just stored it. These two instructions are completely redundant.
They are also a sure sign that the function was compiled without optimization.

« shll $0x4, %dx shifts the contents of register edx left by 4 bits, multiplying it by 16.
If we compare this to the source, it's evident that the value of Xr nOpt i onDescRec is 16,
and that the compiler has taken a short cut to evaluate the third parameter of the call.

e pushl % dx pushesthe contents of edx onto the stack.

e pushl Oxfffffffc(%bp) pushesthevalue of the word at offset -4 in the current stack
frame onto the stack. This is the value of t abl e, as we can confi rm by looking at the
instructions generated for the previousline.

e pushl 0x8(%bp) pushesthe value of thefi rst parameter, srcl, onto the stack.

e Findly, call _Xt Menmove calls the function. Expressed in C, we now know that it
calls

nmemmove (srcl, table, numsrcl << 4);

Thisis, of course, wrong: the parameter sequence of source and destination has been reversed.
Let'slook at _Xt Mernmove more carefully:

(gdb) | _Xt Mermove

89 #i f def _XNEEDBOCPYFUNC

90 voi d _Xt Mermove(dst, src, |ength)
91 char *dst, *src;

92 int [ength;

93 {

94 if (src <dst) {

95 dst += |l ength;

96 src += length;

97 while (length--)

98 *--dst = *--srg;
99 } else {

100 while (length--)
101 *dst ++ = *src++
102 }

103 }

104 #endi f

Clearly the function parameters are the same as those of nemmove, but the calling sequence
has reversed them. We've found the problem, but we haven't found what’s causing it.

Aside: Debugging is not an exact science. We've found our problem, though we still don’t
know what's causing it. But looking back at Example 8-1, we see that the address for src on
entering _Xt Mermove was the same as the address of t abl e. That tells us as much as analyz-
ing the machine code did. This will happen again and again: after you fi nd a problem, you

5 February 2005 02:09

5 February 2005 02:09

116

discover you did it the hard way.

The next thing we need to fi gure out is why the compiler reversed the sequence of the parame-
ters. Can this be a compiler bug? Theoretically, yes, but it's very unlikely that such a primi-
tive bug should go undiscovered up to now.

Remember that the compiler does not compile the sources you see: it compiles whatever the
preprocessor hands to it. It makes a lot of sense to look at the preprocessor output. To do
this, we go back to the library directory. Since we used pushd, this is easy—just enter
pushd. In the library, we use the same trick as before in order to run the compiler with differ-
ent options, only this time we use the options - E (stop after running the preprocessor), - dD
(retain the text of the defi nitions in the preprocessor output), and - C (retain comments in the
preprocessor output). In addition, we output to afi le junk.c:

$ pushd
$rminitialize.o
$ make Initialize. o
rm-f Initialize.o

gcc -DNO ASM -fstrength-reduce -fpcc-struct-return -c -g N I A
-D SVID -DNO AF N X -DSYSV - DSYSV386 -DUSE PAL Initialize.c
make: *** [Initialize.o] Interrupt hit CTR.-C
copy the command into the conmand |ine, and extend:
$ gcc -DNO ASM -fstrength-reduce -fpcc-struct-return -c -g -1../.. \
-D SV D -DNO AF_ N X -DSYSV - DSYSV386 -DUSE PAL Initialize.c\
-E -dD -C >junk.c
$

As you might have guessed, we now look at the fi le junk.c with an editor. We're looking for
nemmove, of course. We fi nd a defi nition in /usr/include/string.h, then later on we find, in
IXIX1UX11R6/xc/X11/Xfuncs.h,

#def i ne nmenmove(dst, src, | en) bcopy((char *)(src), (char *)(dst), (int)(len))

#def i ne nmenmove(dst, src, | en) _XBOPYFUNO (char *)(src), (char *)(dst), (int)(len))
#def i ne _XNEEDBOCPYFUNC

For some reason, the confi guration fi les have decided that nermove is not defi ned on this sys-
tem, and have replaced it with bcopy (which is really not defi ned on this system). Then they
replace it with the substitute function _ XBOCPYFUNC, almost certainly a preprocessor defi ni-
tion. It also defi nes the preprocessor variable XNEEDBOCPYFUNC to indicate that Xt Mem
nove should be compiled.

Unfortunately, we don’'t see what happens with _XNEEDBOCPYFUNC. The preprocessor dis-
cards all #i fdef lines. It does include #defi nes, however, so we can look for where
_ XBOPYFUNC is defi ned—it's in Intrinsicl.h, asthe last #l i ne directive before the defi nition
indicates.

#def i ne _XBOCPYFUNC _ Xt Menmove

Intrinsicl.h also contains a number of defi nitions for Xt Menmove, none of which are used in
the current environment, but all of which have the parameter sequence (dst, src, count).
bcopy has the parameter sequence (src, dst, count). Clearly, somebody has confused

5 February 2005 02:09

Chapter 8: Testing 117

something in this header fi le, and under certain rare circumstances the call is defi ned with the
incorrect parameter sequence.

Somewhere in here is a lesson to be learnt: thisis a real bug that occurred in X11R6, patch
level 3, one of the most reliable and most portable software packages available, yet here we
have areally primitive bug. The real problem liesin the confi guration mechanism: automated
confi guration can save alot of time in normal circumstances, but it can also cause lots of pain
if it makes incorrect assumptions. In this case, the environment was unusual: the kernel plat-
form was SCO UNIX, which has an old-fashioned library, but the library was GNU libc. This
caused the assumptions of the confi guration mechanism to break down.

Let'slook more carefully at the part of Xfuncs.h where we found the defi nitions:

/* the new Xfuncs. h */

f !defined(X NOT_STDC ENV) && (!defined(sun) || defined(SVR4))

/* the ANSI C way */

#i fndef _XFUNCS H | NOLUDED STRING H

#i ncl ude <string. h>

#endi f

#undef bzero

#defi ne bzero(b,1en) nenset (b, 0, | en)

#el se /* el se X NOT_STDC ENV or SunCs 4 */

#if defined(SYSV) || defined(luna) || defined(sun) || defined(__sxg)

ncl ude <nenory. h>

#def i ne nenmove(dst, src, | en) bcopy((char *)(src), (char *)(dst), (int)(len))
#if defined(SYSV) & defi ned(_XBOCPYFUNC)

#undef mermmove

#def i ne nenmove(dst, src, | en) _XBOPYFUNO (char *)(src), (char *)(dst), (int)(len))
#def i ne _XNEEDBOCPYFUNC

#endi f

#else /* el se vanilla BSD */

#def i ne nenmove(dst, src, | en) bcopy((char *)(src), (char *)(dst), (int)(len))
#def i ne nmentpy(dst, src,len) bcopy((char *)(src), (char *)(dst), (int)(len))
#def i ne nenctnp(bl, b2,1en) benp((char *)(bl), (char *)(b2), (int)(len))
#endi f /* SYSV el se */

#endif /* | X _NOT_STDC ENV el se */

This is hairy (and incorrect) stuff. It makes its decisions based on the variables
X_NOT_STDC ENV, sun, SVR4, SYSV, luna, __sxg___ and _XBOCPYFUNC. These are the deci-
sions:

e If thevariableis not defi ned, it assumes ANSI C, unless thisis a pre-SVR4 Sun machine.

e Otherwise it checks the variables SYSV (for System V.3), | una, sun or __sxg__. If any
of these are set, it includes the fi le memory.h and defi nes memmove in terms of bcopy. |If
_XBOCPYFUNC is defi ned, it redefi nes nenmove as _ XBOCPYFUNC, reversing the parame-
tersasit goes.

* If none of these conditions apply, it assumes a vanilla BSD machine and defi nes the func-
tions menmmove, nentpy and mentnp in terms of the BSD functions bcopy and benp.

There are two errors here:

5 February 2005 02:09

118

e Theonly way that _XBOCPYFUNC is ever defi ned is as_Xt Mermove, which does not have
the same parameter sequence as bcopy —instead, it has the same parameter sequence as
nemmove. We can fi X this part of the header by changing the defi nition line to

#defi ne menmove(dst, src, | en) _XBOPYFUNQ (char *)(dst), (char *)(src), (int)(len))
or evento

#defi ne nenmove _XBOCPYFUNC

e Thereis no reason to assume that this system does not use ANSI C: it's using gcc and
GNU libc.a, both of them very much standard compliant. We need to examine this point
in more detail:

Going back to our junk.c, we search for X NOT_STDC ENV and fi nd it defi ned at line 85 of
IXIX11/X11R6/xc/X11/ Xosdefs.h:

#i fdef SYSV386

#i fdef SYSV

#defi ne X NOT_PCHl X
#def i ne X NOT_STDC ENV
#endi f

#endi f

In other words, this bug is likely to occur only with System V.3 implementations on Intel
architecture. Thisisafairly typical way to make decisions about the system, but it is wrong:
X _NOT_STDC ENV relates to a compiler, not an operating system, but both SYSV386 and SYSV
defi ne operating system characteristics. At fi rst sight it would seem logical to modify the defi -
nitions like this:;

#i fdef SYSV386

#i fdef SYSV

#ifndef _ GNU LI BRARY
#defi ne X NOT_PCHl X
#endi f

#i fndef __ ANUC

#defi ne X NOT_STDC ENV
#endi f

#endi f

#endi f

This would only defi ne the variables if the library is not GNU libc or the compiler is not gcc.
This is still not correct: the relationship between =~ GNUC and X NOT_STDC ENV or
_ G\U LIBRARY __ and X NOT_PCHl X is not related to System V or the Intel architecture.
Instead, it makes more sense to backtrack at the end of thefi le:

#ifdef _ GNU LIBRARY
#undef X_NOT_PCBI X

#endi f

#ifdef _ GNUC
#undef X _NOT_STDC ENV
#endi f

Whichever way we look at it, this is a mess. We're applying cosmetic patches to a

5 February 2005 02:09

Chapter 8: Testing 119

confi guration mechanism which is based in incorrect assumptions. Until some better confi gu-
ration mechanism comes along, unfortunately, we're stuck with this situation.

Limitations of debuggers

Debuggers are useful tools, but they have their limitations. Here are a couple which could
cause you problems:

Can't breakpoint beyond fork

UNIX packages frequently start multiple processes to do the work on hand. Frequently
enough, the program that you start does nothing more than to spawn a number of other pro-
cesses and wait for them to stop. Unfortunately, the pt r ace interface which debuggers use
reguires the process to be started by the debugger. Even in SunOS 4, where you can attach the
debugger to a process that is aready running, there is no way to monitor it from the start.
Other systems don't offer even this facility. In some cases you can determine how the process
was started and start it with the debugger in the same manner. This is not always possi-
ble—for example, many child processes communicate with their parent.

Unfortunately, SunOS trace doesn’t support tracing through f ork. truss does it better than
ktrace. In extreme cases (like debugging a program of this nature on SUnOS 4, where there is
no support for trace through f or k), you might fi nd it an advantage to port to a different
machine running an operating system such as Solaris 2 in order to be able to test with truss.
Of course, Murphy’s law says that the bug won't show up under Solaris 2.

Terminal logs out

The debugger usually shares a terminal with the program being tested. If the program
changes the driver confi guration, the debugger should change it back again when it gains con-
trol (for example, on hitting a breakpoint), and set it back to the way the program set it before
continuing. In some cases, however, it can't: if the process has taken ownership of the termi-
nal with a system call like setsid (see Chapter 12, Kernel dependencies, page 171), it will no
longer have access to the terminal. Under these circumstances, most debuggers crawl into a
corner and die. Then the shell in control of the terminal awakes and dies too. If you're run-
ning in an xterm, the xterm then stops; if you're running on a glass tty, you will be logged out.

The best way out of this dilemma is to start the child process on a different terminal, if your
debugger and your hardware confi guration support it. To do this with an xterm requires start-
ing a program which just sleeps, so that the window stays open until you can start your test
program:

$ xterm-e sl eep 100000&

[1] 27013

$ ps aux|grep sl eep

grog 27025 3.0 0.0 264 132 p6 St 1: 13PM 0:00. 03 grep sl eep

r oot 27013 0.0 0.0 1144 740 p6 | 1: 12PM 0: 00. 37 xterm-e sl eep 100000
grog 27014 0.0 0.0 100 36 p8 Is+ 1:12PM 0: 00. 06 sl eep 100000

$ gdb nyprog

(gdb) r < /dev/ttyp8 > /dev/ttyp8

5 February 2005 02:09

120

This example was done on a BSD machine. On a System V machine you will need to use ps
-ef instead of ps aux. First, you start an xterm with sleep as controlling shell (so that it will
stay there). With psyou grep for the controlling terminal of the sleep process (the third line in
the example), and then you start your program with stdin and stdout redirected to this termi-
nal.

Can’t interrupt process

The ptrace interface uses the signal SI GTRAP to communicate with the process being
debugged. What happens if you block this signal, or ignore it? Nothing—the debugger

doesn’t work any more. It’s bad practice to block SI GTRAP, of course, but it can be done.
More frequently, though, you’ll encounter this problem when a process gets stuck in a signal
processing loop and doesn’t get round to processing the SI GTRAP—precisely one of the times

when you would want to interrupt it. My favourite one is the program which had a S GSEGV/
handler which went and retried the instruction. Unfortunately, the only signal to which a
process in this state will still respond is Sl & LL, which doesn’t help you much in finding out
what’s going on.

Tracing system calls

An alternative approach is to divide the program between system code and user code. Most
systems have the ability to trace the parameters supplied to each system call and the results
that they return. This is not nearly as good as using a debugger, but it works with all object
files, even if they don’t have symbols, and it can be very useful when you’re trying to figure
out why a program doesn’t open a specific file.

Tracing is a very system-dependent function, and there are a number of different programs to
perform the trace: truss runs on System V.4, ktrace runs on BSD NET/2 and 4.4BSD derived
systems, and trace runs on SunOS 4. They vary significantly in their features. We’ll look
briefly at each. Other systems supply still other programs—for example, SGI’s IRIX operat-
ing system supplies the program par, which offers similar functionality.

trace

trace is a relatively primitive tool supplied with SunOS 4 systems. It can either start a process
or attach to an existing process, and it can print summary information or a detailed trace. In
particular, it cannot trace the child of a f or k call, which is a great disadvantage. Here’s an
example of trace output with a possibly recognizable program:

$ trace hello

open ("/usr/lib/ld.so", 0, 040250) = 3

read (3, "".., 32) =32

mrap (0, 40960, Ox5, 0x80000002, 3, 0) = Oxf77e0000

mrap (Oxf77e8000, 8192, Ox7, 0x80000012, 3, 32768) = Oxf 77e8000
open ("/dev/zero", 0, 07) =4

getrlimt (3, Oxf7fff488) =0

mrap (Oxf 7800000, 8192, 0x3, 0x80000012, 4, 0) = Oxf 7800000

5 February 2005 02:09

Chapter 8: Testing 121

close (3) =0

getuid () 1004

getgid () = 1000

open ("/etc/ld.so.cache", 0, 05000100021) = 3

fstat (3, Oxf7fff328) =0

map (0, 4096, Ox1, 0x80000001, 3, 0) = Oxf77c0000

close (3) =0

open ("/opt/lib/gce-lib/sparc-sun-sunos".., 0, 01010525) = 3
fstat (3, Oxf7fff328) =0

getdents (3, Oxf7800108, 4096) = 212
getdents (3, Oxf7800108, 4096) = O

close (3) =0

open ("/opt/lib", 0, 056) = 3

getdents (3, Oxf7800108, 4096) = 264
getdents (3, Oxf7800108, 4096) = 0O

close (3) =0

open ("/usr/lib/libc.so.1.9", 0, 023170) = 3
read (3, "".., 32) =32

mrap (0, 458764, O0x5, 0x80000002, 3, 0) = Oxf7730000
mrap (Oxf779c000, 16384, Ox7, 0x80000012, 3, 442368) = Oxf779c000

close (3) =0
open ("/usr/lib/libdl.so.1.0", 0, 023210) = 3
read (3, "".., 32) =32

map (0, 16396, Ox5, 0x80000002, 3, 0) = Oxf 7710000

mrap (Oxf7712000, 8192, Ox7, 0x80000012, 3, 8192) = Oxf 7712000
close (3) =0

close (4 =0

get pagesi ze () = 4096

brk (0x60d8) = 0

brk (0x70d8) = 0

ioctl (1, 0x40125401, Oxf7ffea8c) = 0

wite (1, "Hello, Wrld 0, 14) = Hello, Wrld!

14

close (0) =0
close (1) =0
close (2) =0
exit (1) =7?

What's al this output? All we did was a simple write, but we have performed a total of 43
system calls. This shows in some detail how much the viewpoint of the world differs when
you're on the other side of the system library. This program, which was run on a SparcStation
2 with SunOS 4.1.3, fi rst sets up the shared libraries (the sequences of open, r ead, mmap, and
cl ose), then initializes the stdi o library (the cals to get pagesi ze, brk, i octl, and
fstat), and fi nally writes to stdout and exits. It also looks strange that it closed stdin before
writing the output text: again, this is a matter of perspective. The st di o routines buffer the
text, and it didn’t actually get written until the process exited, just before closing stdout.

5 February 2005 02:09

122

ktrace

ktrace is supplied with newer BSD systems. Unlike the other trace programs, it writes unfor-
matted data to alog fi le (by default, ktrace.out), and you need to run another program, kdump,

to display thelog fi le. It hasthe following options:

« It can trace the descendents of the processit is tracing. Thisis particularly useful when
the bug occurs in large complexes of processes, and you don’t even know which process

is causing the problem.

e |t can attach to processes that are already running. Optionally, it can also attach to exist-

ing children of the processes to which it attaches.

e It can specify broad subsets of system calls to trace: system calls, namei trandations
(tranglation of fi le name to inode number), I/O, and signal processing.

Here's an example of ktrace running against the same program:

$ ktrace hello

Hello, Vrld!
$ kdunp
20748 ktrace RET
20748 ktrace CALL
20748 ktrace RET
20748 ktrace CALL
20748 ktrace RET
20748 ktrace CALL
20748 ktrace RET
20748 ktrace CALL
20748 ktrace RET
20748 ktrace CALL
20748 ktrace NAM
20748 hel | o RET
20748 hel | o CALL
20748 hell o RET
20748 hel | o CALL
20748 hel | o RET
20748 hel l o CALL
20748 hel | o RET
20748 hel | o CALL
20748 hell o RET
20748 hel | o CALL
20748 hel | o RET
20748 hell o CALL
20748 hel | o RET
20748 hel | o CALL
20748 hel | o ao
"Hello, Verld!
20748 hel l o RET
20748 hel | o CALL

ktrace O

get pagesi ze

get pagesi ze 4096/ 0x1000
br eak(Oxadf c)

break 0

br eak(Oxaf f c)

break 0

br eak(Oxbf f c)

break 0

execve(Oxef bf d148, Oxef bf d5a8, Oxef bf d5b0)
"./hello"

execve 0

f st at (0x1, Oxef bf d2a4)
fstat O

get pagesi ze

get pagesi ze 4096/ 0x1000
br eak(0x7de4)

break 0

br eak(0x7ff c)

break 0

br eak(Oxaf f c)

break 0

i oct| (0x1, TI GOGETA, Oxef bf d2e0)
ioctl O

writ e(0x1, 0x8000, Oxe)
fd 1 wote 14 bytes

wite 14/ 0xe
exi t (0xe)

This display contains the following information in columnar format:

Chapter 8: Testing 123

4.

The process ID of the process.

The name of the program from which the process was started. We can see that the name
changes after the call to execve.

The kind of event. CALL isasystem call, RET is areturn value from a system call, NAM
isasystem internal call to the function nanei , which determines the inode number for a
pathname, and @ Oisasystem internal 1/O call.

The parametersto the call.

In this trace, run on an Intel 486 with BSD/OS 1.1, we can see a signifi cant difference from
SunOS: there are no shared libraries. Even though each system call produces two lines of out-
put (the call and the return value), the output is much shorter.

truss
truss, the System V.4 trace facility, offers the most features:

It can print statistical information instead of atrace.
It can display the argument and environment strings passed to each call to exec.
It can trace the descendents of the processit is tracing.

Like ktrace, it can attach to processes which are already running and optionally attach to
existing children of the processes to which it attaches.

It can trace specifi ¢ system calls, signals, and interrupts (called faultsin System V termi-
nology). This is a very useful feature: as we saw in the ktrace example above, the C
library may issue a surprising number of system calls.

Here's an example of truss output:

$ truss -f hello

511: execve("./hel |l 0", 0x08047834, 0x0804783C) argc
511: get ui d()

511: get ui d()

511: getgid() 1000 [1000]
511: getgi d() 1000 [1000]
511: sysi 86(Sl 86FPHWY 0x80036058, 0x80035424, O0x8000E255) = 0x00000000

1
1004 [1004]
1004 [1004]

511: ioctl (1, TOGETA 0x08046262) =0
Hel o, Wrld!

511: wite(l, " Hel I o, Wor | d'.., 14) =14
511: _exit(14)

truss offers alot of choice in the amount of detail it can display. For example, you can select
a verbose parameter display of individual system calls. If we're interested in the parameters
tothei oct | call, we can enter:

5 February 2005 02:09

$ truss -f -vioctl hello

516: ioctl (1, TOETA 0x08046262) =0

5 February 2005 02:09

124

516: i f1 ag=0004402 of | ag=0000005 cf | ag=0002675 | f| ag=0000073 |i ne=0
516: cc: 177 003 010 030 004 000 000 000

In this case, truss shows the contents of the termio structure associated with the TOGETA
request—see Chapter 15, Terminal drivers, pages 241 and 258, for the interpretation of this
information.

Tracing through fork

We’ve seen that ktrace and truss can both trace the child of a fork system call. This is
invaluable: as we saw on page 119, debuggers can’t do this.

Unfortunately, SunOS trace doesn’t support tracing through f or k. truss does it better than
ktrace. In extreme cases (like debugging a program of this nature on SunOS 4, where there is
no support for trace through for k), you might find it an advantage to port to a different
machine running an operating system such as Solaris 2 in order to be able to test with truss.
Of course, Murphy’s law says that the bug won’t show up under Solaris 2.

Tracing network traffic

Another place where we can trace is at the network interface. Many processes communicate
across the network, and if we have tools to look at this communication, they may help us iso-
late the part of the package that is causing the problem.

Two programs trace message flow across a network:

« On BSD systems, tcpdump and the Berkeley Packet Filter provide a flexible means of
tracing traffic across Internet domain sockets. See Appendix E, Where to get sources, for
availability.

« trpt will print a trace from a socket marked for debugging. This function is available on
System V.4 as well, though it is not clear what use it is under these circumstances, since
System V.4 emulates sockets in a library module. On BSD systems, it comes in a poor
second to tcpdump.

Tracing net traffic is an unusual approach, and we won’t consider it here, but in certain cir-
cumstances it is an invaluable tool. You can find all you need to know about tcpdump in
TCP/IP Illustrated, Volume 1, by Richard Stevens.

Installation

Finally the package has been built and tested, and it works. Up to this point, everything in the
package has been in the private source tree where it has been built. Most packages are not
intended to be executed from the source directory: before we can use them, we need to move
the component parts to their intended directories. In particular:

We need to put executables where a normal PATH environment variable will find them.

We need to place on-line documentation in the correct directories in a form that the docu-
ment browser understands.

The installed software needs to be given the correct permissions to do what it has to do:
all executables need to have their execute permissions set, and some programs may need
setuid or setgid bits set (see Chapter 12, Kernel dependencies, page). In addition, soft-
ware will frequently be installed in directories to which normal users have no access. In
these cases, the install must be done by root.

Library routines and configuration files need to be installed where the package expects
them: the location could be compiled into the programs, or an environment variable
could point to the location.

If the package uses environment variables, you may also need to update .profile and
.cshre files to add or modify environment variables.

Many packages—for example, news transfer programs—create data in specific directo-
ries. Although initially there may be no data to install, the install process may need to
create the directories.

At some future date, you may want to remove the package again, or to install an updated
version. The installation routines should make some provision for removing the package
when you no longer want it.

Real-life packages differ significantly in their ability to perform these tasks. Some Makefiles
consider that their job is done when the package has been compiled, and leave it to you do
install the files manually. In some cases, as when there is only a single program, this is no
hardship, but it does require that you understand exactly what you need to install. On the
other hand, very few packages supply an uni nst al | target.

5 February 2005 02:09

125

126

In this chapter, we'll ook at the following subjects:

e Theway Makefi lestypically install software.

e Alternativesif the Makefi le doesn’'t do everything it should do.
e How toinstall documentation.

e How to keep track of installed software.

e How toremoveinstalled software.

Installation isan untidy area. At the end of this chapter, you'll probably be left with afeeling
of dissatisfaction—this area has been sadly neglected, and there just aren’t enough good
answers.

make install

The traditional way to install a pre-compiled package is with make install. Typicaly, it per-
forms the following functions:

* It creates the necessary directoriesif they are not there.
e Itcopiesall necessary fi les to their run-time locations.

e It setsthe permissions of the fi les to their correct values. This frequently reguires you to
be root when you install the package. If you don’t have root access, you should at least
arrange for accessto the directories into which you want to install.

e It may strip debug information from executables.
Some other aspects of make install are less unifi ed:

* make install may imply a make all: you can't install until you have made the package,
and you'll frequently see an install target that starts with

install: all
installati on comands

e On the other hand, make install may not only expect the make all to be completed—and
fail if it is not—but remove the executables after installation. Sometimes this is due to
the use of BSD install without the - ¢ option—see the section on the install program
below—but it means that if you want to make a change to the program after installation,
you effectively have to repeat the whole build. Removing fi les from the tree should be
left to make clean (see Chapter 5, Building the package, page 63).

* Someinstall targetsinstall man pages or other on-line documentation, others leave it to a
separate target with a name like i nstal | - man, and yet other Makefi les completely
ignore online documentation, even if the package suppliesit.

5 February 2005 02:09

5 February 2005 02:09

Chapter 9: Installation 127

Configuring the installed package

Some packages have run-time configuration files that need to be set up before the package
will run. Also, it’s not always enough just to install the files in the correct place and with the
correct permissions: you may need to modify the individual user’s environment before they
can use the package. Here are some examples:

« sendmail, the Internet mail transport agent, has an extremely complicated configuration
file sendmail.cf which needs to be set up to reflect your network topology. A description
of how to set up this file takes up hundreds of pages in sendmail, by Bryan Costales, Eric
Allman and Neil Rickert.

« Many X11 clients have supplementary files that define application defaults, which may
or may not be suitable for your environment. They are intended to be installed in a direc-
tory like /usr/X11/lib/X11/app-defaults. Not all Imakefi les perform this task.

« The path where the executables are installed should be in your PATH environment vari-
able.

« If you install man pages, the path should be in your MANPATH environment variable.

« Many packages define their own environment variables. For example, TEX defines the
environment variables TEXQONFI G TEXFONTS, TEXFCRVATS, TEXI NPUTS, and TEXPQCL
to locate its data files.

« Some programs require a setup file in the home directory of each user who uses the pro-
gram. Others do not require it, but will read it if it is present.

« Some programs will create links with other names. For example, if you install pax, the
portable archive exchange program, you have the opportunity of creating links called tar
and cpio. This is really a configuration option, but the Makefi le for pax does not account
forit.

Typical Makefi les are content with moving the files to where they belong, and leave such
details to the user. We’ll see an alternative on page 138.

Installing the correct files

At first, installation seems straightforward enough: you copy the files to where they belong,
and that’s that. In practice, a number of subtle problems can occur. There’s no hard and fast
solution to them, but if you run into trouble it helps to understand the problem.

To replace or not to replace?

Throughout the build process, we have used make to decide whether to rebuild a target or not:
if the target exists, and is newer than any of its dependencies, it will not be rebuilt. Tradition-
ally, installation is different: the files are installed anyway, even if newer files are already
present in the destination directory.

5 February 2005 02:09

128

The reasons for this behaviour are shrouded in time, but may be related to the fact that both
install (which we will discuss below) and cp traditionally modify the time stamps of the files,
so that the following scenario could occur:

1. Build version 1 of a package, and install it.

2. Start building version 2, but don’t complete it.

3. Make a modification to version 1, and re-install it.
4

Complete version 2, and install it. Some of the file in version 2 were compiled before
version 1 was re-installed, and are thus older than the installed files. As a result, they
will not be installed, and the installed software will be inconsistent.

It’s obviously safer to replace everything. But is that enough? We’ll look at the opposite prob-
lem in the next section.

Updating

Frequently you will install several versions of software over a period of time, as the package
evolves. Simply installing the new version on top of the old version will work cleanly only if
you can be sure that you install a new version of every file that was present in the old version:
otherwise some files from the old version will remain after installation. For example, version
1.07.6 of the GNU libc included a file include/sys/bitypes.h, which is no longer present in ver-
sion 1.08.6. After installing version 1.08.6, include/sys/bitypes.h is still present from the ear-
lier installation.

The correct way to handle this problem is to uninstall the old package before installation. For
reasons we will investigate on page 133, this seldom happens.

install

install is a program that is used in installing software. It performs the tasks of creating any
necessary directories, copying files, stripping executables, and setting permissions.

install originated in Berkeley, and older System V systems don’t support it. It’s a fairly trivial
program, of course, and many packages supply a script with a name like install.sh which per-
forms substantially the same functions. The source is available in the 4.4BSD Lite distribu-
tion—see Appendix E, Where to get sources.

Although install is a relatively simple program, it seems that implementors have done their
best to make it differ from one system to the next. The result is a whole lot of incompatible
and just downright confusing options. System V.4 even supplies two different versions with
conflicting options, a BSD compatible one and a native one—the one you get depends on

your other preferences, as laid down in your PATHenvironment variable.

System V.4 native install is sufficiently different from the others that we need to look at it sep-
arately—it can install only a single file. The syntax is:

Chapter 9: Installation 129

install options file [dir dir ...]

If the dirs are specified, they are appended to the fixed list of directories /bin, /usr/bin, /etc,
/lib, and /usr/lib. install will search the resultant list of directories sequentially for a file with

the name file. If it finds one, it will replace it and print a message stating in which directory it
has installed the file. The -i option tells install to omit the standard directories and take only
the list specified on the command line.

Other versions of install have a syntax similar to mv and cp, except that they take a number of

supplementary options:

install options filel file2
install options filel ... fileNdir

The first form installs filel as file2, the second form installs filel through fileN in the directory
dir.
Table 9-1 contains an overview of install options:

Table 9—1: install options

option Purpose

-C In BSD, copy the file. If this option is not specified, the file is moved (the origi-
nal file is deleted after copying).

In GNU and System V.4 (BSD compatibility), this option is ignored. Files are
always copied.

-c dir System V.4 native: install the file in directory dir only if the file does not already
exist. If the file exists already, exit with an error message.

-d In GNU and SunQS, create all necessary directories if the target directory does
not exist. Not available in BSD. This lets you create the directory with the com-
mand

install -d [-g group] [-mpern} [-0 owner] dir

-f flags In 4.4BSD, specify the target’s file flags. This relates to the chflags program in-
troduced with 4.4BSD—see the man page usr.bin/chflags/chflags.l in the
4.4BSD Lite distribution.

-f dir System V.4 native: force the file to be installed in dir. This is the default for oth-
er versions.

-g group | Setthe group ownership to group.

-i System V.4 native: ignore the default directory list (see below). This is not ap-
plicable with the - ¢ or - f options.

-m perm Set the file permissions to perm. perm may be in octal or symbolic form, as de-
fined for chmod(1). By default, perm is 0755 (r wxr - xr - X).

5 February 2005 02:09

5 February 2005 02:09

130

Table 9—1: install options (continued)

option Purpose
-n dir System V.4 native: if file isnot found in any of the directories, install it in dir.
-0 System V.4 native: if file is aready present at the destination, rename the old

version by prepending the letters QD to the fi lename. The old fi le remainsin the
same directory.

-0 owner | All except System V.4 native: change the owner to owner.
-s System V.4 native: suppress error messages.

-s All except System V.4 native: strip the fi nal binary.

-u owner | System V.4 native: change the owner to owner.

Other pointsto note are:

* install attemptsto prevent you from moving afi le onto itself.

e Instaling /dev/null creates an empty fi le.

» install exitswith areturn code of 0 if successful and 1 if unsuccessful.

System V.4 install is defi nitely the odd man out: if you can avoid it, do. Even Solaris 2 sup-
plies only the BSD version of install. On the other hand, pure BSD install aso has its prob-
lems, since it requires the - ¢ option to avoid removing the original fi les.

Installing documentation

Installing man pages would seem to be a trivial exercise. In fact, a number of problems can
occur. In this section, we'll look at problems you might encounter installing man pages and
GNU info.

Man pages.

Aswe saw in Chapter 7, Documentation, page 99, there is not much agreement about naming,
placing, or format of man pages. In order to install man pages correctly you need to know the
following things:

e The name of the man directory.
e Thenaming convention for man fi les. Aswe saw, these are many and varied.
e Whether the man pages should be formatted or not.

* If the man pages should be formatted, which formatter should be used? Which macros
should be used? This may seem like a decision to be made when building the package,
but many Makefiles put off this operation to the install phase.

« Whether the man pages should be packed, compressed or zipped.

5 February 2005 02:09

Chapter 9: Ingtallation 131

Typically, this information is supplied in the Makefi le like this example from the electronic
mail reader elm, which is one of the better ones:

FCRVATTER = [usr/ ucb/ nrof
MAN = / opt / man/ manl
MANEXT = .1

CATVAN = /opt/ man/ cat 1
CATMANEXT = .1

TBL = [usr/ucb/ t bl
MANRCFF = [usr/ ucb/ nrof
SUFF X = .z

PACKED = y

PACKER = / bi n/ conpr ess

List of installed nan pages (except for wienail.1 - handl ed differently)

MAN LI ST = $(MAN) / answer $(MANEXT) \
$(MAN) / aut or epl y$(MANEXT) \
...etc
List of installed catnman pages (except for wnenail.1 - handl ed differently)
CATMAN LI ST = $(CATVAN) / answer $(CATMANEXT) $(SUFFL X) \

$(CATMAN) / aut or epl y$(CATMANEXT) $(SUFFI X) \
..etc

List of formatted pages for catnan

FCRVATTED PAGES LI ST = cat man/ answer $(CATMANEXT) $(SUFFI X) \
cat man/ aut or epl y$(CATMANEXT) $(SUFFI)\

..etc

Targets
all:
@f $(TEST) '$(CATMAN)' !'= none; then $(MKE) fornatted pages ; \
else true ; fi

fornatted_pages: catnan $(FCRVATTED PAGES LI ST)

cat man:
nkdi r cat nan

install: $(LIB_LIST)
@f $(TEST) '$(MWN)' !'= none; then $(MKE) install_nan ; \
else true ; fi
@f $(TEST) ' $(CATMAN)' != none; then $(MXKE) install_catrman ; \
else true ; fi

install _man: $(MAN LI ST) $(MAN)/ wnewnai | $(MANEXT)
instal | _catrman: $(CATMAN LI ST) $(CATMAN) / wnewrrai | $(CATMANEXT) $(SUFFI X)

Dependenci es and rules for installing man pages and lib files
$(MAN) / answer $(MANEXT) : answer . 1

(P $? s@

$(CHMD) u=rw, go=r $@

132

$(MAN) / aut or epl y$(MANEXT) : autoreply. 1
(P $? @
$(CHMD) u=rw, go=r $@

This Makefi le is in the subdirectory doc, which is concerned only with documentation, so all
the targets relate to the man pages. The target al | makes the decision whether to format the
pages or not based on the value of the make variable CATMAN. If thisis set to the special value
none, the Makefi le does not format the pages.

Thetargeti nstal | uses the same technique to decide which man pagesto install: if the vari-
able MANis not set to none, the sources of the man pages are copied there, and if CATMAN is
not set to none, the formatted pages are installed there. This Makefi le does not use install: it
performs the operations with cp and chmod instead.

GNU info
Installing GNU info is somewhat more straightforward, but it is also not as clean as it could
be:

* info is always formatted, so you need the formatter, a program called makeinfo, which is
part of the texinfo package. Before you can run makeinfo, you need to port texinfo. It's
not that big ajob, but it needs to be done. Of course, in order to completely install tex-
info, you need to format the documentation with makeinfo—a vicious circle. The solu-
tion is to port the texinfo executables, then port makeinfo, and then format the texinfo
documentation.

* Allinfo fi les are stored in a single directory with an index fi le called dir. Thislooks like:

-*- Text -*-

This is the file /opt/info/dir, which contains the topnost node of the
Info hierarchy. The first tine you invoke Info you start off

| ooking at that node, which is (dir)Top.

File: dir Node: Top This is the top of the INFOtree
This (the Drectory node) gives a nenu of najor topics.
Typing "d" returns here, "g" exits, "?" lists all | N-O commands, "h"
gives a priner for first-tiners, "niexinfo<Return>" visits Texinfo topic,
etc.

Note that the presence of a nane in this list does not necessarily
nean that the documentation is available. It is installed with the
package in question. |f you get error nessages when trying to access
docunentation, make sure that the package has been install ed.

--- PLEASE ADD DOOUMENTATION TOTH S TREE (See INFOtopic first.) ---

* Menu: The list of najor topics begins on the next |ine.

* Bash: (bash). The G\U Bourne Again ShHel |l .

* Bfd: (bfd). The Binary File Descriptor Library.

* Bison: (bison). The Bison parser generator.

* QA (cl). Partial Gommon Lisp support for Emacs Lisp.

5 February 2005 02:09

5 February 2005 02:09

Chapter 9: Ingtallation 133

..etc

The lines at the bottom of the example are menu entries for each package. They have a
syntax which isn’'t immediately apparent—in particular, the sequence * item has a
special signifi cance in emacs info mode. Programs that supply info documentation
should supply such an entry, but many of them do not, and none of them install the line
in dir—you need to do this by hand.

Removing installed software

For a number of reasons, you may want to remove software that you have already installed:

You may decide you don't need the software.

You may want to replace it with a newer version, and you want to be sure that the old
version is gone.

You may want to install it in adifferent tree.

If you look for a remove or uninstall target in the Makefi le, chances are that you won't fi nd
one. Packages that supply a remove target are very rare. If you want to remove software, and
you didn't take any precautions when you installed it, you have to do it manually with the
computer equivalent of an axe and a spear: Isand rm.

Removing software manually

In fact, it's frequently not that diffi cult to remove software manually. The modifi cation time-
stamps of all components are usually within a minute or two of each other, so Iswith the- | t
options will list them all together. For example, let’'s consider the removal of ghostscript.

Thefi rst step isto go back to the Makefi le and see what it installed:

prefix = /opt
exec_prefix = $(prefix)
bindir = $(exec_prefix)/bin
datadir = $(prefix)/lib
gsdat adir = $(datadi r)/ ghostscri pt
mandi r = $(prefix)/man/ nanl
... ski ppi ng
install: $(C
-nkdir $(bindir)
for f in $(G gshj gsdj gslj gslp gsnd bdftops font2c \
ps2ascii ps2epsi; \
do $(I NSTALL_PROGRAN) $$f $(bindir)/$$f ; done
-nkdir $(datadir)
-nkdir $(gsdat adir)

for f in README gslp.ps gs_init.ps gs_dpsl.ps gs_fonts.ps gs_lev2. ps \
gs_statd. ps gs_type0. ps gs_dbt_e.ps gs_syme.ps quit.ps Fontnmap \

ugl yr. gsf bdftops. ps decrypt.ps font2c.ps inpath. ps | andscap. ps \
level 1. ps prfont.ps ps2ascii.ps ps2epsi.ps ps2i mage. ps pst oppm ps\

5 February 2005 02:09

134

One dternative is to make a remove target for this Makefi le, which isn’t too diffi cult in this

case:

showpage. ps typelops.ps wfont.ps ; \
do $(I NSTALL_DATA) $$f $(gsdatadir)/$$f ; done

-nkdir $(docdir)
for f in NEWS devices.doc drivers.doc fonts.doc hershey. doc \
hi story. doc hunor. doc | anguage. doc |ib. doc nake.doc ps2epsi.doc \
psfil es. doc readme. doc use.doc xfonts.doc ; \

do $(I NSTALL_DATA) $$f $(docdir)/$$f ; done
-nkdir $(nmandir)
for f inansi2knr.1 gs.1; do $(I NSTALL_DATA) $$f $(nandir)/$$f ; done
-nkdir $(exdir)
for f in chess.ps cheq.ps colorcir.ps gol fer.ps escher.ps \
snowf | ak. ps tiger.ps ; \

do $(I NSTALL_DATA) $3f $(exdir)/$3f ; done

* First, copy theinstall target and call it remove.

e Move the mkdir lines to the bottom and change them to rmdir. You'll notice that this
Makefi le accepts the fact that mkdir can fail because the directory aready exists (the- in
front of mkdir). We'll do the same with rmdir: if the directory isn't empty, rmdir fails,

but that's OK.
* Wereplace$(| NSTALL_PRORAV) $$f and $(| NSTALL_DATA) $$f withrm -f.

The result looks like:

renove:

$(®

for f in $(G gshj gsdj gslj gslp gsnd bdftops font2c \
ps2ascii ps2epsi; \

do rm-f $(bindir)/$$f ; done

for f in README gsl p.ps gs_init.ps gs_dpsl.ps gs_fonts.ps gs_lev2. ps \
gs_statd. ps gs_type0.ps gs_dbt_e.ps gs_syme.ps quit.ps Fontnap \
ugl yr. gsf bdftops. ps decrypt.ps font2c.ps inpath. ps | andscap. ps \
level 1. ps prfont.ps ps2ascii.ps ps2epsi.ps ps2i mage. ps pst oppm ps\
showpage. ps typelops.ps wfont.ps ; \

do rm-f $(gsdatadir)/$$f ; done

for f in NEWS devices.doc drivers.doc fonts.doc hershey. doc \
hi story. doc hunor. doc | anguage. doc |ib. doc nake.doc ps2epsi.doc \
psfil es. doc readme. doc use.doc xfonts.doc ; \
do rm-f $(docdir)/$$f ; done
for f inansi2knr.1 gs.1; do $(INSTALL_DATA) $$f $(nandir)/$$f ; done
for f in chess.ps cheg.ps colorcir.ps golfer.ps escher.ps \
snowf | ak. ps tiger.ps ;
do rm-f $(exdir)/$$f ; done
-rndir $(bindir)
-rndir $(datadir)
-rndi r $(gsdat adir)
-rndir $(docdir)
-rdir $(rmandir)

5 February 2005 02:09

Chapter 9: Ingtallation 135

-rmdir $(exdir)

More frequently, however, you can't use this approach: the Makefi le isn't as easy to fi nd, or
you have long since discarded the source tree. In this case, we'll have to do it differently.
First, wefi nd the directory where the executable gs, the main ghostscript program, is stored:

$ which gs
/opt/bin/gs

Then we look at the last modifi cation timestamp of /opt/bin/gs:

$1s -1 /opt/bin/gs
-rnxrxr-x 1 root wheel 3168884 Jun 18 14:29 /opt/bin/gs

Thisisto help usto know where to look in the next step: we list the directory /opt/bin sorted
by modifi cation timestamp. It's a lot easier to fi nd what we're looking for if we know the
date. If you don’'t have which, or possibly even if you do, you can use the following script,
called wh:

for j in $; do
for i in “echo $PATH|sed ’s/:/ /g”“; do
if [-F $i/3j 1; then
Is -1 $i/%j
Ti
done
done

wh searches the directories in the current environment variable PATH for a specifi ¢ fi le and
lists al occurrences in the order in which they appear in PATH in Is -l format, so you could
also have entered:

$ wh gs
-rxrxr-x 1 root wheel 3168884 Jun 18 14:29 /opt/bin/gs

Once we know the date we are looking for, it's easy to list the directory, page it through more
and fi nd the time frame we are looking for.

$1s -1t /opt/bin|nore

total 51068

—W——————- 1 root bin 294912 Sep 6 15:08 trn.old
-rxr-xr-x 1 grog lemis 106496 Sep 6 15:08 man
...skipping lots of stuff

-rw-rw-rw- 1 grog bin 370 Jun 21 17:24 prab™
-rw-rw-rw- 1 grog bin 370 Jun 21 17:22 parb
-rw-rw-rw- 1 grog bin 196 Jun 21 17:22 parb™
-rxrwxrvx 1 grog wheel 469 Jun 18 15:19 tep
-rxrwxr-x 1 root wheel 52 Jun 18 14:29 font2c
-nxnvxr-x 1 root wheel 807 Jun 18 14:29 ps2epsi
-rxrxr-x 1 root wheel 35 Jun 18 14:29 bhdftops
-rxrvxr-x 1 root wheel 563 Jun 18 14:29 ps2ascii
-nxnvxr-x 1 root wheel 50 Jun 18 14:29 gslp
-rxrwxr-x 1 root wheel 3168884 Jun 18 14:29 gs
-rxrxr-x 1 root wheel 53 Jun 18 14:29 gsdj
-nxnvxr-x 1 root wheel 51 Jun 18 14:29 gsbj

136

-rxrxr-x 1 root wheel 18 Jun 18 14:29 gsnd
-nxnvxr-x 1 root wheel 54 Jun 18 14:29 gslj
-nWXr-xr-x 1 root bin 81165 Jun 18 12:41 faxaddmodem
-r-xr-xr-x 1 bin bin 249856 Jun 17 17:18 faxinfo
-r-xr-xr-x 1 bin bin 106496 Jun 17 15:50 dialtest

...more stuff follows

It's easy to recognize the programs in this format: they were al installed in the same minute,
and the next older fi le (faxaddmodem) is more than 90 minutes older, the next newer fi le (tep)
is 50 minutes newer. The fi les we want to remove are, in sequence, font2c, ps2epsi, bdftops,
ps2ascii, gslp, gs, gsdj, gshj, gsnd and gdlj.

We're not done yet, of course: ghostscript also installs alot of fonts and PostScript fi les, aswe
saw in the Makefi le. How do we fi nd and remove them? It helps, of course, to have the Make-
file, from which we can see that the files are installed in the directories /opt/bin,
/opt/lib/ghostscript and /opt/man/manl (see the Makefi le excerpt on page 133). If you don't
have the Makefi le, all is not lost, but things get alittle more complicated. You can search the
complete directory tree for fi les modifi ed between Jun 18 14:00 and Jun 18 14:59 with:

$find /opt -follow-type f -print|xargs Is -1|grep "Jun 18 14:"

-rxrwxr-x 1 root wheel 35 Jun 18 14:29 /opt/bin/bdftops

...etc

-rw-rw-r-- 1 root wheel 910 Jun 18 14:29 /opt/man/manl/ansi2knr.1

-rw-rw-r-- 1 root wheel 10005 Jun 18 14:29 /opt/man/manl/gs.1

-rw-rw-r-- 1 root wheel 11272 Jun 18 14:29 /opt/lib/ghostscript/Fontmap
-rw-rw-r-- 1 root wheel 22789 Jun 18 14:29 /opt/lib/ghostscript/bdftops.ps
-rw-rw-r-- 1 root wheel 295 Jun 18 14:29 /opt/lib/ghostscript/decrypt.ps
-rw-rw-r-- 1 root wheel 74791 Jun 18 14:29 /opt/lib/ghostscript/doc/NEWS
-rw-rw-r-- 1 root wheel 13974 Jun 18 14:29 /opt/lib/ghostscript/doc/devices.doc

...many nore files
There are a couple of pointsto note here:

* We used GNU fi nd, which uses the —fol low option to follow symbolic links. If your
/opt hierarchy contains symbolic links, fi nd would otherwise not search the subdirecto-
ries. Other versions of fi nd may require different options.

* Youcan't usels-IR here because Is -IR does not show the full pathnames: you would fi nd
the fi les, but the name at the end of the line would just be the name of the fi le, and you
wouldn’t know the name of the directory.

* |f thefi leis morethan six monthsold, Is-I will list it inthe form
-rwxrwxrwx 1 grog wheel 22 Feb 10 1994 xyzzy

This may be enough to differentiate between the fi les, but it's less certain. GNU Is (in
the fi leutils package) includes a option ——full-time (note the two leading hyphens).
Thiswill always print the full time, regardless of the age of the fi le. With this option, the
fi le above will list as:

$1s --full-time -1 xyzzy
-rwxrwxrwx 1 grog wheel 22 Thu Feb 10 16:00:24 1994 xyzzy

5 February 2005 02:09

5 February 2005 02:09

Chapter 9: Ingtallation 137

Removing too much

None of these methods for removing installed software can handle one remaining serious
problem: some programs install a modifi ed version of a standard program, and if you remove
the package, you remove all trace of this standard program. For example, GNU tar and GNU

cpio both include the remote tape protocol program rmt. If you install both of these packages,

and then decide to remove cpio, tar will not work properly either. It's not aways enough to
keep track of which packages depend on which programs: in some cases, a modifi ed version
of a program is installed by a package, and if you remove the package, you need to re-install

the old version of the program.

Keeping track of installed software
All the methods we've seen so far smell strongly of kludge:
« They involve signifi cant manual intervention, which is proneto error.

e The remove or uninstall targets of a Makefi le are based on names not contents. If you
stop using a package, and install a new one with some names that overlap the names of
the old package, and then remove the old package, the fi les from your new package will
go too.

e The manual method based on the dates does not discover confi guration or data fi les—if
you remove net news from a system, you will have to remember to remove the news
spool area as well, because that certainly won't have the same modifi cation timestamp as
the installed software.

e It'samost impossible to safely and automatically remove modifi cations to environment
variablesin .cshrc and .profi lefi les.

We can come closer to our goa if we have a method to keep track of the fi les that were actu-
aly installed. This requires the maintenance of some kind of database with information about
the relationship between packages and fi les. Idealy,

e It would contain a list of the fi les installed, including their sizes and modifi cation time-
stamps.

e It would prevent modifi cation to the package except by well-defi ned procedures.

« It would contain alist of the fi les that were modifi ed, including diffs to be able to reverse
them.

« It would keep track of the modifi cations to the package as time went by: which fi leswere
created by the package, which fi les were modifi ed.

Thisisanideal, but the System V.4 pkgadd system comes reasonably close, and the concept is
simple enough that we can represent the most important features as shell scripts. We'll look
at it in the next section.

5 February 2005 02:09

138

System V pkgadd

UNIX System V.4 is supplied as a number of binary packages —you can choose which to
install and which not to install. You can even choose whether or not to install such seemingly
essential components as networking support and man pages.

Packages can be created in two formats. stream format for installation from serial data media
like tapes, and fi le system format for installation from fi le systems. In many cases, such as
diskettes, either form may be used. The program pkgtrans transforms one format into the
other. In thefollowing discussion, we'll assume fi le system format.

The package tools offer a bewildering number of options, most of which are not very useful.
WE'II limit our discussion to standard cases: in particular, we won't discuss classes and multi-
part packages. If you are using System V.4 and want to use other features, you should read
the documentation supplied with the system. In the following sections we'll look at the indi-
vidual components of the packages.

pkginfo

The fi le pkginfo, in the root directory of the package, contains general information about the
package, some of which may be used to decide whether or not to install the package. For
example, the pkginfo fi le for an installable emacs package might look like:

ARCH=i 386 the architecture for which the package is intended
PKG=enacs the nane of the package

VERS| ON-19. 22 t he version nunber

NAME=Emacs text editor a brief description

CATEQRY=utilities the kind of package

CLASSES=none class infornation

VENDCR=Fr ee Sof tware Foundation the nane of the owner
HOTLI NE=LEM S, +49- 6637- 919123, Fax +49-6637-919122 who to call if you have troubl e
BEMVAl L=l em s@eni s. de mai | for HOTLINE

Thisinformation is displayed by pkgadd as information to the user before installation.

pkgmap
The fi le pkgmap is aso in the root directory of the package. It contains information about the
destination of the individual fi les. For example, from the same emacs package,

1 37986

d none /opt 0755 bin bin

d none /opt/README 0755 bin bin

f none /opt/ README enacs- 19. 22 0644 root sys 1518 59165 760094611
d none /opt/bin 0755 bin bin

f none /opt/bin/enacs 0755 root sys 1452488 11331 760577316

f none /opt/bin/etags 0755 root sys 37200 20417 760577318

PR R RPR PR

* Asused here, the term package is a collection of precompiled programs and data and information nec-
essary to install them—this isn’t the same thing as the kind of package we have been talking about in
the rest of this book.

Chapter 9: Ingtallation 139

PR RPRRRRRER
oo —+—+—+qa

none /opt/info 0755 bin bin

none /opt/info/cl.info 0644 root sys 3019 62141 760094526

none /opt/info/dir 0644 root sys 2847 23009 760559075

none /opt/info/ enacs 0644 root sys 10616 65512 760094528

none /opt/lib 0755 bin bin

none /opt/lib/emacs 0755 bin bin

none /opt/lib/emacs/ 19. 22 0755 bin bin

none /opt/lib/emacs/ 19. 22/ etc 0755 bin bin

none /opt/1ib/emacs/ 19. 22/ et c/ 3B- MAXMEM 0644 root sys 1913 18744 574746032

The fi rst line specifi es that the package consists of a single part, and that it consists of 37986
512 byte blocks. The other lines describe fi les or directories:

The fi rst parameter isthe part to which the fi le belongs.

The next parameter specifi es whether the fi leisaplain fi le (f), adirectory (d), alink (1)
or asymbolic link (s). A number of other abbreviations are also used.

The next parameter is the class of the file. Like most packages, this package does not
use classes, so the classis always set to none.

The following four parameters specify the name of the installed object, its permissions,
the owner and the group.

After this come the size of the file, a checksum and the modifi cation time in naked
tine_t format. The checksum ensures that the package is relatively protected against
data corruption or deliberate modifi cation.

Package subdirectories

In addition to the fi les in the main directory, packages contain two subdirectories root and
install:

5 February 2005 02:09

root contains the files that are to be installed. All the fi les described in pkgmap are
present under the same names in root (for example, /opt/bin/emacs is called
root/opt/binfemacs in the package).

The fi le install/copyright contains a brief copyright notice that is displayed on installa-
tion. pkgadd does not wait for you to read this, so it should really be brief.

Optionally, there may be scripts with names like install/preinstall and install/postinstall
which are executed before and after copying the fi les, respectively. preinstall might, for
example, set up the directory structure /opt if it does not already exist. postinstall might
update .cshrc and .profi le fi les. In some cases, it may need to do more. For example, the
SO 9660 directory standard for CD-ROMSs limits allows only eight nested directories (in
other words, the directory /a/b/c/d/e/fig/ih/i is nested too deeply). gcc on a CD-ROM
would violate this limitation, so some of the package has to be stored as a ter fi le, and the
postinstall script extractsit to the correct position.

5 February 2005 02:09

140

pkgadd
With this structure, adding a package is aimost child's play: you just have to enter
$ pkgadd enacs

WEell, almost. The name emacs is the name of the package and not a fi le name. By default,
pkgadd expects to fi nd it in /var/spool/pkg. If your package is elsewhere, you can't tell
pkgadd simply by prepending the name—instead, you need to specify it with the - d option:

$ pkgadd -d /cdrom enacs

Thiswill install emacs from the directory cdrom.

Removing packages

One really nice thing about the System V.4 package system is the ease with which you can
remove a package. Assuming that you have decided that vi is a better choice than emacs, or
you just don’'t have the 19 MB that the emacs package takes up, you just have to type:

$ pkgr m enacs

and all the fi leswill be removed.

Making installable packages

The discussion of pkgadd assumes that you aready have an instalable package. This is

appropriate for System V.4, but if you have just ported a software package, you fi rst need to
create an installable binary package from it. Thisis the purpose of pkgmk. It takes a number

of input files, the most important of which is prototype: it describes which fi les should be
installed. It isalmost identical in format to the pkgmap fi le we discussed above. For example,
the prototype fi le for the emacs example above looks like:

Prototype file created by /cdcopy/ ETC t ool s/ nknkpk on Véd Jan 19 18:24: 41 VT 1994
i pkginfo

preinstal |

postinstall

copyri ght

Required directories

none /opt 755 bin bin

none /opt/bin 755 bin bin

none /opt/ README 755 bin bin

none /opt/man 755 bin bin

none /opt/lib 755 bin bin

none /opt/lib/emacs 755 bin bin

none /opt/lib/emacs/ 19.22 755 bin bin

none /opt/lib/emacs/ 19. 22/ etc 755 bin bin

none /opt/info 755 bin bin

Required files

none /opt/1ib/emacs/ 19. 22/ et c/ 3B- MAXMEM 644 root sys
none /opt/bin/emacs 755 root sys

" FooO0O0O0O0O0O0Q FH T T

Chapter 9: Ingtallation 141

f none /opt/infol emacs 644 root sys
f none /opt/info/dir 644 root sys

This looks rather different from pkgmap:

e There are comment lines starting with #. Thefi rst line indicates that this fi e was created
by ascript. Later on we'll seethe kind of function mkmkpk might perform.

e Thefirst column (part number) and the last three columns (size, checksum and modifi ca-
tion timestamp) are missing.

* Some lines start with the keyletter i . These describe installation fi les: we recognize the
names from the discussion above. pkgmk copies these fi les into the directory tree as dis-
cussed above. What is not so immediately obvious is that pkginfo is placed in the main
directory of the package, and the others are placed in the subdirectory install. It is aso
not obvious that some of these fi les are required: if they are not specifi ed, pkgmk dies.

Making a prototype file

There's still a gap between the original make install and building an installable package. We
need a prototype fi le, but make install just installs software. The packaging tools include a
program called pkgproto that purports to build prototype fi les. It searches a directory recur-
sively and creates prototype entries for every fi leit fi nds. If you have just installed emacs, say,
in your /opt directory, pkgproto will give you a prototype including every fi le in /opt, includ-
ing all the packages which are already installed there—not what you want. There are a num-
ber of alternatives to solve this problem:

e You can ingtall into a different directory. pkgproto supports this idea: you can invoke it
with

$ pkgproto /tnp-opt=/opt

which will tell it to search the directory /tmp-opt and generate entries for /opt. The dis-
advantage of this approach is that you may end up building programs with the path /tmp-
opt hard coded into the executables, and though it may test just fi ne on your system, the
executable fi leswill not work on the target system—defi nitely a situation to avoid.

e You rename /opt temporarily and install emacs in a new directory, which you can then
rename. Thisvirtually requires you to be the only user on the system.

e Before installing emacs, you create a dummy fi le stamp-emacs just about anywhere on
the system. Then you install emacs, and make alist of the fi les you have just installed:

$ find /opt -follow -cnewer stanp-enacs -type f -print | xargs I's -1 >info

This requires you to be the only person on the system who can write to the directory at
the time. This is more not as simple as you might think. Mail and news can come in
even if nobody else is using the system. Of course, they won't usually write in the same
directories that you're looking in. Nevertheless, you should be prepared for a few sur-
prises. For example, you might fi nd afi lelikethisin your list:

5 February 2005 02:09

5 February 2005 02:09

142

/opt/1iblenacs/| ock/! cdcopy! SORCE Core! gli bc- 1. 07! version. c

This is an emacs lock fi le: it is created by emacs when somebody modifi es a buffer (in
this case, a file called /cdcopy/SOURCE/Core/glibc-1.07/version.c: emacs replaces the
slashes in the fi le name by exclamation marks), and causes another emacs to warn the
user before it, too, tries to modify the same fi le. It contains the pid of the emacs process
that has the modifi ed buffer. Obviously you don’t want to include this fi le in your instal-
lable package.

Once you have tidied up your list of fi les, you can generate a prototype fi le with the aid
of ashell script or an editor.

Running pkgmk

Once you have a prototype fi le, you're nearly home. All you haveto do is run pkgmk. We run
into terminology problems here: throughout this book, we have been using the term package
to refer to the software we are building. More properly, this is the software package. pkgmk
refersto its output as a package too—here, we'll refer to it as the installable package.
Unfortunately, pkgmk handles some pathnames strangely. You can read the man page (prefer-
ably several times), or use this method, which works:

Before building the installable package, change to the root directory of the software
package.

Ignore path specifi cations in the prototype fi le and specify the root path as the root fi le
system: -r /.

Specify the base directory as the root directory of the package: since that's the directory
we'rein, justadd-b ‘ pwd‘ .

Choose to overwrite any existing package: - 0.

Specify the destination path explicitly: -d /usr/pkg. pkgmk creates packages will as
subdirectories in this directory: the package gcc would create a directory hierarchy
Jusr/pkg/gcc.

The resultant call doesn’t change from one package to the next: it is

pkgnk -r / -b ‘pwd’ -0 -d /usr/pkg

There is a whole lot more to using pkgmk, of course, but if you have pkgmk, you will aso
have the man pages, and that’s the best source of further information.

5 February 2005 02:09

Where to go from here

Finally it’s all over. The package is ported, you’ve installed the software, and it really does
work. This time, we’re done!

Well, we said that once before, before we started testing, and we were wrong. We’re wrong
here, too:

In the course of the port, you may find a bug or a misfeature and fix it. 1f you do so, you
have effectively created a new version of the package. You should send in information
about these changes to the author. If this is a popular package, you might consider
reporting the changes to the Usenet group that exists for the package.

You no longer need the space on disk, so you can clean up the archive and write it to
tape. It’s a good idea to maintain enough documentation to be able to retrieve it again.

Sometime, maybe very soon, somebody will come out with a fix for a bug that will prob-
ably bite you some time, or with a feature that could really be of use to you. Your expe-
rience with this port will help you to port the new version.

None of this is much work now, and it will save you grief later on. Let’s look at it in a little
more detail.

Reporting modifications

Once you have the software running, you should report any changes to the author or main-
tainer of the software. In order for this to be of any use, you need to supply the following
information:

A description of the problems you ran into. Don’t spare details here: remember the pain
you went to to figure out what was going wrong, and you had an interest in solving the
problem. If you’re the first person to run into the problem, it probably hasn’t hurt any-
body else, least of all the author. He probably gets lots of mail saying “xfoo is broke”,
and he may not believe what you have to say until you prove it to him.

How you fixed them. Again, lots of detail. The author probably understands the package
better than you do. If you explain the problem properly, he may come up with a better

143

5 February 2005 02:09

144

fi x.

e The fi xes themselves. diffs, lists of differences between the previous version and your
versions, are the method of choice. We'll look at them in the rest of this section.

diff

diff is a program that compares two related source fi les and outputs information about how to
create the second fi le from the fi rst. You typically useit after making modifi cationsto afi lein
order to describe how the modifi ed fi le differs from the original. The resultant output fi le is
also called a diff. We saw the application of diffs in Chapter 3, Care and feeding of source
trees, page 29. Herewe'll look at how to make them.

It's useful to recognize and understand diff formats, since you occasionaly have to apply
them manually. diff compares two source fi les and attempts to output a reasonably succinct
list of the differences between them. In diff terminology, the output is grouped into hunks,
information about arelatively local groups of differences.

Like most useful programs, diff has grown in the course of time, and modern versions can out-
put in a bewildering number of formats. Fortunately, amost all diffs nowadays use the con-
text format. WE'll look at some others anyway so that you can recognize them.

In the following examples, we compare the fi les eden.1:

A doctor, an architect, and a conputer scientist
were argui ng about whose profession was the oldest. In the
course of their argunents, they got all the way back to the
Garden of Eden, whereupon the doctor said, "The nedical
profession is clearly the ol dest, because Eve was nade from
Adamis rib, as the story goes, and that was a sinply
incredible surgical feat."

The architect did not agree. He said, "But if you
look at the Garden itself, in the beginning there was chaos
and void, and out of that, the Garden and the world were
created. So God nust have been an architect.”

The conputer scientist, who had listened to all of
this said, "Yes, but where do you think the chaos cane
frone"

and eden.2:

A doctor, an architect, and a conputer scientist
were argui ng about whose profession was the oldest. In the
course of their argunents, they came to discuss the Garden
of Eden, whereupon the doctor said, "The nedical profession
is clearly the ol dest, because Eve was nade from Adams rib,
as the story goes, and that was a sinply incredibl e surgical
feat."

The architect did not agree. He said, "But if you
look at the Garden itself, in the beginning there was chaos
and void, and out of that, the Garden and the world were
created. So God nust have been an architect."

The conputer scientist, who had listened to all of

Chapter 10: Where to go from here

this, said, "Yes, but where do you think the chaos canme
fron?"

normal format diffs

As the name implies, the normal format is the default. You don’t need to specify any format

flags:

$ diff eden.1 eden.2

3,7c3,7

< course of their argurments, they got all the way back to the
< @rden of Eden, whereupon the doctor said, "The nedical

< profession is clearly the ol dest, because Eve was nade from
< Adams rib, as the story goes, and that was a sinply

< incredible surgical feat."

> course of their argurments, they cane to di scuss the Garden
> of Eden, whereupon the doctor said, "The nedical profession
>is clearly the ol dest, because Eve was nade fromAdams rib,
> as the story goes, and that was a sinply incredibl e surgical
> feat."

13c13

< this said, "Yes, but where do you think the chaos cane

> this, said, "Yes, but where do you think the chaos cane

The first line of each hunk specifies the line range: 3, 7c3, 7 means “lines 3 to 7 of the first
file, lines 3 to 7 of the second file”. 13c13 means “line 13 of the first file, line 13 of the sec-
ond file, has changed (c)”. Instead of ¢ you will also see d (lines deleted) and a (lines added).
After this header line come the lines of the first file, with a leading < character, then a divider
(---) and the lines of the second file with a leading > character. This example has two hunks.

ed format diffs

ed format diffs have the dubious advantage that the program ed can process them. You can
create them with the - e flag. In this example, we also use shell syntax to shorten the input

line. Writing eden. [12] is completely equivalent to writing eden. 1 eden. 2.

$ diff -e eden.[12]
13c
this, said, "Yes, but where do you think the chaos canme

3,7c

course of their argunents, they canme to discuss the Garden
of Eden, whereupon the doctor said, "The nedical profession
is clearly the ol dest, because Eve was nade from Adams rib,
as the story goes, and that was a sinply incredibl e surgical
feat."

Just about everybody who has diff also has patch, and nowadays not everybody has ed. In
addition, this format is extremely dangerous, since there is no information about the old

5 February 2005 02:09

5 February 2005 02:09

146

content of the fi le: you can't be sureif the patch will be applied in the right place. Asaresult,
you almost never see thisform.

context diffs
You select a context diff with the flag - c:

$ diff -c eden.[12]

*** eden. 1 Tue May 10 14:21:47 1994
--- eden. 2 Tue May 10 14:22:38 1994
kkhkkkkkkhkkkkkkkkkx

* kK 1’ 14 * Kk kK

A doctor, an architect, and a conputer scientist

were argui ng about whose profession was the oldest. In the
I course of their argunents, they got all the way back to the
! Garden of Eden, whereupon the doctor said, "The nedical
| profession is clearly the ol dest, because Eve was nade from
! Adamis rib, as the story goes, and that was a sinply
! incredible surgical feat."

The architect did not agree. He said, "But if you
look at the Garden itself, in the beginning there was chaos
and void, and out of that, the Garden and the world were
created. So God nust have been an architect."

The conputer scientist, who had |istened to all of

| this said, "Yes, but where do you think the chaos cane

front"
--- 1,14 ----
A doctor, an architect, and a conputer scientist
were argui ng about whose profession was the oldest. In the

I course of their argunents, they cane to discuss the Garden
I of Eden, whereupon the doctor said, "The nedical profession
I is clearly the ol dest, because Eve was nade fromAdanms rib,
| as the story goes, and that was a sinply incredible surgical
I feat."
The architect did not agree. He said, "But if you
l ook at the Garden itself, in the beginning there was chaos
and void, and out of that, the Garden and the world were
created. So God nust have been an architect."
The conputer scientist, who had |istened to all of
I this, said, "Yes, but where do you think the chaos cane

The output here gives us signifi cantly more information: the fi rst two line gives the name and
modifi cation timestamp of the fi les. Then the hunks start, with a row of * as a leader. The
next lineis line number information for the fi rst fi le (lines 1 to 14), after which come the lines
themselves, surrounded by a number of lines of context, unchanged information. You can
specify the number of lines of context, but by default diff includes 2 lines either side of the
changes. The lines that have been modifi ed are flegged with an exclamation mark (1) at the
beginning of the line. In this case, the fi le is so small that the two modifi cations have been
merged into one large one, and the whole fi le gets repeated, but in a larger file diff would
include only the information immediately surrounding the changes. This format is more reli-
able than normal diffs: if the origina source file has changed since the diff, the context

5 February 2005 02:09

Chapter 10: Where to go from here 147

information helps establish the correct location to apply the patch.

unified context diffs
unified diffs are similar to normal context diffs. They are created with the - u flag:

$ diff -u eden.[12]
--- eden. 1 Tue May 10 14:21:47 1994
+++ eden. 2 Tue May 10 14:22:38 1994
@-1,14 +1,14 @@

A doctor, an architect, and a conputer scientist
were argui ng about whose profession was the oldest. In the
-course of their argunents, they got all the way back to the
-Grden of Eden, whereupon the doctor said, "The nedical
-profession is clearly the ol dest, because Eve was made from
-Adamis rib, as the story goes, and that was a sinply
-incredible surgical feat."
+course of their argunents, they cane to discuss the Garden
+of Eden, whereupon the doctor said, "The nedical profession
+is clearly the ol dest, because Eve was nade fromAdams rib,
+as the story goes, and that was a sinply incredible surgical
+Heat."

The architect did not agree. He said, "But if you
l ook at the Garden itself, in the beginning there was chaos
and void, and out of that, the Garden and the world were
created. So Gd nust have been an architect."”

The conputer scientist, who had listened to all of
-this said, "Yes, but where do you think the chaos cane
+this, said, "Yes, but where do you think the chaos cane
front"

As with context diffs, there is a header with information about the two files, followed by a
hunk header specifying the line number range in each of the two files. Unlike a normal con-
text diff, the following hunk contains the old text mingled with the new text. The lines pre-
fixed with the character - belong to the first file, those prefixed with + belong to the second
file—in other words, to convert the old file to the new file you remove the lines prefixed with
- and insert the lines prefixed with +.

There are still other formats offered by various flavours of diff, but these are the only impor-
tant ones.

What kind of diff?

As we’ve seen, ed style diffs are out of the question. You still have the choice between regular
diffs, context diffs and unified context diffs. It’s not that important which kind of diff you
choose, but context diffs are easier to apply manually. Unified context diffs take up less space
than regular context diffs, but there are still versions of patch out there that don’t understand
unified diffs. Until that changes, it’s probably best to settle for regular context diffs. You may
have noticed that all the examples in Chapter 3, Care and feeding of source trees, were regular
context diffs.

5 February 2005 02:09

148

Living with diff
Diff is a straightforward enough program, but you might run into a couple of problems:

« After a large port, it makes sense to make diffs of the whole directory hierarchy. This
requires that you have copies of all the original files. You can use rcsdiff, part of the
RCS package, but it only does diffs one at a time. | find it easier to maintain a copy of
the complete original source tree, and then run diff with the option -r (descend recur-
sively into directories):

$ diff -ru /S SO0 Base/gcc-2.6.3 /S Base/ Core/gec-2.6.3 >SQQ diffs

This command will create a single file with all the diffs and a list of files which only exist
in the first directory. This can be important if you have added files, but it also means that
you should do a make clean before running diff, or you will have entries of this kind for
all the object files you create.

« Another problem that may occur is that one of the files does not have a newline character
at the end of the last line. This does not normally worry compilers, but diff sees fit to
complain. This is particularly insidious, because patch doesn’t like the message, and it
causes patch to fail.

Saving the archive

Most of us have had the message Don't forget to make backups drummed into us since we
were in elementary school, but nowhere does it make more sense than at the end of a port.
Don’t forget where you put it! After archiving your port of xfoo, you may not look at it again
for three years. When the new version comes out, you try to port it, but all sorts of things go
wrong. Now is the time to get out the old version and read your notes—but where is it?

It’s beyond the scope of this book to go into backup strategies, but you should do some think-
ing about the subject. One good idea is to keep separate (DAT or Exabyte) tapes of old ports,
and just add additional archives at the end. That way you don’t have to worry about overwrit-
ing them accidentally: the tapes are small and cheap enough that you can afford to keep their
contents almost indefinitely. 1f you don’t choose this method (maybe because the media don’t
fit into your QIC-150 tape drive), you need to think carefully about how to track the archives
and when they are no longer needed.

Not done after all?

Of course, it may be that this optimistic finish is completely out of place. After what seems
like months of frustration, you finally decide that you are never going to get this &%%$@# to
work, and you give up. You can never rule out this possibility—as | said in Chapter 1, Intro-
duction, I hope this book made it easier, but it’s not a magic scroll.

Even if you do give up, you have some tidying up to do: you obviously can’t send the author
your bug fixes, but you can at least report the bugs. What he does with them depends on his
interest and his contractual obligations, but even with free software, which is free of obliga-
tions of this nature, the author may be interested enough to fix the problem. One way or

5 February 2005 02:09

Chapter 10: Where to go from here 149

another, you should go to the trouble to report problems you experience, even if you can't fi x
them and there is no support obligation.

A final word: if you give up on a port after getting this far, this book has failed for you. |
don’'t want that to happen. Please contact me, too (gr og@em s. de, or via O'Reilly and As-
sociates) and explain the problem. Like the authors of the software, | don't guarantee to do
anything about it, but | might, and your experience might help to make the next edition of this
book more useful.

5 February 2005 02:09

Platform dependencies

In the first part of this book, we looked at the various activities needed to port and install soft-
ware on a UNIX system. We carefully avoided getting too involved with the nitty-gritty of
why we should need to go to so much trouble. In this part of the book, we’ll look at those dif-
ferences between platforms which require us to modify software.

As we saw in Chapter 4, Package configuration, configuration can be required for local prefer-
ences, software dependencies and hardware dependencies. We looked at local preferences in
Chapter 4. In this part of the book, we’ll look at differences in hardware and software plat-
forms.

Software Dependencies

Probably the biggest problem you will have with configuration will be with the underlying
software platform. Even if you limit your scope to the various UNIX versions, 25 years of
continuing (and mainly uncoordinated) evolution have left behind a plethora of marginally
compatible versions. The only good thing about the situation is that porting between UNIX
versions is still an order of magnitude easier than porting to or from a non-UNIX environ-
ment.

It’s easy to misjudge the effort required to port to a different platform. It helps to make the
following very clear distinctions between the following kinds of functionality:

« Functionality that relies on system calls (section 2 of the UNIX manual). These calls
interface directly with the kernel. If the kernel doesn’t supply the functionality, you may
have serious difficulty in porting the product. Good examples are the System V function
shnget , which allocates an area of shared memory, or the BSD system call synti nk,
which creates a symbolic link.

» Functionality dependent on system library calls (section 3 of the UNIX manual). If these
do not rely on system calls, you may be able to port a corresponding call from another
library. A good example of this is the function st rcasecnp, which compares strings
ignoring case. This function is supplied with later versions of the BSD library and also
with GNU libc, but not with System V libraries. If you don’t have it, it’s trivial to port.

151

5 February 2005 02:09

152

* Functionality contained totally inside the package, like math routines that don’t call
external libraries. This should work on any platform.

Some systems, such as OSF, have merged sections 2 and 3 of the manual pages. While that
has some advantages (if you know a function name, you don’'t have to go to two different
placesto look for them), it doesn’t mean that there is no longer a difference.

Kernel dependencies are signifi cantly more diffi cult to handle than library dependencies, since
there's relatively little you can do about them. We'll ook at kernel-related problems in Chap-
ter 12, Kernel dependencies, Chapter 13, Signals, Chapter 14, File systems, Chapter 15, Ter-
minal drivers, and Chapter 16, Timekeeping. In Chapter 17 we'll look at header fi les, and in
Chapter 18 we'll ook at libraries.

In addition to these program dependencies, two tools can differ signifi cantly: the make pro-
gram and the C compiler. WE'll look at these aspects in Chapter 19, Make, and Chapter 20,
Compilers. Finaly, in Chapter 21, Object files and friends, we'll look at some of the more
esoteric aspects of object fi les.

When discussing differences between kernels and libraries, the big difference is usualy
between System V and BSD, with other systems such as SunOS taking a midfi eld position.
System V.4 incorporates nearly everything in BSD. When programming, you have the choice
between using the native System V development tools or the BSD tools. Some admixture is
possible, but it can cause problems.

When using BSD development tools, everything that is supported by BSD should also be sup-
ported by System V.4. On the other hand, System V.4 also includes some functionality that no
other system provides. When, in the following chapters, | say that a function is supported by
System V.4, | mean that it is supported by System V.4 using the standard development tools
and libraries. If | state that it is supported by BSD, it also implies that it is supported by Sys-
tem V.4 using the BSD libraries.

5 February 2005 02:09

Hardware dependencies

The days are gone when moving a package from one hardware platform to another meant
rewriting the package, but there are still a number of points that could cause you problems. In
this chapter, we’ll look at the most common causes.

Data types

All computers have at least two basic data types, characters and integers. While European
languages can get by with a character width of 8 bits, integers must be at least 16 bits wide to
be of any use, and most UNIX systems use 32 bit integers, as much storage as four characters.
Problems can obviously arise if you port a package to a system whose i nt size is less than the
author of the package expected.

Integer sizes

Data sizes aren’t the problem they used to be—times were when a machine word could be 8,
12, 16, 18, 24, 30, 32, 36, 48, 60, 64 or 72 bits long, and so were the primary integer data
objects. Nowadays you can expect nearly every machine to have an int of 16, 32 or 64 bits,
and the vast majority of these have a 32 bit int. Still, one of the biggest problems in ANSI C
is the lack of an exact definition of data sizes. int is the most used simple data type, but
depending on implementation it can vary between 16 and 64 bits long. short and long can be
the same size as int, or they can be shorter or longer, respectively. There are advantages to
this approach: the C compiler will normally choose an i nt which results in the fastest pro-
cessing time for the processor on which the program will run. This is not always the smallest
data size: most 32-bit machines handle 32 bit arithmetic operations faster than 16 bit opera-
tions. Problems don’t arise until the choice of i nt is too small to hold the data that the pro-
gram tries to store in it. If this situation arises, you have a number of options:

« You can go through the sources with an editor and replace all occurrences of the word
i nt with | ong (and possibly short withi nt).”

* If you do this, be sure to check that you don’t replace short int withint int!

153

5 February 2005 02:09

154

e You can simplify this matter a little by inserting the following definition in a common
header file:

#define int |ong

This has the disadvantage that you can’t define short as i nt, because preprocessor
macros are recursive, and you will end up with bothi nt and short defined as | ong.

* Some compilers, particularly those with 16-bit native i nt s, offer compiler flags to gener-
ate longer standard i nt s.

All these “solutions” have the problem that they do not affect library functions. If your sys-
tem library expects 16-bit integers, and you write

int x = 123456;
printf ("x is %\n", x);

the library routine pri nt f still assumes that the parameter x is 16 bits long, and prints out the
value as a signed 16-bit value (-7616), not what you want. To get it to work, you need to
either specify an alternate library, or change the format specification to pri nt f :

int x = 123456;
printf ("x is %\n", X);

There are a few other things to note about the size of an int:

* Portable software doesn’t usually rely on the size of an int. The software from the Free
Software Foundation is an exception: one of the explicit design goals is a 32-bit target
machine.

e The only 64-bit machine that is currently of any significance is the DEC Alpha. You
don’t need to expect too many problems there.

e 16 bit machines—including the 8086 architecture, which is still in use under MS-
DOS—are a different matter, and you may experience significant pain porting, say, a
GNU program to MS-DOS. If you really want to do this, you should look at the way gcc
has been adapted to MS-DOS: it continues to run in 32-bit protected mode and has a
library wrapper” to allow it to run under MS-DOS.

Floating point types

Floating point data types have the same problems that integer types do: they can be of differ-
ent lengths, and they can be big-endian or little-endian. | don’t know of any system where
ints are big-endian and floats are little-endian, or vice-versa.

Apart from these problems, floats have a number of different structures, which are as good as
completely incompatible. Fortunately, you don’t normally need to look under the covers: as
long as a float handles roughly the same range of values as the system for which the program
was written, you shouldn’t have any problems. If you do need to look more carefully, for
example if the programmer was making assumptions, say, about the position of the sign bit of

* A library wrapper is a library that insulates the program (in this case, a UNIX-like application) from
the harsh realities of the outside world (in this case, MS-DOS).

5 February 2005 02:09

Chapter 11: Hardware dependencies 155

the mantissa, then you should prepare for some serious re-writing.

Pointer size

For years, people assumed that pointers and ints were the same size. The lax syntax of early
C compilers didn’t even raise an eyebrow when people assigned ints to pointers or vice-versa.
Nowadays, a number of machines have pointers that are not the same size as ints. If you are
using such a machine, you should pay particular attention to compiler warnings that ints are
assigned to pointers without a cast. For example, if you have 16-biti nt s and 32-bit pointers,
sloppy pointer arithmetic can result in the loss of the high-order bits of the address, with obvi-
0us consequences.

Address space

All modern UNIX variants offer virtual memory, though the exact terminology varies. If you
read the documentation for System V.4, you will discover that it offers virtual memory,
whereas System V.3 only offered demand paging. This is more marketspeak than technology:
System V.2, System V.3, and System V.4 each have very different memory management, but
we can define virtual memory to mean any kind of addressing scheme where a process address
space can be larger than real memory (the hardware memory installed in the system). With
this definition, all versions of System V and all the other versions of UNIX you are likely to
come across have virtual memory.

Virtual memory makes you a lot less dependent on the actual size of physical memory. The
software from the Free Software Foundation makes liberal use of the fact: programs from the
GNU project make no attempt to economize on memory usage. Linking the gcc C++ com-
piler cclplus with GNU Id uses about 23 MB of virtual address space on System V.3 on an
Intel architecture. This works with just about any memory configuration, as long as

« Your processes are allowed as much address space as they need (if you run into trouble,
you should reconfigure your kernel for at least 32 MB maximum process address space,
more if the system allows it).

« You have enough swap space.

« You can wait for the virtual memory manager to do its thing.
From a configuration viewpoint, we have different worries:

« Isthe address space large enough for the program to run?

« How long are pointers? A 16 bit pointer can address only 64 kilobytes, a 32 bit pointer
can address 4 GB.

« How do we address memory? Machines with 16 bit pointers need some kind of addi-
tional hardware support to access more than 64 kilobytes. 32 bit pointers are adequate
for a “flat” addressing scheme, where the address contained in the pointer can address the
entire virtual address space.

5 February 2005 02:09

156

Modern UNIX systems run on hardware with 32 bit pointers, even if some machines have ints
with only 16 bits, so you don’t need to worry much about these problems. Operating systems
such MS-DOS, which runs on machines with 16 bit pointers, have significant problems as a
result, and porting 32 bit software to them can be an adventure. We’ll touch on these prob-
lems in Chapter 20, Compilers, page 346.

Character order

The biggest headache you are likely to encounter in the field of hardware dependencies is the
differing relationship between int and character strings from one architecture to the next.
Nowadays, all machines have integers large enough to hold more than one character. In the
old days, characters in memory weren’t directly addressable, and various tricks were
employed to access individual characters. The concept of byte addressing, introduced with
the IBM System/360, solved that problem, but introduced another: two different ways of look-
ing at bytes within a word arose. One camp decided to number the bytes in a register or a
machine word from left to right, the other from right to left. For hardware reasons, text was
always stored from low byte address to high byte address.

A couple of examples will make this more intelligible. As we saw above, text is always
stored low byte to high byte, so in any architecture, the text “UNIX” would be stored as

0 1 2 3
U N I X

Some architectures, such Sparc and Motorola 68000, number the bytes in a binary data word
from left to right. This arrangement is called big-endian. On a big-endian machine, the bytes
are numbered from left to right, so the number 0x12345678 would be stored like

0 1 2 3
12 34 56 | 78 \

Others, notably older Digital Equipment machines and all Intel machines, number the bytes
the other way round: byte 0 in a binary data word is on the right, byte 3 is on the left. This
arrangement is called little-endian.” The same example on a little-endian machine would look
like:

3 2 1 0
12 34 56 78

This may look just the same as before, but the byte numbers are now numbered from right to
left, so the text now reads:

* The names big-endian and little-endian are derived from Jonathan Swift’s “Gulliver’s Travels”, where
they were a satirical reference to the conflicts between the Catholics and the Church of England in the
18th Century.

5 February 2005 02:09

Chapter 11: Hardware dependencies 157

3 2 0
X I N)

=

As aresult, this phenomenon is sometimes called the NUXI” syndrome. This s only one way
to look at it, of course: from a memory point of view, where the bytes are numbered left to
right, it looks like

0 1 2 3
78 56 34 12
and
0 1 2 3
U N | X \

It's rather confusing to look at the number 0x12345678 as 78563412, so the NUXI (or XINU)
view predominates. It's easier to grasp the concepts if you remember that thisis all a matter
of the mapping between bytes and words, and that text is always stored correctly from low
byte to high byte.

An dternative term for big-endian and little-endian is the term byte sex. To make matters
even more confusing, machines based on the MIPS chips are veritable hermaphrodites—all
have confi gurable byte sex, and the newer machines can even run different processes with dif-
ferent byte sex.

The problem of byte sex may seem like a storm in a teacup, but it crops up in the most
unlikely situation. Consider the following code, originaly written on a VAX, a little-endian
machine:

int c =0;

read (fd, &, 1);
if (c="0q)
exit (0);

On a little-endian machine, the single character is input to the low-order byte of the word, so
the comparison is correct, and entering the character q causes the program to stop. On a
32-bit big-endian machine, entering the character q sets ¢ to the value 0x71000000, not the
same value as the character . Any good or even mediocre compiler will of course warn you
if you hand the address of ani nt to read, but only if you remember to include the correct
header fi les: it happens anyway.

* Why not XINU? Because the term arose when words were 16 bits long. The PDP-11, for example,
stored i nt s (16 bit quantities) in a little-endian format, so pairs of bytes were swapped. The PDP-11
also had 32 bit | ong quantities that were stored with their component words in a big-endian format.
This arrangement has been called m xed- endi an, just to add to the general confusion.

5 February 2005 02:09

158

This discussion has concentrated on how characters are ordered within words, but the same
considerations also affect bit fi elds within aword. Most hardware platforms don’t support bit
fi elds directly: they're an idea in the mind of the compiler. Nonetheless, all architectures
defi ne a bit order: some number from left to right, some from right to left. Well-written pro-
grams don't rely on the order of bit fi elds in ints, but occasionally you see register defi nitions
ashit fi elds. For example, the 4.4BSD sources for the HP300 include the following defi nition:

struct ac_restatdb

{

short ac_eaddr; /* el enent address */
u_int ac_resl: 2,
ac_ie: 1, /* inport enabled (IEE only) */
ac_ee: 1, /* export enabled (IEE only) */
ac_acc: 1, /* accessible fromME */
ac_exc: 1, /* elenent in abnornal state */
ac_inp: 1, /* 1 == user inserted nedium(IEE only) */
ac_full:1; /* el ement contains nedia */

}

This defi nition defi nes individual bits in a hardware register. If the board in question fi tsin
machines that number the bits differently, then the code will need to be modifi ed to suit.

Data alignment

Most architectures address memory at the byte level, but that doesn’t mean that the underlying
hardware treats all bytes the same. In the interests of effi ciency, the processor accesses mem-
ory several bytes at atime. A 32-bit machine, for example, normally accesses data 4 bytes at
atime—thisis one of the most frequent meanings of the term “32-bit machine”. It's the com-
bined responsibility of the hardware and the software to make it look as if every byte is
accessed in the same way.

Conflcts can arise as soon as you access more than a byte at a time: if you access 2 bytes

starting in the last byte of a machine word, you are effectively asking the machine to fetch a
word from memory, throw away all of it except the last byte, then fetch another word, throw
away all except the fi rst, and make a 16 bit value out of the two remaining bytes. Thisis obvi-
oudly alot more work than accessing 2 bytes at an even address. The hardware can hide a lot
of this overhead, but in most architectures there is no way to avoid the two memory accesses
if the address spans two bus words.

Hardware designers have followed various philosophies in addressing data alignment. Some
machines, such as the Intel 486, allow unaligned access, but performance is reduced. Others,
typically RISC machines, were designed to consider thisto be a Bad Thing and don’t even try:
if you attempt to access unaligned data, the processor generates atrap. It's then up to the soft-
ware to decide whether to signal a bus error or simulate the transfer—in either case it's unde-

sirable.

Compilers know about alignment problems and “solve” them by moving data to the next

address that matches the machine’s data access restrictions, leaving empty space, so-called
padding in between. Since the C language doesn’'t have any provision for specifying

5 February 2005 02:09

Chapter 11: Hardware dependencies 159

alignment information, you're usually stuck with the solution supplied by the compiler writer:
the compiler automatically aligns data of specifi ¢ typesto certain boundaries. This doesn’'t do
much harm with scalars, but can be a real pain with structs when you transfer them to disk.
Consider the following program excerpt:

struct emment al

char flag;
int count;
short choi ce;
int date;
short weekday;
doubl e anount ;
}
emment al ;
read_di sk (struct emmental *rec)
{
if (read (disk, rec, sizeof (rec)) < sizeof (rec))
report_bad error (disk);

}

On just about any system, enment al looks like a Swiss cheese: on an 1386 architecture,
shorts need to be on a 2-byte boundary and ints and doubles need to be on a 4-byte boundary.
Thisinformation allows us to put in the offsets:

struct emmental

{

char flag; /* offset O */
/* 3 bytes enpty space */

int count; /* offset 4 */
short choi ce; /* offset 8 */
/* 2 bytes enpty space */

int date; /* offset 12 */
short weekday; /* offset 16 */
/* 2 bytes enpty space */

doubl e anount ; /* offset 20 */
}

ement al ;

As if this weren’t bad enough, on a Sparc doubles must be on an 8-byte boundary, so on a
Sparc we have 6 bytes of empty space after weekday, to bring the offset up to 24. Asaresult,
emrent al has 21 useful bytes of information and up to 13 of wasted space.

This is, of course, a contrived example, and good programmers would take care to lay the
struct out better. But there are still valid reasons why you encounter this kind of alignment
problem:

e Ifflag, count andchoi ce are akey in a database record, they need to be stored in this
sequence.

« A few years ago, even most good programmers didn’t expect to have to align adouble on
an 8-byte boundary.

5 February 2005 02:09

160

* Alot of the software you get looks asiif it has never seen a good programmer.

Apart from the waste of space, alignment brings a host of other problems. If the fi rst three
fi elds really are a database key, somebody (probably the database manager) has to ensure that
the gaps are set to a known value. If this database is shared between different machines, our
r ead_di sk routineis going to bein trouble. If you write the record on an i386, it is 28 bytes
long. If you try to read it in on a Sparc, read_di sk expects 32 bytes and fails. Even if you
fi x that, anount isin the wrong place.

A further problem in this example is that Sparcs are big-endian and i1386s are little-endian:

after reading the record, you don’t just need to compact it, you also need to fip the bytesin

the shorts, ints and doubles.

Good portable software has accounted for these problems, of course. On the other hand, if
your program compilesjust fi ne and then falls fit on its face when you try to run it, thisis one
of thefi rst things to check.

Instruction alignment

The part of the processor that performs memory access usually doesn't distinguish between
fetching instructions from memory and fetching data from memory: the only difference is
what happens to the information after it has reached the CPU. As a result, instruction align-
ment is be subject to the same considerations as data aignment. Some CPUs require all

instructions to be on a 32 bit boundary—this is typically the case for RISC CPUs, and it

implies that all instructions should be the same length—and other CPUs allow instructions to

start at any address, which is virtually a requirement for machines with variable length
instructions.” As with data access, being allowed to make this kind of access doesn’'t make it a
good idea. For example, the Intel 486 and Pentium processors execute instructions aligned on
any address, but they run signifi cantly faster if the target address of a jump instruction is
aligned at the beginning of a processor word—the alignment of other instructions is not

important. Many compilers take aflag to tell them to align instructions for the i486.

* Some machines with variable length instructions do have a requirement that an instruction fi t in asin-
gle machine word. This was the case with the Control Data 6600 and successors, which had a 60 bit
word and 15 or 30 bit instructions. If a 30 bit instruction would have started at the 45 bit position inside
aword, it had to be moved to the next word, and the last 15 bits of the previous instruction word were
fi lled with anop, a “no-operation” instruction.

5 February 2005 02:09

Kernel dependencies

The biggest single problem in porting software is the operating system. The operating system
services play a large part in determining how a program must be written. UNIX versions dif-
fer enough in some areas to require significant modifications to programs to adapt them to a
different version. In this and the following chapters, we’ll look at what has happened to
UNIX since it was essentially a single system, round the time of the Seventh Edition.

Many books have been written on the internals of the various UNIX flavours, for example The
Design of the UNIX System by Maurice Bach for System V.2, The Design and the Implemen-
tation of the 4.3BSD UNIX Operating System by Sam Leffler, Kirk McKusick, Mike Karels,
and John Quarterman for 4.3BSD, and The Magic Garden explained: The Internals of UNIX
System V Release 4 by Berny Goodheart and James Cox for System V.4. In addition, a num-
ber of books have been written about programming in these environments—Advanced Pro-
gramming in the UNIX environment by Richard Stevens gives an excellent introduction to
System V.4 and “4.3+BSD"" for programmers. In this chapter and the ones following it, we’ll
restrict our view to brief descriptions of aspects that can cause problems when porting soft-
ware from one UNIX platform to another. We’ll look at specific areas in Chapter 12, Kernel
dependencies, Chapter 13, Sgnals, Chapter 14, File systems and Chapter 15, Terminal drivers.
In the rest of this chapter, we’ll look at:

e Interprocess communication
e Non-blocking I/O
* Miscellaneous aspects of kernel functionality

The descriptions are not enough to help you use the functionality in writing programs: they
are intended to help you understand existing programs and rewrite them in terms of functions
available to you. If you need more information, you may find it in the 4.4BSD man pages
(see Appendix E, Where to get sources), or in Advanced Programming in the UNIX environ-
ment, by Richard Stevens.

*4.3BSD was released in 1987, 4.4BSD in 1994. In the time in between, releases had names like
4.3BSD Tahoe, 4.3BSD Reno, and NET/2. For want of a better term, Stevens refers to systems roughly
corresponding to NET/2 as 4.3+BSD.

161

5 February 2005 02:09

162

| nterprocess communication

inter process communication (frequently written as the abbreviation |PC), the ability to trans-
fer data between processes, was one of the important original concepts of UNIX. The origina
methods were what you might expect of a concept that, at the time, was revolutionary and still
under development: there were more than afew limitations. Even today there is no agreement
on how interprocess communication should take place.

In this section we'll look very briefly at the various kinds of interprocess communication, and
what to do if the package you are porting uses a method your kernel doesn’'t support. To start
with the bad news: if you fi nd your kernel doesn't support the IPC model that the package
expects, you will probably need to make signifi cant modifi cations to adapt it to a different
model.

Interprocess communication was originally limited to a single processor, but of course net-
work communication is also a form of interprocess communication. We'll touch briefly on
network communication in the following discussion.

UNIX systems offer a bewildering number of different forms of interprocess communication:

e Pipes are the origina form of communication and are found in all versions of UNIX.
They have the disadvantages that they transfer data in one direction only, and that they
can only connect two processes that have a common ancestor.

* Sockets are the BSD interprocess communication mechanism: they are by far the most
powerful mechanism, offering unidirectional, bidirectional and network communication.
In BSD systems, they are even used to implement the pi pe system call.

« STREAMS is ageneralized 1/0 concept available in newer System V systems and their
derivatives. It was originally intended to replace character device drivers, but its fexibil-
ity makes it useful for interprocess communication as well. Like sockets, it can be used
both for local and remote communication. UNIX Network Programming, by Richard
Stevens, describes STREAMS in some detail, and The Magic Garden Explained
describes the implementation. We won’t consider them further here.

e Sream pipes differ from normal pipes by being able to transfer data in both directions.
They have no particular connection with STREAMS.

* FIFOs, also caled named pipes, are like pipes, but they have a name in the fi le system
hierarchy.

« Named stream pipes are stream pipes with names. They bear the same relationship to
stream pipes that FIFOs do to normal pipes.

« System V IPC is a bundle that offers message queues, yet another form of message pass-
ing, shared memory, which enables processes to pass data directly, and semaphores,
which synchronize processes.

* Why the shouting? STREAMS was derived from the Eighth Edition Sreams concept (see S Stream
Input-Output System, by Dennis Ritchie). System V always spells it in upper case, so this is a con-
venient way of distinguishing between the implementations.

5 February 2005 02:09

Chapter 12: Kernel dependencies 163

In the following sections, we’ll look at these features in a little more detail.

Pipes

The original UNIX interprocess communication facility was pipes. Pipes are created by the
pipe function call:

#i ncl ude <uni std. h>
int pipe (int *fildes);

This call creates a pipe with two file descriptors, a read descriptor and a write descriptor. It
returns the value of the read descriptor to fi |l des [0] and the value of the write descriptor to
fildes [1]. Atthis point, only the creating process can use the pipe, which is not very use-
ful. After calling f or k, however, both of the resultant processes can use the pipe. Depending
on their purpose, the processes may decide to close one direction of the pipe: for example, if
you write output to the more program, you don’t expect any reply from more, so you can close
the read file descriptor.

A fair amount of code is involved in opening a pipe, starting a new process with f ork and
exec and possibly waiting for it terminate with wai t . The standard library functions popen
and pcl ose make this job easier:

#i ncl ude <stdi o. h>

FI LE *popen(const char *conmand, const char *type);
int pclose(FlLE *strean);

popen creates a pipe, then forks and execs a shell with comrand as its parameter. t ype speci-
fies whether the pipe should be open for reading (“r) or writing (“wW’). Since pipes are unidi-
rectional, they cannot be opened both for reading and for writing.

After opening the command, you can write to the process with normal w'i t e commands. On
completion, pcl ose waits for the child process to terminate and closes the file descriptors.

Sockets

Sockets were originally developed at Berkeley as part of the TCP/IP networking implementa-
tion introduced with 4.2BSD, but they are in fact a general interprocess communication facil-
ity. In BSD systems, the other interprocess communication facilities are based on sockets.

Most of the features of sockets are related to networking, which we don’t discuss here. The
call is:

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket . h>

int socket (int domain, int type, int protocol);

« domain specifies the communications domain. Common domains are AF_UN X (UNIX

5 February 2005 02:09

164

domain),” used for local communication, AF_| NET (Internet domain), and AF_| SO (I1SO
protocol domain).

+ type specifies the type of socket. For local interprocess communication, you would use
SOCK_STREAM, which supplies a reliable two-way communication channel.

+ protocol specifies the communications protocol to use. In the UNIX domain, this
parameter is not used and should be set to 0.

As we shall see in the next section, the way that pipes are implemented means that you need
two sockets to simulate a pipe. You can do this with the socketpair system call, which creates
a pair of file descriptors with identical properties.

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket . h>

int socketpair (int domain, int type, int protocol, int *sv);

Currently, socket pai r works only in the UNIX domain, so you don’t have much choice in
the parameters: domai n must be AF_UN X t ype must be SOCK _STREAM and pr ot ocol is
meaningless in the UNIX domain. The only important parameter is sv, which is where the
socket descriptors are returned—exactly the same thing as the f i | des parameter to pi pe.
Most systems have some kind of socket support, but sometimes it is just an emulation library
that omits significant functionality, such as the UNIX domain and the socket pair call.
Many older System V sockets emulation libraries also have a bad reputation regarding perfor-
mance and reliability. On the other hand, many System V.3 ports included the original Berke-
ley socket implementation in the kernel.

Other kinds of pipe
Pipes have two main restrictions:

« They are unidirectional: you write to one descriptor, you read from the other. It would be
a nice idea to be able to read from and write to the same descriptor.

« They are anonymous: you don’t open an existing pipe, you create a new one, and only
you and your descendents can use it. It would be nice to be able to use pipes like regular
files.

In fact, you can get all combinations of these properties. We’ve seen regular pipes—the oth-
ers are stream pipes, FIFOs and named stream pipes. We’ll look at them in the following sec-
tions:

* Not all UNIX implementations support UNIX domain sockets. In particular, some System V systems
support only the Internet domain. People with a System V background often place the emphasis on the
word “domain”, and some even refer to UNIX domain sockets as “domain sockets”. As you can see
from the above, this is incorrect.

5 February 2005 02:09

Chapter 12: Kernel dependencies 165

Stream pipes

Most systems allow you to create bidirectional pipes. For some reason, they’re generaly
called stream pipes, which is not agood name at all.

e In System V.4, regular pipes are bi-directional, so you don’t need to do anything special.

e In4.4BSD, the socketpair system call, which we have already seen, creates stream pipes,
so you'd expect regular pipes to be bidirectional in 4.4BSD as well. In fact, before
returning, the library function pipe closes one descriptor in each direction, so 4.4BSD
pipes really are unidirectional. If you want a stream pipe, just use the socket pai r sys-
tem call.

e In System V.3 systems with STREAMS, bidirectional pipes are possible too, but things
are more diffi cult: you have to connect two streams back to back. See UNIX Network
Programming for a discussion of how to do this.

FIFOs

FIFOs are pipes with fi le names, which allow unrelated processes to communicate with each
other. To create a FIFO, you use the function nkf i f o:

#i ncl ude <sys/stat.h>

int nkfifo (const char *path, node_t node);

This call corresponds exactly to nkdi r, except that it creates a FIFO instead of a directory.
BSD implements nkf i f 0 as a system call, while System V.4 implements it as a library func-
tion that calls nknod to do the work. System V.3 systems frequently implemented it as a sys-
tem call. Once you have created a FIFO, you can use it just like a fi le; typically, one process,
the listener process, opens the FIFO for reading, and one or more open it for writing to the lis-
tener process.

Named stream pipes

Stream pipes are bidirectional, but they don’t normally have names. FIFOs have names, but
they're usually not bidirectional. To get both of these properties, we need a new kind of con-
nection, a named stream pipe. In 4.4BSD, this can be done by binding a name to a stream
socket—see the man pages for bi nd for further details. In System V.4, you can create a
named stream pipe with the connl d STREAMS module. See Advanced Programming in the
UNIX environment for more details.

System V IPC

System V supplies an alternative form of interprocess communication consisting of three fea-
tures: shared memory, message queues and semaphores. SunOS 4 also supports System V
IPC, but pure BSD systems do not. In the industry there is a signifi cant amount of aversion to
thisimplementation, which is sometimes called The Three Ugly Ssters.

5 February 2005 02:09

166

System V IPC is overly complicated and sensitive to programming bugs, which are two of the
main reasons why it has not been implemented on other systems. Converting programs writ-
ten for System V IPC to other methods of interprocess communication is non-trivial. If you
have a BSD system with kernel sources, it might be easier to implement Daniel Boulet’s free
software implementation (see Appendix E, Where to get sources).

Shared memory

An dternative form of interprocess communication involves sharing data between processes.
Instead of sending a message, you just write it into a buffer that is also mapped into the
address space of the other process. There are two forms of shared memory that you may
encounter on UNIX systems—System V shared memory and nap, which is more commonly
used for mapping fi lesto memory. We'll look at mmap in Chapter 14, File systems, page 232.

System V shared memory isimplemented with four system calls:

#i ncl ude <sys/types. h>
ncl ude <sys/ipc. h>
#i ncl ude <sys/shm h>

int shnget (key_t key, int size, int shnilg);

int shnetl (int shmd, int cnd, ... [* struct shmd_ds *buf */);
void *shnmat (int shmd, void *shnaddr, int shnflg);

int shmdt (void *shnaddr);

e shnget alocates a shared memory segment or adds the process to the list of processes
sharing the segment. The shared memory segment identifi er is conceptualy like a file
name or an identifi er, but for some reason they are called keys when talking about Sys-
tem V shared memory. It returns a segment identifi er, conceptually like afi le number.

e shnet! performs control operations on shared memory segments. It can set ownerships
and permissions, retrieve status information, or remove shared memory segments. Like
fi les, shared memory segments remain on the system until explicitly removed, even if
they are currently not assigned to any process.

e shrat attaches the shared memory segment shm d to the calling process.
e shndt detaches a shared memory segment from the calling process.

With some limitations, you can use rmap to replace System V shared memory. The limita-
tions are that mmap on non-System V platforms normally maintains separate data pages for
each process, so if you write to a page in one process, other processes will not see the new
data. You need to call nsync in order to update the segments used by other processes.
Between the time when you modify the segment and when you call nsync, the data is incon-
sistent. nmsync isnot afast call, so this could also cripple performance.

5 February 2005 02:09

Chapter 12: Kernel dependencies 167

Message queues

As if there weren’t enough ways of passing data between processes already, System V IPC
includes message queues. Message queues are rather like FIFOs, but there are two differ-
ences:

* A FIFO transmits a byte stream, but a message queue is record oriented.

* Messages can have different priorities, which determine the sequence in which they are
received, if the receiving process allows them to queue up.

The system calls to handle message queues are analogous to the shared memory calls:

ncl ude <sys/types. h>
ncl ude <sys/ipc. h>
#i ncl ude <sys/ nsg. h>

int nsgget (key_t key, int nsgflg);

int nsgsnd (int nsqgid, const void *nsgp, size_t nsgsz, int nsgflg);

int nsgrcv (int nsqid, void *nsgp, size_t nsgsz, long nsgtyp, int nsgflg);
int nsgctl (int nsgid, int cnd, .../* struct nsqgid_ds *buf */);

e mBgget opensan existing queue or creates a new queue.
e nsgsnd sends a message.

e ITBQrCV receives a message.

e nsgct| performs control functions on message queues.

Message queues were origindly intended to offer fast interprocess communication.
Nowadays they have little to offer that a FIFO couldn’'t handle. If you run into problems with
message queues, you might prefer to replace them with FIFOs.

Semaphores

One disadvantage with shared memory implementations is that one process doesn't know
when another process has done something. This can have a number of consequences:

e Two processes may modify the same area at the same time.

e One process may be waiting for the other process to do something, and needs to know
when it has fi nished.

There are two possible solutions: send a signal, or use semaphores.

A semaphore is a means of voluntary process synchronization, similar to advisory locking. To
use the facility, a process requests access to the semaphore. If accessis currently not possible,
the process blocks until access is permitted. Unlike locking, semaphores allow more than one
process access to the semaphore at any one point. They do this by maintaining a counter, a
small positive integer, in the semaphore. When a process accesses the semaphore, it decre-
ments the counter. If the value of the counter is still non-negative, the process has access, oth-
erwiseit isblocked. This could be used to gain access to alimited number of resources.

5 February 2005 02:09

168

System V semaphores ook superfi cially similar to System V shared memory. There are three
functions:

int sentctl (int semd, int setmum int cnd, ...
int senget (key_t key, int nsens, int senflg);
int semop (int semd, struct senbuf *sops, size t nsops);

/* union semun arg */);

The implementation is less than perfect. In particular, it is overly complex, and it amost
encourages deadlocks, situations where no process can continue:

e Instead of a single counter, a System V semaphore declares an array of counters. The
size of the array is determined by the nsens parameter of the senget system call.

e It takestwo calls (senget and sentt |) to create and initialize a semaphore. Theoreti-
caly, this creates an opportunity for another process to come and initialize the sema-
phore differently.

e It's possible for semaphores to remain locked after a process ends, which means that a
reboot is necessary to unlock the semaphore again. A flkg is provided to specify that a
semaphore should be removed on exit, but you can't rely upon it compl etely.

e Theimplementation is not very fast.

Miscellaneous system functionality

Therest of this chapter describes miscellaneous system calls that can occasionally cause prob-
lems when porting.

exec

exec isone of the origina system calls at the heart of the UNIX system, so it may come as a
surprise to discover that exec is no longer a system call on modern systems—instead, it is
implemented as a library function in terms of new system calls such as execve. Even the
Seventh Edition man pages stated

Plain exec is obsoleted by exece, but remains for historical reasons.

Nowadays, there are a large number of aternatives. Your system probably has most of the
following cals:

#i ncl ude <uni std. h>
extern char **environ;

int exec (char *path, char *argv []);

int exece (char *path, char *argv [], char *envp []);

int execl (char *path, char *arg, ..., NULL);

int execle (char *path, char *arg, ..., NALL, char *envp []);
int execlp (char *file, char *arg, ..., NULL);

int execlpe (char *file, char *arg, ..., NJLL, char *envp []);
int exect (char *path, char *argv [], char *envp []);

5 February 2005 02:09

Chapter 12: Kernel dependencies 169

int execv (char *path, char *argv []);

int execve (char *path, char *argv [], char *envp []);
int execvp (char *file, char *argv []);
int execvpe (char *file, char *argv [], char *envp []);

All these functions do exactly the same thing: they replace the process image with a process
image from the absol ute executable whose fi |le name is specifi ed in the fi rst argument (pat h or
file). They differ only in the manner in which they supply the parameters:

e The parameter pat h specifi es an absolute pathname. If this fi le does not exist, the call
fals.

e Alternatively, the parameter fi | e specifi es a fi le to be searched via the PATH environ-
ment variable, the way the shell does when afi le name is specifi ed.

e The parameter ar gv isapointer to aNULL terminated list of parameters.

e Alternatively, you can place the arguments, including the terminating NULL, in the call as
aseriesof args.

e If the parameter envp is specifi ed, it is a pointer to aNULL-terminated list of environment
variables. Thisistypically used when the child process should be given a different envi-
ronment from the parent process.

e If envp is not specifi ed, the environment variables are taken from the parent’s environ-
ment (viathe global pointer envi r on).

One further function deserves mention: exect , which is supplied only in newer BSD systems,
takes the same parameters as execve, but enables program tracing facilities.

Thetotal storage available for the argument list and the enviroment varies from system to sys-
tem. System V traditionally has only 5120 characters. POSIX.1 requires at least 20480 char-
acters, and thisis the standard value for newer BSD systems. Many Makefiles take advantage
of these large parameter lists, and frequently a package fails to build under System V because
the parameter lists are too long: you get the message

make: execve: /bin/sh: Arg list too | ong

We looked at what we can do to solve these problems in Chapter 5, Building the package,
page 74.

getrlimit and setrlimit

The Seventh Edition made a number of arbitrary choices about kernel limits. For example,
each process was allowed to have 50 fi les open at any one time. In the course of time, a num-
ber of these kernel limits were made confi gurable, and some systems allowed the process to
modify them directly, up to a “hard” limit. SunOS, BSD and System V.4 supply the system

calsgetrlimt andsetrlimt inorder to manipulate this confi guration information:

#i ncl ude <sys/tine. h>
#i ncl ude <sys/resource. h>
struct rlimt

5 February 2005 02:09

170

{
int rlimecur; /* current (soft) limt */
int rlimnax; /* hard imt */

}

int getrlimt (int resource, struct rlimt *rlp);
int setrlimt (int resource, struct rlimt *rlp);

Therlimt structure defi nes two values for each resource, the current value and the maxi-
mum value. getrlimt returnsthisinformation, setrli mt setsanew current value. Table
12-1 shows which limits can be set:

Table 12—1: getrlimt andsetrlimt resources

resource System Description

RIMT ORE al The maximum size, in bytes, of acoreimagefi le.

RIMT_CPU al The maximum amount of CPU time that a process may
consume.

RLI M T_DATA al The maximum size, in bytes, of the process data segment.

RIMT_FS zZE al Thelargest size, in bytes, that any fi le may attain.

RIMT MAMOX | 44BSD The maximum size, in bytes, which a process may lock

into memory using the m ock function.

RIMT_NCFI LE al The maximum number of fi les that a process may open at
onetime. Thisisalso one more than the highest fi le num-
ber that the process may use.

RIMT_NPROC 4.4BSD The maximum number of simultaneous processes for the
current user id.
RIMT_RSS 4.4BSD, The maximum size, in bytes, that the resident set of a pro-

SunOS 4 cesses may attain. This limits the amount of physical
memory that a process can occupy.

RIMT_STAXK al The maximum size, in bytes, that the stack segment of a
processes may attain.
RIMT WEM System V.4 | The maximum size, in bytes, that the mapped address

space of a processes may attain.

If your system doesn’t have these functions, there’s not much you can do except guess. In
some cases, header fi les will contain similar information declared as constants, but it's not a
very satisfactory aternative.

5 February 2005 02:09

Chapter 12: Kernel dependencies 171

Process groups

Where other operating systems use a single program to perform an operation, UNIX fre-
quently uses a group of cooperating processes. It's useful to be able to defi ne such a group,
particularly when they access terminals. Advanced Programming in the UNIX environment,
by Richard Stevens, describes all you will want to know about process groups. Here, we'll
look at some minor differences in implementations.

setpgid

set pgi d adds a process to a process group:
#i ncl ude <uni std. h>
int setpgid (pid_t pid, pidt pgrp);

pi d is the process ID of the process that is to be added to the process group, and pgr p is the
process group to which it should be added. It returns O on success and -1 with an error code
inerrno on failure.

Normally you will see set pgi d used to add the calling process to a group; this can be done
by setting pi d to 0. System V versions also allow pgr p to be O: this specifi es that the process
id should be the same as pi d, and that this process will become a process group |eader.

setpgrp

set pgr p is obsolescent. There are two different implementations, both of which duplicate
functionality supplied by other functions:

e Inmore modern BSD systems, it is the same thing asset pgi d:
int setpgrp (pidt pid, pidt pgrp); BSD ver si ons

e InSystemV, it creates a new process group with the calling process as group leader, and
adds the calling process to the group. It also releases the controlling terminal of the call-
ing process. Thisisthe samething asset si d:

int setpgrp (); System V ver si ons
If you run into trouble with this function, it's best to replace it with set pgi d or set si d,
depending on the functionality that was intended.
setsid
set si d creates a new process group with the calling process as group leader, and adds the
calling process to the group. It also releases the calling process from its controlling terminal :

#i ncl ude <uni std. h>

int setsid ();

5 February 2005 02:09

172

Real and effective user IDs

Occasionally the UNIX security system causes unintended problems: a trusted program may
reguire access to facilities to which the user should not have unlimited access. For example,
the program ps requires access to /devikmem, kernel memory, which is normally accessible
only to the super user. Serial communication programs such as uucp require access to the
serial ports, but in order to avoid conficts, only trusted users have access to the ports.

UNIX solves this problem by allowing the programs always to run as a specifi ¢ user or group.
If you execute a program that has the setuid bit set in the fi le permissions, it runs as if its
owner had execed it, no matter who really started it. Similarly, the setgid bit causes the pro-
gram to run as if it had been executed in the group to which the fi le belongs. These user and
group ids are called effective user ID and effective group 1D, and they are the only permissions
that are relevant when a process accesses afi le.

Similar considerations apply to group IDs. In the following discussion, we'll consider user
IDs, but unless mentioned otherwise, everything | say about user IDs also applies to group
IDs.

A number of subtle problems arise from this scheme. One of the most obvious ones is that
programs frequently also need to be able to access your fi les. There's no guarantee that this
will always work. For example, uucp needs to be setuid to user uucp in order to access the
communication ports, but it also frequently needs to transfer data to your home directory. |f
your permissions are set so that uucp can’'t access your home directory, it will not be able to
perform the transfer. Thisis obviously not the intention: somehow, uucp needs access both to
the serial ports and to your fi les.

This means that we need to maintain at least two user IDs, the effective user ID and the real

user ID. Modern systems also supply a saved set user ID. On System V.4, it's a confi guration
option (set the confi guration constant _PCSl X_SAVED | DS). BSD uses the saved set user ID
in adifferent way from System V, aswe will see below.

The system manipulates user I Dsin the following ways:

* If you execute a program that is not setuid, it sets al IDs to the effective user ID of the
process that executesiit.

» If you execute a program that has the setuid permission set, it sets the effective user ID to
the owner of the program, and the real user ID to the effective ID of the process that
executesit. If thereisasaved set user ID, it also setsit to the owner of the program.

e At run time you can change between |Ds with the system call set ui d. Thereareaso a
number of aternative calls. We'll look at them in the following sections.
setuid

set ui d changes the effective user ID. If your current effective user ID is root, you can set it
to any valid user ID. There, unfortunately, the similarity ends:

e Insystems without a saved set user ID, including SunOS 4 and System V.3, set ui d sets
the effective user ID and the real user ID if the current effective user 1D is root, otherwise

5 February 2005 02:09

Chapter 12: Kernel dependencies 173

it sets only the effective user ID. The function call succeeds if the argument to set ui d is
the real user ID or the effective user ID, or if the effective user ID isroot. Once you have
changed away from the old effective user ID and root, there is no way to change back.

e On System V systems with saved set user ID, set ui d sets the effective user ID and the
real user ID if the current effective user ID is root, otherwise it sets only the effective
user ID. It does not change the saved set user ID. The function call succeeds if the argu-
ment to set ui d is the real user ID, the effective user ID, or the saved set user ID, or if
the effective user ID isroot. This means that you can switch back and forth between the
ID of the program owner and the ID of the process which started it.

e On BSD systems with saved set user ID, set ui d sets the real, effective, and saved set
user IDs. The function call succeeds if the argument to set ui d is the real user ID, or if
the effective user ID isroot. Unlike System V.4, non-root users cannot use set ui d to set
the user ID to the saved set user ID. The saved set user ID is of no use to BSD
set ui d—instead, BSD systems use set eui d, which sets only the effective user 1D to
either thereal user ID or the saved set user ID.

Setreuid
BSD versions since 4.2BSD have the system call set r eui d, which takes two parameters:
int setreuid (int ruid, int euid);

You can use it to swap the effective and real user IDs, so you don’t really need a saved set user
ID. For non-privileged users, r ui d and eui d can be either the current real user ID or the cur-
rent effective user ID, or - 1 to indicate no change. This function was needed in BSD up to
and including 4.3BSD, since these versions did not support the concept of a saved set user ID.
On non-BSD systems only, you can replace this function with set ui d if your system supports
saved set user IDs.

seteuid

As we noted above, BSD set ui d cannot change to the saved set user ID. The BSD solution
to this problem, which has been proposed for adoption in a new revision of POSIX.1, is the
function set eui d. It sets the effective user ID to eui d if eui d corresponds either to the real
user 1D or the saved set user ID. Unlikeset ui d, it sets only the effective user ID.

setruid

In addition to set eui d, BSD systems provide the call set r ui d, which setsthe real user ID to
the effective or real user ID. set rui d is considered non-portable. Future BSD releases plan
todropit.

5 February 2005 02:09

174

Comparison of user ID calls

User IDs are much more complicated than they should be. In fact, there are only two things
you'll want to do, and for non-root users they work only with programs which have setuid
permissions. change from the initial effective user 1D to the real user ID, and change back
again. Changing from effective to real user ID is simple: in al systems, you can use the
set ui d system call, though in 4.3BSD and SunOS 4 this will mean that you can’'t change
back. Inthese systems, it's better to use code like

int euid = geteuid (); /* get current effective user 1D */
int ruid = getuid (); /* and real user ID*/
setreuid (euid, ruid); /* and swap them*/

Changing back again is more complicated:

e Onolder systems, including XENIX and System V.3, and on System V.4 systems without
_PC8l X SAVED | D85, you can’t do it. For the older systems, about the only workaround
is not to change away from the initial effective user ID—you might be able to spawn a
process which does the necessary work under the real user ID.

e« OnBSD systems up to and including 4.3BSD, and under SunOS 4, you can do it only if
you changed with set r eui d, asin the example above. In this case, you just need to con-
tinue with

setreuid (ruid, euid);

e On System V.4 systems with PGSl X SAVED | DS, use set ui d (ssui d), where ssui d
is the saved set user ID. You can get the value of ssui d by calling get eui d before
changing the initial effective user ID, since they’re the same at program start.

e« On BSD systems which support saved set user IDs, use seteuid (ssuid). As with
System V.4, you can get the value of ssui d by calling get eui d before changing the ini-
tial effective user ID.

vfork

vfork was introduced in 3BSD as a more €ffi cient version of fork: in those days, f or k
copied each data area page of the parent process for the child process, which could take a con-
siderable time. Typicaly, the fi rst thing a child does is to call exec to run a new program,
which discards the data pages, so this was effectively wasted time. vf or k modifi ed this be-
haviour so that the pages were shared and not copied.

This is inherently very dangerous: very frequently the parent waits until the child has done
something before continuing. During this time, the child can modify the parent’s data, since it
is shared. More modern techniques, such as copy on write’, have eliminated the need for this
function. You should be able to replace it with f or k (the semantics are identical). Unfortu-
nately, some obscene programs rely on the fact that they can manipulate the parent’s data

* With copy on write, the data pages are set to be write-protected. The fi rst write causes an interrupt,
effectively a bus error, which the system intercepts. The system makes a copy of the single page and
resets write protection for both the original and the copy, allowing the write to proceed.

5 February 2005 02:09

Chapter 12: Kernel dependencies 175

before the parent continues. These programs need to be fi xed.

wait and friends
wai t hasbeen in UNIX aslong as anybody can remember:

#i ncl ude <sys/types. h>
#i ncl ude <sys/wait.h>

pidt wait (int *status);

Unfortunately, various flavours defi ne the value of the status return differently. Thisis a cos-
metic difference, not area difference: the status information consists of a number of bit fi elds
that depend on the kind of status:

e Thelow-order 7 bits contain the number of the signal that terminated the process, or O if
the process called exi t .

e Thebit 0x80 is set if a core dump was taken.
e Thenext 8 hits are the return code if the processcalledexi t .

If the processis stopped (if it can be restarted), the low-order 8 bits are set to 127 (0x7f), and
the next byte contains the number of the signal that stopped the process.

This information is the same on all versions of UNIX, but there is no agreement on how to
represent thisinformation. Older BSD systems defi ned a union to represent it:

union _ wait
{
int wstatus; /* status as int */
struct
{
unsi gned short w Ternsig: 7, /* termnation signal */
unsi gned short w Cor edunp: 1; /* core dunp indicator */
unsi gned short w Ret code: 8; /* exit code if wternsig==0 */
}
wT,
struct
{
unsi gned short w Stopval : 8; [* = WSTCPPED i f stopped */
unsi gned short w Stopsig: 8; /* signal that stopped us */
}
w.S
¥

Modern systems defi ne macros:

« WFEX TED (status) istrueif the process terminated viaacall toexi t. If thisistrue,
VEEXI TSTATUS (st at us) returnsthe low order 8 bits of the process’ exit value.

* WFSI GNALED (status) istrueif the process was terminated by receiving asignal. If
thisistrue, the following macros apply:

5 February 2005 02:09

176

- WHERMB G (st at us) evaluates to the number of the signal that caused the termina-
tion of the process.

- VWOOREDUWP (st atus) istrue if a core dump was created.

« WHFSTCPPED (status) is true if the process is stopped and can be restarted. This
macro can be true only if the wai t pi d call specified the WUNTRACED option or if the
child process is being traced. If this is true, WBTGPSl G (st at us) returns the number of
the signal that caused the process to stop.

Some systems offer both of these options, sometimes incompletely. For example, SunOS 4
defines w_Cor edunp in the uni on __ wai t, but does not define the corresponding WOCRE-
DUMP macro.

These varying differences cause problems out of all proportion to the importance of the infor-
mation contained. In particular, the newer macros do not allow you to change the status, you
can only read it. Some programs, for example BSD make, modify the status. This makes it
difficult to port it to System V or another system which does not understand uni on wai t .

waitpid
wai t pi d is a variant of wai t that waits for a specific process to terminate. It is part of all
modern UNIX implementations:

#i ncl ude <sys/wait.h>
pidt waitpid (pid_t wpid, int *status, int options)

wai t pi d waits for process pi d to terminate. Its behaviour is governed by a number of bit-
mapped options:

« Set WCHANG o specify to return immediately, even if no status is available. If the status
is not available, the functions return the process number 0. Not all systems support this
behaviour.

« Specify WINTRACED if you want the status of stopped processes as well as processes that
have terminated. Some systems do not return complete status information for stopped
processes.

« Under System V.4, use VWOONTI NUED to report the status of any process that has contin-
ued (in other words, one that is no longer stopped) since the last status report.

« Also under System V.4 you can set the option VWWOM T to specify that the process should
not terminate (it remains a zombie). This means that you can call wai t pi d again and get
the same information.

The value of st at us is the same as with wai t —see the previous section for further details.

If you run into problems with wai t pi d, it may be a bug: some versions of System V.3,
including most current versions of SCO UNIX, return a process ID if a process is waiting, and
an error number such as ECH LD (10) if nothing is waiting, so if your freshly ported program
keeps reporting the demise of process 10, this could be the problem. It’s almost impossible to

5 February 2005 02:09

Chapter 12: Kernel dependencies 177

work around this bug—about the only thing you can do is to use some other system call.

wait3 and wait4

Newer BSD implementations supply the functionswai t 3 and wai t 4 as aternativestowai t .
They correspond to wait and wai t pi d respectively, but return an additional parameter
r usage with accounting information for the terminated process:

pidt wait3 (int *status, int options, struct rusage *rusage);
pidt wait4 (pid_t wpid, int *status, int options, struct rusage *rusage);

Not all implementations return usage information to r usage when the processis stopped (and

not terminated). The defi nition of st ruct rusage isimplementation-dependent and defi ned
in sys'resource.h. See the fi le sys/sys/resource.h in the 4.4BSD Lite distribution for further
details.

5 February 2005 02:09

Signals

Signals are another area in UNIX where the initial implementation was inadequate, and multi-
ple implementations have developed in the course of the time. If you try to port software
which assumes the presence of one implementation, and your system doesn’t support this
implementation, you could be in for a significant amount of rewriting. The situation isn’t
improved by the fact that there are a number of subtle differences between the various imple-
mentations and even between different systems with the same implementation. In this chap-
ter, we’ll look at those aspects of signal implementation which are of interest to porting.

There have been four different implementations in the course of UNIX history:

e The Seventh Edition had so-called unreliable signals. and handled them with the signal
system call. System V still supplies them with the si gnal system call. As we will see
on page 188, the use of the si gnal function does not automatically imply unreliable sig-
nals.

e 4.2BSD introduced the first implementation of reliable signals. It uses the functions
si gnal , si gvec, si gbl ock, si gset mask and si gpause.

e System V introduced an alternative implementation of reliable signals. It uses the func-
tions si gset , si ghol d, si gr el se, si gi gnor e and si gpause.

* Finally, POSIX.1 defined a third implementation of reliable signals. These are based on
the BSD signals and use the functions si gact i on, si gpr ocnask, si gpendi ng and
Si gsuspend.

Most people think of signals as the way the operating system or an outside user stops a pro-
gram that is misbehaving. More generally, they are a means to cause execution of functions
out of sequence, and have thus been called software interrupts. Hardware interrupts cause the
system to interrupt normal processing and perform a specific sequence of instructions. Sig-
nals do the same thing in software: when a process receives a signal, the kernel simulates a
call to a pre-defined routine.” The routine, called a signal handler, handles the signal and pos-
sibly returns to the “caller”. It would be a significant overhead for every program to supply a

* This is not a real call: when the kernel delivers the signal, it modifies the process stack and registers so
that it looks as if the signal handler has just been called. When the process continues executing, it is in
the signal handler. Nobody ever really calls the signal handler.

179

180

signal handler for every conceivable signal, so the kernel supplies two default methods of han-

dling the signal. The choice of a signal handler or one of the two defaults is called the dispo-

sition of the signal. Initially, each signal’s disposition is set either to ignore the signal or to

terminate the process if the signal occurs. In some cases, the system writes a core file, a copy

of the state of the process, when the process is terminated.

Signals may come from a number of different sources:

« External events. For example, pressing CTRL- Cor DEL on most systems causes the ter-
minal driver to send a Sl @ NT signal to the foreground process group of the terminal.

« Internal events. For example, al ar mcauses a S| GALRMsignal after the specified time-
out.

« Hardware interrupts. For example, if a process attempts to access a page that is not part
of its address space, it will receive a S GSEGV or S| GBUS signal.

« Asthe result of another process calling ki I | .

In this chapter, we’ll consider which signals are supported by which operating systems, and
how signals are implemented in different operating systems.

Supported signals

The Seventh Edition had 15 signals, and current implementations allow up to 31, though not
all are used. In the course of time, the meanings have also diverged somewhat. Table 13-1
gives an overview of which signals are present in which implementations.

Table 13—1: Signal usage

S gnal V S S B P | action | purpose
7 vV V S 0]
R R D S
3 4 |
X
S| GABRT « « « Jcore abort call®
S| GALRVI kill real-time timer expired
S B core bus error
SI@H.D . . . ignore | child status has changed
SIAD . . ignore | child status has changed
S| GOONT ignore | continue after stop
S GEM core emulate instruction executed
S| GFPE core floating-point exception
SIGHP kill line hangup
SI@LL core illegal instruction
SIA NFO . . ignore | status request from keyboard

5 February 2005 02:09

5 February 2005 02:09

Chapter 13: Signals

181

Table 13—1: Signal usage (continued)

S gnal V S S B P | action | purpose
7 V. V S O
R R D S
3 4 |
X
SI@NT kill interrupt program (usually from termi-
nal driver)
SNeNel . . ignore | 1/O completion outstanding
sqor . core 10T instruction®
SIQdLL) kill kill program’
S & PE kill write on a pipe with no reader
S GPRCF . . kill profiling timer alarm
S GPWR . T ignore | power fail/restart
SQUT core quit program (usually from terminal
driver)
S| GSEQV core segmentation violation
Sl GSTCP e stop stop’
S GBYS ¢ e . core invalid system call
S| GTERM ¢ e . kill software termination signal
S GTRAP L core trace trap
Sl GISTP . . . stop stop signal generated from keyboard
SIGITIN . . . stop background read from control terminal
S GITaJ . . . stop background write to control terminal
S ARG . . ignore | urgent condition present on socket
S GBRL . T kill User defined signal 1
S GBBR . T kill User defined signal 2
S| GVTALRM . kill virtual time alarm
S| GVNCH e ignore | Window size change
Sl GXCPU . . . core cpu time limit exceeded
S FZ . . . core file size limit exceeded

' Sometimes called Sl GPCLL in System V.

Sl @ OT and S GABRT usually have the same signal number.

* Not available in all versions.
* This signal cannot be caught or ignored.

Unreliable and reliable signals

The terms unreliable signals and reliable signals need explaining. The problem relates to
what happens when a signal handler is active: if another signal occurs during this time, and it
is allowed to be delivered to the process, the signal handler will be entered again. Now it’s
not difficult to write reentrant” signal handlers—in fact, it’s a very good idea, because it

* A reentrant function is one which can be called by functions which it has called—in other words, it

5 February 2005 02:09

182

means that you can use one signal handler to handle multiple signals—but if the same signal
reoccurs before the signal handler has finished handling the previous instance, it could happen
again and again, and the result can be a stack overflow with repeated signal handler calls.

The original signal implementation, which we call unreliable signals, had a simplistic attitude
to this problem: it reset the signal dispostion to the default, which meant that if another signal
occurred while the previous one was being processed, the system would either ignore the sig-
nal (so it would lose the signal) or terminate the process (which is probably not what you
want). It was up to the signal handler to reinstate the signal disposition, and this couldn’t be
done immediately without running the risk of stack overflow.

All newer signal implementations provide so-called reliable signals. The signal disposition is
not changed on entry to the signal handler, but a new signal will not be delivered until the sig-
nal handler returns. This concept is called blocking the signal: the system notes that the signal
is pending, but doesn’t deliver it until it is unblocked.

There are a number of things that the term reliable signal does not mean:

« It doesn’t imply that the underlying kernel implementation is bug-free. Depending on
the implementation, there is still a slight chance that the kernel will lose the signal.

+ It doesn’t imply that a signal cannot get lost. The method used to queue signals is to set
a bit in a bit mask. If multiple signals of the same kind occur while the signal is blocked,
only one will be delivered.

+ It doesn’t imply that you don’t need reentrant signal handlers. The system blocks only
the signal that is currently being handled. If you have a single handler for multiple sig-
nals, it will need to be reentrant. In particular, this means that you should at least be very
careful with static variables and preferably use few local variables (since they take up
stack space). You should also be careful with the functions you call—we’ll take another
look at this on page 187.

The semantics of each implementation differ in subtle ways, so changing to a different set of
signal calls involves more than just changing the function calls and parameters. Here’s a brief
overview of the differences you might encounter:

« With unreliable signals, after a signal occurs, the signal disposition is reset to default, so
the signal handler must reinstate itself before returning. If a second signal occurs before
the disposition is reinstated, the process may be terminated (if the default disposition is
terminate) or the signal may be completely forgotten (if the default disposition is ignore).

+ The names and purposes of the signals differ significantly from one implementation to
the next. See Table 13-2 for an overview.

+ In modern implementations, the function call si gnal varies in its meaning. In System
V, it uses the old, unreliable Seventh Edition signal semantics, while in BSD it is an
interface to the si gact i on system call, which provides reliable signals. If you’re port-
ing BSD si gnal to System V, you should modify the code use si gact i on instead.

can be entered again before it has returned. This places a number of restrictions on the function. In par-
ticular, it cannot rely on external values, and may not use static storage.

5 February 2005 02:09

Chapter 13: Signals 183

The fi rst parameter to a signal handler is always the number of the signal. Both System
V.4 and BSD can supply additional parameters to the signal handlers. We'll look at the
additional parametersin more detail on page 183.

The handling of interrupted system calls varies from one system to the next. We'll 1ook
into this topic in more detail on page 186.

The difference between the signals S| BUS and SI GSEGV is purely historical: it relatesto

the PDP-11 hardware interrupt that detected the problem. In modern systems, it depends
on the whim of the implementor when you get which signal. POSIX.1 defi nes only
S GSEGV, but this doesn’t help much if the processor generates S| (BUS anyway. It's best

to treat them as being equivalent.

Sl QLDisa System V version of S GOHLD. A number of hairy problems can arise with
S GLD; we'll look at them in more detail on page 186.

Sl d LL was generated by theabor t function in early BSD implementations. Early Sys-
tem V used SIQ OT instead. All modern implementations generate S| GABRT. Fre-
quently you'll fi nd that these two signals are in fact defi ned to have the same number; if
you run into troubles where one or the other is undefi ned, you could possibly do just this:

#define S1 @ Or S| GABRT

Signal handlers

Modern versions of UNIX defi ne signal handlers to be of type

void (*signal (int signum void (*handler))) (int hsignum)

This is probably one of the most confusing defi nitions you are likely to come across. To
understand it, it helps to remember that we are talking about two functions:

The signal handler, called handl er in this declaration, takes an int parameter hsi gnum
and returns avoi d pointer to the old signal handler function, which is of the same type
asitself.

The function si gnal , which takes two parameters. The fi rst is si gnum the number of
the signal to be handled, of typei nt , and the second is a pointer to a signal handler func-
tionhandl er . It alsoreturnsavoi d pointer to asignal handler function.

In fact, in many implementations the signal handler function takes additional parameters, and
you may fi nd that your program takes advantage of them. We'll look at these in the following
sections.

System V.4 signal handlers

The System V.4 signal handler interface offers additional functionality in certain circum-
stances: if you use the si gact i on interface and you set the fbeg SA SI @ NFOin sa _fl ags,
the signal handler isinvoked asif it were defi ned

184

voi d handl er (int signum
struct siginfo *info,
struct ucontext *context);

si gi nf o is an enormous structure, defi ned in /usr/include/siginfo.h, which starts with

struct siginfo

{

int si_signo; /* signal fromsignal.h */
int si_code; /* code from above */

int si_errno; /* error fromerrno.h */

. nore stuff, including space for further growh
}

ucont ext is defi ned in /usr/include/ucontext.h and contains information about the user con-

text at the time of the signal application. It includes the following fi elds:

e uc_si gnask isthe blocked signal mask.

e us_stack pointsto the top of stack at the time the signal was delivered.

e uc_ntont ext contains the processor registers and any implementation specifi ¢ context
data.

For example, assume you had set the signal handler for S| G-PE with the call in Example 13-1.

Example 13-1:

voi d borbout _handl er (int signum
struct siginfo *info,
struct ucontext *context);

si gset _t bonbout _nask;
struct sigaction bad_error = {&onbout handl er, handl er for the signal

&onbout _nask, signal s to nask
SA SSANG; we want additional info
si genpt yset (&onbout _mask) ; no signals in nask

sigaction (SIGPE &bad_error, NULL);

Onreceipt of aSl GFPE,

e signal will besettoS G-PE.

e info->si_signo will asobe setto Sl G-PE.

e On an i386 machine, i nf o- >si _code might be, for example, FPE | NTD V (indicating
an integer divide by zero) or FPE_FLTUND (indicating fbating point underfow).

e Thevaueofinfo->si_errno can't berelied on to have any particular value.
e context->uc_si gmask contains the current signal mask.

e context->uc_stack will point to the stack in use at the time the signal was delivered.

5 February 2005 02:09

Chapter 13: Signals 185

e context->uc_ntont ext will contain the contents of the processor registers at the time
of theinterrupt. This can be useful for debugging.

BSD signal handlers

BSD signa handlers do not use the fleg SA SI @ NFOfor sa_f 1 ags. Signal handlers always
receive three parameters:

void handl er (int signum int code, struct sigcontext *context);

code gives additional information about certain signals—you can fi nd this information in the

header fi le /usr/include/machine/trap.h. This fi le also contains information about how hard-
ware interrupts are mapped to signals. cont ext is hardware-dependent context information

that can be used to restore process state under some circumstances. For example, for a Sparc

architectureit is defi ned as

struct sigcont ext

{

int sc_onstack; /* sigstack state to restore */
int sc_nask; /* signal nask to restore */
/* begi n machi ne dependent portion */

int sc_sp; /* %p to restore */

int sc_pc; /* pc to restore */

int sc_npc; /* npc to restore */

int sc_psr; /* psr to restore */

int sc_gl; /* %1 to restore */

int sc_o0; /* %0 to restore */

IS

The program of Example 13-1 won't compile under BSD, since BSD doesn’t defi ne SA SI G
I NFQ and the parameters for bonbout _handl er are different. We need to modify it alittle:

voi d bonbout _handl er (int signum
int code,
struct sigcontext *context);

si gset _t bonbout _mask;
struct sigaction bad_error = {&onbout _handl er, handl er for the signal
&bonbout _nask, signal s to nmask
U¥
. the rest stays the sanme
If you enter this signal handler because of aSl G-PE, you might fi nd:
e si gnumwill be set to Sl G-PE.

e On an i386 machine, code might be, for example, FPE | NTO/F_TRAP (indicating an
integer divide by zero) or FPE_FLTUND TRAP (indicating floating point underfow).

* Thevaueof sc_onst ack would be the previous sigstack state.

e context->sc_mask contains the current blocked signal mask, like cont ext - >uc_si g-
nask in the System V.4 example.

5 February 2005 02:09

5 February 2005 02:09

186

* Therest of the cont ext structure shows the same kind of register information that Sys-
tem V.4 storesin cont ext - >uc_ntont ext .

SIGCLD and SIGCHLD

System V treats the death of a child differently from other implementations: The System V

signal S QLD differs from the BSD and POSIX.1 signal SI GCHLD and from all other signals
by remaining active until you call wai t . This can cause infi nite recursion in the signal han-
dler if you reinstate the signal via si gnal or si gset before callingwait. If you use the
POSIX.1si gacti on call, you don’t have to worry about this problem.

When achild dies, it becomes azombie. Asall voodoo fans know, azombie is one of the Liv-
ing Dead, neither alive nor dead. In UNIX terminology, when a child process dies it becomes
a zombie: the text and data segments are freed, and the fi les are closed, but the process table
entry and some other information remain until it is exorcized by the parent process, which is
done by calling wai t. By default, System V ignores S| GOLD and S| GOHLD, but the system
creates zombies, so you can fi nd out about child status by calling wait. If, however, you
change the default to explicitly ignore the signal, the system ignores S GCHLD and S| GQCLD,

but it also no longer creates zombie processes. If you set the disposition of SI GCH.D and
S QLD to ignore, but you call wai t anyway, it waits until all child processes have termi-
nated, and then returns -1 (error), with er r no set to ECH LD. You can achieve the same effect
with si gacti on by specifying the SA NOOLDM T fleg in sa_fl ags. There is no way to

achieve this behaviour in other versions of UNIX: if you fi nd your ported program is collect-
ing zombies (which you will see with the ps program), it might be that the program uses this
feature to avoid having to call wai t. If you experience this problem, you can solve it by
adding asignal handler for S| @LDthat just callswai t and returns.

The signal number for SI GOLD is the same as for S GCHLD. The semantics depend on how
you enable it; if you enable it with si gnal , you get SI GOLD semantics (and unreliable sig-
nals), and if you enable it with si gacti on you get Sl GCHLD and reliable signals. Don't rely
on this, however. Some versions of System V have special coding to ensure that a separate
Sl @LDsignal is delivered for each child that dies.

Interrupted system calls

Traditional UNIX kernels differentiate between fast and slow system calls. Fast calls are han-
died directly by the kernel, while slow calls require the cooperation of other processes or
devicedrivers. Whilethe call isbeing executed, the calling process is suspended.

If asignal for a process occurs while the process is suspended, the behaviour depends both on
whether the call is fast or slow, and on the signal implementation. On traditional systems, if
the priority is numerically less than (of a higher priority than) the constant PZERQ, the signal
is slow and remains pending until the priority rises above PZERO. Otherwise it is fast, and the
system call is interrupted. Typically, this means that disk and network operations are not
interrupted, since they run at a priority below PZERO, whereas terminal and serial line opera-
tions can be interrupted. Some newer systems treat the relationship between priority and
delivering signals more fexibly.

5 February 2005 02:09

Chapter 13: Signals 187

In the Seventh Edition, if a system call was interrupted, it returned an error, and err no was
sent to El NTR It was up to the process to decide whether to repeat the call or not. This added
a significant coding overhead to just about every program; the result was that programs usu-
ally did not provide for interrupted system calls, and died when it happened.

Later signal implementations improved on this state of affairs:

« In 4.2BSD, signals automatically restarted the system callsi octl , read, readv, wai t,
waitpid,witeandwitev.

« In 4.3BSD, the 4.2BSD signal implementation was modified so that the user could elect
not to restart specific system calls after interruption. The default remained to restart the
system call.

« In POSIX.1, when you call si gacti on you can specify that system calls interrupted by
specific signals should be restarted. This is done with the SA RESTART flag in the field
sa flags. If this flag is not set, the calls will not be restarted.

¢ SunOS 4 does not have SA RESTART, but it has SA | NTERRUPT instead, which is effec-
tively the reverse of SA RESTART: system calls will be restarted unless SA | NTERRUPT is
set,

On modern systems, the action taken depends on the system calls you have used and the sys-
tem you are using:

« With System V, you have the choice of no restart (unreliable si gnal or System V
si gset and friends) or POSIX.1 selective restart based on the signal (SA_RESTART with
si gacti on).

« With BSD, you have the choice of no restart (reliable si gnal based on si gacti on),
default restart based on system calls (si gvec and friends) or again the POSIX.1 selective
restart based on the signal (SA_RESTART with si gact i on).

Calling functions from signal handlers

By definition, signals interrupt the normal flow of program execution. This can cause prob-
lems if they call a function that has already been invoked, and which has saved some local
state. The function needs to be written specially to avoid such problems—it should block

either all signals during execution, or, preferably, it should be written reentrantly. Either solu-
tion is difficult, and typically system libraries do not support this kind of reentrancy. On the
other hand, there’s not much you can do without calling some library routine. POSIX.1
defines “safe” routines that you can call from a signal handler. They are:

_exit access alarm cfgetispeed cf get ospeed
cfsetispeed cfsetospeed chdir chnod chown

cl ose creat dup dup2 execl e
execve fentl fork fstat get egi d

get eui d getgid get gr oups get pgr p getpid

188

get ppi d getuid kill l'ink | seek

nkdi r nkfifo open pat hconf pause

pi pe read r enane rndir setgid
setpgi d setsid setuid si gaction si gaddset
si gdel set si genpt yset sigfillset si gi snmenber si gpendi ng
sigprocmask si gsuspend sl eep st at sysconf
tcdrain tcfl ow tcflush tcgetattr t cget pgrp
tcsendbreak tcsetattr tcset pgrp time times
unmask unare unl i nk utinme wai t

wai tpid wite

In addition, System V.4 alowsabort , exi t, | ongj np, and si gnal .

Current signal implementations

In this section, we'll look at the differences between individual signal implementations. We'll
concentrate on what you need to do to convert from one to another. If you do need to convert
signal code, you should use the POSIX.1 signal implementation whenever practical.

Seventh Edition signal function

The Seventh Edition provided only one signal function, si gnal , which is the granddaddy of
them all. All systems supply si gnal , though on some systems, such as newer BSD systems,
it is alibrary function that calls si gacti on. This aso means that you can't rely on specifi ¢
semantics if you use si gnal —avoid it if at al possible. Older UNIX systems (specifi cally,

those that did not expect function prototypes to be used) implicitly defi ned the return type of
signal tobeanint. Thisdoes not change the meaning of the return value, but it can con-
fuse more pedantic compilers. About the only system still on the market that returns an i nt

fromsi gnal isXENIX.

BSD signal functions

The BSD signal functions were the fi rst attempt at reliable signals, and they form the basis of
the POSIX.1 implementation. All modern systems offer the POSIX.1 implementation as well,
and on many BSD systems the functions described in this section are just an interface to the
POSIX.1 functions.

Signal sets

A central difference between the Seventh Edition and System V implementations, on the one

side, and the BSD and POSIX.1 implementations, on the other side, is the way signals can be

specifi ed. The Seventh Edition functions treat individual signals, which are specifi ed by their
number. The BSD routines introduced the concept of the signal set, a bit map of type sigset_t,

that specifi es any number of signals, asillustrated in Figure 13-1:

5 February 2005 02:09

5 February 2005 02:09

Chapter 13: Signals 189

31 30 29 11 10 1 0

o] . Jo|o]o]

TN N

SI G NFO S GSEQV SI @S SI&ILL GHP (none)

Figure 13-1. BSD and POSIX.1 signal sets

For each signal, if the corresponding bit in the bit map is set, the signal is said to be included
in the set. In this example, the signals specified are Sl QISR2, SI QUSRL and S| GHUP. This
method enables any number of signals to be specified as the parameter of one call.

The kernel maintains two special signal sets for each process: the signal mask and the pending
signal set. The signal mask specifies which signals should currently not be delivered to the
process—these signals are said to be blocked. This does not mean that they will be ignored:
if a signal occurs while it is blocked, the kernel notes that it has occurred and sets its bit in the
pending signal set. When a subesequent call to si gset mask resets the bit for this signal in
the signal mask, the kernel delivers the signal to the process and clears the bit in the pending
signal set.

sigsetmask
si gset mask sets the process signal mask:

#i ncl ude <sys/signal . h>
int sigsetmask (int nmask);

si gset mask can be defined in terms of the POSIX.1 function si gpr ocnask using the
S G_SETVASK flag—see page 194 for more details.

sigbhlock

si gbl ock modifies the process signal mask. Unlike si gset mask, it performs a logical OR
of the specified mask with the current signal mask, so it can only block signals and not enable
them.

#i ncl ude <sys/signal . h>
int sigblock (int mask);

si gbl ock can be defined in terms of the POSIX.1 function si gprocnask using the
S G BLOXK flag—see page 194 for more details.

5 February 2005 02:09

190

sigvec
Si gvec corresponds to the Seventh Edition signal: it sets the disposition of asignal. In addi-
tion, it can block other signals during the processing of asignal.

#i ncl ude <signal . h>
. insignal.his the definition
struct sigvec

{

voi d (*sv_handler) ();
sigset_t sv_nask;

int sv_fl ags;

b

sigvec (int signum struct sigvec *vec, struct sigvec *ovec);

si gnumis the signal whose disposition is to be changed. vec specifi es the new disposition of
the signal, and the function returns the old disposition to ovec.

If vec- >sv_mask is non-zero, it specifi es the signals to block while the signal handler is run-
ning. Thisis logicaly ored with the current signal mask, so it works like an implicit si g-
bl ock on entering the signal handler. On exit from the signal handler, the kernel reinstates
the previous signal mask.

fl ags can consist of:

e SV _ONSTAXK specifi es to take the signal on alternate signal stack, if one has been
defi ned.

e SV I NTERRUPT specifi es that system calls should not be restarted after the signal handler
has completed.

sigvec is amost identical to the POSIX.1 function sigaction described on page
193—only the names of the si gvec structure and its members are different. Note, however,
that the fleg SV_| NTERRUPT has the opposite meaning from the POSIX.1 feg SA RESTART,
which frequently has the same numeric value.

sigpause

si gpause combines the functionality of si gmask and pause: it fi rst sets the signal mask and
then calls pause to wait for a signal to occur.

#i ncl ude <sys/signal . h>
int sigpause (sigset_t signask);
Typical use of BSD signal functions

Most signal coding consists of initialization. Typical programs set the disposition of the sig-
nals in which they are interested during program initialization, and don’'t change them much
after that. For example, with BSD signals you might see code like that in Example 13-2.

Example 13-2:

5 February 2005 02:09

Chapter 13: Signals 191

Example 13—2: (continued)

struct sigvec hupvec = {&up handler, 0, 0}; /* disposition of S GHP */
struct sigvec iovec = {& o _handler, 1 << SSGHUP, O}; /* disposition of SQO*/

sigvec (S GHP, &hupvec, NULL); /* instate handlers for SIGHP, */
sigvec (S A@Q & ovec, NULL); /* 9adqQ */
sigvec (SSGQRG & ovec, NUL); /* and S AQURG */

Occasionally aprocess will usesi gpause, usually to wait for 1/0. In Example 13-3, it blocks
thesignalsSIANTandSIGQU T:

Example 13-3:
sigpause ((1 << SIANN) | (1 < S GQUT)); /* wait for a signal */

System V signal functions

The following signal functions were implemented in System V and are effectively obsolete:
the POSIX.1 functions have replaced them even in System V.3. The syntax of the function
calls is more like the Seventh Edition than POSIX.1. In particular, they do not support the
concept of asignal set. If you do fi nd it necessary to replace System V signals with POSIX.1
signals, there is considerable scope for simplifi cation by merging multiple System V calls
(one per signal) into asingle POSIX.1 call.

sigset
si gset isthe System V reliable equivalent of si gnal :

ncl ude <signal . h>
void (*sigset (int sig, void (*disp) (int))) (int);

Unlike si gnal , the signal is not disabled when the signal handler is executing—instead it is
blocked until the signal handler terminates.

sighold

si ghol d blocks the delivery of signal si g by setting the corresponding bit in the process sig-
nal mask. Semantically this corresponds to the POSIX.1 function si gpr ocmask with the
S G BLOXK flag, but it can block only one signal per call.

#i ncl ude <signal . h>
int sighold (int sig);
sigrelse

si grel se alows the delivery of signal si g by resetting the corresponding bit in the process
signal mask. Semantically this corresponds to the POSIX.1 function si gpr ocnask with the
S G UNBLOXK flag, but it can release only one signal per call.

5 February 2005 02:09

192

#i ncl ude <signal . h>
int sigrelse (int sig);

sigignore
si gi gnor e setsthe disposition of signal si g to SI G | GN—the kernel ignores the signal.

#i ncl ude <signal . h>
int sigignore (int sig);

sigpause

#i ncl ude <signal . h>
int sigpause (int sig);

si gpause enables the delivery of signal si g and then waits for delivery of any signal.
CAUTION Thisis not the same as the BSD function si gpause described on page 190. BSD
si gpause takes a signal mask as an argument, System V si gpause takes a single signal
number. In addition, BSD si gpause only resets the mask temporarily—until the function
return—whereas System V si gpause leavesit in this condition.

Example of System V signal functions

On page 190, we looked at what typical BSD code might look like. The System V equivalent
of this program might perform the initialization in Example 13-4. System V doesn’'t supply
the functionality associated with Sl @ Oand S| QJRG—it uses S| GPCLL instead. See Chapter
14, File systems, pages 209 and 225, for more details of Sl @ Oand S| GPCLL respectively.

Example 13—4:
sigset (S GHUP, &wup_handler); /* instate handlers for S GHP */
sigset (S GAL, & o _handler); /* and S GQPQALL */

System V si gpause has a different syntax, so we need to set the signal mask explicitly with
calsto si ghol d, and a so to release them explicitly with si gr el se

Example 13-5:

sighold (SIANI); /* block SIQ@NT */

sighold (SSGUT); /* and SSGU T */

si gpause (0); /* wait for something to happen */
sigrelse (SSANM); /* unbl ock SIA@NT */

sigrelse (SSGUT); /* and SSGU T */

POSIX.1 signal functions

All modern UNIX implementations claim to support POSIX.1 signals. These are the func-
tions to use if you need to rewrite signal code. They are similar enough to the BSD functions
to be confusing. In particular, the BSD functions pass signal masks as | ongs, whereas the
POSIX.1 functions pass pointers to the signal mask—this enables the number of signals to
exceed the number of bitsin al ong.

Chapter 13: Signals 193

sigaction

si gact i on isthe POSIX.1 equivalent of si gnal . It specifi es the disposition of asignal. In
addition, it can specify a mask of signals to be blocked during the processing of a signal, and
anumber of fbgs whose meaning varies signifi cantly from system to system.

#i ncl ude <signal . h>
struct sigaction

{

voi d (*sa_handl er)(); /* handl er */

si gset _t sa_nask; /* signals to block during processing */
int sa_fl ags;

IS

voi d sigaction (int sig,
const struct sigaction *act,
struct sigaction *oact);

si gnumis the signal whose disposition isto be changed. act specifi es the new disposition of
the signal, and the function returns the old disposition to oact .

If act - >sa_nask is non-zero, it specifi es which signals to block while the signal handler is
running. Thisislogically ored with the current signal mask, so it works like an implicit si g-
bl ock on entering the signal handler.

Here's an overview of the flags:

Table 13—2: si gact i on fegs

Par anet er supported meaning
by
SA ONSTAKK BSD, Sys | Takethesigna on the adternate signal stack, if one has
temV been defi ned. POSIX.1 does not defi ne the concept of

an alternate signal stack—see page 196 for more de-
tails. Linux plans similar functionality with the
SA STAKK flg, but at the time of writing it has not
been implemented.

SA RESETHAND System V Reset the disposition of this signal to SI G DFL when
the handler is entered (simulating Seventh Edition se-
mantics). This is the same as the Linux SA_ ONESHOT
feg.

SA Q\ESHOT Linux Reset the disposition of this signal to SI G DFL when
the handler is entered (simulating Seventh Edition se-
mantics). This is the same as the System V SA RE-
SETHAND flag.

5 February 2005 02:09

194

Table 13—2: si gact i on fegs (continued)

Par anet er supported meaning
by
SA RESTART BSD, Lin- | Restart system calls after the signal handler has com-
ux, System | pleted (see page 186).
V

SA SIA@NFO System V Provide additional parameters to signa handler (see
page 183).

SA NCDEFER System V Don't block this signal while its signal handler is ac-
tive. This means that the signal handler can be called
from a function which it calls, and thus needs to be
reentrant.

SA NOOLDMI T System V Don't create zombie children on Sl GOLD (see page
186).

SA NOOLDSTCP | Linux, Sys- | Don't generate S| GOHLD when a child stops, only

temV when it terminates.

SA NOVASK Linux Disable the signal mask (allow all signals) during the
execution of the signal handler.

SA | NTERRUPT Linux Disable automatic restart of signals. This corresponds
to the SunOS 4 fleg SV | NTERRUPT to si gvec (see
page 190). Currently not implemented.

sigprocmask

si gpr ocnask manipulates the process signal mask. It includes functional modes that corre-

spond to both of the BSD functionssi gbl ock and si gset mask:

#i ncl ude <signal . h>
int sigprocmask (int how const sigset_t *set, sigset_t *oset)

The parameter how determines how the mask is to be manipulated. It can have the following

values:

Table 13—3: sigprocmask functional modes

Par anet er meaning

Sl G BLOXK Create a new signal mask by logically oring the current mask with the speci-
fi ed set.

S G UNBLOXK | Reset the bitsin the current signal mask specifi ed in set .

SI G SETMASK | Replace the current signal mask by set .

5 February 2005 02:09

5 February 2005 02:09

Chapter 13: Signals 195

sigpending

ncl ude <signal . h>
int sigpending (sigset_t *set);

si gpendi ng returns the pending signal mask to set . These are the signals pending delivery
but currently blocked, which will be delivered as soon as the signal mask allows. The return
valueisan error indication and not the signal mask. This function does not have an equivalent
in any other signal implementation

sigsuspend

#i ncl ude <sys/signal . h>
int sigsuspend (const sigset_t *signmask);

si gsuspend temporarily sets the process signal mask to si gnask, and then waits for a sig-
nal. When the signal is received, the previous signal mask is restored on exit from si gsus-
pend. It awaysreturns-1 (error), with er r no set to H NIR (interrupted system call).

Example of POSIX.1 signal functions

On page 190, we looked at a smple example of signal setup, and on page 192 we changed it
for System V. Changing it from BSD to POSIX.1 is mainly a matter of changing the names.
We change the calls to si gvec to si gacti on, and their parameters are now also of type
struct sigactioninstead of struct sigvec.

Unfortunately, there is a problem with this example: POSIX.1 does not defi ne any of the I/O
signals to which this example refers. Thisis not as bad as it sounds, since there are no pure
POSIX.1 systems, and all systems offer either Sl A QS AJRGor S| GPALL. In Example 13-6,
we'll stick with the BSD signals Sl @ Oand SI QARG

Example 13—6:

struct sigaction hupvec = {&wup_handler, 0, 0O}; /* disposition of S GHP */
struct sigaction iovec = {& o_handler, 1 << SSCHWP, 0}; /* disposition of SI@O */

sigaction (Sl GHP, &upvec, NULL); /* instate handlers for SIGHP, */
sigaction (S A@Q & ovec, NULL); /* 9adqQ */

sigaction (SIGRG & ovec, NULL); /* and S AQURG */

si gset _t bl ocknask; /* create a nmask */

si genpt yset (&bl ocknask) ; /* clear signal mask */

si gaddset (&bl ockmask, SI G NI); /* add SSANT to the mask */

si gaddset (&bl ocknmask, SIGU T); /* add SSGU T to the mask */

Example 13-7 shows the corresponding call to sigsuspend:
Example 13-7:

si gsuspend (&bl ocknask) ; /* let the action begin */

WE'll look at si genpt yset and si gaddset in the next section. It's unfortunate that this part
of the initialization looks so complicated—it's just part of the explicit programming style that
POSIX.1 desires. On most systems, you could get the same effect without the calls to
si genpt yset and si gaddset by just defi ning

5 February 2005 02:09

196

int blockmask = (1 << SI@NI) | (1 << SIQUT);
si gpause ((sigset_t *) &bl ockmask); /* let the action begin */

The only problem with this approach (and it’s a showstopper) is that it’s not portable: on a dif-
ferent system, si gset _t might not map toi nt.

Signals under Linux

Linux signals are an implementation of POSIX.1 signals, and we discussed some of the
details in the previous section. In addition, it’s good to know that:

« For compatibility, Sl @ OT is defined as S| GABRT. POSIX.1 does not define Sl G OT.

« As we saw, POSIX.1 does not supply the signals Sl GPCLL, SIA Oand SI QURG Linux
does, but they it maps all three signals to the same numerical value.

« If you really want to, you can simulate unreliable signals under Linux with si gacti on
and the SA ONESHOT flag.

Other signal-related functions

A significant advantage of the BSD and POSIX.1 signal functions over the Seventh Edition
and System V versions is that they have signal set parameters. The down side of signal sets is
that you need to calculate the values of the bits. The following functions are intended to make
manipulating these structures easier. They are usually implemented as macros:

+ sigenptyset (sigset t *set) setsset tothe “empty” signal set—in other words,
it excludes all signals.

« sigfillset (sigset_t *set) setsall valid signals in set .
+ sigaddset (sigset t *set, int signunm) adds signal si gnumto set .
+ sigdel set (sigset_t *set, int signum removes signal si gnumfrom set .

« sigismenber (sigset_t *set, int signum returns 1 if si gnumis setin set and
0 otherwise.

sigstack and sigaltstack

As we have already discussed, a signal is like a forced function call. On modern processors
with stack-oriented hardware, the call uses stack space. In some cases, a signal that arrives at
the wrong time could cause a stack overflow. To avoid this problem, both System V and BSD
(but not POSIX.1) allow you to define a specific signal stack. On receipt of a signal, the stack
is switched to the alternate stack, and on return the original stack is reinstated. This can also
occasionally be of interest in debugging: if a program gets a signal because of a reference
beyond the top of the stack, it’s not much help if the signal destroys the evidence.

BSD supplies the si gst ack system call:

5 February 2005 02:09

Chapter 13: Signals 197

#i ncl ude <sys/signal . h>
struct sigstack

{

caddr_t ss_sp; /* Stack address */

int ss_onst ack; /* Hag, set if currently
* executing on this stack */

b

int sigstack (const struct sigstack *ss, struct sigstack *oss);
« ss maybe NULL. Ifitis not, the process signal stack is set to ss- >ss_sp.

« ss->ss_onstack tells si gstack whether the process is currently executing on the
stack.

« 0ss may also be NLLL. If it is not, information about the current signal stack is returned
to it.

System V supplies the function si gal t st ack:

#i ncl ude <signal . h>
typedef struct

{
char *ss_sp; /* Stack address */
int ss_size; /* Stack size */
int ss_fl ags; /* Flags, see bel ow */
}

stack_t;

int sigaltstack (const stack_t *ss, stack t *oss);

« ss may be NLLL. Ifitis not, the process signal stack is set to ss->ss_sp, and its size is
set to ss- >ss_si ze.

+ 0Ss may also be NILL. If it is not, information about the current signal stack is returned
to it.

« The structure element ss_f | ags may contain the following flags:

+ SS D SABLE specifies that the alternate stack is to be disabled. ss_sp and

ss_si ze are ignored. This flag is also returned in oss when the alternate stack is
disabled.

¢« SS_ONSTAKK (returned) indicates that the process is currently executing on the alter-
nate stack. If this is the case, a modification of the stack is not possible.

setjmp and longjmp

When you return from a function, C language syntax does not give you a choice of where to
return to: you return to the instruction after the call. Occasionally, deep in a series of nested
function calls, you will discover you need to return several levels down the stack—effectively,
you want to perform multiple returns. Standard “structured programming” techniques do not
handle this requirement well, and you can’t just perform a got o to the location, because that
would leave the stack in a mess. The library functions setj np and | ongj np provide this
non-local return.

198

What does this have to do with signals? Nothing, really, except that the receipt of asigna is
one of the most common reasons to want to perform a non-local return: a signal can interrupt
processing anywhere where the process signal mask allowsit. In many cases, the result of the
signal processing is not related to the processing that was interrupted, and it may be necessary
to abort the processing and perform a non-local return. For example, if you are redisplaying
data in an X window and the size of the window changes, you will get a S G/ NCH signal.

This requires a complete recalculation of what needs to be displayed, so there is no point in
continuing the current redisplay operation.

Non-local returns are implemented with the functions setjnp, | ongj np, and friends.
set j np saves the process context and | ongj np restores it—in other words, it returns to the

point in the program where set j np was called. Unlike a normal function return, al ongj np
return may involve discarding a signifi cant part of the stack. There are a number of related
functions:

#incl ude <setjnp. h>

int setjnp (jnp_buf env);

void longjnp (jnp_buf env, int val);

int _setjnp (jnp_buf env);

void _longjnp (jnp_buf env, int val);

voi d | ongj nperror (void);

int sigsetjnp (sigjnp_buf env, int savenask);
voi d siglongjnp (sigjnp_buf env, int val);

The defi nitions of j np_buf and si gj np_buf are less than illuminating: they are just defi ned
asan array of i nt slong enough to contain the information that the system saves. In fact, they

contain the contents of the registers that defi ne the process context—stack pointer, frame

pointer, program counter, and usually a number of other registers.

From the user point of view, set j np is unusual in that it can return more often than you call

it. Initially, you call setj np and it returns the value 0. If it returns again, it's because the

program called | ongj np, and this time it returns the value parameter passed to | ongj np,

which normally should not be 0. The caller can then use this value to determine whether this
isadirect return from set j np, or whether it returned vial ongj np:

int return_code = setjnp (env);

if (return_code)
{ /* non-0 return code: return fromlongjnp */
printf ("longjnp returned %\ n", return_code);

}

These functions are confusing enough in their own right, but they also have less obvious fea-
tures:

e It doesn’'t make any sense for | ongj np to return 0, and System V.4 | ongj np will never
return O, even if you tell it to—it will return 1 instead. BSD | ongj np will return what-
ever you tell it to.

« Theset | np functions save information about the state of the function that called them.
Once this function returns, this information is no longer valid. For example, the

5 February 2005 02:09

5 February 2005 02:09

Chapter 13: Signals 199

following code will not work:

j mp_buf env; /* save area for setjnp */

int nysetjnp ()
{
int a=0;
if (a=setjnp (env))
printf ("Bonbed out\n");
return a;

}

foo ()
{

nysetjnp (), /* catch bad errors */

}
The return instruction from nyset j np to f oo frees its local environment. The memory
which it occupies, and which the call to set j unp saved, will be overwritten by the next
function call, so al ongj np cannot restore it.

+ BSD attempts to determine whether the parameter env to the | ongj np functions is

invalid (such as in the example above). If it detects such an error, it will call | ongj m
perror, which is intended to inform that the | ongj np has failed. If | ongj nperror
returns, the processis aborted.

If | ongj np does not recognize the error, or if the system is not BSD, the resulting
process state is indeterminate. To quote the System V.4 man page: If longjmp is called
even though env was never primed by a call to setjmp, or when the last such call wasin a
function that has since returned, absolute chaos is guaranteed. In fact, the system will
probably generate a Sl GSEGV or a S| GBUS, but the core dump will probably show noth-
ing recognizable.

« Whenl ongj np returnsto the calling function, automatic variables reflect the last modifi -

cations made to them in the function. For example:

int foo ()
{
int a=3;
if (setjnp (env))
{

printf ("a: %\n", a);
return a;
}
a=2
longj np (env, 4);
}
At the point where | ongj np is called, the variable a has the value 2, so this function will
printa: 2.

5 February 2005 02:09

200

* When | ongj np returns to the calling function, register variables will normally have the
values they had at the time of the call to set j np, since they have been saved in the jump
buffer. Since optimizers may reassign automatic variables to registers, this can have con-
fusing results. If you compile the example above with gcc and optimize it, it will print
a: 3. Thisis clearly an unsuitable situation: the solution is to declare a to be volatile
(see Chapter 20, Compilers, page 340 for more information). If we do this, a will aways
have the value 2 after thel ongj np.

* BSD setj np includes the signal mask in the state information it saves, but System V.4
set j np does not save the signal mask. If you want to simulate System V.4 semantics
under BSD, you need to use_set j np and _| ongj np, which do not save the signal mask.
In either system, you can use si gset j np, which saves the signal mask only if save is
non-zero. Except for the type of its fi rst parameter, the corresponding si gl ongj np is
used in exactly the same manner as| ongj np.

e The functions must be paired correctly: if you _setj np, you must _| ongj np, and if you
set j np you must | ongj np.

kill

ki I'l isone of the most badly named system callsin the UNIX system. Itsfunctionisto send
asignal:

ncl ude <signal . h>
int kill (pid_t pid, int sig);

Normally, pi d is the process ID of the process that should receive the signal si g. Therearea
couple of additional tricks, however:

e IfpidisO, the kernel sendssi g to all processes whose process group ID is the same as
the group 1D of the calling process.

e If pi dis-1, most implementations broadcast the signal to all user processes if the signal
is sent by root. Otherwise the signal is sent to all processes with the same effective user
ID. BSD does not broadcast the signal to the calling process, System V does. POSIX.1
does not defi ne this case.

e Ifpidis<-1, Syssem V and BSD broadcast the signal to all processes whose process
group ID isabs (pi d) (abs isthe absolute value function). Again, non-root processes
are limited to sending signals to processes with the same effective user ID. BSD can aso
perform this function with the call ki | | pg.

Another frequent use of ki | | isto check whether a process exists: kil | (pid, 0) will not
actually send a signal, but it will return success if the process exists and an error indication
otherwise.

5 February 2005 02:09

Chapter 13: Signals 201

killpg

ki | | pg broadcasts a signal to all processes whose process group ID isabs (pid). Itissup-
plied with BSD systems:

#i ncl ude <sys/signal . h>

int killpg (pid_t pgrp, int sig);

This function sends the signal to the process group of the specifi ed process, assuming that you
have the same effective user ID as the recipient process, or you are super-user. You can use
pid O to indicate your own process group. If you don’'t have this function, you can possibly
replaceit withki | | (- pgi d) —see the section on kill above.

raise

rai se isan ANS| C function that enables a process to send asignal to itself. It is defi ned as
int raise (int signun;

Older systemsdon’t haver ai se. You can fakeitintermsof ki | | and get pi d:

kill (getpid (), signum;

sys siglist and psigna

At the nameimplies, sys_si gl i st isalist and not afunction. More exactly, it isan array of
signal names, indexed by signal number, and is typically supplied with BSD-derived systems.
For example,

printf ("Signal % (%)\n", S GEGQ/, sys_siglist [SGEQ]);
returns
Sgnal 11 (Segnentation fault)

Some systems supply the function psi gnal instead of sys_si gl i st . It prints the text corre-
sponding to asignal. You can get almost the same effect asthe pri nt f above by writing

char nsg [80];
sprintf (nsg, "Sgnal %", S GEQ);
psignal (S GSEGQV, nsgQ);

This gives the output:

Sgnal 11: Segnentation fault

5 February 2005 02:09

File systems

UNIX owes much of its success to the simplicity and flexibility of the facilities it offers for
file handling, generally called the file system. This term can have two different meanings:

1. It can be a part of a disk or floppy which can be accessed as a collection of files. It
includes regular files and directories. A floppy is usually a single file system, whereas a
hard disk can be partitioned into several file systems and possibly also non-file system
parts, such as swap space and bad track areas.

2. It can be the software in the kernel which accesses the file systems above.

UNIX has a single file hierarchy, unlike MS-DOS, which uses a separate letter for each file
system (A and B: for floppies, C. to Z: for local and network accessible disks). MS-DOS
determines the drive letter for the file systems at boot time, whereas UNIX only determines
the location of the root file system / at boot time. You add the other file systems to the direc-
tory tree by mounting them:

$ nount /dev/usr /usr

This mounts the file system on the disk partition /dev/usr onto the directory /usr, so if the root
directory of /dev/usr contains a file called foo, after mounting you can access it as /usr/foo.

Anything useful is bound to attract people who want to make it more useful, so it should come
as no surprise that a large number of “improvements” have been made to the file system in the
course of time. In the rest of this chapter, we’ll look at the following aspects in more detail:

» File systems introduced since the Seventh Edition.
« Differences in function calls, starting on page 206.
* Non-blocking I/O, starting on page 220.

* File locking, starting on page 226.

e Memory-mapped files, starting on page 232.

203

5 February 2005 02:09

204

File system structures

The original Seventh Edition file system is—at least in spirit—the basis for all current file
system implementations. All UNIX file systems differ in one important point from almost all
non-UNIX file systems:

¢« Atthe lowest level, the file system refers to files by numbers, so-called inodes. These are
in fact indices in the inode table, a part of the file system reserved for describing files.

« At a higher level, the directory system enables a file to be referred to by a name. This
relationship between a name and an inode is called a link, and it enables a single file to
have multiple names.

One consequence of this scheme is that it is normally not possible to determine the file name
of an open file.

The Seventh Edition file system is no longer in use in modern systems, though the System V
file system is quite similar. Since the Seventh Edition, a number of new file systems have
addressed weaknesses of the old file system:

« New file types were introduced, such as symbolic links, fifos and sockets.
« The performance was improved.

« The reliability was increased significantly.

« The length of the file names was increased.

We’ll look briefly at some of the differences in the next few sections.

The Berkeley Fast File System

The first alternative file system to appear was the Berkeley Fast File System, (FFS), now
called the Unix File System (ufs).” It is described in detail in A Fast File System for UNIX, by
Kirk McKusick, Bill Joy, Sam Leffler and Robert Fabry, and The Design and the Implementa-
tion of the 4.3BSD UNIX Operating System by Sam Leffler, Kirk McKusick, Mike Karels, and
John Quarterman. Its main purpose was to increase speed and storage efficiency. Compared
to the Seventh Edition file system, the following differences are relevant to porting software:

+ The maximum file name size was increased from 14 to 255 characters.

« The size of the inode number was increased from 16 to 32 bits, thus allowing an effec-
tively unlimited number of files.

« Symbolic links were introduced.

A symbolic link differs from a normal link in that it points to another file name, and not an
inode number.

* Don’t confuse the Berkeley FFS with SCO’s afs, which is sometimes referred to as a Fast File System.
In fact, afs is very similar to s5fs, though later versions have symbolic links and longer file names.

5 February 2005 02:09

Chapter 14: File systems 205

Symbolic links

A symbolic link is a fi le whose complete contents are the name of another fi le. To access via
a symboalic link, you fi rst need to fi nd the directory entry to which it is pointing, then resolve
the link to the inode. By contrast, a traditional link (sometimes called hard link) links a fi le
name to an inode. Several names can point to the same inode, but it only takes one step to
fi nd thefi le. This seemingly minor difference has a number of consequences:

* A defi nite relationship exists between the original fi le and the symbolic link. In anormal
link, each of the fi le names have the same relationship to the inode; in a symbolic link,
the symbolic link name refers to the main fi le name. This difference is particularly obvi-
ous if you remove the original file: with a normal link, the other name still works per-
fectly. With asymbolic link, you lose the fi le.

e Theré's nothing to stop a symbolic link from pointing to another symbolic link—in fact,
it's quite common, and is moderately useful. It also opens the possibility of looping: if
the second symbolic link points back to the fi rst, the system will give up after afew itera-
tions with the error code ELOCP.

* Symboalic links have two fi e permissions. In practice, the permission of the link itself is
of little consequence—normally it is set to allow reading, writing and execution for al
users (on an Is -1 listing you see | rwxr wxrwx). The permission that counts is still the
permission of the original fi le.

e Symboalic links allow links to different fi le systems, even (via NFS) to afi le system on a
different machine. Thisis particularly useful when using read-only media, such as CD-
ROMs. See Chapter 3, Care and feeding of source trees, page 39, for some examples.

* Symboalic links open up awhole new area of possible errors. It's possible for a symbolic
link to point to a fi le that doesn't exist, so you can’t access the fi le, even if you have a
name and the correct permissions.

Other file systems
Other fi le systems have emerged since ufs, including:

e TheSystem V file system, s5fs, aminor evolution of the Seventh Edition File system with
some performance and stability modifi cations, and without multiplexed fi les. Even in
System V, ufs has replaced it. For all practical purposes, you can consider it to be obso-
lete.

e The Veritas File System, vxfs and the Veritas Journalling File system, vjfs. From the
point of view of porting, they are effectively compatible with ufs.

« The Network File System, NFS,” a method of sharing fi le systems across networks. It
allows a system to mount fi le systems connected to a different machine. NFS runs on

* People just don’'t seem to be able to agree whether to write fi le system names in upper case (as befi ts
an abbreviation), or in lower case (the way most mount commands want to see them). It appears that
NFSiswritten in upper case more frequently than the other names.

5 February 2005 02:09

206

just about any system, including System V.3 and DOS, but unfortunately not XENIX. It
can offer a partial escape from the “14 character file limit, no symlinks” syndrome. It is
reasonably transparent, but unfortunately does not support device files.

+ Remote File Sharing, rfs. This is AT&T’s answer to NFS. Although it has a number of
advantages over NFS, it is not widely used.

Along with new file systems, new file types have evolved. We have already looked at sym-
bolic links, which we can think of as a new file type. Others include FIFOs (First In First
Out) and sockets, means of interprocess communications that we looked at in Chapter 12, Ker-
nel dependencies.

In practice, you run into problems only when you port software developed under ufs, vjfs or
vxfs to a s5fs system. If you can, you should change your file system. If you can’t do that,
here are some of the things that could give you headaches:

+ File name length. There’s very little you can do about this: if the file names are longer
than your kernel can understand, you have to change them. There are some subtle prob-
lems here: some 14-character file systems accept longer names and just silently truncate
them, others, notably SCO, signal an error. It should be fairly evident what your file sys-
tem does when you try to do it. If your system has the pat hconf system call, you can
also interrogate this programmatically (see page 212).

« Lack of symbolic links is another big problem. You may need far-reaching source
changes to get around this problem, which could bite you early on in the port: you may
have an archive containing symbolic links, or the configuration routines might try to cre-
ate them.

Another, more subtle difference is that BSD and System V do not agree on the question of

group ownership. In particular, when creating a file, the group ownership may be that of the
directory, or it may be that of the process that creates the file. BSD always gives the file the
group of the directory; in System V.4, it is the group of the process, unless the “set group ID”

bit is set in the directory permissions, in which case the file will belong to the same group as
the directory.

Function calls

The Seventh Edition left a surprising amount of functionality up to the system library. For
example, the kernel supplied no method to create a directory or rename a file. The methods
that were used to make up for these deficiencies were not always reliable, and in the course of
the time these functions have been implemented as system calls. Current systems offer the
following functions, some of them system calls:

chsize

chsi ze changes the end of file of an open file.

5 February 2005 02:09

Chapter 14: File systems 207

int chsize (int fd, long size);

It originated in XENIX and has been inherited by System V.3.2 and System V.4. It corre-
sponds both in function and in parameters to the System V version of f t r uncat e: if the new
end-of-fi le pointer is larger than the current end-of-fi le pointer, it will extend the fi le to the
new size.

dup2
All systems offer the system call dup, which creates a copy of afi le descriptor:
int dup (int oldd);

ol dd is an open fi le descriptor; dup returns ancther fi le descriptor pointing to the same fi le.
The problem with dup is that you don’t have any control over the number you get back: it's

the numerically smallest fi le descriptor currently not in use. In many cases, you want a spe-

cifi c number. Thisiswhat dup2 does:

int dup2 (int oldd, int newd);

With newd you specify the number of the new descriptor. If it's currently allocated, dup2
closes it first. You can fake this with dup, but it's painful. The F_DUPFD subfunction of
fcnt| doesthe same thing asdup2, so you can useit if it isavailable (see page 208). dup2 is
available on nearly every UNIX system, including the Seventh Edition. Somehow some ear-
lier versions of System V don't have it, however—recall that System V derived from the
Sixth Edition, not the Seventh Edition. See Chapter 1, Introduction, page 4.

fchdir and friends

Various systems offer functions with names like f chdi r, f chnod, f chown, and f chr oot .
These are effectively the same as the corresponding functions chdi r, chnod, chown, and
chr oot , except they take the number of an open fi leinstead of its name. For example:

#i ncl ude <sys/stat. h>

int chnmod (const char *path, node_t node);
int fchnod (int fd, node_t node);

You can replace them with a corresponding call to ch* if you know the name of the fi le asso-
ciated with the fi le descriptor; otherwise you could be in trouble.

fentl

All modern versions of UNIX supply afunction called f cnt | , which is rather like ani oct |
for disk fi les:

#i ncl ude <sys/fcntl. h>

int fentl (int fd, int cnd, union anything arg);

208

Table 14-1 shows common command values.

Table 14—1: fcnt| commands

Command System | Meaning

F_DUPFD all Duplicate a fi le descriptor, like dup. Return the lowest num-
bered descriptor that is higher than thei nt valuear g.

F GETFD all Get the close-on-exec flag associated with f d.

F SETFD all Set the close-on-exec flag associated with f d.

F FREESP SVR4, | Free storage space associated with a section of the filefd. See
Solaris | the section on fi le locking on page 230 for more details.

2.X
F GETFL all Get descriptor status flags (see below).
F SETFL all Set descriptor status flegsto ar g.

F GETOM BSD Get the process ID or the complement of the process group cur-
rently receiving Sl @ Oand Sl QURGsignals.

F GETOM SVR4 Get the user ID of the owner of the file. This function is not
documented for Solaris 2.X.

F _SETOM BSD Set the process or process group to receive Sl @ Oand S ARG
signals. If arg is negative, it is the complement of the process
group. If it ispositive, it isaprocessID.

F _SETOM SVR4 Set the user ID of the owner of thefi le. Thisfunction is not doc-
umented for Solaris 2.X.

F_GETLK all Get fi le record lock information. See the section on locking on
page 226, for more details.

F SETLK all Set or clear afi le record lock.

F_SETLKW | Al Set or clear afile record lock, waiting if necessary until it be-

comes available.

F GKFL SVR3 Check legality of fi le fleg changes.
F RSETLK SVR4 Used by lockd to handle NFS locks.
F RSETLKW | SVR4 Used by lockd to handle NFS locks.
F REETLK SVR4 Used by lockd to handle NFS locks.

As you can see from the table, ar g is not always supplied, and when it is, its meaning and
type vary depending on the call.

A couple of these functions deserve closer examination:;

5 February 2005 02:09

5 February 2005 02:09

Chapter 14: File systems 209

F_SETFD and F_GETFD manipulate the close on exec flag. This is normally defi ned in
sys/fentl.h as 1. Many programs use the explicit constant 1, which is theoretically non-
portable, but which works with current systems.

By default, exec inherits open fi les to the new program. If the close on exec flag is set,
exec automatically closes thefi le.

F GETOM and F_SETOM have very different meanings for BSD and System V.4. In
BSD, they get and set the process ID that receives Sl @ Oand SI QURGsignals; in System
V.4, they get and set the fi le owner, which can also be done with stat or fstat. There
is no direct equivalent to the BSD F SETOM and F_ GETOM in System V, since the
underlying implementation of non-blocking 1/0 is different. Instead, you call i oct|
with thel _SETS| Grequest—see page 225 for more details.

The request F_CGHKFL is defi ned in the System V.3 header fi les, but it is not documented.

F GETFL and F_SETFL get and set the fi le status flegs that were initally set by open. Ta-
ble 14-2 shows the flags.

Table 14-2: fcnt | file status flegs

Flag System Meaning

O NONBLAX | al Do not block if the operation cannot be performed immediate-
ly. Instead, theread or writ e cal returns -1 with err no set
to BWOULDBLOK.

O APPEND all Append each write to the end of fi le.

O ASYNC BSD Send a Sl A Osigna to the process group when 1/0O is possi-
ble.

O SYNC SystemV | wite waitsfor writes to complete before returning.

O RDA\LY SystemV | Open for reading only.

O ROWR SystemV | Open for reading and writing.

O WRO\LY SystemV | Open for writing only.

getdents and getdirentries

getdent s (System V.4) and getdirentri es (BSD) are marginally compatible system calls
that read a directory entry in afi le-system independent format. Both systems provide a header
fi le /usr/include/sys/dirent.h, which defi nes a struct dirent, but unfortunately the struc-
tures are different. In System V, the structure and the call are:

struct dirent

{

ino_t d_ino;
off _t d off;

5 February 2005 02:09

210

unsi gned short d_reclen;
char d_nane[1];

b
int getdents(int fd, struct dirent *buf, size_ t nbyte);
getdirentri es isthe corresponding BSD system call:

struct dirent

{

unsigned long d_fil eno; /* "file nunber" (inode nunber) of entry */
unsi gned short d_recl en; /* length of this record */

unsi gned short d_nanten; /* length of string in d_nane */

char d_name[MXNAMLEN + 1]; /* nane nust be no longer than this */
b

int getdirentries(int fd, char *buf, int nbytes, |ong *basep);

Because of these compatibility problems, you don't normally use these system calls
directly—you use the library call readdi r instead. See the description of r eaddi r on page
213 for more information.

getdtablesize

Sometimes it's important to know how many fi les a process is allowed to open. This depends
heavily on the kernel implementation: some systems have a fi xed maximum number of files
that can be opened, and may allow you to specify it as a confi guration parameter when you
build a kernel. Others allow an effectively unlimited number of fi les, but the kernel allocates
space for files in groups of about 20. Evidently, the way you fi nd out about these limits
depends greatly on the system you are running:

e On systems with a fixed maximum, the constant NCFILE, usualy defined in
Jusr/include/sys/param.h, specifi es the number of fi les you can open.

e On systems with a confi gurable maximum, you will probably also fi nd the constant
NCHl LE, only you can't rely on it to be correct.

« On some systems that allocate resources for fi les in groups, the size of these groups may
be defi ned in /usr/include/sys/filedesc.h as the value of the constant NDFI LE.

« BSD systems offer the function get dt abl esi ze (no parameters) that returns the maxi-
mum number of fi les you can open.

e Modern systems offer thegetrlimt system call, which alows you to query a number
of kernel limits. See Chapter 12, Kernel dependencies, page 169, for details of getr -
limt.

5 February 2005 02:09

Chapter 14: File systems 211

ioctl

i octl is a catchall function that performs functions that weren’t thought of ahead of time.
Every system has its own warts on ioctl, and the most common problem withi oct| isacall
with a request that the kernel doesn’'t understand. We can’t go into detail about every ioctl
function, but we do examine terminal driver ioctl calls in some depth in Chapter 15, Terminal
drivers, starting on page 252.

| stat

| stat isaversion of stat. Itisidentica tostat unless the pathname specifi es a symbolic
link. Inthiscase, | stat returnsinformation about the link itself, whereasst at returns infor-
mation about the fi le to which the link points. BSD and System V.4 support it, and it should
be available on any system that supports symbolic links.

[trunc

I t runc truncates an open fi le in the same way that f t r uncat e does, but the parameters are
more reminiscent of | seek:

int Itrunc (int fd, off_t offset, int whence);
fd isthefi le descriptor. of f set and whence specify the new end-of-fi le value:
e Ifwhence isSEEK SET, | trunc setsthefilesizetoof f set .

« If whence is SEEK QR I trunc sets the fi le size to of f set bytes beyond the current
seek position.

e Ifwhence isSEEK END, | t runc increasesthefi le size by of f set .

No modern mainstream system supports| t runc. You canreplaceacalltrunc (fd, off-
set, SEEK SET) withftruncate (fd, offset). If you have cals with SEEK OUR and
SEEK _END, you need to fi rst establish the corresponding offset with acall tol seek:

ftruncate (fd, Iseek (fd, offset, SEEK OR)); or SEEK END

mkdir and rmdir

Older versions of UNIX did not supply a separate system call to create a directory; they used
nknod instead. Unfortunately, this meant that only the superuser could create directories.
Newer versions supply nkdi r andr ndi r. The syntax is:

#i ncl ude <sys/stat. h>
int nkdir (const char *path, node_t node)

#i ncl ude <uni std. h>
int rndir (const char *path)

If your system does not have the nkdi r system call, you can simulate it by invoking the

5 February 2005 02:09

212

nkdi r utility with the library function syst em

open

Since the Seventh Edition, open has acquired a few new fegs. All modern versions of UNIX
support most of them, but the following differ between versions:

* ONDELAY is available only in earlier versions of System V. It applies to devices and
FIFOs (see Chapter 12, Kernel dependencies, page 165, for more information on FIFOSs)
and specifi es that both the call to open and subsequent 1/O calls should return immedi-
ately without waiting for the operation to complete. A call tor ead returns O if no datais
available, which is unfortunately also the value returned at end-of-fi le. If you don’t have
O NDELAY, or if thisambiguity bugs you, use O NCNBLOCK.

O NONBLOX specifi es that both the call to open and subsequent 1/0 calls should return
immediately without waiting for completion. Unlike O NDELAY, a subsequent call to
read returns-1 (error) if no datais available, and er r no is set to EAGAI N

e System V.4 and 4.4BSD have a flag, called O SYNC in System V.4 and O FSYNC in
4.4BSD, which specifi es that each call to writewri t e should write any buffered data to
disk and update the inode. Control does not return to the program until these operations
complete. If your system does not support this feature, you can probably just remove it,
though you lose a little bit of security. To really do the Right Thing, you can include a
call tof sync after every I/0O.

pathconf and fpathconf

pat hconf andf pat hconf are POSIX.1 functions that get confi guration information for afi le
or directory:

ncl ude <uni std. h>
long fpathconf (int fd, int nane);
I ong pat hconf (const char *path, int nane);

The parameter nane isani nt, not aname. Despite what it is called, it specifi es the action to
perform:

Table 14—-3: pat hconf actions

nane Function

_PC LI NK_MAX Return the maximum number of links that can be made to an
inode.

_PC MAX_CANON For terminals, return the maximum length of a formatted in-
put line.

PC MAX | NPUT For terminals, return the maximum length of an input line.

_PC NAME MAX For directories, return the maximum length of afi le name.

5 February 2005 02:09

Chapter 14: File systems 213

Table 14—-3: pat hconf actions (continued)

nane Function

_PC PATH MAX Return the maximum length of a relative path hame starting
with this directory.

_PC PIPE BWF For FIFQs, return the size of the pipe buffer.

_PC GHOM RESTRI CTED | return TRUE if the chown system call may not be used on this
file. If fd or path refer to a directory, then this information
appliesto al fi lesin the directory.

_PC NO TRUINC return TRUE if an attempt to create a fi le with a name longer
than the maximum in this directory would fail with ENAME-
TOAOLANG

_PC VD SABLE For terminals, return TRUE if special character processing can
be disabled.

read

The function r ead is substantially unchanged since the Seventh Edition, but note the com-
ments about O NDELAY and O NCNBLAK in the section about open on page 212.

rename

Older versions of UNIX don’t have a system call to rename afi le: instead, they make a link
and then delete the old fi le. This can cause problemsif the processis stopped in the middle of
the operation, and so the atomic r ename function was introduced. If your system doesn’t
have it, you can still do it the old-fashioned way.

revoke

revoke isused in later BSD versionsto close al fi le descriptors associated with a specid fi le,
even those opened by a different process. It is not available with System V.4. Typically, this
call is used to disconnect serial lines.

After a process has called r evoke, a cal to read on the device from any process returns an
end-of-fi le indication, a call to cl ose succeeds, and al other calls fail. Only the fi le owner
and the super user may use this call.

readdir and friends

In the Seventh Edition, reading a directory was simple: directory entries were 16 bytes long
and consisted of a 2-byte inode number and a 14 byte file name. This was defi ned in a
struct direct:

struct direct
{
ino_t d_ino;
char d_name[D RSl Z;

5 February 2005 02:09

214

}

With the introduction of ufs, which supports names of up to 256 characters, it was no longer
practical to reserve afi xed-length fi eld for the fi le name, and it became more diffi cult to access
directories. A family of directory access routines was introduced with 4.2BSD:

#i ncl ude <sys/types. h>

#include <dirent.h>

DR *opendir (const char *filenane);
struct dirent *readdir (DR *dirp);
long telldir (const DR *dirp);
voi d seekdir (DR *dirp, long loc);
void rewinddir (DR *dirp);

int closedir (DR *dirp);

int dirfd (DR *dirp);

Along with the Dl Rtype, thereisastruct dirent that corresponds to the Seventh Edition
struct direct. Unfortunately, System V defines struct dirent and D R differently
from the original BSD implementation. In BSD, itis

struct dirent /* directory entry */
{
unsi gned | ong d_fil eno; /* file nunber of entry */
unsi gned short d_reclen; /* length of this record */
unsi gned short d_nant en; /* length of string in d_nane */
char d_nane [255 + 1]; /* maxi mum nane | ength */
b

/* structure describing an open directory. */
typedef struct _dirdesc

{

int dd_fd; /* directory file descriptor */
long dd_I oc; /* offset in current buffer */

long dd_size; /* amount of data fromgetdirentries */
char *dd_buf; /* data buffer */

int dd_len; /* size of data buffer */

long dd_seek; /* magi c cookie fromgetdirentries */

} OR

System V defi nes

struct dirent

{

ino_t d_ino; /* inode nunber of entry */
off_t d off; /* offset of directory entry */
unsi gned short d_reclen; /* length of this record */

char d_nane [1]; /* nane of file */

IS

typedef struct

int dd_fd; /* file descriptor */
int dd_|l oc; /* offset in block */
int dd_size; /* amount of valid data */

5 February 2005 02:09

Chapter 14: File systems 215

char *dd_buf; /* directory block */
} DR /* streamdata fromopendir() */

There are anumber of ugly incompatibilities here:

e Thefieldd_filenointheBSD dirent structisnot afile descriptor, but an inode num-
ber. The System V name d_i no makes this fact clearer, but it introduces a name incom-
patiblity.

¢ A number of the BSD fi elds are missing in the System V structures. You can calculate
dirent.d nanten by subtracting the length of the other fields from
dirent.d recl en. For example, based on the System V di rent structure above:

d_namen = dirent.d_reclen
- sizeof (ino_t) /* length of the d_ino field */
- sizeof (d_off) /* length of the d_off field */
- sizeof (unsigned short); /* length of the d_reclen field */

System V.4 has two versions of these routines: a System V version and aBSD version. Many
reports have claimed that the BSD version is broken, though it's possible that the program-
mers were using the wrong header fi les. |f you do run into trouble, you should make sure the
header fi les match the flavour of di rent and D Rthat you have.

readv and writev

readv and wri tev perform a so-called scatter read and gather write. These functions are
intended to write to afi le a number of pieces of data spread in memory, or to read from afile
to anumber of places.

#i ncl ude <uni std. h>

#i ncl ude <sys/types. h>

#i ncl ude <sys/ ui o. h>
insys/uio.his the definition:
struct iovec

{

caddr_t iov_base;
int iov_|en;
b

int readv(int d, struct iovec *iov, int iovcnt);
int witev (int d, struct iovec *iov, int iovcnt);

Each i ovec element specifi es an address and the number of bytes to transfer to or from it.
The total number of bytes transferred would be the sum of thei ov_| en fi elds of all i ovent
elements. readv and wri t ev are available only for BSD and System V.4 systems—if you

don't have them, it's relatively easy to fake them in terms of read or wite. The reasons
why these calls exist at all are;

* Some devices, such as tape drives, write a physical record for each call towite. This
can result in asignifi cant drop in performance and tape capacity.

5 February 2005 02:09

216

» For tape drives, the only alternative is to copy the data into one block before writing.
This, too, impacts performance, though not nearly as much as writing smaller blocks.

» Even for devices that don’t write a physical block per wi t e, it's faster to do it in the
kernel with just a single function call: you don’t have as many context switches.

statfs and statvfs

statfs orstat vfs return information about afi le system in aformat referred to as a generic
superblock. All current UNIX versions supply one or the other of these functions, but the
information they return varies greatly. XENIX, System V.3, BSD, and BSD-derived SunOS
operating systems supply st at f s. System V.4 suppliesst at vf s.

BSD systems defi nest at f s like this:

typedef quad fsid_t;

#def i ne MNAMELEN 32 /* length of buffer for returned name */
struct statfs

{

short f_type; /* type of filesystem(see bel ow) */

short f_flags; /* copy of mount flags */

| ong f_fsize; /* fundanental file systembl ock size */

| ong f _bsi ze; /* optimal transfer block size */

| ong f_bl ocks; /* total data blocks in file system*/

| ong f_bfree; /* free blocks in fs */

| ong f_bavail ; /* free bl ocks avail to non-superuser */

| ong f_files; /* total file nodes in file system*/

| ong f_ffree; /* free file nodes in fs */

fsidt f_fsid; /* file systemid */

| ong f_spare[6]; /* spare for later */

char f _mmt onnarme[MNAMELEN ; /* nount poi nt */
char f_mt frommane] MMAMELEN ; /* nounted fil esystem*/

}
Sun0S 4.1.3 defi nesthem as:

ncl ude <sys/vfs. h>

typedef struct

{
| ong val[2];
} fsid t;
struct statfs
{
I ong f_type; /* type of info, zero for now */
| ong f_bsi ze; /* fundanental file systembl ock size */
| ong f _bl ocks; /* total blocks in file system*/
I ong f_bfree; /* free bl ocks */
| ong f_bavail ; /* free bl ocks avail abl e to non-super-user */
| ong f_files; /* total file nodes in file system?*/
| ong f_ffree; /* free file nodes in fs */

Chapter 14: File systems 217

fsidt f_fsid; /* file systemid */
| ong f_spare[7]; /* spare for later */

b
System V.3 and XENIX defi ne:

struct statfs

short f_fstyp; /* File systemtype */

long f_bsize; /* Block size */

long f_frsize; /* Fragnent size (if supported) */

long f_bl ocks; /* Total nunber of blocks on file system*/
long f_bfree; /* Total nunber of free bl ocks */

long f_files; /* Total nunber of file nodes (inodes) */
long f_ffree; /* Total nunber of free file nodes */

char f_fnane[6]; /* Vol ume nare */

char f_fpack[6]; /* Pack nane */

IS

int statfs (const char *path, struct statfs *buf);
int fstatfs (int fd, struct statfs *buf);

System V.4 and Solaris 2.X usest at vf s, which is defi ned as

#i ncl ude <sys/types. h>
#i ncl ude <sys/statvfs. h>

struct statvfs

{
u_long f_bsize; /* preferred file systembl ock size */
ulong f_frsize; /* fundanental filesystembl ock size */
u_long f_blocks; /* total # of blocks on file system*/
u_long f_bfree; /* total # of free bl ocks */
ulong f_bavail; /* # of free bl ocks avail able */
ulong f_files; /* total # of file nodes (inodes) */
u_long f_ffree; /* total # of free file nodes */
ulong f_favail; /* # of inodes available */
ulong f_fsid; /* file systemid (dev for now */
char f _baset ype [FSTYPSZ]; /* target fs type nane */
ulong f_flag; /* bit mask of flags */
u_long f_namenax; /* maxi numfile name length */
char f_fstr [32]; /* file systemspecific string */
ulong f_filler [16]; /* reserved for future expansion */
b
#define ST_RDONLY 0x01 /* read-only file system*/
#define ST_ NOBUD 0x02 /* does not support setuid/setgid */
#def i ne ST_NOTRUNC 0x04 /* does not truncate long file names */

int statvfs (const char *path, struct statvfs *buf);
int fstatvfs (int fd, struct statvfs *buf);

There's not much to say about these functions; if you have problems, hopefully this informa-
tion will help you fi gure out what the author intended.

5 February 2005 02:09

5 February 2005 02:09

218

symlink
synml i nk createsa symboalic link in fi le systems that support symbolic links:

#i ncl ude <uni std. h>

int symink (const char *real name, const char *synbolic_nane);

A symbolic link synbol i c_nare is created to the namer eal _nane.

sysfs

sysf s isa System V function that returns information about the kinds of fi le systems confi g-
ured in the system. This function has the rather strange property of not being compatible with
ANSI C—the parameters it accepts depend on the function supplied:

#i ncl ude <sys/fstyp. h>
#i ncl ude <sys/fsid. h>

int sysfs ((int) GETFSIND, const char *fsnane);

This call trandates f snane, a null-terminated fi le-system type identifi er, into a fi le-system
type index.

int sysfs ((int) GETFSTYP, int fs_index, char *buf);

Thiscall trandatesf s_i ndex, afi le-system type index, into a NUL-terminated fi le-system type
identifi er in the buffer pointed to by buf.

int sysfs((int) GETNFSTYP);

This call returns the total number of fi le system types confi gured in the system.

truncate and ftruncate

These functions set the EOF pointer of afile. truncat e fi nds the fi le via its fi le name, and
ftruncat e requires the fi le number of an openfi le.

ncl ude <uni std. h>
int truncate (const char *path, off_t length);
int ftruncate (int fd, off _t length);

These functions are available with BSD and System V.4. Thereis a subtle difference between

the way the BSD and System V.4 versions work: if the file is smaller than the requested
length, System V.4 extends the fi le to the specifi ed length, while BSD leavesit asit is. Both
versions discard any data beyond the end if the current EOF is longer.

If your system doesn’t have these functions, you may be able to perform the same function
with chsi ze (page 206) or thef cnt | function F_FREESP (page 208).

5 February 2005 02:09

Chapter 14: File systems 219

ustat

ust at returns information about a mounted fi le system, and is supported by System V and
SunOS 4, but not by BSD. Thecal is:

struct ustat

{

daddr_t f_tfree; /* Total blocks available */
ino_t f_tinode; /* Nunber of free inodes */
char f_fnane [6]; /* File systemnane */

char f_fpack [6]; /* File systempack nane */

int ustat (dev_t dev, struct ustat *buf);

On BSD systems, you can get this information with the st at f s system call, which requires a
path name instead of a device number.

utime and utimes
uti ne isavailablein al versions of UNIX.

#i ncl ude <sys/types. h>
#i ncl ude <utine. h>

int utine (const char *path, const struct utinbuf *tines);

uti me sets the modifi cation timestamp of the fi le defi ned by pat h to the time specifi ed in
times. In the Seventh Edition, ti nes was required to be a valid pointer, and only the fi le
owner or root could use the cal. All newer versions of UNIX allow ti mes to be a NULL
pointer, in which case the modifi cation timestamp is set to the current time. Any process that
has write access to the fi le can use ut i ne in this manner. BSD implements this function in
the C library in terms of the function ut i nes:

#i ncl ude <sys/tine. h>
sys/tine. h defines:
struct tineval
{
long tv_sec; /* seconds */
I ong tv_usec; /* and m croseconds */
h

int utines (const char *file, const struct tineval *times);

#i ncl ude <sys/types. h>
#i ncl ude <utine. h>
utine. h defines:

struct uti mbuf

{

tine_t actineg; /* access tine */
tine_t nodtineg; /* nodification tinme */
b

int utine (char *path, struct utinbuf *tines);

5 February 2005 02:09

220

The difference between ut i e and ut i nes is simply in the format of the accesstime: uti ne
suppliesthetimeinti me_t format, which is accurate to a second, whereas ut i mes uses the
timeval struct which is (theoretically) accurate to one microsecond. BSD systems supply
the ut i me function as alibrary call (which, not surprisingly, callsuti nes). On XENIX and
early System V systemsyou can fake ut i mes using ut i ne.

Non-blocking I/0

In early versions of UNIX, all device 1/0O was blocking: if you made a call to read and no
data was available, or if you made a call towri t e and the device wasn't ready to accept the
data, the process would sleep until the situation changed. Thisis still the default behaviour.

Blocking /O can be restrictive in many situations, and many schemes have been devised to
alow a process to continue execution before the 1/0O operation completes. On current sys-
tems, you select non-blocking /O either by supplying the fleg O NCNBLOCK to open, or by
caling thefcnt | function F_SETFL with the O NCNBLOXK flag (see page 209).

One problem with non-blocking /O is that you don’'t automatically know when a request is

complete. In addition, if you have multiple requests outstanding, you may not really care
which fi nishes fi rst, you just want to know when one fi nishes.

Two approaches have been used to inform a process when a request completes. Oneisto call
afunction that returns information about current request status, and that may optionally block
until something completes. Traditionally, BSD uses sel ect to perform this function,
whereas System V usespol | .

The other solution isto send asignal (S| GPCLL in System V, Sl @ Oor SI GURGin BSD) when
the reguest fi nishes. In both systems, this has the disadvantage of not supplying any informa-
tion about the reguest that completed, so if you have more than one request outstanding, you
still need to call sel ect or pol | to handle the situation.

select

sel ect iscaled with the following parameters:

#define FD _SETSI ZE 512 ny naxi num FD count, see bel ow
#i ncl ude <uni std. h>

#i ncl ude <sys/types. h>

#i ncl ude <sys/tine. h>

These header fi les defi ne the structs:

typedef struct fd_ set
{
fd_nmask fds_bits [howrany (FD SETSI ZE, NFDBITS)];
} fd_set;

struct tineval

{
long tv_sec; /* seconds */
long tv_usec; /* and m croseconds */

5 February 2005 02:09

Chapter 14: File systems 221

}

int select (int nfds, fd_set *readfds, fd_set *witefds, fd_set *exceptfds,
struct timeval *tineout);

The parameters r eadf ds, wri t ef ds, and except f ds are bit maps, one bit per possible fi le
descriptor. Recall that fi le descriptors are small non-negative integers. sel ect uses the file
descriptor as an index in the bit map.

This gives us a problem when porting: we don’'t know how many fi les our implementation
supports. In modern systems, there is usually no fi xed limit. The solution chosen is a kludge:
“choose a suffi ciently high number”. The expression howrany (FD SETSI ZE, NFDBI TS)
evaluates to the number of words of NFDBI TS required to store FD_SETS ZE hits:

#def i ne howmrany(bits, wordsize) ((bits + wordsize - 1) / wordsize)

In 4.4BSD FD SETS ZE defaults to 256 (in sys/types.h). Nowadays, a server with many
reguestors could quite easily exceed that value. Because of this, you can set it yourself: just
defi ne FD_SETSl ZE before including /usr/include/sys/types.h, as indicated in the syntax over-
view above.

Setting variables of typef d_nask istricky, so a number of macros are supplied:

FD SET (fd, & dset) /* set bit fd in fdset*/

FD AR (fd, &dset) /* clear bit fd in fdset */

FD | SSET (fd, & dset) /* return value of bit fd in fdset */
FD ZERO (& dset) /* clear all bits in fdset */

sel ect examines the fi les specifi ed in readf ds for read completion, the fi les specifi ed in
writefds for write completion and the fi les specifi ed in except f ds for exceptional condi-
tions. You can set any of these pointers to NULL if you're not interested in this kind of event.
The action that sel ect takes depends on the value of t i neout :

o If timeout isaNJL pointer, sel ect blocks until a completion occurs on one of the
specifi ed fi les.

e If both timeout ->tv_sec and tineout->tv_usec are set to 0, sel ect checks for
completions and returns immediately.

e Otherwisesel ect waitsfor completion up to the specifi ed timeout.

sel ect returns-1 on error conditions, and the number of ready descriptors (possibly O) other-

wise. It replaces the contents of r eadf ds, wri t ef ds, and except f ds with bit maps indicat-

ing which fi les had a corresponding completion.

So far, we haven't even mentioned nf ds. Strictly speaking, it's not needed: you use it to indi-

cate the number of fi le descriptors that are worth examining. By default, open and dup allo-
cate the lowest possible fi le descriptors, so sel ect can save a lot of work if you tell it the
highest fi le number that is worth examining in the bit maps. Since fi le descriptors start at 0,
the number of fi le descriptorsis 1 higher than the highest fi e descriptor number.

This baroque function has a couple of other gotchas waiting for you:

5 February 2005 02:09

222

The state of readf ds, wri t ef ds, and except f ds is undefi ned if sel ect returns O or
-1. System V clears the descriptors, whereas BSD leaves them unchanged. Some Sys-
tem V programs check the descriptors even if O is returned: this can cause problems if
you port such a program to BSD.

The return value is interpreted differently in BSD and System V. In BSD, each comple-
tion event is counted, so you can have up to 3 completions for asingle fi le. In System V,
the number of fi leswith completionsis returned.

On completion without timeout, Linux decrements the value of ti neout by the time

elapsed sincethe call: if ti meout wasinitially set to 30 seconds, and I/0O completes after

5 seconds, the value of t i neout on return from sel ect will be 25 seconds. This can be

of useif you have a number of outstanding requests, al of which must completein a cer-

tain time: you can call sel ect again for the remaining fi le descriptors without fi rst cal-
culating how much time remains.

In Linux, this feature can be disabled by setting the STI CKY_TI MEQUTS fhg in the

COFF/ELF personality used by the process. Other versions of UNIX do not currently

suppport this feature, although both System V and BSD suggest that it will be imple-

mented. For example, the man pages for 4.4BSD state:

Select() should probably return the time remaining from the original timeout, if any, by modi-
fying the time value in place. This may be implemented in future versions of the system.
Thus, it is unwise to assume that the timeout value will be unmodifi ed by the select() call.

If you find a system without sel ect that does support pol |, you can probably replace

sel

ect withpol | —it'sjust aSMOP”

Typical use of select

Programs which use sel ect generally start a number of 1/0O transfers and then go to some
central place to wait for something to happen. The code could look like:

if (select (nmaxfnum /* nunber of files to check */
&r eadf ds, /* mask of read conpletions */
&writefds, /* mask of wite conpletions */
&except f ds, /* nmask of exception conpletions */
NULL) > 0) /* no tineout */
{ /* we have conpl etions, */
int fd;

for (fd =0; fd < maxfnum fd++)

if (FDISSET (fd, readfds)) /* this file has a read conpl etion */
read_conpl etion (fd); /* process it */

if (FDISSET (fd, witefds)) /* this file has a wite conpletion */
wite_conpletion (fd); /* process it */

if (FDISSET (fd, exceptfds)) /* this file has a exception conpl etion */

* To quote the New Hacker’s Dictionary: SMOP: /S-M-O-P/ [Smple (or Small) Matter of Program-
ming] n. 2. Often used ironically ... when a suggestion for a program is made which seems easy to
the suggester, but is obvioudly (to the victim) a lot of work.

5 February 2005 02:09

Chapter 14: File systems 223

exception_conpl etion (fd); /* process it */

}

As we saw above, FD | SSET is a macro which checks if bit fd is set in the bit mask. The
foo_conpl et i on functions do whatever is needed on completion of 1/O for this fi le descrip-
tor. See Advanced Programming in the UNIX environment, by Richard Stevens, for further
information.

pol
pol | takesadifferent approach from sel ect :

#incl ude <stropts. h>
ncl ude <pol | . h>

inpoll.his the definition
struct pollfd

{

int fd; /* file descriptor */
short events; /* requested events */
short revents; /* returned events */

b

int poll (struct pollfd *fds, unsigned |long nfds, int tineout);

For each fi le of interest, you set up apol | fd element with the fi le number and the events of
interest. events andrevent s are again bit maps. event s can be made up of the following
values:

Table 14—4: pol | event codes

Event Meaning

PCLLIN Data other than high priority datais available for reading.

PCLLRONGRM | Normal data” (priority band = 0) is available for reading.

POLLRDBAND | Datafrom anon-zero priority band is available for reading.

PCLLPR High priority datais available for reading.

PALLQJT Normal data may be written without blocking.

POLLWANCRM | The same as POLLOUT: normal data may be written without blocking.
POLLWRBAND | Priority data (priority band > 0) may be written without blocking.

When it succeeds, pol | sets the corresponding bits in revent s to indicate which events

* STREAMS recognizes 256 different data priority bands. Normal datais sent with priority band 0, but
urgent data with a higher priority can "leapfrog” normal data. See UNIX Network Programming, by W.
Richard Stevens, for further information.

5 February 2005 02:09

224

occurred. In addition, it may set the following event bits:

Table 14-5: pol | result codes

Event Meaning

PCLLERR An error has occurred on the device or stream.
PQLLHUP A hangup has occurred.

POLLNVAL | The specifi ed fd is not open.

Timeout processing is nearly the same as for sel ect , but the parameter t i meout is specifi ed
in milliseconds. Since it isani nt, not a pointer, you can’'t supply a NLLL pointer; instead,
you set the value to | NFTI M(defi ned in stropts.h) if you want the call to block.. To summa-
rize:

e Iftineout issettol NFTI M pol | blocks until a completion occurs on one of the speci-
fi edfi les.

e Iftineout issetto0, acheck ismadefor completionsand pol | returnsimmediately.

e Iftineout isnon-zero, pol | waitsfor completion up to the specifi ed timeout.

Typical use of poll

Likesel ect , programs which use pol | generaly start a number of 1/0O transfers and then go
to some central place to wait for something to happen. In this case, the code could look like:

if (poll (pollfds, maxfnum NJL) > 0) /* wait for sonething to conplete */

{
int fd;
for (fd =0; fd < maxfnum fd++)

if (pollfds [fd].revents) /* sonething conpl eted */
. check the result bits which interest you and
performthe appropriate actions
}
}

The code for starting the request and enabling Sl @ Oand SI GURGfor the line assumes that the
fi le has been opened and the number stored in an array of fi le numbers.

rdchk

rdchk is a XENIX function that checks if data is available for reading on a specifi ¢ file
descriptor:

int rdchk (int fd);

It returns 1 if data is available, O if no data is currently available, and -1 on error (and err no
isset). If you don’t haveit, you can implement it in terms of sel ect or pol | .

5 February 2005 02:09

Chapter 14: File systems 225

SIGPOLL

System V systems can arrange to have the signal Sl GPCLL delivered when a request com-
pletes. It is not completely genera: the fi le in question must be a STREAMS device, since
only STREAMS drivers generate the S GPCLL signal.

Theioctl cal | _SETS Genables S GPALL. The third parameter specifi es a bit mask of
eventsto wait for:

Table 14—6: | _SETSl Gevent mask bits

Mask bi t Event

S I NPUT A normal priority message is on the read queue.

S HPR A high priority message is on the read queue.

S QUTPUT The write queue is no longer full.

S WANORM | Thesamething asS_QJTPUT: The write queueis no longer full.
S MG A signal messageis at the front of the read queue.

S ERRR An error message has arrived at the stream head.

S HANAP A hangup message has arrived at the stream head.

S RONORM | A normal message is on the read queue.

S ROBAND | Anout of band message is on the read queue.

S WRBAND We can write out of band data.

S BANDURG | Inconjunction with S RDBAND, generate Sl QRGinstead of S| GPQLL.

In addition to the call to ioctl, the process needs to set up a signal handler for SI G
PCA_L—the default disposition is to terminate the process, which is probably not what you
want.

SIGIO

BSD systems have a similar mechanismto Sl GPCLL, called Sl @ QO Like Sl GPCLL, it also has
its restrictions: it can be applied only to terminal or network devices. In addition, when out-
of-band data’ arrives, a second signal, Sl ARG is generated. S @ Oand S| QURG are enabled
by the O ASYNC flag to open and a couple of callstof cnt | —see page 209 for more details:

e First, specify the process or process group that should receive the signals, using the
fentl subfunction F_ SETOMN N order to enable reception of SI AURG

e If you want to use Sl A Q set the O ASYNC fi le status flag with the f cnt | subfunction
F SETFL.

* Aswith System V, you need to defi ne asignal handler for S @ Oand SI QARG

* Sockets use the term out-of-band to refer to data which comes in at a higher priority, such as TCP
urgent mode. Like STREAMS priority data, this datawill be presented ahead of normal data.

226

File locking

The Seventh Edition did not originally alow programs to coordinate concurrent access to a
file. If two users both had a fi le open for modifi cation at the same time, it was almost impos-
sible to prevent disaster. Thisis an obvious disadvantage, and al modern versions of UNIX
supply some form of fi le locking.

Before we look at the functions that are available, it's a good idea to consider the various

kinds of lock. There seem to be two of everything. First, the granularity is of interest:

file locking applies to the wholefi le.

range locking applies only to arange of byte offsets. This is sometimes misleadingly
called record locking.

With fi le locking, no other process can access the fi le when a lock is applied. With range

locking, multiple locks can coexist as long as their ranges don't overlap. Secondly, there are

two types of lock:

Advisory locks do not actually prevent access to the fi le. They work only if every par-
ticipating process ensures that it locks the fi le before accessingit. If the
fi leis already locked, the process blocks until it gains the lock.

mandatory locks prevent (block) read and write access to the fi le, but do not stop it from
being removed or renamed. Many editors do just this, so even manda-
tory locking hasits limitations.

Finally, there are also two ways in which locks cooperate with each other:

exclusive locks alow no other locks that overlap the range. Thisisthe only was to per-
form fi le locking, and it implies that only a single process can access
thefi leat atime. These locks are also called also called write locks.

shared locks alow other shared locks to coexist with them. Their main purposeisto
prevent an exclusive lock from being applied. In combination with
mandatory range locking, awrite is not permitted to a range covered by
ashared lock. Theselocks are also called read locks.

There arefi ve different kinds of fi le or record locking in common use:

e Lock files, also called dot locking, is a primitive workaround used by communication pro-
grams such as uucp and getty. It is independent of the system platform, but since it is
frequently used we'll look at it briefly. 1t implements advisory fi le locking.

« After the initia release of the Seventh Edition, a fi le locking package using the system
cal | ocki ng was introduced. It is till in use today on XENIX systems. It implements
mandatory range locking.

« BSD systems havethe system call f | ock. Itimplements advisory fi le locking.

e System V, POSIX.1, and more recent versions of BSD support range locking via the
fentl system call. BSD and POSIX.1 systems provide only advisory locking. System
V supplies a choice of advisory or mandatory locking, depending on the fi le permissions.
If you need to rewrite locking code, thisis the method you should use.

5 February 2005 02:09

5 February 2005 02:09

Chapter 14: File systems 227

e System V also supplies range locking via the | ockf library call. Again, it supplies a
choice of advisory or mandatory locking, depending on the fi le permissions.

The decision between advisory and mandatory locking in System V depends on the fi le per-
missions and not on the call tofcnt| or | ockf. The setgid bit is used for this purpose. Nor-
mally, in executables, the setgid bit specifi es that the executable should assume the effective
group ID of its owner group when execed. On fi les that do not have group execute permis-
sion, it specifi es mandatory locking if it is set, and advisory locking if it is not set. For exam-
ple,

e A file with permissions 0764 (rwxrwr--) will be locked with advisory locking, since
its permissions include neither group execute nor setgid.

e A file with permissions 0774 (rwxrwxr - -) will be locked with advisory locking, since
its permissions don't include setgid.

* A filewith permissions 02774 (r wkr wsr - -) will be locked with advisory locking, since
its permissions include both group execute and setgid.

« A file with permissions 02764 will be locked with mandatory locking, since it has the
setgid bit set, but group execute is not set. If you list the permissions of this fi le with Is
-, you get rwxrw r-- on a System V system, but many versions of Is, including BSD
and GNU versions, will list rwxrwsr - - .

Lock files

Lock fi les are the traditional method that uucp uses for locking serial lines. Seria lines are
typically used either for dialing out, for example with uucp, or dialing in, which is handled by
a program of the getty family. Some kind of synchronization is needed to ensure that both of
these programs don't try to access the line at the same time. The other forms of locking we
describe only apply to disk fi les, so we can’'t use them. Instead, uucp and getty create lock
files. A typical lock fi le will have a name like /var/spool/uucp/LCK..ttyb, and for some reason
these double periodsin the name have led to the term dot locking.

The locking agorithm is straightforward: if a process wants to access a seria line /dev/ttyb, it
looks for a fi le /var/spool/uucp/LCK..ttyb. If it fi nds it, it checks the contents, which specify
the process ID of the owner, and checks if the owner still exists. If it does, the fi le is locked,
and the process can't access the serial line. If the fi le doesn’t exist, or if the owner no longer
exists, the process creates the fi le if necessary and putsits own process ID in thefi le.
Although the algorithm is straightforward, the naming conventions are anything but standard-
ized. When porting software from other platforms, it is absolutely essential that all programs
using dot locking should be agreed on the lock fi le name and its format. Let'slook at the lock
fi le names for the device /dev/ttyb, which is major device number 29, minor device number 1.
Thels-I listing looks like;

$1s -1 /devittyb
crwerwrw 1 root sys 29, 1 Feb 25 1995 /dev/ttyb

5 February 2005 02:09

228

Table 14-7 describes common conventions:

Table 14—7: uucp lock file names and formats

System Name PID format

4. 3BSD Jusr/spool/uucp/LCK..ttyb binary, 4 bytes
4. 4BSD Ivar/spool/uucp/LCK..ttyb binary, 4 bytes
SystemV. 3 | /usr/spool/uucp/LCK..ttyb ASCII, 10 bytes

SystemV. 4 | /var/spool/uucp/LK.032.029.001 | ASCII, 10 bytes

A couple of pointsto note are:

The digits in the lock fi le name for System V.4 are the major device number of the disk
on which /dev is located (32), the major device number of the serial device (29), and the
minor device number of the seria device (1).

Some systems, such as SCO, have multiple names for terminal lines, depending on the
characteristics which it should exhibit. For example, /dev/ttyla refersto aline when run-
ning without modem control signals, and /dev/tty1A refers to the same line when running
with modem control signals. Clearly only one of these lines can be used at the same
time: by convention, the lock fi le name for both devicesis/usr/spool/uucp/LCK..ttyla.

The locations of the lock fi les vary considerably. Apart from those in the table, other
possibilities are [etc/locks/LCK..ttyb, {usr/spool/locks/LCK..ttyb, and
Jusr/spool/uucp/LCK/LCK..ttyb.

Still other methods exist. See the fi le policy.h in the Taylor uucp distribution for further
discussion.

Lock fi les are unreliable. It is quite possible for two processes to go through this algorithm at
the same time, both fi nd that the lock file doesn't exist, both create it, and both put their
process ID init. Theresult is not what you want. Lock fi les should only be used when there
isreally no alternative.

locking system call

| ocki ng comes from the original implementation introduced during the Seventh Edition. It
isdtill availablein XENIX. It implements mandatory range locking.

int locking (int fd, int node, |ong size);

I ocki ng locks ablock of data of length si ze bytes, starting at the current position in thefi le.

5 February 2005 02:09

Chapter 14: File systems

229

node can have one of the following values:

Table 14-8: | ocki ng operation codes

Paraneter | Meaning

LK LOX Obtain an exclusive lock for the specifi ed block. If any part is not avail-
able, sleep until it becomes available.

LK_NBLCK Obtain an exclusive lock for the specifi ed block. If any part is not avail-
able, the request fails, and er r no is set to EACCES.

LK NBRLCK | Obtains a shared lock for the specifi ed block. If any part is not available,
the request fails, and er r no is set to EACCES.

LK R Obtain a shared lock for the specifi ed block. If any part is not available,
sleep until it becomes available.

LK UNLCK Unlock a previously locked block of data.

flock

f 1 ock isthe weakest of all thelock functions. It provides only advisory fi le locking.

#incl ude <sys/file.h>
(defined in sys/file.h)

#defi ne
#defi ne
#def i ne
#defi ne

int flock (int fd,

LOXK_SH
LOK_EX
LOXK_NB
LOK_UN

/* shared | ock */

/* exclusive | ock */

/* don't bl ock when | ocking */
/* unl ock */

AN

int operation);

f1 ock applies or removes alock on fd. By default, if alock cannot be granted, the process
blocks until the lock is available. If you set the feg LOCK NB, fl ock returns immediately
with er r no set to BAOULDBLOCK if the lock cannot be granted.

fentl locking

On page 207 we discussed f cnt | , afunction that can perform various functions on open fi les.
A number of these functions perform advisory record locking, and System V aso offers the
option of mandatory locking. All locking functions operate on ast ruct f1 ock:

struct flock

{

short | _type;
short | _whence;
off t | _start;

off _t I_len;
long | _sysid;
pidt |_pid;

/* lock type: read/wite, etc. */

/* type of | _start */

/* starting offset */

/* len = 0 nmeans until end of file */
/* Only SWR4 */

/* 1 ock owner */

230

}
In this structure,

| _type specifi esthetype of the lock, listed in Table 14-9.

Table 14—-9: fl ock. | _type vaues

vdue | Function

F ROLCK | Acquirearead or shared lock.

F WRLCK | Acquire awrite or exclusive lock.
F UNLCK | Clear the lock.

The offset is specified in the same way as a file offset is specified to | seek:
f1 ock- > _whence may be set to SEEK SET (offset is from the beginning of the fi le),
SEEK AR (offset is relative to the current position) or SEEK _ECF (offset is relative to the
current end of fi le position).

All fentl lock operations use this struct, which is passed tof cnt| asthear g parameter. For
example, to perform the operation F_FQOOLK, you would write:

struct flock flock;
error = fentl (nyfile, F_FOOK &l ock);

Thefollowingfcnt| operations relate to locking:

5 February 2005 02:09

F _GETLK gets information on any current lock on the file. when calling, you set the
fieldsfl ock->l _type, fl ock-> whence, fl ock-> start, and fl ock->l |en to
the value of alock that we want to set. If alock that would cause alock request to block

already exists, fl ock is overwritten with information about the lock. The fied
fl ock->l _whence is set to SEEK SET, and fl ock-> _start is set to the offset in the
file. fl ock->l pidissetto the pid of the process that ownsthe lock. If thelock can be
granted, f| ock->l _type issetto F_ UNLK and the rest of the structure is left unchanged,

F SETLK triesto set alock (fl ock->l type set to F ROLCK or F WRLCK) or to reset a
lock (flock-> type set to F UNLCK). If alock cannot be obtained, fcnt| returns
with er r no set to EAQCES (System V) or EAGAI N (BSD and POSIX).

F_SETLKWworks like F_SETLK, except that if the lock cannot be obtained, the process
blocks until it can be obtained.

System V.4 has a further function, F_FREESP, which usesthestruct fl ock, but in fact

has nothing to do with fi le locking: it frees the space defi ned by fl ock->l _whence,
flock-> _start, and fl ock->l | en. The datain this part of the file is physically
removed, a read access returns ECF, and a write access writes new data. The only reason

this operation uses the struct fl ock (and the reason we discuss it here) is because
struct fl ock has suitable members to describe the area that needs to be freed. Many

fi le systems allow data to be freed only if the end of the region corresponds with the end
of fi le, in which case the call can bereplaced withft runcat e.

5 February 2005 02:09

Chapter 14: File systems 231

|ockf

| ockf isalibrary function supplied only with System V. Likefcntl , it implements advisory
or mandatory range locking based on the fi le permissions. In some systems, it isimplemented
intermsof fcnt | . It supports only exclusive locks:

#i ncl ude <uni std. h>

int lockf (int fd, int function, long size);

The functions are similar to those supplied by fcnt | . | _t ype specifi es the type of the lock,
as shown in Table 14-10.

Table 14—10: | ockf functions

value Function

F_ UOX | Unlock therange.

F LOX Acquire exclusive lock.

F TLOX | Lock if possible, otherwise return status.
F_TEST Check range for other locks.

| ockf does not specify a start offset for the range to be locked. This is aways the current
position in the fi le—you need to use | seek to get there if you are not there already. The fol-
lowing code fragments are roughly equivalent:

flock->type = F WRLK; /* lockf only supports wite |ocks */
f1 ock->whence = SEEK SET;

flock-> _start = filepos; /* this was set el sewhere */

flock-> _len = reclen; /* the length to set */

error = fentl (nyfile, F_ GETLK &l ock);
..and

Iseek (nyfile, SEEK SET, filepos); /* Seek the correct place in the file */
error = |ockf (nyfile, F LOX reclen);

Which locking scheme?

As we've seen, fi le locking is a can of worms. Many portable software packages offer you a
choice of locking mechanisms, and your system may supply a number of them. Which do
you take? Here are some rules of thumb:

« fentl locking is the best choice, as long as your system and the package agree on what it
means. On System V.3 and V.4, fcnt| locking offers the choice of mandatory or advi-
sory locking, whereas on other systems it only offers advisory locking. If your package
expects to be able to set mandatory locking, and you're running, say, 4.4BSD, the pack-
age may not work correctly. If this happens, you may have to choose f 1 ock locking
instead.

232

e If your system doesn’'t have f cnt | locking, you will ailmost certainly have either f | ock
or | ockf locking instead. If the package supports it, use it. Pure BSD systems don’t
support | ockf , but some versions simulate it. Since | ockf can also be used to require
mandatory locking, it's better to use fI ock on BSD systems and | ockf on System V
systems.

* You'll probably not come across any packages which support | ocki ng. If you do, and
your system supportsit, it's hot a bad choice.

o If al elsefails, use lock fi les. Thisisavery poor option, though—it's probably a better
ideato consider a more modern kernel.

Memory-mapped files

Some systems offer a feature called memory mapped fi les: the data of afile is mapped to a
particular area of memory, so you can access it directly rather than by calling read and
wite. Thisincreases performance, since the virtual memory system is more effi cient than
thefi le system. The following function calls are used to implement memory mapping:

* You need to open the fi le with the fi le system callsopen or cr eat .

e nmap maps thefi leinto memory.

e nsync ensuresthat updates to the fi le map are fushed back to thefi le.
* munnap freesthe mapped fi le data.

In the following sections, we'll [ook at these functions more closely.

mmap
mrap maps a portion of afi leto memory.

#i ncl ude <sys/types. h>
#i ncl ude <sys/man. h>

caddr_t nmap (caddr_t addr, int len, int prot, int flags, int fd, off _t offset);

e addr specifi es the address at which the fi le should be mapped. Unless you have good
reasons to do otherwise, you should specify it as NULL and let mrap choose a suitable
address itself. If mrap can’t place the memory where it is requested, the subsequent be-
haviour depends on the flag MAP_FI XED—see the discussion of flags below.

* | en specifi es the length to map.

e prot specifi es the accessibility of the resultant memory region, and may be any combi-
nation of PROT_EXEC (pages may be executed), PROT_READ (pages may be read) or
PROT_WR TE (pages may be written). In addition, System V.4 allows the specifi cation
PROT_NONE (pages may hot be accessed at al).

5 February 2005 02:09

5 February 2005 02:09

Chapter 14: File systems 233

« flags is a bit map that specifies properties of the mapped region. It consists of a combi-
nation of the following bit-mapped flags:

- MAP_ANCN specifies that the memory is not associated with any specific file. In
many ways, this is much the same thing as a call to nal | oc: you get an area of
memory with nothing in it. This flag is available only in BSD.

- NMAP_FI LE specifies that the region is mapped from a regular file or character-spe-
cial device. This flag, supplied only in BSD, is really a dummy and is used to indi-
cate the opposite of MAP_ANON if you don’t have it, ignore it.

- NMAP_FI XED specifies that mmap may use only the specified addr as the address of
the region. The 4.4BSD man page discourages the use of this option.

- MAP_I NHER T permits regions to be inherited across exec system calls. Only sup-
ported in 4.4BSD.

- MAP_PR VATE specifies that modifications to the region are private: if the region is
modified, a copy of the modified pages is created and the modifications are copied
to them. This flag is used in debuggers and to perform page-aligned memory allo-
cations: nal | oc doesn’t allow you to specify the address you want. In some sys-
tems, such as System V.4, MAP_PR VATE is defined as 0, so this is the default behav-
iour. In others, such as SunOS 4, you must specify either MAP_PR VATE or
MAP_SHARED—otherwise the call fails with an El NVAL error code.

- NAP_SHARED specifies that modifications to the region are shared: the virtual mem-
ory manager writes any modifications back to the file.

+ On success, mmap returns the address of the area that has been mapped. On failure, it
returns - 1 and sets er r no.

msync

Writes to the memory mapped region are treated like any other virtual memory access: the
page is marked dirty, and that’s all that happens immediately. At some later time the memory
manager writes the contents of memory to disk. If this file is shared with some other process,
you may need to explicitly flush it to disk, depending on the underlying cooperation between

the file system and the virtual memory manager.

System V.4 maps the pages at a low level, and the processes share the same physical page, so
this problem does not arise. BSD and older versions of System V keep separate copies of
memory mapped pages for each process that accesses them. This makes sharing them diffi-
cult. On these systems, the nsync system call is used to flush memory areas to disk. This

solution is not perfect: the possibility still exists that a concurrent read of the area may get a
garbled copy of the data. To quote the 4.4BSD man pages:

Any required synchronization of memory caches also takes place at thistime. Filesystem oper-
ations on a file that is mapped for shared modifi cations are unpredictable except after an

msync.

5 February 2005 02:09

234

Still, it's better than nothing. The call is straightforward:
void nsync (caddr_t addr, int len);

addr must be specifi ed and must point to a memory mapped page; | en may be 0, in which
case al modifi ed pages are fushed. If | en is not O, only modifi ed pages in the area defi ned
by addr and| en are flushed.

munmap
munmap unmaps a memory mapped fi le region:
voi d nunnap (caddr_t addr, int len);

It unmaps the memory region specifi ed by addr and | en. Thisis not necessary before termi-
nating a program—the region is unmapped like any other on termination—and it carries the
danger that modifi cations may be lost, since it doesn’t fush the region before deallocating.
About the only use isto free the area for some other operation.

5 February 2005 02:09

Terminal Drivers

Terminal 1/O is a real can of worms. In the Seventh Edition, it wasn’t exactly simple. To
quote the terminal driver man page,

Theterminal handler has clearly entered the race for ever-greater complexity and generality.
It's still not complex and general enough for TENEX fans.

Since then, things have gone steadily downhill.
The most important terminal driver versions are:

e The “old” terminal driver, derived from the Seventh Edition terminal driver. This driver
is still in use in XENIX and older BSD versions.

e The System I11/System V terminal driver, also called termio.
e The POSIX.1 termiosroutines, derived from termio.

Most modern systems support more than one kind of serial line driver. This is known as the
line discipline. Apart from terminal drivers, the most important line disciplines for asynchro-
nous lines are SLIP (Serial Line Internet Protocol) and PPP (Point to Point Protocol). These
are very implementation dependent, and we won’t discuss them further. The line discipline is
set with the TI OCSETD i oct | , described on page 259.

It’s beyond the scope of this book to explain all the intricacies and kludges that have been
added to terminal handlers over the decades. Advanced Programming in the UNIX environ-
ment, by Richard Stevens, gives you a good overview of current practice, and you shouldn’t
really want to know about older versions unless you have trouble with them. In the following
discussion, we’ll concentrate on the four areas that cause the most headaches when porting
programs:

e The externally visible data structures used for passing information to and from the driver.

« A brief overview of the different operational modes (raw, cooked, cbreak, canonical and
non-canonical).

235

5 February 2005 02:09

236

+ Theioctl requestinterface to the terminal driver, one of the favourite problem areas in
porting terminal-related software.

+ The POSIX.1 termios request interface.

The documentation of every driver describes at least two different modes of treating terminal
input. The Seventh Edition and BSD drivers define three:

« Inraw mode, the r ead system call passes input characters to the caller exactly as they
are entered. No processing takes place in the driver. This mode is useful for programs
which want to interpret characters themselves, such as full-screen editors.

« cooked mode interprets a number of special characters, including the new line character
\n. Aread call will terminate on a\ n. This is the normal mode used by programs that
don’t want to be bothered by the intricacies of terminal programming.

« cbreak mode performs partial interpretation of the special characters, this time not
including \ n. cbreak mode is easier to use than raw mode, and is adequate for many pur-
poses. It’s a matter of taste whether you prefer this to raw mode or not.

By contrast, termio and termios specify two different processing modes for terminal input:

+ canonical” mode performs significant processing on input before passing it to the calling
function. Up to 21 input special characters may be used to tell the driver to do things as
varied as start and stop output, to clear the input buffer, to send signals to the process and
to terminate a line in a number of different ways.

« Non-canonical input mode, in which the driver does not interpret input characters spe-
cially (this corresponds roughly to BSD cbreak mode).

In fact, subdividing the terminal operation into modes is an oversimplification: a large number
of flags modify the operational modes. Later in the chapter we’ll look at how to set these
modes with termios.

Typical terminal code

This is all rather abstract: let’s look at a simple example: a program wants to read a single
character from the terminal. To do this, it needs to set raw or non-canonical mode, read the
character, and then reinstate the previous mode. For the old terminal driver, the code looks
like Example 15-1:

Example 15-1:

struct sgttyb initial_status; /* initial termos flags */

struct sgttyb raw status; /* and the sane with icanon reset */
ioctl (stdin, TIOOETA &nitial_status); /* get attributes */

raw status = initial_status; /* nake a copy */

raw status.sg_flags | = RAW /* and set raw node */

* The word canon refers to (religious) law: the intent is that this should be the correct or standard way to
handle input characters. See the New Hacker’s Dictionary for a long discussion of the term.

5 February 2005 02:09

Chapter 15: Terminal Drivers 237

Example 15—1: (continued)

ioctl (stdin, TIOCSETN, &raw_status); /* set the new terminal flags */
puts ("2 *);
if ((reply = getchar Q) != "\n”) /* get a reply */

puts ("\n""); /* and finish the line */

ioctl (stdin, TIOCSETN, &initial_status); /* set the old terminal flags */

With the System V termio driver, it would look like Example 15-2:

Example 15-2:
struct termio initial_status; /* initial termio flags */
struct termio noicanon_status; /* and the same with icanon reset */
ioctl (stdin, TCGETA, &initial_status); /* get attributes */
noicanon_status = initial_status; /* make a copy */
noicanon_status.c_Iflag & TI1CANON; /* and turn icanon off */
ioctl (stdin, TCSETA, &noicanon_status); /* set non-canonical mode */
puts (*? ');
if ((reply = getchar Q) = "\n”) /* get a reply */

puts C"\n'"); /* and finish the line */
ioctl (stdin, TCSETA, &initial_status)) /* reset old terminal mode */

Don't rely on code like this to be termio code: termios code can look almost identical. Cor-
rect termios code uses the termios functions which we will look at on page 265, and looks like
Example 15-3:

Example 15—-3:

struct termios initial_status; /* initial termios flags */

struct termios noicanon_status; /* and the same with icanon reset */
tcgetattr (stdin, &initial_status)l /* get current attributes */
noicanon_status = initial_status; /* make a copy */
noicanon_status.c_Iflag & TICANON; /* and turn icanon off */

tcsetattr (stdin, TCSANOW, &noicanon status); /* set non-canonical mode */

puts ("2 *);
if ((reply = getchar Q) = "\n”) /* get a reply */
puts ("\n""); /* and finish the line */

tesetattr (stdin, TCSANOW, &initial_status); /* reset old terminal mode */

Terminology

Before we start, it's agood idea to be clear about afew terms that are frequently confused:

e All terminal drivers buffer 1/0 in two queues, an input queue and an output queue. The
input queue contains characters that the user has entered and the process has not yet read.
The output queue contains characters that the process has written but that have not yet
been output to the terminal. These queues are maintained inside the terminal driver.
Don't confuse them with buffers maintained in the process data space by the stdio rou-
tines.

5 February 2005 02:09

238

The term flush can mean to discard the contents of a queue, or to wait until they have all
been output to the terminal. Most of the time it means to discard the contents, and that’s
how we’ll use it in this chapter.

The term drain means to wait until the contents of the output queue have been written to
the terminal. This is also one of the meanings of flush.

Special characters, frequently called control characters, are input characters that cause
the terminal driver to do something out of the ordinary. For example, CTRL- D usually
causes the terminal driver to return an end-of-file indication. The term special charac-
ters is the better term, since you can set them to characters that are not ASCII control
characters. For example, even today, the default erase character in System V is #: it’s a
special character, but not an ASCII control character.

The baud rate of a modem is the number of units of information it can transmit per sec-
ond. Modems are analogue devices that can represent multiple bits in a single unit of
information—modern modems encode up to 6 bits per unit. For example, a modern
V.32bis modem will transfer 14400 bits per second, but runs at only 2400 baud. Baud
rates are of interest only to modem designers.

As the name indicates, the bit rate of a serial line indicates how many bits it can transfer
per second. Bit rates are often erroneously called baud rates, even in official documenta-
tion. The number of bytes transferred per second depends on the configuration: nor-
mally, an asynchronous serial line will transmit one start bit and one stop bit in addition
to the data, so it transmits 10 bits per byte.

break is an obsolescent method to signal an unusual condition over an asynchronous line.
Normally, a continuous voltage or current is present on a line except when data is being
transferred. Break effectively breaks (disconnects) the line for a period between .25 and
.5 second. The serial hardware detects this and reports it separately. One of the prob-
lems with break is that it is intimately related to the serial line hardware.

DCE and DTE mean data communication equipment and data terminal equipment
respectively. In a modem connection, the modem is the DCE and both terminal and
computer are DTEs. In a direct connect, the terminal is the DTE and the computer is the
DCE. Different cabling is required for these two situations.

RS-232, also known as EIA-232, is a standard for terminal wiring. In Europe, it is some-
times referred to as CCITT V.24, though V.24 does not in fact correspond exactly to
RS-232. It defines a number of signals, listed in Table 15-1.

Table 15—1: RS-232 signals

5 February 2005 02:09

Chapter 15: Terminal Drivers 239

Table 15—1: RS-232 signals (continued)

RS-232

name pin | purpose

PG 1 Protective ground. Used for electrical grounding only.

TxD 2 Transmitted data.

RxD 3 Received data.

RTS 4 Request to send. Indicates that the device has data to output.

CTS 5 Clear to send. Indicates that the device can receive input. Can be used
with RTS to implement flow control.

DSR 6 Data set ready. Indicates that the modem (data set in older parlance) is
powered on.

SG 7 Signal ground. Return for the other signals.

DD 8 Carrier detect. Indicates that the modem has connection with another
modem.

DIR 20 Data terminal ready. Indicates that the terminal or computer is ready to
talk to the modem.

R 22 Ring indicator. Raised by a modem to indicate that an incoming call is
ringing.

For more details about RS-232, see RS-232 made easy, second edition by Martin Seyer.

Terminal data structures

In this section, we’ll take a detailed look at the data structures you’re likely to encounter when
porting software from a different platform. | have included typical literal values for the
macros. Don’t ever use these values! They’re not guaranteed to be correct for every imple-
mentation, and they’re included only to help you if you find that the program includes literals
rather than macro names. When writing code, always use the names.

Old terminal driver definitions

In the Seventh Edition, mosti oct| calls that took a parameter referred to a struct sgttyb,
which was defined in /usr/include/sgtty.h:

st ruct
{
char
char
char
char
int
char
char
char
char
char

sgttyb

sg_i speed;
sg_ospeed;
sg_er ase;
sg Kkill;
sg_flags;
sg nldly;
sg crdly;
sg_htdly;
sg vtdly;
sg_w dt h;

/* input bit rate code */

/* output bit rate code */

/* erase character */

[* kill character */

/* Terminal flags (see Table 15-3) */
/* delay after \n character */

/* delay after \r character */

/* delay after tab character */

/* delay after vt character */

/* terminal line width */

240

char sg_length;

I

The bit rates in sg_iispeed and sg_ospeed are encoded, and allow only a certain number of

Speeds:

Table 15—2: Seventh Edition bit rate codes

/* terminal page length */

Parameter | value | meaning

BO 0 hang up phone
B50 1 50 bits/second
B75 2 75 bits/second
B110 3 110 bits/second
B134 4 134.5 bits/second
B150 5 150 bits/second
B200 6 200 bits/second
B300 7 300 hits/second
B600 8 600 bits/second
B1200 9 1200 hits/second
B1800 10 1800 hits/second
B2400 11 2400 bits/second
B4800 12 4800 bits/second
B9600 13 9600 bits/second
EXTA 14 External A

EXTB 15 Externa B

Thefi eld sg_Flags contains a bit map specifying the following actions:

Table 15—3: Seventh Edition tty flags

Parameter value | value | meaning
(octal) (hex)
XTABS 02000 | Ox400 | Replace output tabs by spaces.
INDCTL 01000 | 0x200 | Echo control charactersas™a, “b etc.
SCOPE 0400 | 0x100 | Enable neat erasing functions on display terminas
("scopes").
EVENP 0200 0x80 | Even parity allowed oninput (most terminals).
OoDDP 0100 0x40 | Odd parity allowed on input.
RAW 040 0x20 | Raw mode: wake up on all characters, 8-bit interface.
CRMOD 020 0x10 | Map CRinto LF; echo LF or CRasCR-LF.
ECHO 010 0x8 | Echo (full duplex).
LCASE 04 0x4 | Map upper case to lower on input.
CBREAK 02 0x2 | Return each character as soon as typed.

5 February 2005 02:09

5 February 2005 02:09

Chapter 15: Terminal Drivers 241

Table 15—3: Seventh Edition tty flags (continued)

Par anet er value value | meaning
(octal) (hex)
TANEM | 01 | Oxl1 | Automatic flow control.

A second structure defines additional special characters that the driver interprets in cooked
mode. They are stored inastruct tchars, which is also defined in /usr/include/sgtty.h:

struct tchars

{

char t_intrc; /* interrupt (default DEL) */

char t_quitc; /* quit (default ~“\) */

char t_startc; /* start output (default “Q*/

char t_stopc; /* stop output (default "S5 */

char t_eofc; /* end-of -file (default "D */

char t_brkc; /* input delimter (like nl, default -1) */
b

Each of these characters can be disabled by setting it to -1 (octal 0377), as is done with the
defaultt _br kc. This means that no key can invoke its effect.

termio and termios structures

The System V terminal driver defines a st ruct term o to represent the data that the Seventh
Edition driver stored in sgttyb and tchars. In POSIX.1 termios, it is called struct

term os. Both are very similar: compared to the Seventh Edition, they appear to have been
shorter by moving the special characters, which in sgttyb were stored as individual ele-
ments, into the array c_cc:

struct termo

{

unsi gned short c_iflag; /* input nodes */

unsi gned short c_ofl ag; /* output nodes */

unsi gned short c_cfl ag; /* control nodes */

unsi gned short c_| flag; /* local nodes */

char c_line; /* line discipline */

unsi gned char c_cc [NOJ; /* special chars */

I ong c_i speed; /* input speed, sone termos */
| ong c_ospeed; /* output speed, some termos */
b

The variable c_| i ne specifies the line discipline. It is defined in termio, and not in the
POSIX.1 termios standard, but some System V versions of termios have it anyway. NOCis the
number of special characters. We’ll look at them after the flags.

Not all versions of System V define the members c_i speed and c_ospeed. Instead, they
encode the line speed in c_cfl ag. The correct way to access them is via the termios utility
functions cf geti speed, cf seti speed, cf get ospeed, cf set ospeed and cf set speed,
which we will discuss on page 265. To make matters worse, some older System V termios
implementations supplied c_i speed and c_ospeed, but the implementation didn’t use them.
In addition, many systems cannot handle different input and output speeds, so setting one

5 February 2005 02:09

242

speed automatically sets the other aswell.

c_iflag,c_oflag,c_cflagandc_| flag (atotal of 128 possible hits) take the place of the
Seventh Edition sg_f | ags.

c_iflag

c_i f1 ag specifi es how the driver treats terminal input:

Table 15—4: termios c_iflag bits

Par am value value | meaning

eter (SysV) (BSD)

| G\BRK Ox1 Ox1 | Ignore break condition.

BRKI NT 0x2 0x2 | GenerateaSl @ NT signal on break.

| G\PAR 0x4 0x4 | Ignore characters with parity errors.

PARMRK 0x8 0x8 | If a parity or framing error occurs on input, accept it
and insert into the input stream the three-character se-
quence Oxf f , 0, and the character received.

I NPCK 0x10 0x10 | Enableinput parity check.

ISTRP 0x20 0x20 | Strip bit 7 from character.

I NLCR 0x40 0x40 | Map NL to CR oninput.

| ANR 0x80 0x80 | IgnoreCR.

I CGR\L 0x100 0x100 | Map CRto NL oninput.

| uaLch 0x200 Map uppercase to lowercase on input.

I XON 0x400 0x200 | Enable output flow control with XON/XOFF (CTRL-
SICTR.- Q.

| XANY 0x800 0x800 | Allow any character to restart output after being
stopped by CTRL- S.

| XCOFF 0x1000 0x400 | Enableinput flbow control with XON/X OFF.

CTSFLON | 0x2000 Enable CTS protocol for amodem line.

RTSFLON | 0x4000 Enable RTS signaling for amodem line.

| MAXBEL? | 0x2000 | Ox2000 | Ring theterminal bell when the input queueisfull.

not in POSIX.1 or BSD.
% not in POSIX.1 and some versions of System V.

A couple of these flags are not portable:

e 1 UQ.Cmaps lower case to upper case: if you enter alower case character, it is converted
to an upper case character and echos that way. Many people consider this a bug, not a
feature. There's no good way to implement this on a non-System V system. If you
really want to have this behaviour, you'll have to turn off echo and provide an echo from
the program.

e CTSFLOWand RTSFLOWspecify fow control viathe RS-232 signals CTS and RTS. These
are control flags, of course, not input fegs, but some versions of System V put them here

5 February 2005 02:09

Chapter 15: Terminal Drivers

243

for backward compatibility with XENIX. Some other versions of System V don’t defi ne
them at all, and BSD systems and yet other System V systems supply theminc_cf| ags,

where they belong.

c_of | ag specifi esthe behaviour on output.

Table 15-5: termios c_oflag bits

Par am value value | meaning

eter (SysV) | (BSD)

aPCsT Ox1 Ox1 | Postprocess output.

aax 0x2 Map lower case to upper on output.
ONLR 0x4 0x2 | Map NL to CR-NL on outpuit.
OCR\L 0x8 0x8 | Map CRto NL on output.

ONOCR 0x10 0x10 | Suppress CR output at column O.
CNLRET 0x20 0x20 | NL performs CR function.

CFl LL 0x40 0x40 | Usefill charactersfor delay.
CFDEL 0x80 0x80 | Fill isDEL if set, otherwise NUL."
NLOLY! 0x100 Mask bit for new-line delays:

NLO 0x0 No delay after NL.

N1 0x100 One character delay after NL.
aROLY 0x600 Mask bits for carriage-return delays:
(024] 0x0 No delay after CR.

RL 0x200 One character delay after CR.

R 0x400 Two characters delay after CR.
3 0x600 Three characters delay after CR.
TABDLY' | 0x18000 Mask bits for horizontal-tab delays:
TABO 0x0 No delay after HT.

TABL 0x800 One character delay after HT.
TAR2 0x1000 Two characters delay after HT.
TAB3 0x1800 Expand tabs to spaces.

BSOLY 0x2000 Mask bit for backspace delays:
B0 0x0 No delay after BS.

BS1 0x2000 One character delay after BS.
VTDLY! 0x4000 Mask bit for vertical-tab delays:
VTO 0x0 No delay after VT.

VT1 0x4000 One character delay after VT.
FFOLY 0x8000 Mask bit for form-feed delays:

FFO 0x0 No delay after FF.

FF1 0x8000 One character delay after FF.

* The ASCII character represented by binary O (the C character constant \ 0). Not to be confused with
the null pointer, whichin Cisusually called NULL.

5 February 2005 02:09

244

Table 15—5: termios c_oflag bits (continued)
‘ot in POSIX.1 or BSD.
A number of these flags are not portable;

e System V supplies alarge number of flegs designed to compensate for mechanical delays
in old hardcopy terminal equipment. It's doubtful that any of this is needed nowadays.
If you do have an unbuffered hardcopy terminal connected to your BSD machine, and it
loses characters at the beginning of aline or a page, you should check whether CTS/RTS
flow control might not help. Or you could buy a more modern terminal.

e (@QAKL is obsolete, of course, but if that old hardcopy terminal also doesn't support
lower-case, and it doesn't upshift |lower-case characters automatically, you'll have to do it
programatically.

c_cfl ag specifi es hardware control aspects of the terminal interface:

Table 15—6: termios c_cflag bits

Par anet er value value | meaning
(SysV) (BSD)
BAD Oxf Bit rate
BO 0 Hang up
B50 Ox1 50 bps
B75 0x2 75 bps
B110 0x3 110 bps
B134 0x4 134 bps
B150 0x5 150 bps
B200 0x6 200 bps
B300 0ox7 300 bps
B600 0x8 600 bps
B1200 0x9 1200 bps
B1800 Oxa 1800 bps
B2400 Oxb 2400 bps
B4800 Oxc 4800 bps
B9600 Oxd 9600 bps
B19200 Oxe 19200 bps
EXTA Oxe External A
B38400 Oxf 38400 bps
EXTB Oxf External B
C3 zE 0x30 0x300 | Mask bitsfor character size:
CH 0x0 0x0 5 bits
Cs5 0x10 0x100 6 bits
cs7 0x20 0x200 7 bits
C8 0x30 0x300 8 bits

5 February 2005 02:09

Chapter 15: Terminal Drivers 245

Table 15—6: termios c_cflag bits (continued)

Par anet er value value | meaning
(SysV) (BSD)
CSTCPB 0x40 0x400 | Send two stop bits (if not set, send 1 stop bit).
CREAD 0x80 0x800 | Enable receiver.
PARENB 0x100 0x1000 | Enable parity.
PARCDD 0x200 0x2000 | Setodd parity if set, otherwise even.
HUPCL 0x400 0x4000 | Hang up on last close.
CLaCAL 0x800 0x8000 | Disable modem control lines.
ROVIEN 0x1000 see below
XMILEN 0x2000 see below
LOBLK® 0x4000 Block layer output.
CTSFLON 0x10000 CTS flow control of output.
QCTS _CFLOA 0x10000 | CTS flow control of output.
QRTSCTS 0x10000 | CTS flow control of output (alternative symbol).
RTSFLOW 0x20000 | RTS flow control of input.
CRTS | FLOA 0x20000 | RTS flow control of input.
MDVBUF 0x100000 Flow control output via Carrier.

! speeds are encoded differently in BSD—see below.
2 not in POSIX.1 or System V.
*not in POSIX.1 or BSD.

Again, some of these flags are only available on specific platforms:

« RCVIEN and XMI'LEN are defined in some System V header files, but they are not docu-
mented.

+ BSD systems supply CRTS | FLONand OCTS_CFLONfor RS-232 flow control. Some
System V systems supply RTSFLONand CTSFLOMo mean the same thing, but other Sys-
tem V systems don’t support it, and other systems again put these flags in c_i f | ag.

c_| fl ag specifies the behaviour specific to the line discipline. This flag varies so much
between System V and BSD that it’s easier to put them in separate tables. Table 15-7
describes the standard System V line discipline, and Table 15-8 describes the standard BSD
line discipline,

Table 15—7: System V termios c_lflag bits

Param | value | meaning

eter

1SIG 0x1 | Allow the characters | NTR QU T, SUSP and DSUSP to generate signals.
| CANCN 0x2 | Enable canonical input (erase and Kill processing).

246

Table 15—7: System V termios c_lflag bits (continued)

Param | value | meaning
eter

XCASE 0x4 | In conjunction with | CANCN, map upper/lower case to an upper-case only
terminal. Lower case letters are displayed in upper case, and upper case
letters are displayed with a preceding backslash (\).

ECHO 0x8 | Enable echo.

ECHCE 0x10 | Erase character removes character from screen.

ECHCK 0x20 | Echo NL after line kill character.

ECHONL | Ox40 | Echo NL even if echo is off.

NOFLSH | 0x80 | Disable flush after interrupt or quit.

Here’s the BSD version:

Table 15—8: BSD termios c_lflag bits

Par anet er value | meaning

ECHKE 0x1 | Line kill erases line from screen.

ECHCE 0x2 | Erase character removes character from screen.

ECHX 0x4 | Echo NL after line kill character.

ECHO 0x8 | Enable echo.

ECHO\L 0x10 | Echo NL even if echo is off.

ECHCPRT! 0x20 | Visual erase mode for hardcopy.

EcHoCTL! 0x40 | Echo control chars as “(Char).

I1SIG 0x80 | Enable signals | NTR QU T, SUSP and DSUSP.

| CANON 0x100 | Enable canonical input (erase and Kill processing).

ALTVERASE" 0x200 | Use alternate WERASE algorithm. Instead of erasing back to
the first blank space, erase back to the first non-alphanumeric
character.

| EXTEN 0x400 | Enable D SCARD and LNEXT.

EXTPROC 0x800 | This flag carries the comment "External processing”. Apart
from that, it appears to be undocumented.

TCSTCP 0x400000 | If a background process attempts output, send a SI GTTQU to
it. By default this stops the process.

FLUSHO' 0x800000 | Status return only: output being flushed.

NOKERN NFOH 0x2000000 | Prevent the STATUS character from displaying information on
the foreground process group.

PENDI N 0x20000000 | Pending input is currently being redisplayed.

NCFLSH 0x80000000 | Don’tflush input and output queues after receiving SI @ NT or
SCUT.

" not in POSIX.1.

5 February 2005 02:09

Chapter 15: Terminal Drivers 247

Converting the c_| f | ag bits is even more of a problem:

« XCASE is part of the System V upper case syndrome that we saw with c_i fl ag and
c_of | ag.

+ BSD offers a number of echo flags that are not available in System V. In practice, this is
a cosmetic difference in the way input works. Consider a BSD program with a line like:

termc_lflag = ECHKE | ECHCE | ECHXK | ECHOCIL;
This will fail to compile under System V because ECHCKE and ECHOCTL are undefined.
You can probably ignore these flags, so the way to fix it would be something like:

termc_|flag = BECHCE | ECHXK

#i f def ECHKE

| ECHXE
#endi f
#i f def ECHOCTL

| ECHOCTL
#endi f

Note the lonesome semicolon on the last line.

« The flags FLUSHOand PENDI N are status flags that cannot be set. There’s no way to get
this information in System V.

« NCKERN NFOrefers to the STATUS character, which we will see below. This is not sup-
ported in System V.

special characters

The number of special characters has increased from 6 in the Seventh Edition (struct

t char s) to 8 in termio and a total of 20 in termios (though 4 of the termios special characters
are “reserved”—in other words, not defined). Despite this number, there is no provision for
redefining CRand NL.

Table 15—9: termio and termios special characters

Index in Index in
c_cc | Default c_cc | Default

Name (SysV) | (SysV) (BSD) | (BSD Function

R (none) | \r (none) | \r Go to beginning of line. In
canonical and cooked modes,
complete a read request.

NL (none) | \n (none) | \n End line. In canonical and
cooked modes, complete a read
request.

VI NTR 0 | DAL 8 | CTR.-C | Generate an Sl @ NT signal.

5 February 2005 02:09

248

Table 15—9: termio and termios special characters (continued)

Index in Index in
c_cc | Default c_cc | Default

Name (SysV) | (SysV) (BSD) | (BSD Function

VQU T 1| CTR-| 9 | CTR-| Generatea Sl GQU T signal.

VERASE 2 | # 3| DAL Erase last character.

WKI LL 3| @ 5 | CTR-U | Erasecurrent input line.

VECF 4 | CIR.-D 0 | CTR.-D | Return end-of-fi leindication.

VEQL 5] NL 1 |\377 Alternate end-of-line character.

VEQL2! 6 | NL 2 | \377 Alternate end-of-line character.

VOWrCH" 2 7 | NL shl layers: switch shell.

VSTART 8 | CTR-Q 12 | CTR.-Q | Resume output after stop.

VSTCP 9 | CTIR.-S 13 | CTR.-S | Stop output.

VSUSP 10 | CTR.-Z 10 | CTR.-Z | Generate a Sl GISTP signal
when typed.

VOSSP 11 | CTR-Y 11 | CTR-Y | Generate a Sl GISTP signa
when the character is read.

VREPR NT* 12 | CIR-R 6 | CTR-R | Redisplay al characters in the
input queue (in other words,
characters that have been input
but not yet read by any
process). The term "print" re-
calls the days of harcopy termi-
nals.

VDI SCARD! 13 | CTR-0 15 | CTR-O | Discard all terminal output until
another DI SCARD character ar-
rives, more input is typed or the
program clears the condition.

WERASE! 14 | CTR-W 4 | CTR-W | Erasethe preceding word.

VLNEXT! 15 | CTR.-V 14 | CTR-V | Interpret next character literally.

VSTATUS" 3 18 | \377 Send a SI @ NFO signal to the
foreground process group. |If
NCKERN NFOis not set, the ker-
nel also prints a status message
on the terminal.

ot in POSIX.1.

Z shi layers are a System V method of multiplexing several shells on one terminal. They are

not supported on BSD systems.

® not supported on System V.

* These archaic, teletype-related values are till the default for System V. The file
{usr/include/sys/termio.h contains alternative defi nitions (VERASE set to CTRL- H and WKI LL
set to CTRL- X), but these need to be specifi cally enabled by defi ning the preprocessor variable
_NEWTTY_CTR..

5 February 2005 02:09

Chapter 15: Terminal Drivers 249

You will frequently see these names without the leading V. For example, the stty program
referstoVQU Tas QU T.

Terminal driver modes

Depending on the driver, it looks as if you have a choice of two or three operational modes on
input:

+ With the termio and termios drivers, you have the choice of canonical and non-canonical
mode.

* With the old terminal driver, you have the choice of raw, cooked and cbreak modes.

This distinction is not as clear-cut as it appears: in fact, you can set up both drivers to do most
things you want.

Canonical mode

To quote Richard Stevens’ Advanced Programming in the UNIX environment: “Canonical
mode is simple”—it takes only about 30 pages for a brief description. For an even simpler
description: everything in the rest of this chapter applies to canonical mode unless otherwise
stated.

Non-canonical mode

Non-canonical mode ignores all special characters except INTR, QUIT, SUSP, STRT, STOP,
DISCARD and LNEXT. If you don’t want these to be interpreted, you can disable them by
setting the corresponding entry int char s to _PCSl X VD SABLE.

The terminal mode has a strong influence on how a read from a terminal completes. In canon-
ical mode, a read request will complete when the number of characters requested has been
input, or when the user enters one of the characters CR, N, VEOL or (where supported)
VEOL2. In non-canonical mode, no special character causes a normal read completion. The
way a read request completes depends on two variables, MIN and TIME. MIN represents a
minimum number of characters to be read, and TIME represents a time in units of 0.1 second.
There are four possible cases:

1. Both MIN and TIME are non-zero. In this case, a read will complete when either MIN
characters have been entered or TIME/10 seconds have passed since a character was
entered. The timer starts when a character is entered, so at least one character must be
entered for the read to complete.

2. MIN is non-zero, TIME is zero. In this case, the read will not complete until MIN char-
acters have been entered.

3. MINis zero and TIME is non-zero. The read will complete after entering one character
or after TIME/10 seconds. In the latter case, O characters are returned. This is not the
same as setting MIN to 1 and leaving TIME as it is: in this case, the read would not

5 February 2005 02:09

5 February 2005 02:09

250

complete until at least one character is entered.

4. Both MIN and TIME are set to 0. In this case, r ead returns immediately with any char-
acters that may be waiting.

If MIN is non-zero, it overrides the read count specified to r ead, even if r ead requests less
than MIN characters: the remaining characters are kept in the input queue for the next r ead
request. This can have the unpleasant and confusing effect that at first nothing happens when
you type something in, and then suddenly multiple reads complete.

Non-canonical mode does not interpret all the special characters, but it needs space to store
MIN and TIME. In 4.4BSD, two of the reserved characters are used for this purpose. Most
other implementations, including XENIX, System V and some older BSDs do it differently,
and this can cause problems:

« The value of VEOF is used for VMIN. This value is normally CTRL- D, which is decimal
4: if you switch from canonical to non-canonical mode and do not change MIN, you may
find that a read of a single character will not complete until you enter a total of four char-
acters.

« The value of VEOL is used for TIME. This is normally 0.

Raw mode

Raw mode does almost no interpretation of the input stream. In particular, no special charac-
ters are recognized, and there is no timeout. The non-canonical mode variables MIN and
TIME do not exist. The result is the same as setting MIN to 1 and TIME to 0 in non-canonical
mode.

Cooked mode

The cooked mode of the old terminal driver is essentially the same as canonical mode, within
the limitations of the driver data structures—termios offers some features that are not avail-
able with the old terminal driver, such as alternate end-of-line characters.

Cbreak mode
To quote the Seventh Edition manual:

CBREAK is a sort of half-cooked (rare?) mode.

In terms of termios, it is quite close to non-canonical mode: the only difference is that chreak
mode turns off echo. Non-canonical mode does not specify whether echo is on or off.

Emulating old terminal driver modes

Table 15-10 illustrates how you can define old driver terminal modes with termios. You’ll see
that a large number of entries are not defined: raw and cbreak modes do not specify how these

5 February 2005 02:09

Chapter 15: Terminal Drivers 251

parameters are set. You can set them to whatever you feel appropriate.

Table 15—10: Defining terminal modes with termios

Flag

raw cbreak
mode | mode

BRKINT | of f on
| NPCK of f on

ISTRP | off not defi ned
| CR\L of f not defi ned
| XON of f not defi ned

CPCsT of f not defi ned

Csl ZE C8 not defi ned
PARENB | of f not defi ned

ECHO of f of f
I1SIG of f not defi ned
| CANON | of f of f
| EXTEN | off not defi ned

W N 1 1
VTI ME 0 0
gtty and stty

You may still occasionally run into the system callsst ty and gt t y, which are leftovers from
the Seventh Edition. You can replace stty with thei oct| function TI QCSETP, and you can
replace gtty with thei oct!| request Tl GOGETP. Read more on both these requests on page

257.

The Linux terminal driver

Linux has the great advantage of being a recent development, so it doesn’t have a number of
the warts of older terminal drivers. It goes to some trouble to be compatible, however:

In addition to POSIX.1 termios, the kernel also directly supports System V termio.

The library libbsd.a includesi oct | calls for the old terminal driver, which Linux users
call the BSD driver.

The only line discipline you can expect to work under Linux is the standard tty line disci-
plineN TTY.

5 February 2005 02:09

252

joctl

i oct| isthefile system catchall: if thereisn't any other function to do the job, then somebody
will bend i oct| to doit. Nowhere is this more evident than in termina /O handling. Asa
result of this catchall nature, it's not easy to represent i oct | parametersin C.

WE'Il look at the semanticsfi rst. Thei oct| function call takes three parameters:
1. Afilenumber.
2. Arequest, whichwe'll look at in more detail in the next section.

3. When present, the meaining is defi ned by the request. It could be an integer, another
request code or a pointer to some structure defi ned by the request.

ioctl request codes

The key to understanding i oct | is the request code. Request codes are usually subdivided
into a number of fi elds. For example, 4.4BSD defi nes four fi elds:

Bit 31 29 28 16 15 87 0

’ type | length | ioctl type I function subcode ‘

e Thefi rst three bits specify the type of parameter. | OC VA D (0x20 in thefi rst byte) spec-
ifi esthat the request takes no parameters, | QC_QUJT (0x40 in the fi rst byte) specifi es that
the parameters are to be copied out of the kernel (in other words, that the parameters are
to be returned to the user), and | OC | N (0x80 in the fi rst byte) specifi es that the parame-
ters are to be copied in to the kernel (they areto be passed toi oct |).

e Thenext 13 bits specify the length of the parameter in bytes.

e The next byte specifi es the type of request. This is frequently a mnemonic letter. In
4.4BSD, thisfi eld is set to the lower-case letter t for terminal ioctls.

e Finaly, thelast byte is a number used to identify the request uniquely.
This encoding depends heavily on the operating system. Other systems (especially, of course,

16 hit systems) encode things differently, but the general principle remains the same.

Both the request code and the third parameter, where present, do not map easily to C language
data structures. As a result, the defi nition of the function varies signifi cantly. For example,
XENIX and BSD declareit as:

#i ncl ude <sys/ioctl.h>
int ioctl (int fd, unsigned | ong request, char *argp)

and System V.4 has

Chapter 15: Terminal Drivers 253

#i ncl ude <uni std. h>
int ioctl (int fs, int request, [* arg */ ...);

Strictly speaking, since the request code is not a number, both i nt and unsi gned | ong are
incorrect, but they both do the job.

When debugging a program, it's not always easy to determine which request has been passed
toi octl . If you have the source code, you will see something like

ioctl (stdin, TIOOCETA &ernstat);

Unfortunately, a number of i oct| calls are embedded in libraries to which you probably
don't have source, but you can fi gure out what's going on by setting a breakpoint oni oct | .
In this example, when you hit the breakpoint, you will see something like:

(gdb) bt
#0 ioctl (file=0, request=1076655123, paraneter=0xefbfd58c "") at ioctl.c:6
#1 0x10af in main () at foo.c:12

The value of request looks completely random. In hexadecimal it starts to make a little
more sense:

(gdb) p/x request
$1 = 0x402c7413

If we compare this with the request code layout in the example above, we can recognize afair
amount of information:

e Thefirst byte starts with 0x40, | OC_QUJT: the parameter exists and defi nes a return value.

e« The next 13 hits are Ox2c, the length to be returned (this is the length of struct
t er m os).

e The next byte is 0x74, the ASCII character t, indicating that this is a terminal i oct |
request.

e Thelast byteis0x13 (decimal 19).

It's easy enough to understand this when it's deciphered like this, but doing it yourself isalot
different. The fi rst problem is that there is no agreed place where the i oct| requests are
defi ned. The best place to start is in the header fi le sys/ioctl.h, which in the case of 4.4BSD
will lead you to the fi le sys/ioccom.h (sys/sys/ioccom.h in the 4.4BSD distribution). Here you
will fi nd code like:

#def i ne | GCPARM MASK Ox1f ff /* paraneter |ength, at nmost 13 bits */
#define | OCPARM LEN(X) (((x) >> 16) & | GCPARM MASK)

#def i ne | QCBASEOMY x) ((x) & " (1 CCPARM MAK << 16))

#def i ne | QOGROP(x) (((x) >>8) & Oxff)

#define 1CC_ MA D 0x20000000 /* no paraneters */
#define 1 QC_QJT 0x40000000 /* copy out paraneters */
#define 1GCIN 0x80000000 /* copy in paraneters */

These defi ne the basic parts of the request. Next come the individual types of request:

5 February 2005 02:09

5 February 2005 02:09

254

#define _| OJinout,group, numlen) \ pass a structure of length | en as paraneter
(inout | ((len & | COPARMMASK) << 16) | ((group) << 8) | (nun))

#define _1 g, n) _layraccvanp (g), (n), 0 No par anet er
#define _ICRg,n, t) _1QQI1QCC A, (9), (n), sizeof(t)) Return paraneter from kernel
#define |ONg,n,t) _1QQICCIN (g), (n), sizeof(t)) Pass paraneter to kernel

/* this should be ICRW but stdio got there first */
#define _|ONR(g,n,t) _1 GO CC | NAJT, (g9), (n), sizeof(t)) Pass and return paraneter

With these building blocks, we can now understand the real defi nitions;

#define TIOCSBRK _1Q't’, 123) /* set break bit */

#define TTGOBRK _1Q't’, 122) /* clear break bit */

#define TITOQCSDIR _1('t’, 121) /* set data ternminal ready */
#define TTOQOCDIR _1't’, 120) /* clear data termnal ready */
#define TITOOPARP _ICR't’, 119, int) /* get pgrp of tty */

#define TIOCSPARP _ION't’, 118, int) /* set pgrp of tty */

These defi ne four requests without parameters (_1 O), a request that returns ani nt parameter
from the kernel (_I OR), and arequest that passesani nt parameter to the kernel (_I OA).

Terminal ioctls
For anumber of reasons, it’s diffi cult to categorize terminal driveri oct| cals:

e Asthe termina driver has changed over the course of time, some implementors have
chosen to keep the old i oct| codes and give them new parameters. For example, the
Seventh Edition call TI OOGETA returned the terminal parameters to astruct sgttyb.
The same call in System V returns the values to astruct term o, and in 4.4BSD it
returnsthevaluestoastruct termos.

e Thedocumentation for many i oct | callsisextremely hazy: athough System V supports
the old terminal driver discipline, the documentation is very scant. Just because an
i oct! function is not documented in the man pages doesn’t mean that it isn’t supported:
it's better to check in the header files (usually something like sysitermio.h or
sysltermios.h).

e Manyioctl calsseem to duplicate functionality. There are minor differences, but even
they are treacherous. For example, in the Seventh Edition the TI OCSETA function drains
the output queue and discards the content of the input queue before setting the terminal
state. The same function in 4.4BSD performs the function immediately. To get the Sev-
enth Edition behaviour, you need to use TI QCSETAF. The behaviour in System V is not
documented, which means that you may be at the mercy of the implementor of the device
driver: on one system, it may behave like the Seventh Edition, on another like 4.4BSD.

In the following sections, we'll attempt to categorize the most frequent i oct | functionsin the

Chapter 15: Terminal Drivers 255

kind of framework that POSIX.1 usesfor termios. Here's an index to the mess:

Table 15—11: ioctl parameters

5 February 2005 02:09

Name Function Parameter 3 Page
TOFLSH Flush 1/0 int * 263
TOETA Get terminal state struct termo * 258
TOETS Get terminal state struct termos * | 258
TCSBRK Drain output, send break int * 261
TCSETA Set terminal state struct termo * 259
TCSETAF Drain I/O and set state struct termo * 259
TCSETAW Drain output and set state | struct termo * 259
TCSETS Set terminal state struct termos * | 258
TCSETSF Drain I/O and set state struct termos * | 258
TCSETSW Drain output and set state | struct termios * | 258
TCXONC Set fow control int * 262
Tl OOBRK Clear break (none) 260
Tl QODTR Clear DTR (none) 260
TI OCOOONS Set console int * 264
TI QCDRAI N Drain output queue (none) 262
TI QCFLUSH Flush 110 int * 263
TI GOETA Get current state struct termo * 256
Tl QOETC Get specia chars struct tchars * 258
TI QOCETD Set line discipline int *ldisc 259
TI GOCETP Get current state struct sgttyb * 257
Tl QOPGRP Get process group ID pidt * 263
TI QOGS D Get session ID pidt * 264
TI OQOGSCFTCAR | Get DCD indication int * 265
TI QOGN NSZ Get window size struct winsize * | 259
TI QOHPCL Hang up on clear (none) 258
TI QOMBI C Clear modem state bits int * 261
TI COMBI S Set modem state bits int * 261
TI QOMET Get modem state int * 261
Tl QOVBET Set modem state int * 261
TI QONXCL Clear exclusive use (none) 264
TI GONOTTY Drop controlling terminal | (none) 264
TI QOOUTQ Get output queue length int * 262
Tl OCSBRK Send break (none) 260
TI QCSCTTY Set controlling tty (none) 263
Tl OCSDIR Set DTR (none) 260
Tl OCSETA Set terminal state struct sgttyb * 257
Tl QCSETAF Drain I/O and set state struct termos * | 257
Tl QCSETAW Drain output and set state | struct termos * | 257

256

Table 15—11: ioctl parameters (continued)

Name Function Parameter 3 Page
Tl QCSETC Set special chars struct tchars * 258
Tl QCSETD Set line discipline int *ldisc 259
TI OCSETN Set state immediately struct sgttyb * 257
TI GCSETP Get current state struct sgttyb * 257
Tl QCSPGRP Set process group ID pidt * 263
TI OCSSCFTCAR | Set DCD indication int * 265
Tl QCSTART Start output (none) 262
T QCSTI Simulate input char * 262
Tl QCSTCP Stop output (none) 262
TI QCSWNSZ Set window size struct wnsize * | 259

Terminal attributes

One of the most fundamental groups of i oct| requests get and set the terminal state. This
areaisthe biggest mess of all. Each terminal driver has its own group of requests, the request
names are similar enough to be confusing, different systems use the same request names to
mean different things, and even in termios, there is no agreement between BSD and System V
about the names of the requests.

Table 15-12 gives an overview.

Table 15—12: Comparison of sgttyb, termio and termios ioctls

Function sgtty termo termos term os

request request request request

(BSD) (System V)

Get current state TI OOCGETA | TOCETA TI OOCETA TOETS
Get special chars TI OOCGETC | TOCETA TI OOCETA TOETS
Set terminal stateimmediately | TI OCSETN | TCSETA TI OCSETA TCSETS
Drain output and set state TCSETAW | TI QCSETAW | TCSETSW
Drain 1/O and set state TI OCSETA | TCSETAF | Tl OCSETAF | TCSETSF
Set specia chars TI GQCSETC | TCSETAF | Tl OCSETAF | TCSETSF
TIOCGETA

Thecalioctl (fd, TIOOGETA tern) placesthe current terminal parametersin the struc-
turet erm The usage differs depending on the system:

* Inthe Seventh Edition, t er mwas of typestruct sgttyb *.

* InSystemV,termisof typestruct termo *.

5 February 2005 02:09

5 February 2005 02:09

Chapter 15: Terminal Drivers 257

* In44BSD,termisof typestruct termos *.

e The Seventh Edition request TI QCSETN only sets the terminal state described in the fi rst
6 bytesof struct sgettyb.

TIOCSETA

Thecal ioctl (fd, TIQCSETA tern) setsthe current terminal state fromterm The
usage differs depending on the system:

e In the Seventh Edition, t er mwas of type struct sgttyb *. The system drained the
output queue and flushed the input queue before setting the parameters.

* InSystem V.3, termisof typestruct ternmio *. Thedrainand flush behaviour is not
documented.

e In4.4BSD, termisof typestruct termos *. The action is performed immediately
with no drain or fush. This is used to implement the t csetattr function with the
TCSANONoption.

TIOCGETP and TIOCSETP

TI QOCGETP and Tl QCSETP are obsolete versions of TI OOGETA and Tl OCSETA respectively.
They affect only the fi rst 6 bytes of the sgt t yb structure (sg_i speed to sg_fl ags). These
requests correspond in function to the obsolete Seventh Edition system callsstty andgtty.

TIOCSETAW

Thecall i octl (fd, TIOCSETAW void *term) waits for any output to complete, then
sets the terminal state associated with the device. 4.4BSD uses this call to implement the
tcsetattr function with the TCSADRAI N option. In XENIX, the parameter t er mis of type
struct term o;inother systemsisit of typestruct term os.

TIOCSETAF

Thecalioctl (fd, TIOCSETAF, void *tern) waitsfor any output to complete, fushes
any pending input and then sets the terminal state. 4.4BSD uses this call to implement the
tcsetattr function with the TCSAFLUSH option. In XENIX, the parameter t er mis of type
struct termo,inother systemsisit of typestruct term os.

TIOCSETN

Thecalioctl (fd, TIOCSETN struct sgttyb *tern) setsthe parameters but does
not delay or flush input. This call is supported by System V.3. and the Seventh Edition. In
the Seventh Edition, this function works only on the fi rst 6 bytes of the sgt t yb structure.

5 February 2005 02:09

258

TIOCHPCL

Thecal ioctl (fd, TIOOHPAL, NUL) specifi es that the terminal line is to be discon-
nected (hung up) when thefi leis closed for the last time.

TIOCGETC

Thecalioctl (fd, TIOOEIC struct tchars *chars) returns the terminal special
characterstochars.

TIOCSETC

Thecalioctl (fd, TIGCSETC struct tchars *chars) setstheterminal special char-
actersfromchars.

TCGETS

The call ioctl (fd, TOGETS, struct termios *term) returns the current terminal
parameterstot er m Thisfunction is supported by System V.4.

TCSETS

Thecdlioctl (fd, TCSETS, struct termos *tern) immediately setsthe current ter-
minal parameters from term This function is supported by System V.4 and corresponds to
the 4.4BSD call TI OCSETA

TCSETSW

The cal ioctl (fd, TCSETSW struct termos *tern) sets the current termina
parameters fromt er mafter all output characters have been output. This function is supported
by System V.4 and corresponds to the 4.4BSD call Tl QCSETAW

TCSETSF

Thecdl ioctl (fd, TCSETSF, struct termios *tern) fushes the input queue and
sets the current terminal parameters from t er mafter al output characters have been output.
This function is supported by System V.4 and corresponds to the 4.4BSD call TI OCSETAF.

TCGETA

Thecdlioctl (fd, TOETA struct termo *tern) stores current termina parame-
tersinterm Not al t er m os parameters can be stored in astruct term o; you may fi nd
it advantageous to use TOCETS instead (see above).

5 February 2005 02:09

Chapter 15: Terminal Drivers 259

TCSETA

The call ioctl (fd, TCSETA struct termio *tern) sets the current terminal status
fromt er m Parameters that cannot be stored in st ruct t erni o are not affected. This corre-
sponds to TCSETA, except that it usesastruct termo * instead ofastruct termos *.

TCSETAW

Thecallioctl (fd, TCSETAW struct term o *tern) setsthe current terminal param-
eters from t er mafter draining the output queue. This corresponds to TCSETW except that it
usesastruct termo * instead ofastruct termos *.

TCSETAF

The callioctl (fd, TCSETAF, struct termo *tern) input queue” flushes the input
queue and sets the current terminal parameters from t er mafter all output characters have
been output. This corresponds to TCSETF, except that it uses astruct term o * instead of
astruct termos *.

TIOCGWINSZ

The call ioct] (fd, TIOGOGNNSZ, struct w nsize *ws) puts the window size infor-
mation associated with the terminal in ws. The window size structure contains the number of
rows and columns (and pixels if appropiate) of the devices attached to the terminal. It is set
by user software and is the means by which most full screen oriented programs determine the
screen size. The winsize structure is defined as:

struct w nsize

{

unsi gned short ws_row /* rows, in characters */
unsi gned short ws_col; /* colums, in characters */
unsi gned short ws_xpi xel ; /* horizontal size, pixels */
unsi gned short ws_ypi xel ; /* vertical size, pixels */
IS

Many implementations ignore the members ws_xpi xel and ws_ypi xel and set them to 0.

TIOCSWINSZ

The callioctl (fd, TIOCSWNSZ, struct w nsize *ws) sets the window size associ-
ated with the terminal to the value at ws. If the new size is different from the old size,a S G
W NCH (window changed) signal is sent to the process group of the terminal. See TI Q0G
W NSZ for more details.

TIOCSETD

The callioctl (fd, TIOCSETD, int *ldisc); changes the line discipline to | di sc.
Not all systems support multiple line disciplines, and both the available line disciplines and
their names depend on the system. Here are some typical ones:

5 February 2005 02:09

260

« OITYD SC. In System V, the “old” (Seventh Edition) tty discipline.
« NETLD SC The Berknet line discipline.

« NITYD SC: In System V, the “new” (termio) tty discipline.

« TABLD SC The Hitachi tablet discipline.

« NTABLD SC. The GTCO tablet discipline.

+ MOUSELD SC. The mouse discipline.

« KBDLD SC: The keyboard line discipline.

« TTYD SC: The termios interactive line discipline.

« TABLD SC The tablet line discipline.

« SLI PD SC: The Serial IP (SLIP) line discipline.

TIOCGETD

The call ioctl (fd, TIGOEID int *Idisc) returns the current line discipline at
[di sc. See the discussion in the section on TI GCSETD above.

Hardware control

TIOCSBRK

The call ioctl (fd, TIOCSBRK, NUL) sets the terminal hardware into break condition.
This function is supported by 4.4BSD.

TIOCCBRK

The call ioctl (fd, TIOOBRK NULL) clears a terminal hardware BREAK condition.
This function is supported by 4.4BSD.

TIOCSDTR

The callioctl (fd, TIQCSDIR NJL) asserts Data Terminal Ready (DTR). This func-
tion is supported by 4.4BSD. See page 239 for details of the DTR signal.

TIOCCDTR

Thecallioctl (fd, TIOODTR NJLL) resets Data Terminal Ready (DTR). This function
is supported by 4.4BSD. See page 239 for details of the DTR signal.

5 February 2005 02:09

Chapter 15: Terminal Drivers 261

TIOCMSET

The cal ioctl (fd, TIOOMSET, int *state) sets modem state. It is supported by
4.4BSD, SunOS and System V.4, but not all terminals support this call. *st at e is a bit map
representing the parameters listed in table Table 15-13:

Table 15—13: TIOCMSET and TIOCMGET state bits

Paraneter | meaning

TI QGOM LE Line Enable

TIGOM DIR | Data Termina Ready
TICOMRTS | Request To Send

TI QGOM ST Secondary Transmit

TI GOM SR Secondary Receive
TIGOM CTS | Clear To Send

TIGOM CAR | Carrier Detect

TIGOM D Carrier Detect (synonym)
TIGOM R\G | Ring Indication

TIGOM R Ring Indication (synonym)
TIQOM DSR | Data Set Ready

TIOCMGET
Thecdlioctl (fd, TIOOMET, int *state) returnsthe current state of the terminal
modem lines. See the description of TI GOVBET for the use of the bit mapped variable st at e.
TIOCMBIS

Thecalioctl (fd, TITGOMBIS, int *state) setsthe modem state in the same manner
as Tl QVBET, but instead of setting the st at e bits unconditionally, each bit is logically ored
with the current state.

TIOCMBIC
Thecdlioctl (fd, TITGOMBIC int *state) clearsthe modem state: each hit set in the
bitmap st at e isreset in the modem state. The other state bits are not affected.

TCSBRK

Thecalioctl (fd, TCSBRK int nobreak) drainsthe output queue and then sends a
break if nobr eak is not set. This function is supported in System V and SunOS. |n contrast
to the 4.4BSD function Tl QCSBRK, TCSBRK resets the break condition automatically.

5 February 2005 02:09

262

TCXONC

Thecdlioctl (fd, TCXONG int type) specifi esfbw control. Itissupportedin System
V and SunOS. Table 15-14 shows the possible values of t ype.

Table 15—14: TCXONC and tcflow type bits

Par anet er ‘ val ue ‘ meaning

TOOOFF 0 suspend output

TOOON 1 restart suspended output
TA GF 2 suspend input

TAO N 3 restart suspended input

Not all drivers support input flow control via TCXCNC.

Queue control

TIOCOUTQ

Thecdlioctl (fd, TIGQOQAUTQ int *num) setsthe current number of characters in the
output queue to *num Thisfunction is supported by BSD and SunOS.

TIOCSTI

Thecalioctl (fd, TIQCSTlI, char *cp) simulates typed input. It inserts the character
at *cp into the input queue. This function is supported by BSD and SunOS.

TIOCSTOP

The cal ioctl (fd, TIGCSTAP, NJLL) stops output on the terminal. It's like typing
CTRL- S at the keyboard. This function is supported by 4.4BSD.

TIOCSTART

Thecdlioctl (fd, TIQGCSTART, NULL) restarts output on the terminal, like typing CTRL-
Qat the keyboard. Thisfunction is supported by 4.4BSD.

TIOCDRAIN

Thecall ioctl (fd, TIOCCDRAIN NJLL) suspends process execution until all output is
drained. Thisfunction is supported by 4.4BSD.

5 February 2005 02:09

Chapter 15: Terminal Drivers 263

TIOCFLUSH

Thecalioctl (fd, TIOOFLUSH int *what) fushesthe input and output queues. This
function is supported by 4.4BSD, System V.3 and the Seventh Edition. The System V.3 and
Seventh Edition implementations ignore the parameter what and flush both queues. 4.4BSD
fushes the queues if the corresponding bits FREAD and PAR TE are set in *what . If no bits
are set, it clears both queues.

TCFLSH

Thecdlioctl (fd, TGLSH int type) fushes the input or output queues, depending
on the flags defi ned in Table 15-15.

Table 15—15: TCFLSH type bits

Par anet er ‘ val ue ‘ meaning

I
T4 FLUSH 0 fush theinput queue
TOOFLUSH 1 flush the output queue
TA GFLUSH 2 flush both queues

Thisfunction is supported by System V. It does the same thing as TI QOFLUSH, but the seman-
tics are different.

Session control
TIOCGPGRP

Thecdlioctl (fd, TIOOEPAP, pidt *tpgrp) sets*tpgrp to the ID of the current
process group with which the terminal is associated. 4.4BSD uses this call to implement the
functiont cget pgr p.

TIOCSPGRP

The cdl ioctl (fd, TIOQCSPAP, pidt *tpgrp) associates the terminal with the
process group t pgr p. 4.4BSD uses this call to implement the functiont cset pgr p.

TIOCSCTTY

Tl QCSCTTY makes the terminal the controlling terminal for the process. This function is sup-
ported by BSD and SunOS systems. On BSD systems, the call isi octl (fd, TI QCSCITY,
NULL) and on SunOS systemsiitisi octl (fd, TIGCSCITY, int type). Normaly the
controlling terminal will be set only if no other process already ownsit. In those implementa-
tions that support t ype the superuser can set t ype to 1 in order to force the takeover of the
terminal, even if another process ownsit. In 4.4BSD, you would fi rst use the revoke system
call (see Chapter 14, File systems, page 213) to force a close of all fi le descriptors associated
with thefi le.

5 February 2005 02:09

264

System V and older versions of BSD have no equivalent of this function. In these systems,
when a process group leader without a controlling terminal opens a terminal, it automatically
becomes the controlling terminal. There are methods to ovverride this behaviour: in System
V, you set the flag O NOCTTY when you open ther terminal. In old BSD versions, you subse-
quently release the control of the terminal with the Tl GONOTTY request, which we'll ook at in
the next section.

TIOCNOTTY

Traditionaly, the first time a process without a controlling terminal opened a terminal, it
acquired that terminal asits controlling terminal. We saw in the section on TI QCSCTTY above
that thisis no longer the default behaviour in BSD, and that you can override it in System V.
Older BSD versions, including SunOS, did not offer either of these choices. Instead, you had
to accept that you acquired a controlling terminal, and then release the controlling terminal
again with ioctl Tl GONOTTY. If you fi nd this code in a package, and your system doesn’t sup-
port it, you can eliminate it. If your system isbased on System V, you should check the call to
open for the terminal and ensure that the feg O NOCTTY is set.

A second use for TI GONOTTY was after af or k, when the child might want to relinquish the
controlling terminal. This can aso be done with set si d (see Chapter 12, Kernel dependen-
cies, page 171).

TIOCGSID

Thecdlioctl (fd, TIQOEI D pid.t *pid) storesthe termina’s session ID at pi d.
This function is supported by System V.4.

Miscellaneous functions

TIOCEXCL

The call ioctl (fd, TIOEXA, NULL) sets exclusive use on the terminal. No further
opens are permitted except by root.

TIOCNXCL

The cal ioctl (fd, TIOONXQL, NUL) clears exclusive use of the terminal (see TI G
CEXQL). Further opens are permitted.

TIOCCONS

Thecdlioctl (fd, TIGQOOONS, int *on) setsthe consolefile. If on pointsto anon-zero
integer, kernel console output is redirected to the terminal specifi ed in the call. If on points to
zero, kernel console output is redirected to the standard console. Thisis usually used on work
stations to redirect kernel messages to a particular window.

5 February 2005 02:09

Chapter 15: Terminal Drivers 265

TIOCGSOFTCAR

Thecalioctl (fd, TIOOGSCFTCAR int *set) sets*set tol1if theterminal “Data car-
rier detect” (DCD) signal or the software carrier flbg is asserted, and to O otherwise. This
function is supported only in SUNOS 4.X, and is no longer present in Solaris 2. See page 239
for adescription of the DSR line.

TIOCSSOFTCAR

Thecdl ioctl (fd, TIOCSSOFTCAR int *set) isa method to fake a modem carrier
detect signal. It resets software carrier mode if *set is zero and setsit otherwise. In software
carrier mode, the Tl QOGSCFTCAR call always returns 1; otherwise it returns the real value of
the DCD interface signal. This function is supported only in SunOS 4.X, and is no longer
present in Solaris 2.

termios functions

It should come as no surprise that people have long wanted a less bewildering interface to ter-
minals than thei oct| calls that we looked at in the previous section. In POSIX.1, a number
of new functions were introduced with the intent of bringing some sort of order into the chaos.
A total of 8 new functions were introduced, split into three groups. In addition, a further 6
auxiliary functions were added:

e tcgetattr andtcsetattr getand set termina attributesusingstruct ternios.
e tcgetpgrpandtcset pgrp get and set the program group ID.
e tcdrain,tcflowtcflushandtcsendbr eak manipulate the terminal hardware.

- cfgetispeed, cfseti speed, cf get ospeed, cf set ospeed, cf set speed and cf mak-
er aware auxiliary functions to manipulatet er m os entries.

These functions do not add new functionality, but attempt to provide a more uniform inter-
face. In some systems, they are system calls, whereas in others they are library functions that
build on thei oct| interface. If you are porting a package that usest er ni os, and your sys-
tem doesn’t supply it, you have the choice of rewriting the code to usei oct | calls, or you can
use the 4.4BSD library «cals supplied in the 44BSD Lite distribution
(usr/src/lib/libc/gen/termios.c). In the following sections we' Il 1ook briefly at each function.

Direct termios functions

tcgetattr

tcgetattr corresponds to TI QOGETA described on page 256. It returns the current t er m os
statetot erm

#incl ude <termos. h>
int tcgetattr (int fd, struct ternos *tern

266

tcsetattr
tcgetattr setsthecurrentt er m os statefromterm

#i ncl ude <termos. h>
int tcsetattr (int fd, int action, struct termos *t)

act i on can have one of the values listed in Table 15-16.

Table 15—16: tcsetattr action flags

Paraneter | meaning

TCSANONV Change terminal parameters immediately. Corresponds to thei oct| request
TI QCSETA.

TCSADRAIN | First drain output, then change the parameters. Used when changing parame-
tersthat affect output. Correspondsto thei oct| call TI QCSETAW
TCSAFLWSH | Discard any pending input, drain output, then change the parameters. Corre-
spondstoi oct| call TI GCSETAF.

See page 257 for details of the corresponding i oct | interfaces.

In addition, some implementations defi ne the parameter TCSASCFT: if thisis specifi ed in addi-
tion to one of the above flags, the values of thefi eldsc_cfl ag, c_i speed and c_ospeed are
ignored. Thisistypically used when the device in question is not a serial line terminal.

tcgetpgrp

t cget por p returns the ID of the current process group with which the terminal is associated.
It correspondsto thei oct | call TI GOEPARP described on page 263.

#i ncl ude <sys/types. h>

#i ncl ude <uni std. h>

pidt tcgetpgrp (int fd);
tcsetpgrp

t cset pgr p associates the terminal with the process group t pgrp. It corresponds to the
i oct| call TI OCSPARP described on page 263.

#i ncl ude <sys/types. h>

#i ncl ude <uni std. h>

int tcsetpgrp (int fd, pid_t pgrp_id);
tcdrain

t cdrai n suspends the process until al output is drained. It corresponds to the i oct! call
Tl OCDRAI N described on page 262.

5 February 2005 02:09

5 February 2005 02:09

Chapter 15: Terminal Drivers 267

#i ncl ude <term os. h>
int tcdrain (int fd);
tcflow

t cf | owspecifies flow control. It corresponds to the i oct| call TCXONC. See the description
of TCXONC on page 262 for the meaning of the parameter act i on.

#incl ude <termos. h>
int tcflow (int fd, int action);

tcflush
t cf | ush flushes input or output queues for f d.

ncl ude <tern os. h>
int tcflush (int fd, int action);

act i on may take the values shown in Table 15-17.

Table 15—17: t cf | ush action bits

Paraneter | meaning

TA FLUSH Flush data received but not read

TOOFLUSH Flush data written but not transmitted

TA GFLUSH | Flush both data received but not read and data written but not transmitted

This function corresponds to the i oct | request TGFLSH described on page 263.

tcsendbreak

t csendbr eak sends a break indication on the line. This is equivalent to the i oct| request
TCSBRK described on page 261.

ncl ude <tern os. h>
int tcsendbreak (int fd, int len);

termios auxiliary functions

In addition to the t er m os functions in the previous section, a number of library functions
manipulate t er m os struct entries. With one exception, they handle line speeds. They don’t
have any direct effect on the line—you need atcsetattr for that—but they provide a link
between the viewpoint of the application and the underlying implementation.

There is still no agreement on how to represent line speeds. BSD systems use the bit rate as
an integer and store it in the fields c_i speed and c_ospeed. They leave it to the driver to
explain it to the hardware, so you can effectively specify any speed the hardware is capable of
handling. By contrast, System V still uses the small numeric indices that were used in the

268

Seventh Edition” (see page 240), which allows the fi eld to be stored in 4 bits. They are
located in the fi eld c_cfl ag. Thisis not a good idea, because these speeds are the only ones
System V knows about. If you have aV.32bis, V.42bis modem that claims to be able to trans-

fer data at up to 57,600 bps, you will not be able to take full advantage of its capabilities with

System V. |n addition, there is only one speed constant, which sets both the input and output

speeds. The functions for setting input and output speed are effectively the same thing.

In addition to these problems, SCO UNIX System V.3 further complicates the issue by provid-

ing the fields s ospeed and s ispeed in the struct termos. The functions
cf seti speed and cf set ospeed set these fi elds in addition to the four bitsinc_cfl ag, but
the functions cf get i speed and cf get ospeed retrieve the values from c¢_cf | ags, so it's not

clear what use thefi eldsc_i speed and ¢c_ospeed are intended to be.

Setting the bit rates is thus not quite as simple as it might appear: the preprocessor variables
B9600 and friends might not equate to the kind of constant that the termios implementation

needs, and there is no designated place in thet er m os structure to store the hit rates.

This problem is solved by the following functions, which are normally macros:

e speed t cfgetispeed (struct termos *t) returnst’sinput speed in speed._t
format. 1t isundefi ned if the speed is not representable asspeed_t .

e int cfsetispeed (struct ternmos *t, speed t speed)setst’sinput speed to
the internal representation of speed.

e speed t cfgetospeed (struct termos *t) returnst’soutput speed in speed._t
format. Theresult is undefi ned if the speed is not representable asspeed_t .

e int cfsetospeed (struct termos *t, speed_t speed) setst’s output speed
to theinternal representation of speed.

e void cfsetspeed (struct termos *t, speed_t speed) sets both input and
output speed to theinternal representation of speed.

 void cfrmakeraw (struct termos *t) setsthewhole structuret to default values.

* These constants were originally the values that were written to the interface hardware to set the speed.

5 February 2005 02:09

5 February 2005 02:09

Timekeeping

UNIX timekeeping is an untidy area, made more confusing by national and international laws
and customs. Broadly, there are two kinds of functions: one group is concerned with getting
and setting system times, and the other group is concerned with converting time representa-
tions between a bewildering number of formats.

Before we start, we’ll define some terms:

A time zone is a definition of the time at a particular location relative to the time at other
locations. Most time zones are bound to political borders, and vary from one another in
steps of one hour, although there are still a number of time zones that are offset from
adjacent time zones by 30 minutes. Time zones tend to have three-letter abbreviations
(TLAs) such as PST (Pacific Standard Time), EDT (Eastern Daylight Time), BST (British
Summer Time), AET (Australian Eastern Time), MEZ (Mitteleuropaische Zeit). As the
example shows, you should not rely on the combination ST to represent Standard Time.

UTC is the international base time zone, and has the distinction of being one of those
abbreviations which nobody can expand. It means Universal Coordinated Time, despite
the initials. It obviously doesn’t stand for the French Temps Universel Coordonné either.
It corresponds very closely, but not exactly, to Greenwich Mean Time (GMT), the local
time in England in the winter, and is the basis of all UNIX timestamps. The result is that
for most of us, UTC is not the current local time, though it might be close enough to be
confusing or far enough away to be annoying.

From the standpoint of UNIX, you can consider the Epoch to be the beginning of
recorded history: it’s 00:00:00 UTC, 1 January 1970. All system internal dates are rela-
tive to the Epoch.

Daylight Savings Time is a method of making the days appear longer in summer by set-
ting the clocks forward, usually by one hour. Thus in summer, the sun appears to set one
hour later than would otherwise be the case.

Even after clarifying these definitions, timekeeping remains a pain. We’ll look at the main
problems in the following sections:

269

270

Difficult to use

The time functions are not easy to use: to get them to do anything useful requires a lot of
work. You'd think that UNIX would supply a primitive call upon which you could easily
build, but unfortunately there isn’t any such call, and the ones that are available do not operate
in an intuitively obvious way. For example, there is no standard function for returning the
current timein a useful format.

Implementations differ

There is no single system call that is supported across all platforms. Functions are imple-
mented as system calls in some systems and as library functions in others. As a result, it
doesn't make sense to maintain our distinction between system calls and library functions
when it comes to timekeeping. In our discussion of the individual functions, we'll note which
systems implement them as system calls and which aslibrary calls.

Differing time formats
There are at least four different time formats:

e The system uses the time_t format, which represents the number of seconds since the
Epoch. This format is not subject to time zones or daylight savings time, but it is accu-
rate only to one second, which is not accurate enough for many applications.

e The struct timeval format is something like an extended ti ne_t with a resolution of 1
microsecond:

#i ncl ude <sys/tinme. h>

struct tineval

{
| ong tv_sec; /* seconds since Jan. 1, 1970 */
| ong tv_usec; /* and m croseconds */
¥
It isused for anumber of newer functions, such asget ti meof day andsetiti ner.

e Many library routines represent the calendar time as a struct tm. It is usually defi ned in
{usr/include/time.h:

struct tm
{
int tmsec; /* seconds after the mnute [0-60] */
int tmnn; /* mnutes after the hour [0-59] */
int tmhour; /* hours since mdnight [0-23] */
int tmnday; /* day of the month [1-31] */
int tmonon; /* nonths since January [0-11] */
int tmyear; /* years since 1900 */
int tmwday; /* days since Sunday [0-6] */
int tmyday; /* days since January 1 [0-365] */
int tmisdst; /* Daylight Savings Tine flag */

5 February 2005 02:09

5 February 2005 02:09

Chapter 16: Timekeeping 271

long tmgmoff; /* offset fromUICin seconds */
char *tmzone; /* tinezone abbreviation */

b
Unlike ti nme_t, a struct tmdoes not uniquely define the time: it may be a UTC time, or it
may be local time, depending on the time zone information for the system.

« Dates as a text string are frequently represented in a strange manner, for example Sat
Sep 17 14:28:03 1994\ n. This format includes a \ n character, which is seldom
needed—often you will have to chop it off again.

Daylight Savings Time

The support for Daylight Savings Time was rudimentary in the Seventh Edition, and the solu-
tions that have arisen since then are not completely compatible. In particular, System V han-
dles Daylight Savings Time via environment variables, so one user’s view of time could be
different from the next. Recent versions of BSD handle this via a database that keeps track of
local regulations.

National time formats

Printable representations of dates and times are very much a matter of local customs. For
example, the date 9/4/94 (in the USA) would be written as 4/9/94 in Great Britain and
04.09.94 in Germany. The time written as 4:23 pm in the USA would be written 16.23 in
France. Things get even worse if you want to have the names of the days and months. As a
result, many timekeeping functions refer to the locale kept by ANSI C. The locale describes
country-specific information. Since it does not vary from one system to the next, we won’t
look at it in more detail—see POS X Programmer’s Guide, by Donald Lewine, for more
information.

Global timekeeping variables
A number of global variables define various aspects of timekeeping:

« The variable timezone, which is used in System V and XENIX, specifies the number of
minutes that the standard time zone is west of Greenwich. It is set from the environment
variable TZ, which has a rather bizarre syntax. For example, in Germany daylight sav-
ings time starts on the last Sunday of March and ends on the last Sunday of September
(not October as in some other countries, including the USA). To tell the system about
this, you would use the TZ string

MEZ- IMBZ- 2; MB. 5, M). 5
This states that the standard time zone is called MEZ, and that it is one hour ahead of
UTC, that the summer time zone is called MSZ, and that it is two hours ahead of UTC.
Summer time begins on the (implied Sunday of the) fifth week in March and ends in the
fifth week of September.

5 February 2005 02:09

272

The punctuation varies: this example comes from System V.3, which requires a semi-
colon in the indicated position. Other systems allow a comma here, which works until
you try to move the information to System V.3.

e Thevariableal t zone, used in SVR4 and XENIX, specifi es the number of minutes that
the Daylight Savings Time zone is west of Greenwich.

e The variable dayl i ght, used in SVR4 and XENIX, indicates that Daylight Savings
Timeis currently in effect.

e Thevariable tzname, used in BSD, SVR4 and XENIX, is a pointer to two strings, Speci-
fying the name of the standard time zone and the Daylight Savings Time zone respec-
tively.

In the following sections we'll ook at how to get the current time, how to set the current time,
how to convert time values, and how to suspend process execution for a period of time.

Getting the current time

The system supplies the current time via the system callst i ne or get t i meof day —only one
of these is a system call, but the system determines which oneit is.

time
#i ncl ude <sys/types. h>
#incl ude <tine. h>
time_t time (tine_t *tloc);

ti ne returns the current timeinti ne_t form, both as areturn value and at tloc if thisis not
NULL. tine isimplemented as a system call in System V and as a library function (which
callsget ti neof day) in BSD. Since it returns a scalar value, acall toti ne can be used asa
parameter to functionslikel ocal ti ne or cti ne.

ftime

ftine isavariant of ti nme that returns time information with a resolution of one millisecond.
It originally came from 4.2BSD, but is now considered obsol ete.

#i ncl ude <sys/types. h>
#i ncl ude <sys/tineb. h>

typedef long tine_t; [* (typically) */
struct tineb
{
tine_t tine; /* the sane tinme returned by tine */
unsigned short mllitm /* MIliseconds */
short ti mezone; /* Systemdefault tine zone */
short dstfl ag; /* set during daylight savings tine */

5 February 2005 02:09

Chapter 16: Timekeeping 273

b
struct tinmeb *ftime (struct tineb *tp);

The timezone returned is the system default, possibly not what you want. System V.4 depre-
cates” the use of this variable as a result. Depending on which parameters are actually used,
there are a number of alternatives to fti ne. In many cases, ti ne supplies all you need.

RGme ts'ys er'r?s?c)%trjatr%g{/]l%etoa%qg i%C%gine ftime in terms of getti neof day, which

returns the time of the day with a 1 microsecond resolution—see the next section. On other
systems, unfortunately, the system clock does not have a finer resolution than one second, and
you are stuck with ti re.

gettimeofday

#i ncl ude <sys/tine. h>

struct tineval

{

I ong tv_sec; /* seconds since Jan. 1, 1970 */
| ong tv_usec; /* and m croseconds */

1

int gettineofday (struct tineval *tp,
struct tinezone *tzp); /* (BSD */
int gettineofday (struct timeval *tp); /* (SystemV.4) */

getti nmeof day returns the current system time, with a resolution of 1 microsecond, to t p.
The name is misleading, since the struct tineval representation does not relate to the time
of day. Many implementations ignore t zp, but others, such as SunOS 4, return time zone
information there.

In BSD, get ti neof day is a system call. In some versions of System V.4 it is emulated as a
library function defined in terms of ti ne, which limits its resolution to 1 second. Other ver-
sions of System V appear to have implemented it as a system call, though this is not docu-
mented.

* The term deprecate is a religious term meaning “to seek to avert by prayer”. Nowadays used to indi-
cate functionality that the implementors or maintainers wish would go away. This term seems to have
come from Berkeley. To quote the “New Hackers Dictionary”:

:deprecated: adj. Said of a program or feature that is considered obsolescent and in the
process of being phased out, usually in favor of a specified replacement. Deprecated features
can, unfortunately, linger on for many years. This term appears with distressing frequency in
standards documents when the committees writing the documents realize that large amounts of
extant (and presumably happily working) code depend on the feature(s) that have passed out of
favor. See also {dusty deck}.

5 February 2005 02:09

274

Setting the current time

Setting the system time is similar to getting it, except that for security reasons only the supe-
ruser (root) is alowed to perform the function. It is normally executed by the date program.

adjitime
#i ncl ude <sys/tine. h>

int adjtine (struct tineval *delta, struct tineval *olddelta);

adj ti me makes small adjustments to the system time, and is intended to help synchronize
time in a network. The adjustment is made gradually—the system slows down or speeds up
the passage of time by a fraction of a percent until it has made the correction, in order not to
confuse programs like cron which are watching the time. As a result, if you call adj ti ne
again, the previous adjustment might still not be complete; in this case, the remaining adjust-
ment is returned in ol ddel ta. adjti ne was introduced in 4.3BSD and is also supported by
System V. It isimplemented asasystem call in al systems.

settimeofday

#i ncl ude <sys/tine. h>

int gettineofday (struct tineval *tp, struct timezone *tzp);
int settineofday (struct tinmeval *tp, struct timezone *tzp);

settineof day isaBSD system call that is emulated as a library function in System V.4. It
sets the current system time to the value of t p. The value of t zp is no longer used. In Sys-
tem V, this call isimplemented in terms of the st i ne system call, which sets the time only to
the nearest second. If you really need to set the time more accurately in System V.4, you can
useadj ti re.

stime
#i ncl ude <uni std. h>
int stine (const tine_t *tp);

st i ne sets the system time and date. Thisisthe original Seventh Edition function that is still
available in System V. It is not supported in BSD—use set t i neof day instead on BSD sys-
tems.

Converting time values

As advertised, there are a large number of time conversion functions, made all the more com-
plicated because many are supported only on specifi ¢ platforms. All are library functions.
Many return pointers to static data areas that are overwritten by the next call. Solaris attempts
to solve this problem with versions of the functions with the characters _r (for reentrant)

5 February 2005 02:09

Chapter 16: Timekeeping 275

appended to their names. These functions use a user-supplied buffer to store the data they
return.

strftime

#i ncl ude <sys/types. h>
#incl ude <tine. h>
#i ncl ude <string. h>

size_t strftine (char *s, size_t naxsize, char *format, struct tm*tn);

strftime convertsthetime at t minto aformatted string at s. f or nat specifi es the format of
the resultant string, which can be no longer than naxsi ze characters. format is similar to
the format strings used by printf, but contains strings related to dates. strftine has a
rather strange return value: if the complete date string, including the terminating NUL charac-
ter, fi ts into the space provided, it returns the length of the string—otherwise it returns 0O,
which implies that the date string has been truncated.

strftine isavailable on al platforms and is implemented as a library function. System V.4
considersascftine and cfti ne to be obsolete. The man pages state that strfti ne should
be used instead.

strptime
#incl ude <tine. h>
char *strptine (char *buf, char *fm, struct tm*tn);

strptine is alibrary function supplied with SunOS 4. It converts the date and time string
buf intoastruct tmvalueatt m Thiscall bearsthe samerelationship to scanf thatstrf -
tine bearstoprintf.

ascftime

#i ncl ude <sys/types. h>
#i ncl ude <tine. h>

int ascftine (char *buf, char *fm, tm*tn;

ascf ti me converts the time at t minto aformatted string at buf . f or mat specifi es the format
of the resultant string. Thisis effectively the same function asstrfti ne, except that there is
no provision to supply the maximum length of buf . ascfti ne is available on all platforms
and isimplemented as alibrary function.

asctime and asctime _r

#i ncl ude <sys/types. h>
#incl ude <tine. h>

char *asctine (const struct tm*tn);

5 February 2005 02:09

276

char *asctine_r (const struct tm*tm char *buf, int buflen);

ascti ne convertsatimeinstruct tnf format into the same kind of string that is returned
by cti ne. ascti ne isavailable on all platforms and is always alibrary function.
asctinme_r isaversion of ascti e that returns the string to the user-provided buffer r es,

which must be at least buf | en characterslong. It returns the address of res. It issupplied as
alibrary function on Solaris systems.

cftime

#i ncl ude <sys/types. h>
#incl ude <tine. h>

int cftime (char *buf, char *fm, tine_t *clock);

cfti ne converts the time at ¢l ock into a formatted string at buf . for mat specifi es the for-
mat of the resultant string. This is effectively the same function as strfti ne, except that
there is no provision to supply the maximum length of buf, and the time is supplied in
tine_t format. cftine isavailable on al platforms and is implemented as a library func-
tion.

ctimeand ctime r

#i ncl ude <sys/types. h>
ncl ude <tinme. h>
extern char *tznane[2];

char *ctine (const tine_t *clock);
char *ctinme_r (const tine_t *clock, char *buf, int buflen);

cti ne converts the time cl ock into a string in the form Sat Sep 17 14: 28: 03 1994\ n,
which has the advantage of consistency: it is not a normal representation anywhere in the
world, and immediately brands any printed output with the word UNIX. It uses the environ-
ment variable TZ to determine the current time zone. You can rely on the string to be exactly
26 characters long, including the fi nal \ 0, and to contain that irritating \ n at the end. cti ne
isavailable on al platforms and is always alibrary function.

ctine_r isaversion of ctine that returns its result in the buffer pointed to by buf . The
length is limited to buf | en bytes. ctinme_r is available on Solaris platforms as a library
function.

dysize
#incl ude <tine. h>
int dysize (int year);

dysi ze return the number of daysinyear . Itissupplied asalibrary function in SunOS 4.

5 February 2005 02:09

Chapter 16: Timekeeping 277

gmtime and gmtime _r

#i ncl ude <tine. h>

struct tm*gmime (const time_t *clock);
struct tm*gmime_r (const time_t *clock, struct tm*res);

gnti ne convertsatimeintine_t formatintostruct tnt format, likel ocal tine. Asthe
name suggests, however, it does not account for local timezones—it returns a UTC time (this
was formerly called Greenwich Mean Time, thus the name of the function). gnti ne is avail-
ableon all platforms and is aways alibrary function.

gntine_r isaversion of gnti ne that returns the string to the user-provided buffer res. It
returns the address of res. Itissupplied asalibrary function on Solaris systems.

localtime and localtime r

#i ncl ude <tine. h>

struct tm*localtine (const tine_t *clock);
struct tm*localtine_r (const tinme_t *clock, struct tm*res);

| ocal ti nme convertsatimeintine_ t formatintostruct tnt format. Likecti ne, it uses
the time zone information in t znane to convert to local time. | ocal ti ne is available on all
platforms and is always a library function.

localtine r isaversion of | ocal ti ne that returns the string to the user-provided buffer
res. ltreturnsthe addressof res. Itissupplied asalibrary function on Solaris systems.

mktime

#i ncl ude <sys/types. h>
ncl ude <tinme. h>
time_t nktine (struct tm*tn);

nkt i me convertsaloca timeinstruct tmformatintoatimeintine_t format. It does not
uset znare in the conversion—it uses the information at t m >t m zone instead. In addition
to converting the time, nkt i ne also sets the members wday (day of week) and yday (day of
year) of the input struct tm to agree with day, month and year. tm >t mi sdst determines
whether Daylight Savings Time is applicable;

e ifitis>0,nkti me assumes Daylight Savings Timeisin effect.
e IfitisQ, it assumesthat no Daylight Savings Timeisin effect.

e Ifitis<0, nktine triesto determine whether Daylight Savings Time isin effect or not.
It is often wrong.

nkt i me isavailable on all platforms and is always alibrary function.

5 February 2005 02:09

278

timegm
#incl ude <tine. h>
time_t tinmegm(struct tm*tn);

ti megmconvertsastruct t mtime, assumed to be UTC, to the correspondingti ne_t value.
This is effectively the same thing as nkt i me with the time zone set to UTC, and is the con-
verse of gmii ne. ti megmisalibrary function supplied with SunOS 4.

timelocal

#i ncl ude <tine. h>

time_t tinelocal (struct tm*tm;

tinel ocal converts a struct tmtime, assumed to be loca time, to the corresponding
tine_t value. Thisissimilar to nkti ne, but it uses the local time zone information instead
of theinformationint m It isalso the converse of | ocal ti ne. ti nel ocal isalibrary func-
tion supplied with SunOS 4.

difftime

#i ncl ude <sys/types. h>
#i ncl ude <tine. h>

double difftine (tine_t tinel, tine_t tinel);

di ffti ne returns the difference in seconds between two ti ne_t values. This is effectively
thesamethingas(int) tinel - (int) tine0. difftineisalibrary function available
on al platforms.

timezone

#i ncl ude <tine. h>

char *tinezone (int zone, int dst);

t i nezone returns the name of the timezone that is zone minutes west of Greenwich. If dst

is non-0, the name of the Daylight Savings Time zone is returned instead. This call is obso-
lete—it was used at a time when time zone information was stored as the number of minutes

west of Greenwich. Nowadays the information is stored with a time zone name, so there
should be no need for this function.

tzset

#i ncl ude <tine. h>

void tzset ();

5 February 2005 02:09

Chapter 16: Timekeeping 279

t zset sets the value of the internal variables used by | ocal ti ne to the values specified in
the environment variable TZ. It is called by ascti me. In System V, it sets the value of the
global variable dayl i ght . tzset is a library function supplied with BSD and System V.4,

tzsetwall
#i ncl ude <tinme. h>
void tzsetwall ();

tzsetwal | sets the value of the internal variables used by | ocal ti ne to the default values
for the site. tzsetwal | is a library function supplied with BSD and System V.4.

Suspending process execution

Occasionally you want to suspend process execution for a short period of time. For example,
the tail program with the - f flag waits until a file has grown longer, so it needs to relinquish
the processor for a second or two between checks on the file status.

Typically, this is done with sl eep. However, some applications need to specify the length of
time more accurately than sl eep allows, so a couple of alternatives have arisen: nap suspends
execution for a number of milliseconds, and usl eep suspends it for a number of microsec-
onds.

nap

nap is a XENIX variant of sl eep with finer resolution:
#incl ude <tine. h>
long nap (long mllisecs);

nap suspends process execution for at least m | | i secs milliseconds. In practice, the XENIX
clock counts in intervals of 20 ms, so this is the maximum accuracy with which you can spec-
ify m||isecs. You can simulate this function with usl eep (see page 281 for more details).

setitimer
BSD systems and derivatives maintain three (possibly four) interval timers:
« Arreal time timer, | TI MER_REAL, which keeps track of real elapsed time.

« Avirtual timer, | TI MER M RTUAL, which keeps track of process execution time, in other
words the amount of CPU time that the process has used.

« A profiler timer, | TI MER_ PRCF, which keeps track of both process execution time and
time spent in the kernel on behalf of the process. As the name suggests, it is used to
implement profiling tools.

5 February 2005 02:09

280

e A real time profiler timer, | TI MR REALPRCF, used for profiling Solaris 2.X multi-
threaded processes.

These timers are manipulated with the system callsget i ti mer andsetiti ner:

#i ncl ude <sys/tine. h>

struct tineval

i{ong tv_sec; /* seconds */
long tv_usec; /* and m croseconds */
b
struct itinerval
{
struct tineval it_interval; /* timer interval */
struct tineval it_val ue; /* current value */
b

int getitiner (int which, struct itinerval *val ue);
int setitimer (int which, struct itinerval *value, struct itinerval *oval ue);

setitimer setsthe value of a specifi ¢ timer whi ch to val ue, and optionally returns the pre-
vious value in oval ue if thisisnot aNULL pointer. getiti mer just returns the current value
of the timer to val ue. The resolution is specifi ed to an accuracy of 1 microsecond, but it is
really limited to the accuracy of the system clock, which is more typically in the order of 10
milliseconds. In addition, as with all timing functions, there is no guarantee that the process
will be able to run immediately when the timer expires.

In the struct i ti merval , it_val ue isthe current value of the timer, which is decremented
depending on type as described above. Whenit val ue is decremented to O, two things hap-
pen: a signal is generated, and i t _val ue isreloaded fromit_interval . If the result is 0,
no further action occurs; otherwise the system continues decrementing the counter. In this
way, one call tosetitimer can cause the system to generate continuous signals at a specifi ed
interval.

The signal that is generated depends on the timer. Here'san overview:

Table 16—1: seti ti ner signals

Ti ner Signal
Real tine S GALRM
Virtual S| GVTALRV
Profiler S| GPRCF
Real -tine profiler' | SIGPRCF

1 Only Solaris 2.x

The only timer you're likely to see is the real time timer. If you don't have it, you can fake it
with al arm In System V.4, setitiner isimplemented as a library function that calls an
undocumented system call. See The Magic Garden explained: The Internals of UNIX System

5 February 2005 02:09

Chapter 16: Timekeeping 281

V Release 4, by Berny Goodheart and James Cox, for more details.
setitimer isusedtoimplement the library routine usl eep.

sleep

#i ncl ude <uni std. h>

unsi gned sl eep (u_int seconds);

The library routine sl eep suspends program execution for approximately seconds seconds.
Itisavailable on al UNIX platforms.

usleep
usl eep isavariant of sl eep that suspends program execution for a very short time:

#i ncl ude <uni std. h>
voi d usl eep (u_int m croseconds);

usl eep sleeps for at least m cr oseconds microseconds. It is supplied on BSD and System
V.4 systems as a library function that uses the setitimer system call.

select and poll

If your system doesn’t supply any timing function with a resolution of less than one second,
you might be able to fake it with the functions sel ect or pol | . sel ect can wait for nothing
if you ask it to, and since the timeout is specifi ed asastruct tineval (seepage 270), you
can specify times down to microsecond accuracy. You can use pol | in the same way, except
that you specifi es its timeout value in milliseconds.

For example,

voi d usl eep (int m croseconds)
{
struct tineval tineout;
tinmeout.tv_usec = mcroseconds % 1000000;
timeout.tv_sec = nicroseconds / 1000000;
select (0, NULL, NUL, NULL, &ineout);
}

or
voi d usl eep (int m croseconds)
{
pol I (O, NULL, mcroseconds / 1000);
}

5 February 2005 02:09

Header files

When the C language was young, header files were required to define structures and occasion-
ally to specify that a function did something out of the ordinary like taking a doubl e parame-
ter or returning af | oat result. Then ANSI C and POSIX came along and changed all that.
Header files seem a relatively simple idea, but in fact they can be a major source of annoyance
in porting. In particular:

ANSI and POSIX.1 have added a certain structure to the usage of header files, but there
are still many old-fashioned headers out there.

ANSI and POSIX.1 have also placed more stringent requirements on data types used in
header files. This can cause conflicts with older systems, especially if the author has
commited the sin of trying to out-guess the header files.

C++ has special requirements of header files. If your header files don’t fulfil these
requirements, the GNU protoize program can usually fix them.

There is still no complete agreement on the names of header files, or in which directories
they should be placed. In particular, System V.3 and System V.4 frequently disagree as
to whether a header file should be in /usr/include or in /usr/include/sys.

ANSI C, POSIX.1, and header files

ANSI C and POSIX.1 have had a far-reaching effect on the structure of system header files.
We’ll look at the changes in the C language in more detail in Chapter 20, Compilers. The fol-
lowing points are relevant to the use of header files:

ANSI C prefers to have an ANSI-style prototype for every function call it encounters. If
it doesn’t find one, it can’t check the function call semantics as thoroughly, and it may
issue a warning. It’s a good idea to enable all such warnings, but this kind of message
makes it difficult to recognize the real errors hiding behind the warnings. In C++, the
rules are even stricter: if you don’t have a prototype, it’s an error and your source file
doesn’t compile.

283

5 February 2005 02:09

284

e To do a complete job of error checking, ANSI C requires the prototype in the new,
embedded form:

int foo (char *zot, int glarp);
and not

int foo (zot, glarp);
char *zot;

Old C compilers don't understand this new kind of prototype.
* Header files usualy contain many defi nitions that are not part of POSIX.1. A mecha

nism is needed to disable these defi nitions if you are compiling a program intended to be
POSIX.1 compatible.”

The result of these requirements is spaghetti header fi les: you frequently see things like this
excerpt from the header fi le stdio.h in 4.4BSD:

/*
* Functions defined in ANSI C standard.
*/
__ BEANDEAS
voi d clearerr _ P((FILE *));
int fclose _ P((FILE *));
#if !defined(_ANS _SOURCE) & !defi ned(_PC8l X SOURCE)
extern int sys nerr; /* perror(3) external variables */
extern __const char *__const sys_ errlist[];
#endi f
voi d perror _ P((const char *));
__ END DEAS
/*
* Functions defined in PCSl X 1003. 1.
*/
#i fndef _ANSI _SOURCE
#define L_cuserid 9 /* size for cuserid(); UT_NAMESIZE + 1 */
#define L ctermd 1024 /* size for ctermd(); PATH MAX */
_ BEANDEAS

char *ctermd __P((char *));

__END DEGLS
#endif /* not ANS */

/*
* Routines that are purely local.
*/

* Writing your programs to conform to POSIX.1 may be a good idea if you want them to run on as
many platforms as possible. On the other hand, it may aso be a bad idea: POSIX.1 has very rudimen-
tary facilitiesin some areas. You may fi nd it more confi ning than is good for your program.

5 February 2005 02:09

Chapter 17: Header files 285

#if !defined (_ANSI_SOURCE) && !defined(_PC8 X SOJRCE)
__ BEA N DECLS
char *fgetln _ P((FILE *, size t *));

_ BEND DEAS

Well, it does look vaguely like C, but this kind of header file scares most people off. A num-
ber of conflicts have led to this kind of code:

« The ANSI C library and POSIX.1 carefully define a subset of the total available func-
tionality. If you want to abide strictly to the standards, any extension must be flagged as
an error, even if it would work.

« The C++ language has a different syntax from C, but both languages share a common set
of header files.

These solutions have caused new problems, which we’ll examine in this chapter.

ANSI and POSIX.1 restrictions

Most current UNIX implementations do not conform completely with POSIX.1 and ANSI C,
and every implementation offers a number of features that are not part of either standard. A
program that conforms with the standards must not use these features. You can specify that
you wish your program to be compliant with the standards by defining the preprocessor vari-
ables ANSI SOURCE or PGBl X SAURCE, which maximizes the portability of the code. It
does this by preventing the inclusion of certain definitions. In our example, the array
sys_errlist, (see Chapter 18, Function libraries, page 298), is not part of POSIX.1 or
ANSI, so the definition is not included if either preprocessor variable is set. If we refer to
sys_errlist anyway, the compiler signifies an error, since the array hasn’t been declared.
Similarly, L_cuseri d is defined in POSIX.1 but not in ANSI C, so it is defined only when

P8l X SOURCE is defined and _ANSI _ SOURCE is not defined.

Declarations for C++

C++ has additional requirements of symbol naming: function overloading allows different
functions to have the same name. Assemblers don’t think this is funny at all, and neither do
linkers, so the names need to be changed to be unique. In addition, the names need to some-
how reflect the class to which they belong, the kind of parameters that the function takes and
the kind of value it returns. This is done by a technique called function name encoding, usu-
ally called function name mangling. The parameter and return value type information is
appended to the function name according to a predetermined rule. To illustrate this, let’s look
at a simple function declaration:

doubl e Internal::sense (int a, unsigned char *text, Internal &, ...);

« First, two underscores are appended to the name of the function. With the initial under-
score we get for the assembler, the name is now _sense__.

286

e Then the class name, Internal isadded. Since the length of the name needs to be spec-
ifi ed, thisisputinfirst: _sense__8Internal.

¢ Next, the parameters are encoded. Simple types like int and char are abbreviated to a
single character (in this case, 1 and c. If they have modifi ers like unsigned, these, too,
are encoded and precede the type information. In this case, we get just plain i for theint
parameter, and PUc (a Pointer to Unsigned characters for the second parameter:
_sense__8InternaliPUc.

» Class or structure references again can’t be coded ahead of time, so again the length of
the name and the name itself is used. In this case, we have a reference, so the letter R is
placed in front of the name: _sense__8Internal iPUcR8Internal.

* Finadly, the ellipses are specifi ed with the letter e: _sense__8Internal iPUCR8Inter-
nale.

For more details on function name mangling, see The Annotated C++ Reference Manual by
Margaret Ellis and Bjarne Stroustrup.

This difference in naming is a problem when a C++ program really needs to call a function
written in C. The name in the object fi le is not mangled, and so the C++ compiler must not
output areference to amangled name. Theoretically, there could be other differences between
C++ callsand C calls that the compiler also needs to take into account. You can't just assume
that a function written in another language adheres to the same conventions, so you have to
tell it when a called function is written according to C conventions rather than according to
C++ conventions.

This is done with the following elegant construct:

extern ''C"

{

char *ctermid (char *);

}:

In ANSI C, the same declaration would be
char *ctermid (char *);

and in K&R Citwould be
char *ctermid Q;

It would be a pain to have a separate set of header fi les for each version. Instead, the imple-
mentors defi ned preprocessor variables which evaluate to language constructs for certain
places:

e« BEGIN DECLS isdefi ned asextern “C” { for C++ and nothing otherwise.
e END DECLS isdefi ned as}; for C++ and nothing otherwise.

__P(fo0) is defi ned as foo for C++ and ANSI C, and nothing otherwise. This is the
reason why the argumentsto __ P() are enclosed in double parentheses: the outside level
of parentheses gets stripped by the preprocessor.

5 February 2005 02:09

5 February 2005 02:09

Chapter 17: Header fi les 287

In this implementation, sys/cdefs.h defi nes these preprocessor variables. What happens if
sys/cdefs.h isn't included before stdio.h? Lots of error messages. So one of the fi rst lines in
stdio.h is#i ncl ude <sys/ cdefs. h>. Thisis not the only place that sys/cdefs.h is included:

in this particular implementation, from 4.4BSD, it is included from assert.h, db.h, dirent.h,

err.h, fnmatch.h, fstab.h, fts.h, glob.h, grp.h, kvm.h, locale.h, math.h, netdb.h, nlist.h, pwd.h,

regex.h, regexp.h, resolv.h, runetype.h, setjmp.h, signal.h, stdio.h, stdlib.h, string.h, time.h,

ttyent.h, unistd.h, utime.h and vis.h. This places an additional load on the compiler, which

reads in a 100 line defi nition fi le multiple times. It also creates the possibility for compiler
errors. sys/cdefs.h defi nes a preprocessor variable_ CDEFS H_in order to avoid this problem:
after the obligatory UCB copyright notice, it starts with

#ifndef COEFS H
#define CDEFS H_

f defined(__cpl uspl us)

#define _ BEAN DEALS extern "C' {
#define _ END DEQLS };

el se

#define _ BEG N DECLS

#define _ END DECLS

#endi f

This is a common technique introduced by ANSI C: the preprocessor only processes the body
of the header fi le the fi rst time. After that, the preprocessor variable CDEFS H is defi ned,
and the body will not be processed again.

There are a couple of things to note about this method:

e There are no hard and fast rules about the naming and defi nition of these auxiliary vari-
ables. Theresult isthat not all header fi les use this technique. For example, in FreeBSD
1.1, the header fi le machine/limits.h defi nes a preprocessor variable _MACH NE_LI M
| TS Hand only interprets the body of the fi le if this preprocessor variable was not set on
entry. BSD/OS 1.1, on the other hand, does not. The same header fi leis present, and the
text is almost identical, but there is nothing to stop you from including and interpreting
machine/limits.h multiple times. The result can be that a package that compiles just fi ne
under FreeBSD may fail to compile under BSD/OS.

e The ANSI standard defi nes humerous standard preprocessor variables to ensure that
header fi les are interpreted only the fi rst time they are included. The variables all start
with aleading _, and the second character is either another _ or an upper-case letter. It's
agood ideato avoid using such symbolsin your sources.

e We could save including sys/cdefsh multiple times by checking CDEFS H before
including it. Unfortunately, this would establish an undesireable relationship between
the two fi les: if for some reason it becomes necessary to change the name of the pre-
processor variable, or perhaps to give it different semantics (like giving it different values
at different times, instead of just being defi ned), you have to go through al the header
fi les that refer to the preprocessor variable and modify them.

288

ANSI header files

The ANSI C language defi nition, also called Standard C, was the fi rst to attempt some kind of
standardization of header files. As far as it goes, it works well, but unfortunately it covers
only acomparatively small number of header fi les. In ANSI C,

e The only header fi les you should need to include are assert.h, ctype.h, errno.h, float.h,
limits.h, locale.h, math.h, setjmp.h, signal.h, stdarg.h, stddef.h, stdio.h, stdlib.h, string.h
and time.h.

* You may include headersin any order.

e You may include any header more than once.

e Header fi les do not depend on other header fi les.
e Header fi les do not include other header fi les.

If you can get by with just the ANSI header fi les, you won't have much trouble. Unfortu-
nately, real-life programs usually reguire headers that aren’t covered by the ANSI standard.

Type information

A large number of system and library calls return information which can be represented in a
single machine word. The machine word of the PDP-11, on which the Seventh Edition ran,

was only 16 bits wide, and in some cases you had to squeeze the value to get it in the word.

For example, the Seventh Edition fi le system represented an inode number in ani nt , so each
fi le system could have only 65536 inodes. When 32-bit machines were introduced, people
quickly took the opportunity to extend the length of these fi elds, and modern fi le systems such
as ufs or vxfs have 32 bit inode numbers.

These changes were an advantage, but they bore a danger with them: nowadays, you can't be
sure how long an inode number is. Current systems really do have different sized fi elds for
inode numbers, and this presents a portability problem. Inodes aren’t the only thing that has
changed: consider the following structure defi nition, which contains information returned by

system calls:
struct process_info
{
I ong pi d; /* process nunber */
long start_time; /* tinme process was started, fromtinme () */
| ong owner; /* user |Dof owner */
long log file; /* file nunber of log file */
long log_ file_pos; /* current positioninlog file */
short file_pernm ssions; /* default unmask */
short log file najor; /* naj or device nunber for log file */
short log file_mnor; /* mnor device nunber */
short i node; /* inode nunber of log file */
}

On most modern systems, the | ongs take up 32 bits and the shor t s take up 16 bits. Because

5 February 2005 02:09

5 February 2005 02:09

Chapter 17: Header fi les 289

of alignment constraints, we put the longest data types at the front and the shortest at the end

(see Chapter 11, Hardware dependencies, page 158 for more details). And for older systems,

these fi elds are perfectly adequate. But what happens if we port a program containing this
structure to a 64 bit machine running System V.4 and vxfs? We've already seen that the inode
numbers are now 32 bits long, and System V.4 major and minor device numbers also take up

more space. If you port this package to 4.4BSD, thefi eld | og_fi | e_pos needsto be 64 bits
long.

Clearly, it's an oversimplifi cation to assume that any particular kind of value mapsto ashort

or al ong. The correct way to do this is to defi ne a type that describes the value. In modern
C, the structure above becomes:

struct process_info

{

pid_t pi d; /* process nunber */

tinme_t start_tine; /* time process was started, fromtinme () */
uid t owner ; /* user |1D of owner */

| ong log file; /* file nunber of log file */

pos_t log file_pos; /* current positioninlog file */

nmode_t fil e_pernissions; /* default umask */

short log file najor; /* naj or device nunber for log file */

short log_file_nmnor; /* mnor device nunber */

i node_t inode; /* inode nunber of log file */

}

It's important to remember that these type defi nitions are al in the mind of the compiler, and
that they are defi ned in a header fi le, which is usually called sys/types.h: the system handles
them as integers of appropriate length. If you defi ne them in this manner, you give the com-
piler an opportunity to catch mistakes and generate more reliable code. Check your man
pages for the types of the arguments on your system if you run into trouble. In addition, Ap-
pendix A, Comparative reference to UNIX data types, contains an overview of the more com-
mon types used in UNIX systems.

Classes of header files

If you look at the directory hierarchy /usr/include, you may be astounded by the sheer number
of header fi les, over 400 of them on atypical UNIX system. Fortunately, many of them arein
subdirectories, and you usually won't have to worry about them, except for one subdirectory:
[usr/include/sys.

/usr/include/sys

In early versions of UNIX, this directory contained the header fi les used for compiling the
kernel. Nowadays, this directory is intended to contain header fi les that relate to the UNIX
implementation, though the usage varies considerably. You will frequently fi nd fi les that
directly include fi les from /usr/include/sys. In fact, it may come as a surprise that thisis not
supposed to be necessary. Often you will also see code like

5 February 2005 02:09

290

#i fdef USG [* SystemV */

#incl ude <sys/err.h>

#el se /* non-SystemV system*/
#incl ude <err. h>

#endi f

This simplified example shows what you need to do because System V keeps the header file
err.h in /usr/include/sys, whereas other flavours keep it in /usr/include. In order to include the
file correctly, the source code needs to know what kind of system it is running on. If it
guesses wrong (for example, if USGis not defined when it should be) or if the author of the
package didn’t allow for System V, either out of ignorance, or because the package has never
been compiled on System V before, then the compilation will fail with a message about miss-
ing header files.

Frequently, the decisions made by the kind of code in the last example are incorrect. Some
header files in System V have changed between System V.3 and System V.4. If, for example,
you port a program written for System V.4 to System V.3, you may find things like

#i ncl ude <wait.h>
This will fail in most versions of System V.3, because there is no header file
Jusr/include/wait.h; the file is called /usr/include/sys/wait.h. There are a couple of things you
could do here:

« You could start the compiler with a supplementary -1/ usr/i ncl ude/ sys, which will
cause it to search /usr/include/sys for files specified without any pathname component.
The problem with this approach is that you need to do it for every package that runs into
this problem.

« You could consider doing what System V.4 does in many cases: create a file called
{usr/include/wait.h that contains just an obligatory copyright notice and an #i ncl ude
directive enclosed in #i f def s:

/* THS IS PUBLI SHED NON PRCPR ETARY SOURCE CCDE GF O RELLLY */

/* AND ASSQO ATES | nc. */
/* The copyright notice above does not evidence any actual or */
/* intended restriction on the use of this code. */

#ifndef WATH
#define WA T H

#i ncl ude <sys/wait.h>
#endi f

Problems with header files

It’s fair to say that no system is supplied with completely correct system header files. Your
system header files will probably suffer from at least one of the following problems:

« “Incorrect” naming. The header files contain the definitions you need, but they are not in
the place you would expect.

« Incomplete definitions. Function prototypes or definitions of structures and constants are
missing.

5 February 2005 02:09

Chapter 17: Header files 291

« Incompatible definitions. The definitions are there, but they don’t match your compiler.
This is particularly often the case with C++ on systems that don’t have a native C++
compiler. The gcc utility program protoize, which is run when installing gcc, is sup-
posed to take care of these differences, and it may be of use even if you choose not to
install gcc.

* Incorrect #ifdefs. For example, the file may define certain functions only if
_ P08l X SORCE is defined, even though PGBl X SAURCE is intended to restrict func-
tionality, not to enable it. The System V.4.2 version math.h surrounds M Pl (the constant
pi) with

#f (__STDC__ && !defined(_POSI X SOLRCE)) || defi ned(_XCPEN SORCE)

In other words, if you include math.h without defining _ STDC _ (ANSI C) or
_XCPEN_SOURCE (X Open compliant), M Pl will not be defined.

« The header files may contain syntax errors that the native compiler does not notice, but
which cause other compilers to refuse them. For example, some versions of XENIX
cur ses. h contain the lines:

#i f def M TERVCAP

include <tcap. h> /* We: cc -DMTERMCAP ... -lcurses -ltermib */
#el se
ifdef M TERM NFO
include <tinfo.h> /* We: cc -DMTERMNFO ... ~-Itinfo [-Ix] */
el se
ERRCR -- BEther "M TERMCAP' or "M TERM NFO' nust be #defi ne’ d.
endi f
#endi f

This does not cause problems for the XENIX C compiler, but gcc, for one, complains
about the unterminated character constant starting with def i ne’ d.

« The header files may be “missing”. In the course of time, header files have come and
gone, and the definitions have been moved to other places. In particular, the definitions
that used to be in strings.h have been moved to string.h (and changed somewhat on the
way), and termio.h has become termios.h (see Chapter 15, Terminal drivers, page 241 for
more details).

The solutions to these problems are many and varied. They usually leave you feeling dissatis-
fied:

« Fix the system header files. This sounds like heresy, but if you have established beyond
any reasonable doubt that the header file is to blame, this is about all you can do, assum-
ing you can convince your system administrator that it is necessary. If you do choose
this way, be sure to consider whether fixing the header file will break some other pro-
gram that relies on the behaviour. In addition, you should report the bugs to your vendor
and remember to re-apply the updates when you install a newer version of the operating
system.

+ Use the system header files, but add the missing definitions in local header files, or,
worse, in the individual source files. This is a particularly obnoxious *solution”,

5 February 2005 02:09

292

especialy when, as so often, the declarations are not dependent on a particular ifdef. In
amost any system with reasonably complete header files there will be discrepancies
between the declarations in the system header fi les and the declarations in the package.
Even if they are only cosmetic, they will stop an ANSI compiler from compiling. For
example, your system header fi les may declare get pi d to return pi d_t , but the package
declaresit to returni nt .

About the only legitimate use of this style of “fi xing” is to declare functions that will

realy cause incorrect compilation if you don’t declare them. Even then, declare them
only inside an ifdef for a specifi ¢ operating system. In the case of get pi d, you're better
off not declaring it: the compiler will assume the correct return values. Nevertheless, you
will see this surprisingly often in packages that have already been ported to a number of
operating systems, and it's one of the most common causes of porting problems.

Make your own copies of the header fi les and use them instead. Thisis the worst idea of
all: if anything changes in your system’s header fi les, you will never fi nd out about it. It
also means you can't give your source tree to somebody else: in most systems, the header
fi les are subject to copyright.

5 February 2005 02:09

Function libraries

In this chapter, we’ll look at functions normally supplied in libraries with the system. As
mentioned on page 151, if you have the sources, it is usually relatively trivial to port a single
library function that doesn’t require specific kernel functionality. There are hundreds of
libraries, of course, and we can look only at those libraries that are available on a large num-
ber of systems. In the following sections, we’ll look at:

< Functions that are found in the standard C library frequently enough that their absence
can be a problem.

e Block memory functions, which modern compilers frequently treat as special cases.

e Regular expression libraries—five of them, all incompatible with each other, starting on
page 300.

< terminfo and termlib, starting on page 307. We’ll also briefly touch on curses.

Standard library functionality

The content of the standard C library libc.a reminds you of the joke “The nice thing about
standards is that there are so many to choose from.” Different systems have very different
views on what should and should not be part of the standard library, and a number of systems
don’t supply the functions at all. In this section, we’ll look at frequently used functions and
what to do if your system doesn’t have them.

alloca

al | oca allocates memory in the stack, as opposed to nal | oc, which allocates memory in the
heap:

voi d *al l oca (size_t size);
This has a significant speed advantage over nal | oc: nal | oc needs to search and update a
free space list. al | oca typically just needs to change the value of a register, and is thus very

fast. It is often included with the package you are compiling, but you may need to set a flag or
modify the Makefile in order to include it. Versions for VAX, HP 300, i386 and Tahoe

293

5 February 2005 02:09

294

processors are located in the 4.4BSD Lite distribution as lib/libc/<machine>/gen/alloca.s. On
the down side, it is a somewhat system-dependent function, and it's possible that it might
break after a new kernd release. You can almost always replace al | oca with nal | oc,
though there may be a performance impact.

bcopy

bcopy isaBSD function that substantially corresponds to nermove:
#i ncl ude <string. h>
voi d bcopy (const void *src, void *dst, size t len);

Unlike mentpy, it is guaranteed to move correctly when the source and destination fi elds
overlap. If your system has menmove, you can defi neit as:

#define bcopy(s, d, |) nemmove (d, s, |)

The operands have a different sequence from those of nermove.

bzero

bzer o isaBSD function to clear an area of memory to 0. It is a subset of the standard func-
tion menset , and you can defi neit as

#define bzero(d, |) nenset (d, '\0", I)

fnmatch
f nmat ch is aroutine that matches patterns according to the shell fi le name rules:

#i ncl ude <f nmat ch. h>

int fnmatch (const char *pattern, const char *string, int flags);

f nmat ch compares string against pattern. It returns O if stri ng matches pattern and
FNM NOVATCH otherwise. The flagsin Table 18-1 specify the kind of match to perform:

Table 18—1: f nmat ch fbgs

Flag Meaning
FNM NCESCAPE | Interpret the backslash character (\) literally.

FNM PATHNAME | Slash charactersin string must be explicitly matched by slashesin pat -
tern.

FNV PER (D Leading periods in strings match periods in patterns. Not all versions of
f nmat ch implement this fiag.

Chapter 18: Function libraries 295

f nmat ch is supplied with later BSD versionsonly. If you need it, it isin the 4.4BSD Lite dis-
tributio as lib/libc/gen/fnmatch.c.

getcwd and getwd

get cwd and get wd both return the name of the current working directory. This is the func-
tion behind the pwd command:

#i ncl ude <stdio. h>

char *getcwd (char *buf, size t size);
char *getwd (char *buf);

get wd has the great disadvantage that the function does not know the length of the pathname,

and so it can write beyond the end of the buffer. Asaresult, it has been replaced by get cwd,
which specifi es a maximum length for the returned string. You can defi neget wd as:

#define getwd(d) getcwd (d, MAXPATHLEN

MAXPATHLEN is a kernel constant defi ning the maximum path name length. It is normally
defi ned in /usr/include/sys/param.h.

gethostname and uname

Thereis no one function call which will return the name of the system on al UNIX platforms.
On BSD systems, get host narre returns the current host name:

#i ncl ude <uni std. h>
int gethostname (char *name, int nanel en);

get host nane returns a null-terminated string if the space defi ned by nanel en alows. This
function is supported in System V.4, but not in standard versions of System V.3 and XENIX.
On System V systems, the system call unane returns a number of items of information about
the system, including the name. It is also supported as a library function by most BSD sys-
tems.

ncl ude <sys/ ut snane. h>
sys/ ut snane. h defi nes
struct utsnane

{

char sysname [9]; /* Internal system name */
char nodenare [9]; /* External system nane */
char release [9]; /* Cperating systemrel ease */
char version [9]; /* Version of release */

char machine [9]; /* Processor architecture */
}.

int unane (struct utsnane *nane);

The systems that do support unane apply a different meaning to the fi eld sysnane. For
example, consider the output of the following program, which was compiled and run on Inter-
active UNIX/386 System V.3 Version 2.2 and BSD/386 version 1.1, both running on an Intel

5 February 2005 02:09

5 February 2005 02:09

296

486 platform:

#i ncl ude <sys/ ut snane. h>
main ()
{
struct utsnane nynane;
unane (&mynane);
printf ("sysnane % nodenane % rel ease % version % nachine %\n",
nynane. sysnane,
nynane. nodenarre,
nynane. r el ease,
nynane. ver si on,
nynane. nachi ne) ;

}
$ unane On the System V. 3 machi ne:
sysname adagi o nodenane adagi o rel ease 3.2 version 2 nmachi ne i 386
$ unane Oh the BSD' 386 nachi ne:

sysname BSD 386 nodenare al |l egro rel ease 1.1 version 0 nachi ne i 386

System V puts the node name in sysnane, whereas BSD uses it for the name of the operating
system. This information is by no means complete: in particular, neither version tells you
explicitly whether the system is running System V or BSD, and there is no indication of the
vendor at all on the System V system.

index

i ndex searches the string s forwards for the fi rst occurrence of the character c. If it fi nds
one, it returns a pointer to the character. Otherwise it returns NULL. It is essentially the same
asthe ANSI function st r chr , and you can defi neit as:

#define i ndex strchr

malloc

nal | oc has always been around, but the semantics have changed in the course of time. In the
Seventh Edition and XENIX, acall to mal | oc with length O returned a valid pointer, whereas
later versions return a NJLL pointer, indicating an error. As a result, programs that ran on
older versions might fail on more recent implementations.

memmove
nenmove copies an area of memory:
#i ncl ude <string. h>
voi d *nemmove (void *dst, const void *src, size t len);

This is the same function as nentpy, except that nemove is guaranteed to move overlapping
data correctly. Except for the parameter sequence, it is the same as bcopy (see page 294). If
you don't have either function, you can find bcopy in the 4.4BSD library source

5 February 2005 02:09

Chapter 18: Function libraries 297

(lib/libc/string/bcopy.c), as well as versionsin assembler:

lib/libc/vax/string/memmove.s

lib/libc/hp300/string/bcopy.s

lib/libc/tahoe/string/bcopy.s
A generic version of nemmove in C isin the GNU C library in sysdeps/generic/memmove.c.
See Appendix E, Where to get sources to locate all these sources. Note also the comments
about memory move functions on page 299.

remove

#i ncl ude <stdi o. h>

int remove (const char *path);

On BSD systems, r enove is a synonym for the system call unl i nk. This means that it makes
senseto useit only for fi les. On System V.4 systems, it is slightly more complicated: if called
for afile, it does the same thing asunl i nk, for directoriesit does the samething asrndi r .

rindex

ri ndex (reverse index) searchesthe string s for the last occurrence of character ¢ and returns
apointer to the character if it isfound, and NULL otherwise. It is essentially the same function
asstrrchr, and you can defi neit as:

#define rindex strrchr

snprintf and vsnprintf

snprintf and vsnprintf areversions of sprintf and vsprintf that limit the length of
the output string:

int sprintf (char *str, const char *format, ...);

int snprintf (char *str, size_t size, const char *fornat, ...);

int vsprintf (char *str, char *format, va_list ap);

int vsnprintf (char *str, size t size, const char *format, va list ap);

The argument si ze specifi es the maximum length of the output string, including the trailing
"\0" . These functions are supplied in 4.4BSD Lite as usr/src/lib/libc/stdio/snprintf.c and
usr/src/lib/libc/stdio/vsnprintf.c. Alternatively, you can remove the second parameter and use
sprintf orvsprintf instead.

strcasecmp and strncasecmp

st rcasecnp and st r ncasecnp perform an unsigned comparison of two ASCII strings ignor-
ing case (they consider a to be the same thing as A):

298

#i ncl ude <string. h>

int strcasecnp (const char *sl1, const char *s2);
int strncasecnp (const char *sl, const char *s2, size_ t len);

strncasecnp differs from st rcasecnp by comparing at most | en characters. Both func-
tions stop comparing when aNUL character is detected in one of the strings. You can fi nd both
functionsin the 4.4BSD Lite distribution (lib/libc/string/strcasecmp.c).

strdup
st r dup allocates memory with nal | oc and copies astring to it:

#i ncl ude <string. h>

char *strdup (const char *str);

Itisincluded in the 4.4BSD Lite distribution (lib/libc/string/strdup.c).

strerror and sys_errlist
strerror returnsan error message string for a specifi c error:

#i ncl ude <string. h>

extern char *sys_ errlist [];
extern int sys_nerr;
char *strerror (int errnunj;

errnumis the number of the error; strerror returns a pointer to a text for the error, or
NULL if noneisfound.

Most library implementations also defi ne sys_errl i st, an array of description strings for
errors, and sys_ner r, the total number of error messages, in other words, the number of mes-
sagesin sys_errlist. If you don't fi nd this function anywhere in your man pages, don't
give up: it's frequently hidden in an unexpected library. For example, NonStop UX version
B22 doesn’t defi ne or document sys_errl i st anywhere, but itisinlibc.a al the same.

The implementation of strerror istrivial:

char *strerror (int errnum

{

if (errnum< sys_nerr)
return sys_errlist [errnunj;

el se
{
static char bogus [80];
sprintf (bogus, "UWhknown error: %", errnun);
return bogus;
}

}

Don’'t assume that your system doesn’'t have sys_errli st just because you can't find a

5 February 2005 02:09

5 February 2005 02:09

Chapter 18: Function libraries 299

definition in the header files. Many systems install it via the back door because packages such
as X11 use them. The safest way to find out is to search the system libraries. The shell script
findf, described in Chapter 21, Object files and friends, page 374, will do this for you.

stricmp and strnicmp

These are somewhat uncommon alternatives to st rcasecnp and strncasecnp which are
supplied on some systems (see page 297).

Block memory access functions

Many programs spend the bulk of their execution time moving areas of memory about or
comparing them. The C language supplies a rich set of functions, such as nentpy, nennove,
strcpy, strchr, strlen, and friends. Unfortunately, their performance frequently leaves
something to be desired. Many C libraries still write the move in C. You can write mencpy
as:

char *nentpy (char *d, char *s, int len)

{
char *dest = d;
while (len--)

*d++ = *s++
return dest;

}

On an Intel 386 architecture, gcc compiles quite a tight little loop with only 7 instructions,”
but it also requires another 15 instructions to set up the function environment and remove it
again. In addition, the calling sequence nentpy (bar, foo, 10) might compile in 5
instructions. Many machines supply special instructions for block memory operations, but
even those that don’t can do it faster without a function call. The block memory functions are
thus ideal candidates for inline functions that the compiler can optimize. Many compilers
now do so, including gcc and the System V.4 CCS compilers. In this situation, the compiler
can recognize that there are only a few bytes to be moved, and that they are word-aligned, so
it can use native load and store operations. When you enable optimization, gcc can compiles
the mentpy (bar, foo, 10) into only 6 simple instructions: the loop has disappeared com-
pletely, and we just have 3 load and 3 store instructions. This approach isn’t appropriate for
moves of 1000 bytes, of course. Here, the compiler uses 4 instructions to set up a block move
instruction, for a total of 5 instructions.

These examples are typical of what a smart compiler can do if it has inside information about
what the function does. Normally this information is compiled into the compiler, and it
doesn’t need a header file to know about the function. This can have a number of conse-
quences for you:

« The compiler “knows” the parameter types for the function. If you define the function
differently, you get a possibly confusing error message:

* See Chapter 21, Object files and friends, page 377 for a discussion of parameter passing.

5 February 2005 02:09

300

nmenctpy. c: 3: warning: conflicting types for built-in function * nencpy’

If you get this message, you can either ignore it or, better, remove the defi nition. The
compiler knows anyway.

e When debugging, you can’t just put a breakpoint on nentpy. There is no such function,
or if it has been included to satisfy references from modules compiled by other compil-
ers, it may not be called when you expect it to.

* If you have a program written for a compiler that knows about the block memory func-
tions, you may need to add defi nitionsif your compiler doesn’'t support them.

Regular expression routines

Regular expressions are coded descriptions of text strings. They are used by editors and utili-
ties such as gr ep for searching and matching actual text strings. There’s nothing very special
about routines that process regular expressions, but there is no agreement about standards and
there is no agreement about how to write a regular expression. The only regular thing about
them is the regularity with which programs fail to link due to missing functions. There are at
least fi ve different packages, and the names are similar enough to cause signifi cant confusion.

In all cases, the intention of the routines is the same;

e A compilation function converts a string representation of a regular expression into an
internal representation that is faster to interpret.

e A search function performs the search.

In addition, the Eighth Edition regex package has support for a replacement function based on
the results of a previous search.

Regular expression syntax also comes in two flavours:

e The documentation of the older syntax usually states that it is the same syntax that ed
uses. ed is an editor that is now almost completely obsolete,” so it's good to know that
the stream editor sed, which is still in current use, uses the same syntax.

e The newer syntax is the same that egrep uses. It is similar to that of ed, but includes a
number of more advanced expressions.

If you get software that expects one package, but you have to substitute another, you should
expect changes in behaviour. Regular expressions that worked with the old package may not
work with the new one, or they may match differently. A particularly obvious example is the
use of parentheses to group expressions. All forms of regular expressions perform this group-
ing, but the old syntax requires the parentheses to be escaped: \ (expr\), whereas the new
syntax does not: (expr) .

* ed does have its uses, though. If you have serious system problems (like /usr crashed), it's nice to have
acopy of ed on the root fi le system. It's also useful when your only connection to the machineisviaa
slow modem line: over a 2400 bps line, redrawing a 24x80 screen with vi or emacs takes 8 seconds, and
things are alot faster with ed.

5 February 2005 02:09

Chapter 18: Function libraries 301

Apart from the intention of the functions, they also perform their task in very different ways.
They might store compiled program in an areathat the caller supplies, they might malloc it, or
they might hide it where the user can't fi nd it. In some cases, the compiled expression is
stored in a struct along with other information intended for use by the calling functions. In
others this information is not returned at al, and in others again it is returned in global arrays,
and in others it is returned via optional arguments. Translating from one favour to another
takes a lot of time. Three packages are generally available: Henry Spencer’s Eighth Edition
package, the 4.4BSD POSIX.2 version, and the GNU POSIX.2 version. See Appendix E,
Where to get sources for sources of these packages. If you do have to port to a different regu-
lar expression package, choose a POSIX.2 implementation. Although it is by far the most
complicated to understand, it is probably the only one that will be around in afew years.
Regular expressions are used for two purposes: searching and replacing. When replacing one
regular expression with another, it's nice to be able to refer to parts of the expression. By con-
vention, you define these subexpressions with parentheses: the expression
foo\ (.*\)bar\(.*\)baz defi nes two such subexpressions. The regular expression will
match all strings containing the textsf 0o, bar , and baz with anything in between them. The
fi rst marked subexpression is the text between f oo and bar, and the second one is the text
between bar and baz.

regexpr

The regexpr routines have traditionally been supplied with System V and XENIX systems.
They were originaly part of the ed editor and thus implement the ed style of regular expres-
sions. Despite the name, thereisno function called r egexpr .

The routines themselves are normally in alibrary libgen.a. In addition, for some reason many
versions of System V and XENIX include the complete source to the functions in the header
fi le regexp.h, whereas the header fi le regexpr.h contains only the declarations. There are three
routines:

#i ncl ude <regexpr. h>

extern char *locl, *loc2, *|ocs;
extern int nbra, regerrno, reglength;
extern char *braslist [], *braelist [];

char *conpile (const char *instring,

char *expbuf,

char *endbuf);
int step (const char *string, char *expbuf);
int advance (const char *string, char *expbuf);

e conpi | e compiles the regular expression i nstring. The exact behaviour depends on

the value of expbuf . If expbuf isNULL, conpi | e mallocs space for the compiled ver-
sion of the expression and returns a pointer to it. If expbuf is non-NULL, conpil e
places the compiled form there if it fi ts between expbuf and endbuf , and it returns a
pointer to the fi rst free byte. If the regular expression does not fi t in this space, conpi | e
aborts. If the compilation succeeds, the length of the compiled expression is stored in the

302

global variabler egl engt h.
If the compilation fails, conpi | e returns NULL and sets the variable r eger r no to one of
the valuesin Table 18-2:

Table 18—2: r egconp error codes

Error | Meaning
code
11 Range endpoint too large.

16 Bad number.

25 \digit outof range.

36 Illegal or missing delimiter.
41 No remembered search string.
42 \'(\) imbalance.

43 Too many \ (.

44 More than 2 numbersgivenin\{ \}.
45 } expected after\ .

46 First number exceeds second in\{ \}.
49 [] imbalance.

50 Regular expression overflow.

e step compares the string st ri ng with the compiled expression at expbuf . It returns

non-zero if it fi nds a match, and O if it does not. If there is a match, the pointer | ocl is
set to point to the fi rst matching character, and | oc2 is set to point past the last character
of the match.
If the regular expression contains subexpressions, expressions bracketed by the character
sequences \ (and \), st ep stores the locations of the start and end of each matching
string in the global arraysbr asl i st (start) and br ael i st (end). It storesthe total num-
ber of such subexpressionsin nbr a.

» advance has the same function as st ep, but it restricts its matching to the beginning of
the string. In other words, a match always causes | oc1 to point to the beginning of the
string.

regcmp

regcmp is another regular expression processor used in System V and XENIX. Like regexpr,
they implement the ed style of regular expressions with some extensions. They are also nor-
mally part of thelibrary libgen.a.

ncl ude <libgen. h>
char *regcnmp (const char *stringl,

/* char *string2 */ ...
(char *) 0);

5 February 2005 02:09

5 February 2005 02:09

Chapter 18: Function libraries 303

char *regex (const char *re,

const char *subj ect,

/* char *ret0O, *retl, ... *retn*/ ...);
extern char *_ | ocl,

e regcnp can take multiple input arguments, which it concatenates before compilation.
This can be useful when the expression is supplied on a number of input lines, for exam-
ple. It always mallocs space for its compiled expression, and returns a pointer to it.

« regex searches for the string subj ect in the compiled regular expressionre. On suc-
cess, it returns a pointer to the next unmatched character and sets the global pointer
__l ocl to the address of the fi rst character of the match. Optionally, it returns up to ten
strings at ret 0 and the parameters that follow. You specify them with the $n regular
expression element discussed below.

The regular expression syntax is dightly different from that of ed and sed:

e The character $ represents the end of the string, not the end of the line. Use\ n to spec-
ify the end of theline.

e Youcanusethesyntax [a-f] torepresent [abcdef] .
* You can use the syntax x+ to represent one or more occurrences of x.

e You can use the syntax { n} , where mis an integer, to represent that the previous subex-
pression should be applied mtimes.

e You can use the syntax { m } , where mis an integer, to represent that the previous subex-
pression should be applied at least mtimes.

e You can use the syntax { m u} , where mand u are integers, to represent that the previous
subexpression should be applied at least mand at most u times.

The syntax (exp) groups the characters exp so that operators such as* and + work on
the whole expression and not just the preceding character. For example, abcabcabcabc
matches the regular expression (abc) +, and abcccccc matchesabc+.

The syntax (exp) $n, where n is an integer, matches the expression exp, and returns the
address of the matched string to the call parameter r et n of the cal to regex. It will
even try to return it if you didn’t supply parameter r et n, so it's good practice to supply
all the parameters unless you are in control of the regular expressions.

regex: re_comp and re_exec

regex is the somewhat confusing name given to the functionsre_conp and re_exec, which
were introduced in 4.0BSD. Note particularly that there is no function called r egex, and that
the name is spelt without afi nal p. regex also implements ed-style regular expressions. There
are two functions:

5 February 2005 02:09

304

char *re_conp (char *sp);
int re_exec (char *pl);

e re_conp compiles the regular expression sp and stores the compiled form internally.
On successful compilation, it returns a NULL pointer, and on error a pointer to an error

message.

e re_exec searches the string pl against the internaly stored regular expression. It
returns 1 if the string pl matches the last compiled regular expression, O if the string p1
fails to match the last compiled regular expression, and -1 if the compiled regular expres-
sionisinvalid.

No public-domain versions of r egex are available, but it's relatively simple to defi ne them in

terms of POSIX.2r egex.

Eighth edition regexp

The Eighth edition regexp package has gained wider popularity due to a widely available
implementation by Henry Spencer of the University of Toronto. It consists of the functions
r egconp, r egexec, regsub andregerror :

#i ncl ude <regexp. h>

regexp * regconp (const char *exp);

int regexec (const regexp *prog, const char *string);

voi d regsub (const regexp *prog, const char *source, char *dest);
void regerror (const char *nsg);

In contrast to earlier packages, Eighth edition regexp implements egrep-style regular expres-
sions. Also in contrast to other packages, the compiled form of the regular expression
includes two arrays which regexec sets for the convenience of the programmer: char

*startp [] isan array of start addresses of up to nine subexpressions (expressions enclosed
in parentheses), and char *endp [] is an array of the corresponding end addresses. The
subexpressions areindexed 1t0 9; start p [0] refersto the complete expression.

r egconp compiles the regular expression exp and stores the compiled version in an area that
it mallocs. It returns a pointer to the compiled version on success or NULL on failure.

r egexec matches the string st ri ng against the compiled regular expression pr og. It returns
1 if a match was found and O otherwise. In addition, it stores the start and end addresses of
the fi rst ten parenthesized subexpressions in pr og- >st art p and pr og- >endp.

r egsub performs a regular expression substitution, a function not offered by the other pack-
ages. You useit after r egconp fi nds a match and stores subexpression start and end informa-
tioninstartp and endp. It copiestheinput string sour ce to dest , replacing expressions of
the type &n, where n is a single digit, by the substring defi ned by startp [n] and endp
[n].

regerror determines the action to be taken if an error is detected in regcomp, regexec or
regsub. The default regerror prints the message and terminates the program. If you want,
you can replace it with your own routine.

5 February 2005 02:09

Chapter 18: Function libraries 305

POSIX.2 regex

As if there weren’t enough regular expression libraries already, POSIX.2 also has a version of
regex. Itis intended to put an end to the myriad other flavours of regular expressions, and thus
supplies all the functionality of the other packages. Unfortunately, it re-uses the function
names of Eighth Edition regexp. This is the only similarity: the POSIX.2 functions take com-
pletely different parameters. The header file of the 4.4BSD package starts with

#i fndef RECGEX H_
#define _RECGEX H_ /* never again */

#ifdef _REGEXP H_
BAD NEWS -- PCHl X regex. h and V8 regexp. h are inconpatibl e
#endi f

The Eighth Edition regexp.h contains similar code, so if you accidentally try to use both, you
get an error message when you try to compile it.

The POSIX.2 regex package offers a seemingly infinite variety of flags and options. It con-
sists of the functions regconp, regexec, regerror and regfree. They match regular
expressions according to the POSIX.2 regular expression format, either ed format (so-called
basic regular expressions, the default) or egrep format (extended regular expressions). The
4.4BSD implementations refer to them as obsolete regular expressions and modern regular
expressions respectively. You choose the kind of expression via flag bits passed to the compi-
lation function regconp. Alternatively, you can specify that the string is to be matched
exactly—no characters have any special significance any more.

Here are the functions:

#i ncl ude <sys/types. h>
#i ncl ude <regex. h>

int regconp (regex_t *preg, const char *pattern, int cflags);
int regexec (const regex_t *preg,
const char *string,
si ze_t nnat ch,
regnatch_t pmatch [],
int eflags);
size_t regerror (int errcode,
const regex_t *preg,
char *errbuf,
si ze_t errbuf_size);
void regfree (regex_t *preg);

« regconp compiles the regular expression pattern and stores the result at preg. It
returns 0 on success and an error code on failure. cfl ags modifies the way in which the

5 February 2005 02:09

306

compilation is performed. There are anumber of flags, listed in Table 18-3:

Table 18—-3: cFlags bits for regcomp

Flag bit Function

REG_BASIC Compile basic ("obsolete") REs. Thisisthe default.

REG_EXTENDED | Compile extended ("modern") RES.

REG_NOSPEC Compile aliteral expression (no special characters). Thisis not spec-
ified by POSIX.2. You may not combine REG_EXTENDED and
REG_NOSPEC.

REG_ICASE Compile an expression that ignores case.

REG_NOSUB Compile to report only whether the text matched, don't return subex-
pression information. This makes the search faster.

REG_NEWLINE Compile for newline-sensitive matching. By default, a newline char-
acter does not have any special meaning. With this fbg, = and $
match beginnings and ends of lines, and expressions bracketed with
[1 do not match new lines.

REG_PEND Specify that the expression ends at re_endp, thus allowing NUL char-

actersin expressions. Thisis not defi ned in POSIX.2

regexec matches the string string against the compiled regular expression preg. |f
nmatch is non-zero and pmatch is non-NULL, start and end information for up to
nmatch subexpressions is returned to the array pmatch. regexec aso supports a num-
ber of flegsin eflags. They are described in Table 18-4:

Table 18—4: eflags bitsfor regexec

Flag bit Function
REG_NOTBOL Do not match the beginning of the expression with ™.
REG_NOTEOL Do not match the end of the expression wtih $.

REG_STARTEND

Specify that the string starts at string + pmatch[0].rm_so and
ends at string + pmatch[0].rm eo. This can be used with
cflags value REG_PEND to match expressions containing NUL char-
acters.

regerror is anaogous to the C library function perror: it converts the error code
errcode for regular expression preg into a human-readable error message at errbuf,
up to amaximum of errbuf_size bytes.

Asin Eighth Edition regexp, regcomp returns additional information about the expression:;

Chapter 18: Function libraries 307

e If you compile the expression with the REG PEND bhit set in cfl ags, you can set
re_endp to point to the real end of the regular expression string supplied to r egconp,
thus allowing NUL characters in the regular expression.

» After compilation, r egconp setsre_nsub to the number of subexpressionsit found. For
each subexpression, r egexec can return start and end address information if you call it
with appropriate parameters.

In addition, r egexec stores information about matched subexpressions in a structure of type
regmat ch_t , unless you specify the fag REG NCBUB. This contains at least the fi eldsr m so
and r m eo, which are offsets from the start of the string of the fi rst and last character of the
match. They are of typer egmat ch_t .

No less than three versions of POSIX.2 regex are generally available: Henry Spencer'sregexis
included in the 4.4BSD distribution, and the GNU project has the older regex and newer rx.
See Appendix E, Where to get sources.

termcap and terminfo

When full-screen editors started to appear in the late 70s, Bill Joy at UCB wrote ex, out of
which grew vi. One of the problems he had was that just about every terminal has a different
command set. Even commands as simple as positioning the cursor were different from one
terminal to the next. In order to get the editor to work over a range of terminals, he devised
termcap, the terminal capabilities database, which, with a few access routines, allowed a pro-
gram to determine the correct control sequences for most common functions.

A few years later, while writing the game rogue, Ken Arnold extended the routines and cre-
ated a new package, curses, which offered higher-level functions.

Finally, USG improved on curses and introduced terminfo, a new implementation of the same
kind of functionality as termcap. It was designed to address some of the weaknesses of term-
cap, and as aresult is not compatible with it. More programs use termcap than terminfo: ter-
minfo is usually restricted to System V systems, and termcap has been around for longer, and
is available on most systems. Some programs use both, but there aren’t very many of them.

There are anumber of gotchas waiting for you with termcap, termlib and curses:

e Termcap isn't perfect, to put it mildly: it relies on a marginally human-readable defi nition
fi le format, which means that the access routines are slow. When AT&T incorporated
termcap into System V, they addressed this problem and created terminfo, with a so-
called compiled representation of the terminal data

* Both termcap and terminfo are passive services: your program has to explicitly ask for
them in order for them to work. Many programs don’t use either, and many use only one
or the other.

* Though the BSD curses package offered a bewildering number of functions, users asked
for more. When AT&T incorporated curses into System V, they added signifi cant
enhancements. Curses goes a level of complexity beyond termcap and terminfo, and
supplies a huge number of functions to perform all kinds of functions on aterminal. It's

5 February 2005 02:09

5 February 2005 02:09

308

like a can of worms. avoid opening it if you can, otherwise refer to UNIX Curses
Explained by Berny Goodheart. If you have a BSD system and need System V curses,
you can try the ncurses package (see Appendix E, Where to get sources).

» BSD versions of UNIX have still not incorporated terminfo or the additional curses rou-
tines, although they have been available for some time. In this section, we'll look at the
differences in the implementations and what can be done about them. For more informa-
tion, read Programming with curses, by John Strang, for a description of BSD curses,
Termcap and Terminfo, by John Strang, Tim O’Reilly and Linda Mui for a description of
termcap and terminfo, and UNIX Curses Explained, by Berny Goodheart, for a descrip-
tion of both versions of curses.

termcap

The heart of termcap is the terminal description. This may be specifi ed with an environment
variable, or it may be stored in afi le containing defi nitions for a number of terminals. There
is no complete agreement on the location of thisfi le:

* If the termcap routines fi nd the environment variable TERMCAP, and it doesn’t start with a
dash (/), they try to interpret it as atermcap entry.

* If the termcap routines fi nd the environment variable TERMCAP, and it does start with a
dlash, they try to interpret it as the name of the termcap fi le.

o If TERMCAP isn't specifi ed, the location depends on a constant which is compiled into the
termcap library. Typical directories are /etc, /usr/lib, and /usr/share. Don't rely on fi nd-
ing only one of these fi les: it's not uncommon to fi nd multiple copies on a machine, only
one of which is of any use to you. If the system documentation forgets to tell you where
the termcap fi le is located, you can usually fi nd out with the aid of strings and grep. For
example, BSD/OS gives

$ strings |ibterntap.a |grep /terntap
.terntap /usr/share/ msc/terncap

and SCO UNIX gives

$ strings |ibterntap.a |grep /terntap
/etc/terntap
| etc/terncap

The fi le termcap contains entries for al terminals known to the system. On some systems it
can be up to 200 kB in length. This may not seem very long, but every program that uses
termcap must read it until it fi nds the terminal defi nition: if the terminal isn't defi ned, it reads
the full length of thefi le.

Here'satypica entry:

vs| xterm vs100| xtermtermnal emul ator (X Wndow Systen):\
: AL=\ H %lL: DCA\ H %IP: DL=\ H %IM DG\ H %iB: | G-\ H %@ UP=\ E %6lA \
;al=\H L:am\
tbs:cd=\H J: cem\H K cl =\ H H H 2J: cn¥\ H % %; %H co#80: \

Chapter 18: Function libraries 309

:cs=\H % %; %lr : ct =\ H 3k: \
dea\ g P dl 2\ F M\
CimAH4h:eiAH 4l :m:\
cho=\H H\
CisAENEME20\EHE?7h\E ?1; 3; 4; 61 \E[41 :\
rsE\Hr\EmME2)0\HHH ?7h\H ?1; 3; 4; 61 \ H 4l \ E<: \
- k1=\ ECP: k2=\ EQQ k3=\ ECR k4=\ EC5: kb="H kd=\ ECB. ke=\ f| 71 \ E>: \
kI =\ EQD km kn#4: kr =\ EQC ks=\ ?1h\ E=: ku=\ EQAX'\
i#e5: mAAH Imme=s\Emm=aAH 7mns:nd=\E C pt:\
:sc=\E7: re=\B8: sf=\ n: so=\ H 7m se=\ § m sr=\ EM\
te=\ H 2J\ H 2471\ B8: ti =\ E7\ H ?47h:\
:up=\ H A us=\ H 4m ue=\ § m xn:
v2| xterns| vs100s| xtermtermnal emul ator, small w ndow (X Wndow Systen):\
1 CO#B0: | i #24: tc=xterm
vb| xtermbol d| xtermw th bol d i nstead of underline:\
cus=\H Imtc=xterm
#
vi nmay work better with this terntap, because vi
doesn’t use insert node much
vi|xtermic|xtermvi|xtermwth insert character instead of insert node:\
imE el =m@ica\H @tc=xterm
The lines starting with the hash mark (#) are comments. The other lines are termina capabil-
ity defi nitions: each entry is logically on a single line, and the lines are continued with the
standard convention of terminating them with a backslash (\). Asin many other old UNIX
fi les, fi elds are separated by colons (:).
Thefi rst fi eld of each description is the label, the name of the terminal to which the defi nition
applies. The terminal may have multiple names, separated by vertical bars (|). In our exam-
ple, the fi rst entry has the names vs, xt er mand vs100. The last part of the name fi eld is a
description of the kind of terminal. In the second entry, the names are vi , xtermic and
xtermvi.
Both 4.4BSD termcap and System V terminfo recommend the following conventions for nam-
ing terminals:

« Start with the name of the physical hardware, for example, hp2621.
« Avoid hyphensin the name.

» Describe operational modes or confi guration preferences for the terminal with an indica-
tor, separated by a hyphen. Use the following suffi xes where possible:

Suffix Meaning Example

-W Wide mode (more than 80 columns) vt 100-w

-am With automatic margins (usually default) vt 100- am
-nam Without automatic margins vt 100- nam

-n Number of lines on screen aaa- 60

-na No arrow keys (leave themin local) concept 100- na
-np Number of pages of memory concept 100- 4p
-rv Reverse video concept 100-rv

5 February 2005 02:09

5 February 2005 02:09

310

The following fi elds describe individual capabilities in the form capability=defi nition. The
capabilities are abbreviated to two characters, and case is signifi cant. See Programming with

curses, by John Strang, for a list of the currently defi ned abbreviations and their meaning.

Depending on the capability, the defi nition may be a truth value (true or false), a number, or a
string. For example,

e Thefirstentry for vs (AL=\ H %lL) states that the capability AL (insert n new blank lines)
can be invoked with the string \ | %L. \ E represents an ESC character. The characters
[and L are used literally. The program usesspri ntf to replace the % with the number
of linesto insert.

e Thenext entry, am has no parameter. Thisis aboolean or truth value, in this case mean-
ing that the terminal supports automatic margins. The presence of the capability means
that it istrue, the absence means that it is false.

e Theentry co#80 specifi es a numeric parameter and states that the capability co (number
of columns) is 80.

There is amost nothing in the syntax of the defi nition fi le that requires that a particular capa-
bility have a particular type, or even which capabilities exist: thisis simply a matter of agree-
ment between the program and the capabilities database: if your program wants the capability
co, and wants it to be numeric, it callst get num For example, the following code checks fi rst
the information supplied by i octl Tl QOGN NSZ (see Chapter 15, Terminal drivers, page
259), then the termcap entry, and if both of them are not defi ned, it defaults to a confi gurable
constant:

if (! (maxcol s = wi nsi ze.ws_col)
& (! (maxcol s = tgetnum(“co"))))
maxcol s = MWALS;

The only exception to this rule is the capability t ¢, which refers to another capability. In the
example above, the entry for vi and friends consists of only 5 entries, but the last oneisat ¢
entry that refersto thevs entry above.

This lack of hard and fast rules means that termcap is extensible: if you have a terminal that
can change the number of colours which can be displayed at one time, and for some reason
you want to use this feature, you might defi ne a termcap variable XC specifying the string to
output to the terminal to perform this function. The danger here is, of course, that somebody
else might write a program that uses the variable XC for some other purpose.

termcap functions: termlib

Along with termcap come library functions, normally in alibrary called libtermcap.a, though
a number of systems include them in libc.a. They help you query the database and perform
user-visible functions such as writing to the terminal. There aren’t many functions, but they
are nonethel ess confusing enough:

char PC /* paddi ng character */
char *BC /* backspace string */
char *Up, /* Qursor up string */

5 February 2005 02:09

Chapter 18: Function libraries 311

short ospeed; /* termnal output speed */

tgetent (char *bp, char *nane);

tgetnum (char *id);

tgetflag (char *id);

char *tgetstr (char *id, char **sbp);

char *tgoto (char *cm int destcol, int destline);

tputs (register char *cp, int affcent, int (*outc) ());
Before you start, you need two areas of memory: a 1 kB temporary buffer for the termcap
entry, which we call buf , and a buffer for the string capabilities that you need, which we call
sbuf . Theinitialization functiont get ent fi llssbuf with the termcap entry, and the function
tgetstr transfers strings from buf to sbuf. After initidization is complete, buf can be
deallocated.

In addition, you need achar pointer sbp which must be initialized to point to sbuf . t get -
str usesit to note the next free location in sbuf .

If you don’t specify a specifi ¢ termcap string as the value of the TERMCAP environment vari-
able, you need to know the name of your terminal in order to accessit in the termcap fi le. By
convention, thisis the value of the TERMenvironment variable, and you can retrieve it with the
library function get env.

e tgetent searches the termcap file for a defi nition for the termina caled nane and
places the entry into the buffer, which must be 1024 bytes long, at buf . All subsequent
calls use this buffer. The confusing thing is that they do not explicitly reference the
buffer: t get ent saves its address in a static pointer internal to the termcap routines.
t get ent returns 1 on success, O if the terminal name was not found, or -1 if the termcap
database could not be found.

e tget numlooks for a numeric capability i d and returns its value if found. If the valueis
not found, it returns -1.

e tgetflaglooksfor aboolean capability i d and returns 1 if it is present and O otherwise.

e tgetstr looks for a string capability i d. If it is found, it copies it into the buffer
pointed to by the pointer at *sbp. It then updates sbp to point past the string. It returns
the address of the string in sbuf if found, or NULL if not. This method ensures that the
strings are null-terminated (which is not the case in buf), and that they are stored effi -
ciently (though a1 kB buffer isno longer the overhead it used to be).

e tgoto generates a positioning string to move the cursor to column dest col and line
destline using the cm (cursor position) capability. This capability contains format
specifi cations that t got o replaces with the representation of the actual row and column
numbers. It returns a pointer to the positioning string, which again is stored in a static
buffer in the package. It also attempts to avoid the use of the characters\ n, CTRL- D or
CTRL- @ The resulting string may contain binary information that corresponds to tab
characters. Depending on how it is set up, the terminal driver may replace these tab char-
acters with blanks, which is obviously not a good idea. To ensure that this does not hap-
pen, turn off TAB3 on atermio or termios system (see Chapter 15, Terminal drivers, page
243) or reset XTABS insgt t yp. sg_f | ags with the old terminal driver (see page 240).

5 February 2005 02:09

312

Thisisal that tgoto does. It does not actually output anything to the terminal.

* tputs writes the string at cp to the screen. This seems unnecessary, since write and
fwrite aready do the same thing. The problem is that the output string cp may contain
padding information for serial terminals, and only tputs interprets this information cor-
rectly. affent is the number of lines on the screen affected by this output, and outc is
the address of a function that outputs the characters correctly. Often enough, this is
something like putchar.

Problems with termcap

Sooner or later you'll run into problems with termcap. Here are some of the favourite ones:

Missing description

It could still happen that there isn’t a description for your terminal in the termcap data base.
This isn't the problem it used to be, since most modern terminals come close to the ANSI
standard. In case of doubt, try ansi or vt100. Thisis, of course, not a good substitute for
complete documentation for your terminal.

Incomplete description

It's much more likely that you will find a terminal description for your terminal, but it's
incomplete. This happens surprisingly often. For example, the xterm defi nition supplied in
X11R5 has 56 capabilities, and the defi nition supplied with X11R6 has 85. xterm hasn't
changed signifi cantly between X11R5 and X11R6: the capabilities were just missing from the
entry in X11R5. Frequently you'll fi nd that afeature you're looking for, in particular the code
generated by a particular function key, is missing from your termcap entry. If nothing else
helps, you can fi nd out what codes the key generates with od:

$ od -c display stdin in character format

L[[[12[[13~"[[14~ RETURN

0000000 033 [1 1 ~033 [1 2 ~03 [1 3 ~ 0000020

033 [1 4 ~ \n

0000025

In this example, | pressed the keys F1, F2, F3 and F4 on an xterm: this is what echos on the
first line. od doesn't display anything until its read completes, so | pressed RETURN to
show thetext. It shows that the sequences generated are:

e 033 (ESC, which isrepresented as \E in termcap entries).
¢ [1 and the number of the function key and atilde (7).
These sequences can then be translated into the termcap capabilities:

K1=\E[11™:k2=\E[12™:k3=\E[13™-k4=\E[14":

5 February 2005 02:09

Chapter 18: Function libraries 313

Incorrect description

If we look at the previous example more carefully, we’ll notice something strange: these capa-
bilities aren’t the same as the ones in the example for xterm on page 308. What’s wrong with
this picture? A good question. Both under X11R5 and X11R6, xterm on an Intel architecture
gives you the codes shown above. The codes for F5 to F10 are as shown in the termcap entry,
but the entries for F1 to F4 are just plain wrong. | don’t know of any way to generate them
with xterm. This is typical of termcap entries: if you run into trouble, first make sure that your
descriptions are correct.

Obsolete information

Another interesting thing about the xterm example is that it tells you the size of the terminal:
co#80 says that this terminal has 80 columns, and | i #65 says that it has 65 lines. This infor-
mation can be an approximation at best, since X11 allows you to resize the window. Most
modern systems supply the SI GV NCH signal, which is delivered to the controlling process
when a window is resized (see Chapter 15, Terminal drivers, page 259). This information is
just plain misleading, but there’s a lot of it in just about any termcap file. The 4.4BSD man
page flags a number of capabilities that are considered obsolete, including things as the char-
acter used to backspace or the number of function keys.

terminfo

terminfo is the System V replacement for termcap. At first sight it looks very similar, but
there are significant differences:

« Instead of reading the termcap file, the terminfo routines require a “compiled” version.

« Instead of storing all entries in a single file, terminfo stores each entry in a different file,
and puts them in a directory whose name is the initial letter of the terminal name. For
example, the terminfo description for xterm might be stored in /usr/lib/ter minfo/x/xterm.

« The substitution syntax has been significantly expanded: in termcap, only t got o could
handle parameter substitution (see page 311); in terminfo, the substitution syntax is more
general and offers many more features.

+ The program tic (terminfo compiler) compiles terminfo descriptions.

« The programs infocmp, which is supplied with System V, and untic, which is part of
ncurses, dump compiled terminfo entries in source form.

As an example of a terminfo definition, let’s look at the definition for an xterm. This should
contain the same information as the termcap entry on page 308:

xterm xt er m 24| xt erns| vs100| xtermtermnal eml ator (X Wndow Systen),
is22\E/AHr\EmMHE ?7h\H ?1; 3; 4; 6| \ H 4 \ BB\ E>,
rs2=2\E/ANEHr\EmMHE ?7h\H ?1; 3; 4; 6| \ E 4 \ BB\ B>,
am bel =G
col s#80, |ines#24,
clear2\HHH 2J, cup=\H % %1%l %2%H

314

csr=\ H % %1% l; %p2%lr ,
cud=\ H %1%IB, cudl=\n, cuu=\H %1%A cuul=\HA

cub=\ H %1%ID, cubl=\b, cuf 2\ H %1%IC cuf 1I2\H C
el \HK ed=\HJ,

home=s\HH ht="I, ind="J, cr=M

km

smr=\Eg4h, rmr=\H4l, mr,
smso=\EH 7m rnso=\Hm smulaAH4m rmul 2\E m
bold=\H 1m rev=a\H7m blink@ sgrO=\E m nsgr,
enacs=\E) 0, snacs="N rnacs="Q
snkx=\ H ?1h\ E=, rnkx=\H ?1I\ E>,
kf 1=\ BECP, kf2=\EQQ kf3=\ECR kf4=\EC5,
kf5=\H 15~, kf6=\H 17", kf7=\H 18", kf8=\H19", kf9=\H 20",
kf10=\H 217,
kf 112\ g 237, kf12=\H 24", kf13=\H 25", kf14=\H 26", kf15=\H 28",
kf16=\H 297, kf17=\H 31", kf18=\H 32", kf19=\H 33", kf20-\H 34",
kfnd=\E 17, kichl=AH 2", kdchl=\H 3",
kslt=\H 4", kpp=\H 5", knp=\H6",
kbs=\ b, kcuul=\ EQA kcudl=\E®B, kcuf1l=\EQC kcubl=\ED,
ment =\ B, nenu=\Em
sntup=\ E7\ H ?47h, rncup=\ g 2J\ H 7471\ B8,
sc=\E7, rca\EBs,
i1\ H %1%IL, d =\H %1% il1AHL, di1=\HM
ri=\eM
dch=\ H %1%lIP, dchl=\HP,
tbc=\H 30,
xenl ,
xterm 65| xtermw th tall w ndow 65x80 (X Wndow Systen),
| i nes#65,
use=xterm
xtermbol d| xtermwi th bold instead of underline (X Wndow Systen),
smul =\ H 1m use=xterm
#
vi nay work better with this entry, because vi
doesn’'t use insert node nuch
xtermic|xtermvi|xtermwth insert character instead of insert node,
smr@ rmr@ mr@ ichl=\H @ ich=\H %1%@ use=xterm

The entries ook very similar, but there are afew minor differences:

e The names for the capabilities may be up to 5 characters long. Asaresult, the names are
different from the termcap names.

e Capabilities are separated by commas instead of colons.

« Défi nitions may be spread over several lines: there is no need to terminate each line of a
defi nition with a\ .

e Thelast character in each entry must be a comma (,). If you remove it, you will thor-
oughly confusetic.

5 February 2005 02:09

5 February 2005 02:09

Chapter 18: Function libraries 315

terminfo functions

terminfo has a number of functions that correspond closely to termlib. They are aso the low-
level routines for curses:

#i ncl ude <curses. h>
#i ncl ude <term h>
TERM NAL *cur_term

int setupterm(char *term int fd, int *error);

int setterm(char *ternm;

int set_curterm(TERMNAL *nternj;

int del _curterm (TERM NAL *otern);

int restartterm(char *term int fildes, int *errret);
char *tparm(char *str, long int pl ... long int p9);
int tputs (char *str, int affcnt, int (*putc) (char));
int putp (char *str);

int vidputs (chtype attrs, int (*putc) (char));

int vidattr (chtype attrs);

int nvcur (int oldrow int oldcol, int newow int newcol);
int tigetflag (char *capnane);

int tigetnum(char *capnane);

int tigetstr (char *capnane);

Terminfo can use an environment variable TERM NFQ, which has a similar function to TERM
CAP: it contains the name of a directory to search for terminfo entries. Since terminfo is com-
piled, thereis no provision for stating the capabilities directly in TERM NFQ

set upt er mcorresponds to the termcap function t get ent : it reads in the terminfo data
and sets up al necessary capabilities. The parameter t er mis the name of the terminal,
but may be NULL, in which case set upt er mcallsget env to get the name of the terminal
from the environment variable TERM f d isthefi le descriptor of the output terminal (nor-
mally 1 for st dout), and er r or isan error status return address.

set t er mis a simplifi ed version of set upt erm it is equivalent to setupterm (term
1, NULL).

set upt er mallocates space for the termina information and stores the address in the
global pointer cur_term You can useset _curter mto set it to point to a different ter-
minal entry in order to handle multiple terminals.

del _curt er mdeallocates the space allocated by set upt er mfor the terminal ot er m

restarttermperforms a subset of set upt er m it assumes that the cur _t er misvalid,
but that terminal type and transmission speed may change.

t par msubstitutes the real values of up to 9 parameters (p1 to p9) into the string str .
This can be used, for example, to create a cursor positioning string liket got o, but it is
much more fexible.

t put s is effectively the same function as termcap put s described on page 312.

5 February 2005 02:09

316

put p is effectively t puts (str, stdout, putchar).
vi dput s sets the terminal attributes for a video terminal.
vidattr is effectively vidputs (attr, putchar).

nvcur provides optimized cursor motion depending on the terminal capabilities and the
relationship between the current cursor position (oldrow, oldcol) and the new position
(newrow, newcol).

tigetflag, tigetnumand tigetstr correspond to the termcap functions t get num
tgetflagandtgetstr described on page 311.

printcap

Termcap was developed in the days where “terminal” did not always mean a display terminal,
and the capabilities include a number of functions relating to hardcopy terminals. Neverthe-
less, they are not sufficient to describe the properties of modern printers, and BSD systems
have developed a parallel system called printcap, which is a kind of termcap for printers. It is
used primarily by the spooling system.

Printcap differs from termcap in a number of ways:

The printcap capabilities are stored in a file called /etc/printcap, even in systems where
termcap is stored in some other directory.

The syntax of the printcap file is identical to the syntax of termcap, but the capabilities
differ in name and meaning from termcap capabilities.

There is no environment variable corresponding to TERVCAP.

There are no user-accessible routines. The functions used by the spool system actually
have the same names as the corresponding termcap functions, but they are private to the
spooling system. In a BSD source tree, they are located in the file usr.shin/Ipr/com-
mon_source/printcap.c.

A better way to look at printcap is to consider it part of the spooling system, but occasionally

you’

Il need to modify /etc/printcap for a new printer.

Make

Nowadays, only the most trivial UNIX package comes without a Makefile, and you can
assume that the central part of building just about any package is:

$ nake

We won’t go into the details of how make works here—you can find this information in Man-
aging projects with make, by Andrew Oram and Steve Talbott. In this chapter, we’ll look at
the aspects of make that differ between implementations. We’ll also take a deeper look at
BSD make, because it is significantly different from other flavours, and because there is very
little documentation available for it.

Terminology

In the course of evolution of make, a change in terminology has taken place. Both the old and
the new terminology are in current use, which can be confusing at times. In the following list,
we’ll look at the terms we use in this book, and then relate them to others which you might
encounter:

5 February 2005 02:09

A rule looks like:

target: dependencies
command
command

A target is the name by which you invoke a rule. make implicitly assumes that you want
to create a file of this name.

The dependencies are the files or targets upon which the target depends: if any of the
dependencies do not exist, or they are newer than the current target file, or the corre-
sponding target needs to be rebuild, then the target will be rebuilt (in other words, its
commands will be executed). Some versions of make use the terms prerequisite or
source to represent what we call dependencies.

The commands are single-line shell scripts that get executed in sequence if the target
needs to be rebuilt.

317

318

variables are environment variables that make imports, explicitly named variables, or
implicit variables such as $@and $<. Variables used to be called macros. They aren’t
really macros, since they don’t take parameters, so the term variable is preferable. BSD
make uses the term local variable for implicit variables. As we will see, they don’t cor-
respond exactly. SunOS uses the term dynamic macros for implicit variables.

Additional make features

A number of versions of make offer additional features beyond those of the version of make
described in Managing projects with make. In the following sections, we’ll look at:

Internal variables

Variables with special meanings

Targets with special meanings

Including other source files from the Makefile
Conditional execution

Variations on assignments to variables
Functions

Multiple targets

Internal variables

All versions of make supply internal variables, but the list differs between individual imple-
mentations. We’ll defer their discussion until we discuss BSD make, on page 324.

Variables with special meanings

A number of normal variables have taken on special meanings in some versions of make.
Here’s an overview:

5 February 2005 02:09

VPATH s a list of directory names to search for files named in dependencies. It is explic-
itly supported in GNU make, where it applies to all file searches, and is also supported,
but not documented, in some versions of System V.4. GNU make also supports a direc-
tive vpat h.

MAKE is the name with which make was invoked. It can be used to invoke subordinate
makes, and has the special property that it will be invoked even if you have specified the
-n flag to make, indicating that you just want to see the commands that would be
executed, and you don’t want to execute them.

In all modern versions of make, MAKEFLAGS is a list of the flags passed to make. make
takes the value of the environment variable MAKEFLAGS, if it exists, and adds the com-
mand line arguments to it. It is automatically passed to subordinate makes.

5 February 2005 02:09

Chapter 19: Make 319

SHELL is the name of a shell to be used to execute commands. Note that many versions
of make execute simple commands directly, so you may find that this doesn’t have any
effect unless you include a shell metacharacter like ; .

The exact semantics of these variables frequently varies from one platform to another—in
case of doubt, read your system documentation.

Special targets

All versions of make define a number of targets that have special meanings. Some versions
define additional targets:

. BEQ Nis a target to be executed before any other target. It is supported by BSD make.

.I N T is a target to be executed before any other target. It is supported by SunOS and
Solaris make.

. ENDIis a target to be executed after all other targets have been executed. It is supported
by BSD make.

. DONE is a target to be executed after all other targets have been executed. It is supported
by SunOS and Solaris make.

. FAI LED s a target to be executed after all other targets have been executed. It is sup-
ported by SunOS and Solaris make.

. I NTERRUPT is a target to be executed if make is interrupted. It is supported by BSD
make.

. MAI Nis the default target to be executed if no target was specified on the command line.
If this target is missing, make will execute the first target in the Makefile. It is supported
by BSD make.

. MAKEFLAGS is an alternate method to supply flags to subordinate makes. It is supported
by BSD make.

. PATH is an alternate method to specify a search path for files not found in the current
directory. It is supported by BSD make.

. MUTEXis used in System V.4 to synchronize parallel makes.

GNU make uses the target . PHONY to indicate targets that do not create files, such as
clean and instal | . If by chance you have a file install in your directory, make will
determine that make i nstal | does not need to be executed, since install is up to date.
If you use GNU make, you can avoid this problem with:

.PHONY: all install clean

If you don’t have GNU make, you can usually solve the problem with

320

all install clean: -FORCE
install commands

-FORCE:

In this example, .FORCE looks like a special target, as it is meant to. In fact, the nameis
not important: you just need a name that doesn’t correspond to areal fi le.

In addition to specia targets, BSD make also has special sources (in other words, special
dependencies). We'll ook at them on page 327.

include directive

Many modern makes allow you to include other fi les when processing the Makefile. Unfortu-
nately, the syntax is very variable:

e In GNU make, the syntax issimply include fi | enane.

e In BSD make, the syntax is .include <fil enane> or .include “filenane". The
syntax resembles that of the C preprocessor: the fi rst form searches only the system
directories, the second form searches the current directory before searching the system
directories.

e In SunOS, Solaris and System V.4 make, the syntax is include fi | enane, but the text
include must be at the beginning of the line.

e SunOS and Solaris make automatically include a fi le make.rules in the current directory
if it exists. Otherwise they include the fi le /usr/share/lib/make/make.rules.

Conditional execution

A number of versions of make support conditional execution of commands. GNU make has
commands reminiscent of the C preprocessor:

ifeq (${CC},gcc}
${CC} -traditional -03 -g $*.c -c -0 $<
else
${CC} -0 $*.c -c -0 $<
endif
BSD make has a different syntax, which also vaguely resembles the C preprocessor. Apart
from standard . if, .else and .endif, BSD make also provides an . ifdef directive and
additional operators analogousto #if defined:

o _iF make (variabl) checks whether variable is a main target of make (in other
words, if it was mentioned on the command line that invoked make).

« _if empty (vari abl e) tests whether variable represents the empty string.

o _IF exists (vari abl e) testswhether thefi le variable exists.

5 February 2005 02:09

5 February 2005 02:09

Chapter 19: Make 321

e .if target (variable) testswhether variable represents a defi ned target.
SunOS and Solaris have so-called conditional macros:
foo bar baz:= QC = nycc

This tells make that the variable (macro) GC should be set to nycc only when executing the
targetsf 0o, bar , and baz.

Other forms of variable assignment
Simply expanded variables

make normally expands variables until no variable references remain in the result. Take the
following Makefile, for example:

CFLAGS = $(I NOLUDE) $(CPT)

T =-g-@&
I NOLUDE= - |/ usr/ nonkey -1/ usr/dbmal | oc

all:
@cho GFLAGS: ${ CFLAGS}

If you run make, you will get:

$ make
CFLAGS: -1/usr/monkey -1/usr/dbnmalloc -g -G8

On the other hand, you can’t change the defi nition to:
CFLAGS = $(CFLAGS) - I/ usr/ nonkey
If you do this, you will get:

$ make
makefile:7: *** Recursive variable ' GFLAGS references itself (eventually). Stop.

make would loop trying to expand $(GFLAGS) . GNU make solves this with simply expanded
variables, which go through one round of expansion only. You specify them with the assign-
ment operator : = instead of the usual =. For example:

CFLAGS = -g -CB
CFLAGS : = $(CFLAGS) - I/ usr/ monkey

In this case, OFLAGS expandsto-g - @ -1/ usr/ nonkey.

define directive

You frequently see multi-line shell script fragments in make rules. They're ugly and error-
prone, because in conventional make, you need to put this command sequence on asingle line
with lots of backsdlashes and semicolons. GNU make offers an dternative with the define
directive. For example, to check for the existence of a directory and create it if it doesn't
exist, you might normally write

5 February 2005 02:09

322

${INSTO R :
if [! -d$@]; then\
nkdir -p $@ \
fi

With GNU make, you can defi ne this as a command:

defi ne nmakedir

if [! -d$@]; then
nkdir -p $@
fi
endef
${INSTO R :
${ makedi r}

Override variable definitions

Conventional versions of make have three ways to defi ne a make variable. In order of prece-
dence, they are;

1. Déefi neit on the command line used to invoke make:
$ make CFLAGS="-g -C8"
2. Defineitinthe Makefi le.

3. Défineit in an environment variable. Thisis al the more confusing because most shells
allow you to write the environment variable on the same line as the invokation of make:

$ CFLAGS="-g -(B" nake
Thislooks almost identical to thefi rst form, but the precedence is lower.

The command line option has the highest priority. Thisis usually a good idea, but there are

times when you want the declaration in the Makefi le to take precedence: you want to override
the defi nition on the command line. GNU make alows you to specify it with the override
directive. For example, you might want to insist that the optimization level be limited to - Q2

if you're generating debugging symbols. In GNU make, you can write:

override CFLAGS=- Q@

Functions

As well as variables, GNU make supplies builtin functions. You call them with the syntax
${function arg, arg, arg}. These functions are intended for text manipulation and have
names like subst, findstring, sort, and such. Unfortunately there is no provision for
defi ning your own functions.

5 February 2005 02:09

Chapter 19: Make 323

Multiple targets
All forms of make support the concept of multiple targets. They come in two flavours:

« Sngle-colon targets, where the target name is followed by a single colon. Each target of
the same name may specify dependencies—this is how Makefi le dependencies are speci-
fied—but only one rule may have commands. If any of the dependencies require the tar-
get to be rebuilt, then these commands will be executed. If you supply commands to
more than one rule, the behaviour varies: some versions of make will print a warning or
an error message, and generally they execute only the last rule with commands. Under
these circumstances, however, BSD make executes the first rule with commands.

« Double-colon targets have two colons after the target name. Each of these is indepen-
dent of the others: each may contain commands, and each gets executed only if the
dependencies for that rule require it. Unfortunately, if multiple rules need to be
executed, the sequence of execution of the rules is not defined. Most versions of make
execute them in the sequence in which they appear in the Makefi le, but it has been
reported that some versions of BSD make execute in reverse order, which breaks some
Imakefi les.

BSD make

With the Net/2 release, the Computer Sciences Research Group in Berkeley released a com-
pletely new make with many novel features. Most BSD flavoured software that has come out
in the last few years uses it. Unfortunately, it contains a number of incompatibilities with
other makes. It is part of the 4.4BSD Lite distribution—see Appendix E, Where to get
sources for further details—and includes hardcopy documentation, which refers to it as
PMake. This name does not occur anywhere else, though you may see the name bsdmake.
We’ve already seen some of the smaller differences between BSD make and other flavours. In
the following sections we’ll look at some more significant differences. On page 327 we’ll
investigate the features of BSD make designed to make configuration easier.

Additional rule delimiter

There is a third delimiter between target and dependency in rules. Apart from the single and
double colon, which have the same meaning as they do with other makes, there isa! delim-
iter. This is the same as the single colon delimiter in that the dependencies are the sum of all
dependencies for the target, and that only the first rule set gets executed. However, the com-
mands are always executed, even if all the dependencies are older than the target.

Assignment operators
BSD make supplies five different types of variable assignment:

« = functions as in other versions of make: the assignment CFLAGS = - g unconditionally
sets CFLAGS to - g.

324

e 4= adds to a defi nition. 1f CFLAGS was set as in the previous example, writing CFLAGS
+= -03resultsin anew value -g -03.

e ?=assigns a value only if the variable is currently undefi ned. This can be used to set
default values.

e I=assigns and expandsimmediately. Thisisthe same asthe GNU make := assignment.

e I=expands the value and passes it to a shell for execution. The result from the shell is
assigned to the variable after changing newline characters to spaces.

Variables

BSD make has clarifi ed the defi nitions of variables somewhat. Although there is nothing
really new in this area, the terminology is arranged in a more understandable manner. It
defi nes four different kinds of variables, the fi rst three of which correspond to the kinds of
variable assignment in other makes. In order of priority, they are:

e Environment variables

e global variables (just called variablesin other fewvours of make)

* command line variables

* local variables, which correspond roughly to implicit variables in other makes.

BSD make alows the use of the implicit variable symbols ($@ and friends), but doesn’t rec-
ommend it. They don't match very well, anyway, so it makes sense not to use them. Local
variables are really variables that make predefi nes. Table 19-1 compares them to traditional
make variables:

Table 19—1: make local variables

Trad-
itional | BSD Meaning
.ALLSRC, $ | Thelist of all dependencies ("sources") for this target.

$ (GNU make) The list of all dependencies of the current target.
Only the member name is returned for dependencies that rep-
resent an archive member. Otherwise thisis the same as BSD
-ALLSRC.

$0 -ARCHIVE The name of the current target. If the target is an archive fi le
member, the name of the archivefi le.

$50 .TARGET, $@ | The complete name of the current target, even if it represents
an archive fi le.*

5 February 2005 02:09

Chapter 19: Make 325

Table 19—1: make local variables (continued)
Tr ad-
itional BSD Meaning

.IMPSRC, $< | Theimplied source, in other words the name of the source fi le
(dependency) implied in an implicit rule.

$< The name of the current dependency that has been modifi ed
more recently than the target. Traditionally, it can only be
used in suffi x rules and in the . DEFAULT entry, but most mod-
ern versions of make (except BSD make) alow it to be used in
normal rules aswell.

$% . MEMBER The name of an archive member. For example, if the target
name is | i bfoo.a(bar.0), $@evaluates to | i bfoo.a and $%
evaluates to bar . 0. Supported by GNU, SunOS and System
V.4 make.

$? . ODATE, $? | The dependencies for this target that were newer than the tar-
get.”

$* The raw name of the current dependency, without suffi x, but
possibly including directory components. Can only be used in
suffi x rules.

$H*F .PREFI X, $* | Theraw fi le name of the current dependency. It does not con-
tain any directory component.

$H*D The directory name of the current dependency. For example,
if $@evaluates to f oo/ bar. o, ${ @} will evaluate to f oo.
Supported by GNU, SunOS and System V.4 make.

.QRDR The name of the directory in which the top-level make was
started.

! $$@can only be used to the right of the colon in a dependency line. Supported by SunOS
and System V.4 make.

? Confusingly, BSD make refers to these dependencies as out of date, thus the name of the
variable.

Variable substitution

In BSD make, variable substitution has reached a new level of complexity. All versions of
make support the syntax ${ SRC . c=. o}, which replaces a list of names of the form f 0o. ¢
bar.c baz.c with foo.o0 bar.o baz.o.. BSD make generalizes this syntax is into
${variable[:nodifier[:...]]}. Inthefollowing discussion, BSD make uses the term
word where we would normally use the term parameter. In particular, afi le nameis a word.
modifier isan upper case letter:

5 February 2005 02:09

5 February 2005 02:09

326

E replaces each word in the variable with its suffix.

According to the documentation, H strips the “last component” from each “word” in the
variable. A better definition is: it returns the directory name of each file name. If the
original file name didn’t have a directory name, the result is setto . (current directory).

Mpat t er n selects those words from the variable that match pattern. pattern is a glob-
bing pattern such as is used by shells to specify wild-card file names.

Npat t er n selects those words from the variable that don’t match pattern.
Rreplaces each word in the variable with everything but its suffix.

S ol d/ new replaces the first occurrence of the text ol d with new The form
S ol d/ new g replaces all occurrences.

T replaces each word in the variable with its “last component”, in other words with the
file name part.

This is heavy going, and it’s already more than the documentation tells you. The following

exal

Ify

mple shows a number of the features:

SRCS = foo.c bar.c baz.cc zot.pas glarp.f src/munble.c util/grunt.f
LANGS = ${SRCS. B}

DRS = ${SRCs H

IS = ${SRCS T}

CSRCS = ${SRCS: M. c}

PASSRCS = ${ SRCS. M. pas}

FSRCS = ${SRCS M. f}

PROGS = ${SRCS R

PROFS = ${CSRCS 9./ _p./g:.c= 0o}

all:
@cho Languages: ${LANGS}
@cho (bj ects: $BIS
@cho Drectories: ${D RS}
@cho C sources: ${CSRCS}
@cho Pascal sources: ${PASSRCS}
@cho Fortran sources: ${FSRCS}
@cho Prograns: ${PROGS}
@cho Profiled objects: ${PRFS}

ou run it, you get:

$ nmake

Languages: ¢ c cc pas f c f

(pj ects: foo.c bar.c baz.cc zot.pas glarp.f nunble.c grunt.f
Drectories: src util

C sources: foo.c bar.c src/munble.c

Pascal sources: zot.pas

Fortran sources: glarp.f util/grunt.f

Prograns: foo bar baz zot glarp src/nunbl e util/grunt
Profiled objects: foo_p.o bar_p.o src/nunbl e _p.o

5 February 2005 02:09

Chapter 19: Make 327

Specia sources

In addition to special targets, BSD make includes special sources (recall that source is the
word that it uses for dependencies). Here are the more important special sources:

e I G\CRE, . S LENT and . PREQ AOJS have the same meaning as the corresponding special
targetsin other versions of make.

« . MAKE causes the associated dependencies to be executed even if the flags - n (just list
commands, don’t perform them) or -t (just update timestamps, don’'t perform make) are
specifi ed. This enables make to perform subsidiary makes even if these flgs are speci-
fi ed. If this seems a strange thing to want to do, consider that the result of the main make
could depend on subsidiary makes to such an extent that it would not even make sense to
run make -n if the subsidiary makes did not run correctly—for example, if the subsidiary
make were a make depend.

e . CPTI ONAL tells make that the specifi ed dependencies are not crucia to the success of
the build, and that make should assume success if it can't fi gure out how to build the tar-
get.

Specifying dependencies

We have seen that the bulk of awell-written Makefi le can consist of dependencies. BSD make
offers the alternative of storing these files in a separate fi le called .depend. This avoids the
problem of different flevours of makedepend missing the start of the dependencies and adding
them again.

BSD Makefile configuration system

One of the intentions of BSD make is to make confi guration easier. A good example of how
much difference it makesisin the Makefi lesfor gcc. Inits entirety, the top-level Makefi leis:

SUBD R=cc cpp lib ccl Iibgce cclplus cclobj #libobjc
.include <bsd. subdir. nk>

The complete Makefi le in the subdirectory ccl (the main pass of the compiler) reads

@#) Makefile 6.2 (Berkeley) 2/2/91

PRCG= gccl

BINDR= /usr/libexec

SRCS= c-parse.c c-lang.c c-lex.c c-pragma.c \
c-decl.c c-typeck.c c-convert.c c-aux-info.c \
c-iterate.c

CFLAGS*= -1. -I1$(.QROR -1$(.CRDOR/../lib
YFLAGS=
NOVAN= nonan

Lif exists(${.QURDIR/../1iblobj)

5 February 2005 02:09

328

LDADD= -L${.QURDR/../lib/obj -1gcc2
DPADD= ${.QRDOR/../libl/obj/libgcc2.a
.el se

LDADD= -L${.QURDR/../lib/ -1gcc2
DPADD= ${.QRDR/../lib/libgcc2. a
.endi f

LDADD+= - | gnural | oc
DPADD+= ${ LI BGNUVALLOG

.include <bsd. prog. nk>

The standard release Makefi le for gcc is about 2500 lineslong. Clearly alot of work has gone
into getting the BSD Makefi les so small. The clueisthe last line of each Makefi le:

.include <bsd. subdir. nk>
or
.include <bsd. prog. nk>

These fi les are supplied with the system and defi ne the hardware and software used on the
system. They are normally located in /usr/share/mk, and you can modify them to suit your

local preferences.

This confi guration mechanism has little connection with the new BSD make. It could equally
well have been done, for example, with GNU make or System V make. Unfortunately, the

signifi cant incompatibilities between BSD make and the others mean that you can't just take
the confi guration fi les and use them with other flavours of make.

The BSD system places some constraints on the Makefile structure. To get the best out of it,
you may need to completely restructure your source tree. To quote bsd.README:

It’s fairly difficult to make the BSD .mk files work when you’re building multiple programs in a
single directory. It’s a lot easier [to] split up the programs than to deal with the problem.
Most of the agony comes from making the *“obj” directory stuff work right, not because we
switch to a new version of make. So, don’t get mad at us, figure out a better way to handle
multiple architectures so we can quit using the symbolic link stuff.
On the other hand, it's remarkably easy to use BSD make confi guration once you get used to
it. It's apity that the make itself is so incompatible with other makes: although the system is
good and works well, it's usually not worth restructuring your trees and rewriting your Make-
files to take advantage of it.

There are a couple of other points to note about the confi guration method:

* make depend is supported via an auxiliary fi le .depend, which make reads after reading
the Makefile.

* The confi guration fi les are included at the end of the Makefile. This is due to the way
that BSD make works: unlike other makes, if multiple targets with a single colon exist,
only the first will be executed, but if multiple declarations of the same variable exigt,
only the last one will take effect.

The confi guration fi les consist of one fi le, sys.mk, which make automatically reads before

5 February 2005 02:09

Chapter 19: Make 329

doing anything else, and a number of others, one of which is usually included as the last line
in aMakefile. These are usually:

* bsd.prog.mk for a Makefile to make an executable binary.
e bsd.lib.mk for aMakefile to make alibrary.
* bsd.subdir.mk to make binaries or libraries in subdirectories of the current directory.

« In addition, another file bsd.doc.mk is supplied to make hardcopy documentation. In
keeping with the Cinderella nature of such parts of a package, no other fi lerefersto it. If
you want to use it, you include it in addition to one of the other three. Thisis required
only for hardcopy documentation, not for man pages, which are installed by the other
targets.

sys.mk

sys.mk contains global defi nitions for all makes. make reads it in before looking for any
Makefiles. The documentation states that it is not intended to be modifi ed, but since it con-
tains default names for al tools, as well as default rules for makes, there is every reason to

believe that you will want to change thisfi le: there’s no provision to override these defi nitions
anywhere else. How you handle this dilemma is your choice. | personaly prefer to change

sys.mk (and put up with having to update it when a new release comes), but you could create

another fi le bsd.own.mk, like FreeBSD does, and put your personal choices in there. The last
line of the FreeBSD sys.mk is

.include <bsd. own. nk>
With this method you can override the defi nitions in sys.mk with the definitions in
bsd.own.mk. It's up to you to decide whether thisis a better solution.
bsd.prog.mk

bsd.prog.mk contains defi nitions for building programs. Table 19-2 lists the targets that it
defi nes:

Table 19—2: bsd.prog.mk targets

Target Purpose
all Build the single program ${ PRO3 , which is defi ned in the Makefile.
cl ean remove ${ PRO3 , any object fi les and the fi les a.out, Errs, errs, mklog, and core.

cleandir | remove al of the fi les removed by the target cl ean and aso the fi les .depend,
tags, obj, and any manual pages.

depend make the dependencies for the source fi les, and store them in the fi le .depend.

330

Table 19—2: bsd.prog.mk targets (continued)

Target

Purpose

install

lint

t ags

install the program and its manual pages. If the Makefile does not itself defi ne
the target i nstal | , the targets beforei nstal | and afterinstal |l may also
be used to cause actions immediately before and after the install target is execut-
ed.

run lint on the sourcefi les.

create atags fi le for the sourcefi les.

In addition, it supplies default defi nitions for the variables listed in Table 19-3. The operator
?=is used to ensure that they are not redefi ned if they are already defi ned in the Makefile (see
page 324 for more details of the ?= operator).

Table 19-3: variables defined in bsd.prog.mk

Variable

Purpose

Bl NGRP
Bl NOAN
Bl NVCDE

CLEANFI LES

CPADD

LI BC

LI BOOWPAT
LI BOURSES
LI BCRYPT
LI BDBM

LI BDES

LI BL

5 February 2005 02:09

Group ownership for binaries. Defaultsto bin.
Owner for binaries. Defaultsto bin.

Permissions for binaries. Defaults to 555 (read and execute permission for ev-
erybody).

Additional files that the clean and cleandir targets should remove.
bsd.prog.mk does not defi ne this variable, but it adds the fi le strings to the list if
the variable SHAREDSTR NGS is defi ned.

Additional library dependencies for the target ${ PROG . For example, if you
write DPADD=${ LI BOOMPAT} ${ LI BUTI L} in your Makefile, the target depends
on the compatibility and utility libraries.

Dependent sources—a list of source fi les that must exist before compiling the
program source fi les. Usually for a building a confi guration fi le that is required
by all sources. Not all systems defi ne this variable.

The C library. Defaultsto /lib/libc.a.

The 4.3BSD compatibility library. Defaultsto /usr/lib/libcompat.a.
The curses library. Defaultsto /usr/lib/libcurses.a.

The crypt library. Defaults to /usr/lib/libcrypt.a.

The dbm library. Defaultsto /usr/lib/libdbm.a.

Thedes library. Defaultsto /usr/lib/libdes.a.

The lex library. Defaultsto /usr/lib/libl.a.

5 February 2005 02:09

Chapter 19: Make 331

Table 19—3: variables defined in bsd.prog.mk (continued)

Variable Purpose

LI BKDB Defaults to /usr/lib/libkdb.a.

LI BKRB Defaults to /usr/lib/libkrb.a.

LI BM The math library. Defaultsto /usr/lib/libm.a.

LI BWP Defaults to /usr/lib/libmp.a.

LI BPC Defaultsto /usr/lib/libpc.a.

LI BPLOT Defaultsto /usr/lib/libplot.a.

LI BTELNET Defaults to /usr/lib/libtelnet.a.

LI BTERV Defaults to /usr/lib/libterm.a.

LI BUTI L Defaults to /usr/lib/libutil.a.

SRCS List of sourcefi lesto build the program. Defaultsto ${ PROG . c.
STRP If defi ned, this should be the flag passed to the install program to cause the bina-

ry to be stripped. It defaultsto-s.

The variables in Table 19-4 are not defi ned in bsd.prog.mk, but will be used if they have been
defi ned elsewhere:

Table 19—4: variables used by bsd.prog.mk

Variable Purpose

QcPTS Additional flags to supply to the compiler when compiling C object
files.

H DEGAME If defi ned, the binary isinstalled in /usr/games/hide, and a symbolic link
is created to /usr/games/dm.

LDADD Additional loader objects. Usually used for libraries.

LDFLAGS Additional loader flgs.

LI NKS A list of pairs of file names to be linked together. For example
LI NKS= ${DESTD R}/ bi n/test ${DESTD R/ bin/[links /bin/test
to /bin/[.

NOVAN If set, make does not try to install man pages. This variable is defi ned
only in bsd.prog.mk, and not in bsd.lib.mk or bsd.man.mk.

PROG The name of the program to build. If not supplied, nothing is built.

SRCS List of source fi les to build the program. If SRCis not defi ned, it's as-

sumed to be ${ PRO3 . c.

332

Table 19—4: variables used by bsd.prog.mk (continued)

Variable

Purpose

SHAREDSTR NGS | If defi ned, the Makefile defi nes anew . c. o rule that uses xstr to create

SUBD R

shared strings.

A list of subdirectories that should be built as well as the targets in the
main directory. Each target in the main Makefi le executes the same tar-
get in the subdirectories. Note that the name in this file is SUBD R,
though it has the same function as the variable SUBD RS in bsd.sub-
dir.mk.

There are a couple more points to note:

e If the file ../Makefile.inc exists, it is included before the other defi nitions. This is one
possibility for specifying site preferences, but of course it makes assumptions about the
source tree structure, so it’s not completely general.

¢ Thefilebsd.man.mk isincluded unless the variable NOMAN is defi ned. We'll take another
look at bsd.man.mk on page 333.

bsd.lib.mk

bsd.lib.mk contains defi nitions for making library files. It supplies the same targets as
bsd.prog.mk, but defi nes or uses a much more limited number of variables:

Table 19—5: Variables defined or used in bsd.lib.mk

Variable

Purpose

LDADD
LI B

LIBO R
LI B&RP
LI BOWN
LI BMIDE
LI NTLI BD R
NCPRCFI LE

SRCS

5 February 2005 02:09

Additional loader objects.

The name of the library to build. The name isin the same form that you fi nd in
the -1 option to the C compiler—if you want to build libfoo.a, you set LI B to
f 0o.

Target installation directory for libraries. Defaultsto /usr/lib.
Library group owner. Defaultsto bin.

Library owner. Defaultsto bin.

Library mode. Defaultsto 444 (read access for everybody).
Target directory for lint libraries. Defaults to /usr/libdata/lint.

If set, only standard libraries are built. Otherwise (the default), both standard li-
braries (libfoo.a) and profi ling libraries (libfoo_p.a) are built.”

List of source fi lesto build the library. Unlike in bsd.prog.mk, there is no default
value.

5 February 2005 02:09

Chapter 19: Make 333

Given the choice of compiling foo.s or foo.c, bsd.lib.mk chooses foo.s. Like bsd.prog.mk, it
includes bsd.man.mk. Unlike bsd.prog.mk; it does this even if NOVAN s defi ned.

bsd.subdir.mk

bsd.subdir.mk contains defi nitions for making fi les in subdirectories. Since only a single pro-
gram target can be made per directory, BSD-style directory trees tend to have more branches
than others, and each program is placed in its own subdirectory. For example, if | have three
programs foo, bar and baz, | might normally write a Makefi le with the rule

all: foo bar baz

f oo: foo.c foobar.h conf.h

bar : bar.c foobar.h zot.h conf.h
baz: baz.c baz.h zot.h conf.h

As we have seen, this is not easy to do with the BSD confi guration scheme. Instead, you
might place al the fi les necessary to build foo in the subdirectory foo, and so on. You could
then write

SUBO RS = foo bar baz
.include <bsd. subdir. nk>

foo/Makefi le could then contain

PROG = foo
DPADD = foo.c foobar.h conf.h
.include <bsd. prog. nk>

bsd.subdir.mk is structured in the same way as bsd.prog.mk. Use bsd.prog.mk for making fi les
in the same directory, and bsd.subdir.mk for making fi les in subdirectories. If you want to do
both, use bsd.prog.mk and defi ne SUBD Rinstead of SUBD RS.

bsd.man.mk

bsd.man.mk contains defi nitions for installing man pages. It isincluded from bsd.prog.mk and
bsd.lib.mk, so the target and variables are available from both of these fi les as well. It defi nes
the target mani nst al | , which installs the man pages and their links, and uses or defi nes the

A profi ling library is a library that contains additional code to aid profi lers, programs that analyze the
CPU usage of the program. We don’t cover prafi ling in this book.

334

variables described in Table 19-6:

Table 19—6: Variables defined or used by bsd.man.mk

Variable Meaning

MANDI R The base path of the installed man pages. Defaults to /usr/share/man/cat. The
section number is appended directly to MANDI R, so that a man page foo.3 would
beinstalled in /usr/share/man/cat3/foo.3.

MANGRP The group that owns the man pages. Defaults to bin.

MANOAN The owner of the man pages. Defaultsto bin.

MANMCDE The permissions of the installed man pages. Defaults to 444 (read permission
for anybody).

MANSUBD R | The subdirectory into which to install machine specifi ¢ man pages. For example,
i386 specifi c pages might be installed under /usr/share/man/cat4/i386. In this
case, MANSUBD Rwould be set to/ i 386.

MAN© (n has the values 1 to 8). Manual page names, which should end in. [1-8] . If
no MANh variable is defi ned, MAINL=${ PRO3 . 1 is assumed.

M.l NKS A list of pairs of names for manua page links. The fi rst fi lename in a pair must
exist, and it islinked to the second namein the pair.

bsd.own.mk

Not all variants of the BSD confi guration system usebsd.own.mk. Where it is supplied, it con-
tains default permissions, and may be used to override defi nitions in sys.mk, which includesit.

bsd.doc.mk

bsd.doc.mk contains defi nitions for formatting hardcopy documentation fi les. It varies signifi -
cantly between versions and omits even obvious things like formatting the document. It does,
however, defi ne the variablesin Table 19-7, which can be of use in your own Makefile:

Table 19-7:

Variable

Variables defined in bsd.doc.mk

Meaning

PR NTER

Bl B
QOWPAT

5 February 2005 02:09

Not a printer name at all, but an indicator of the kind of output format to be used. Thisisthe
argument to the troff flag - T. Defaultsto ps (PostScript output).

The name of the bib processor. Defaultsto bi b.

Compatibility mode flag for groff when formatting documents with Berkeley me macros.
Defaultsto- C.

Chapter 19: Make 335

Table 19—7: Variables defined in bsd.doc.mk (continued)
Variable | Meaning

EQN How to invoke the egn processor. Defaultstoegn - TH{ PR NTER} .
GREMLIN | The name of the gremlin processor. Defaultsto gr n.

R ND The name of the vgrind processor. Defaultstovgrind -f.

INDXB B | Name of the indxbib processor. Defaultstoi ndxbi b.

PAGES Specifi cation of the page range to output. Defaultsto 1-.

PIC Name of the pic processor. Defaultstopi c.
REFER Name of the refer processor. Defaultstoref er.

5 February 2005 02:09

5 February 2005 02:09

Compilers

The central tool in building software is the compiler. In UNIX, the compiler is really a collec-
tion of programs that compile sources written in the C language. In this chapter, we’ll con-
sider the following topics:

e The way the C language has evolved since its introduction and some of the problems that
this evolution has caused.

e C++, an evolution of C.
e The way the compiler is organized.

e How to use the individual parts of the compiler separately, in particular the assembler
and the linker.

We’ll defer how the assembler and the linker work until the next chapter—to understand
them, we first need to look at object files in more detail.

There are, of course, lots of other languages besides C, but on a UNIX platform C is the most
important. Even if you use another language, some of the information in this chapter will be
of use to you: many other languages output C source code.

The C language

The C language has evolved a lot since its appearance in the early 70’s. It started life as a
Real Man’s language, cryptic, small, tolerant of obscenities almost to the point of encouraging
them, but now it has passed through countless committees and has put on weight and become
somewhat sedate, pedantic and much less tolerant. Along with this, of course, it has devel-
oped a whole lot of idiosyncracies that plague the life of the portable software writer. First,
let’s take a look at the flavours that are commonly available.

337

5 February 2005 02:09

338

Kernighan and Ritchie

Kernighan and Ritchie or K&R is the name given to the dialect of C described in the first edi-
tion of The C programming language by Brian Kernighan and Dennie Ritchie. This was the
first book to describe the C language, and has become something of a bible. In 1988, a second
edition appeared, which describes an early version of ANSI C, not K&R C.

The K&R dialect is now completely obsolete, though many older versions of UNIX C resem-
ble it. Compared to ANSI C (also called Standard C), it lacks a number of features, and has a
few incompatibilities. In particular, strings were always allocated separately for each
instance, and so could be modified if desired. For example, you could encounter code like
this:

conpl ai n (nsQ)

char *nsg;

{
char *nessage = "Nothing to conpl ai n about\n";
if (nsQ) /* paraneter supplied? */

strcpy (nessage, nsg); /* yes, save in nessage */

puts (nessage); /* say what we have to say */
}

When the parameter nsg is non-NULL, it is copied into the string nessage. If you call this
function with a NULL message, it will display the last message again. For example:

conplain (NUL); prints Nothing to conpl ai n about
conplain ("Bad style"); prints Bad style
conpl ain (NUL); prints Bad style

This may fail with modern C compilers: The ANSI Standard says that string constants are not
writable, but real-world compilers differ in the way they handle this situation.

UNIX C

A period of over ten years elapsed between the publication of K&R and the final adoption of
the ANSI C standard. During this time, the language didn’t stand still, but there was no effec-
tive standards document beyond K&R. The resultant evolution in the UNIX environment is
based on the Portable C Compiler first described in the paper Portability of C Programs and
the UNIX System published by S. C. Johnson and Dennis Ritchie in 1978, and is frequently
referred to as “UNIX C”. This is not a standard, or even a series of standards—it’s better to
consider it a set of marginally compatible extensions to K&R C. You can find more informa-
tion in The evolution of C—Past and Future by L. Rosler, but you can’t rely on the degree to
which your particular compiler (or the one for which your software package was written)
agrees with that description. From a present-day standpoint, it’s enough to know that these
extensions exist, and otherwise treat the compilers like K&R. In case of doubt, the documen-
tation that comes with the compiler is about the only even remotely reliable help. Here’s a
brief summary of the sort of things that had changed by the time The evolution of C—Past
and Future appeared:

5 February 2005 02:09

Chapter 20: Compilers 339

Optional function prototyping similar to that of ANSI C was introduced. One difference
exists: if afunction accepts a variable number of parameters, UNIX C uses the form

int printf (char *fornat,);
whereas ANS| C usesthe form

int printf (char *format, ...);

The enumtype specifi es away to defi ne classes of constants. For example, traditionally |
could write:

#define RED O
#define GREEN 1
#defi ne BLUE 2

int colour;
int x;

col our = BLUE
X = RED,

With enums, | can write

enumcol ours {red, green, bl ue};
enumtexture {rough, snooth, sliny};

enum col ours col our;
enumtexture x;

col our = bl ue;

X = red;

This syntax is intended to make error checking easier. As you can see in the second
example, there seems to be something wrong with the assignment to x, which was not
evident in the K&R example. The compiler can see it too, and should complain,
although many modern compilers compile the second program without any comment. In
addition, the symbols are visible to the compiler. This means that the debugger can use
them as well: preprocessor macros never make it to the code generation pass of the com-
piler, so the debugger doesn’'t know about them. The keyword const was added to spec-
ify that a variable may not be changed in the course of program execution.

The preprocessor directive#el i f was added.
The preprocessor pseudofunctiondef i ned (i dentifier) wasadded.

The datatypevoi d was added.

5 February 2005 02:09

340

ANSI C

In 1989, the C programming language was finally standardized by the American National
Standards Institute (ANSI) as standard X3.159-1989. In the following year it was adopted by
the International Standards organization (ISO) as standard ISO/IEC 9899:1990. There are
minor textual differences in the two standards, but the language defined is the same in each.
The existence of two standards is good for a certain amount of confusion: some people call it
ANSI C, some call it Standard C, and | suppose you could call it ISO C, though | haven’t
heard that name. | call it ANSI C because the name is more specific: the word “Standard”
doesn’t make it obvious which standard is implied.

The following discussion is intended to show the differences between ANSI C and older ver-
sions. It’s not intended to teach you ANSI C—see Practical C Programming, by Steve
Oualline, and the POS X Programmer’s Guide by Donald A. Lewine for that information.
ANSI C introduced a large number of changes, many of them designed to help the compiler
detect program errors. You can find a reasonably complete list in Appendix C of K&R. Here
are the most important from the standpoint of porting software:

« A number of changes have been made in the preprocessor. We’ll look at these on page
342.

« The keywords voi d, si gned and const were adopted from the Portable C compiler.

+ The keyword vol ati | e was added to tell an optimizer not to assume that the value of
the variable will stay the same from one reference to another. Variables normally stay
unchanged unless you execute an explicit assignment statement or call a function, and
most optimizers rely on this behaviour. This assumption may not hold true if a signal
interrupts the normal course of execution, or if you are sharing the memory with another
process. If the value of a variable might change without your influence, you should
declare the variable vol ati | e so that the optimizer can handle it correctly. We saw an
example of this kind of problem in Chapter 13, Signals, page 200.

+ You can state the type of numeric constants explicitly: for example, you can write a long
constant 0 as OL, and a double 0 would be OD.

« Implicit string literal concatenation is allowed—the following two lines are completely
equivalent:

"first string" "second string"
"first stringsecond string"

K&R C allows only the second form.

« voi d pointers are allowed. Previous versions of C allowed the type voi d, but not point-
ers to objects of that type. You use a voi d pointer to indicate the the object you are
pointing to is of indeterminate type. Before you can use the data, you need to cast it to a
specific data type.

« Instrict ANSI C, you must declare or define functions before you call them. You use a
function declaration to tell the compiler that the function exists, what parameters it takes,

5 February 2005 02:09

Chapter 20: Compilers 341

and what value (if any) it returns. A function definition is the code for the function, and
includes the declaration.

Strict ANSI C function defi nitions and declarations include function protyping, which
specifi es the nature of each parameter, though most implementations allow old-style defi -
nitions. Consider the following function defi nition in K&R C:

foobar (a, b, c, d)
char *c;
struct baz *a

{
body

}

This defi nition does not specify the return type of the function; it may or may not return
i nt. The types of two of the parameters are specifi ed, the others default toi nt. The
parameter type specifi ers are not in the order of the declaration. In ANSI C, this would
become:

voi d foobar (struct baz *a, int b, char *c, int d)

{
body

}

This defi nition states all types explicitly, so we can see that f oobar does not, in fact,
return any value.

The same syntax can also be used to declare the function, though you can also abbreviate
it to:

voi d foobar (struct baz *, int, char, int)

This helps catch one of the most insidious program bugs: consider the following code,
which is perfectly legal K&R:

extern foobar ();/* define foobar w thout paraneters */
int a b; /* two integers */
struct baz *c; /* and a struct baz */

foobar (a, b, ¢);/* call foobar (int, int, struct baz *) */

In this example, | have supplied the parameters to f oobar in the wrong sequence: the
struct baz pointer is the fi rst parameter, not the third. In al likelihood, f oobar will
try to modify the struct baz, and will use the value of a—possibly a small inte-
ger—to do this. If | cal f oobar without parameters, the compiler won't notice, but by
the time | get my almost inevitable segmentation violation, foobar will probably have
overwritten the stack and removed all evidence of how the problem occurred.

5 February 2005 02:09

342

Differences in the ANSI C preprocessor

At first sight, the C preprocessor doesn’t seem to have changed between K&R C and ANSI C.
This is intentional: for the casual user, everything is the same. When you scratch the surface,
however, you discover a number of differences. The following list reflects the logical
sequence in which the preprocessor processes its input.

« A method called trigraphs represents characters not found in the native character set of
some European countries. The following character sequences are considered identical:

Table 20—1: ANSI C trigraphs

character | trigraph
7=
??2(
??/
??)
77?7
?7<
7?1
7>
?7-

) b

Lo =

To show what this means, let’s look at a possibly barely recognizable program:

??=include <unistd.h>

main O
<
printf (“Hello, world??/n'");
77>

Not surprisingly, most programmers hate the things. To quote the gcc manual: “You
don’t want to know about this brain-damage”. Many C compilers, including the GNU C
compiler, give you the opportunity to turn off support for trigraphs, since they can bite
you when you’re not expecting them.

« Any line may end with \, indicating that it should be spliced—in other words, the pre-
processor removes the \ character and the following newline character and joins the line
to the following line. K&R C performed line splicing only during the definition of pre-
processor macros. This can be dangerous: trailing blanks can nullify the meaning of the \
character, and it’s easy to oversee one when deleting lines that follow it.

« Unlike UNIX C, formal macro parameters in strings are not replaced by the actual
parameters. In order to be able to create a string that includes an actual parameter, the
operator # was introduced. A formal parameter preceded by a # is replaced by the actual
parameter surrounded by string quotes. Thus

5 February 2005 02:09

Chapter 20: Compilers 343

#define foo(x) open (#x)
foo (/usr/lib/libc.a);

will be replaced by
open ("“/usr/lib/libc.a");
In many traditional versions of C, you could have got the same effect from:

#define foo(x) open ("x")
foo (/usr/lib/libc.a);

In K&R C, problems frequently arose concatenating two parameters. Since both param-

eter names are valid identifi ers, you can't just write one after the other, because that
would create a new valid identifer, and nothing would be substituted. For example, con-

sider the X11 macro Goncat , which joins two names together to create a complete path
name from adirectory and afi le name:

Goncat (dir, file);
| obviously can't just write
#define Concat(dir, file) dirfile

because that will alwaysjust give methetextdirfil e, whichisn't much use. The solu-
tion that the X Consortium used for K&R C was:

#define Concat (dir,file)dir/**/file

This relies on the fact that most C compilers derived from the portable C compiler sim-
ply remove comments and replace them by nothing. This works most of the time, but
there is no basis for it in the standard, and some compilers replace the sequence / **/
with a blank, which breaks the mechanism. ANSI C introduced the operator ## to
address this problem. ## removes itself and any white space (blanks or tab characters) to
either side. For ANSI C, Imake.tmpl defi nesConcat as

#define Concat (dir,file)dir#file

The #include directive now allows the use of preprocessor directives as an argument.
imake uses this to #include the <vendor> .cf fi le.

Conditional compilation now includes the#el i f directive, which signifi cantly simplifi es
nested conditional compilation. In addition, a number of logical operators are available:

|| and & have the same meaning as in C, and the operator def i ned checks whether its
operand is defi ned. Thisalows code like:

#if defined BSD || defined SVR4 || defined LTR X
foo

#elif defined SVR3

bar

#endi f

If you want, you can surround the operand of def i ned with parentheses, but you don't
need to.

e The use of the preprocessor directive #l i ne, which had existed in previous versions of
C, was formalized. #l i ne supports preprocessors that output C code—see page 88 for
an example. #l i ne tells the compiler to reset the internal line number and fi le name
used for error reporting purposes to the specifi ed values. For example if the fi le bar.c
contains just

#line 264 "foo.c"
sl i pup!

the compiler would report the error like this:

$ gcc -Obar.c -0 bar
foo.c:264: parse error before ‘!’
gnunake: *** [bar] Eror 1

Although the error was really detected on line 2 of bar.c, the compiler reports the error as
if it had occurred on line 264 of foo.c.

e The line slipup! suggests that it is there to draw attention to an error. This is a fairly
common technique, though it’s obviously just a kludge, especially as the error message
requires you to look at the source to fi gure out what the problem is. ANSI C introduced
another directive to do the Right Thing. Instead of sl i pup! , | can enter:

#error Have not finished witing this thing yet
This produces (from gcc)

$ nake bar

gcc -Obar.c -0 bar

foo.c:270: #error Have not finished witing this thing yet
gnunake: *** [bar] Eror 1

| couldn’'t write Haven’ t , because that causes gcc to look for a matching apostrophe (').
Since there isn’t one, it would die with a less obvious message, whether or not an error
really occurred.

e To quote the Standard:

A preprocessor line of the form# pragna token-sequence0 , causes the processor to perform
an implementation-dependent action. An unrecognized pragma isignored.

Thisis not a Good Thing. Implementation-dependent actions are the enemy of portable soft-
ware, and about the only redeeming fact is that the compiler ignores an unrecognized pragma.
Since almost nobody uses this feature, you can hope that your compiler will, indeed, ignore
any pragmasit fi nds.

Assertions

Assertions provide an alternative form of preprocessor conditional expression. They are spec-
ifi ed in theform

5 February 2005 02:09

5 February 2005 02:09

Chapter 20: Compilers 345

#assert question (answer)

In the terminology of the documentation, this asserts (states) that the answer to question is
answer. You can test it with the construct:

f #questi on(answer)

rendi f
The code between #i f and #endi f will be compiled if the answer to questi on is answer .
An alternative way to use this facility is in combination with the compiler directive - Aques-
ti on(answer). This method is intended for internal use by the compiler: typically, it tells

the compiler the software and platform on which it is running. For example, compiling bar.c
on UNIXWare 1.0 with gcc and the - v flag reveals:

Jusr/local /1ib/gcc-1ib/i386-univel-sysv4.2/2.4.5/ cpp \
-lang-c -v -undef -D_G\NUC_=2 -D0i386 -Dunix -D_svr4__\
-D _i386__ -D unix__ -D svr4__ -D _i386 -D unix \
-D_svr4__ -Asysten{uni x) -Acpu(i386) -Amachine(i386) \
bar.c /usr/tnp/ ccaOO00N . i

The - Aflags passed by gcc to the preprocessor specify that this is a uni x system and that the
cpu and machine are both i 386. It would be nice if this information stated that the operating
system was svr 4, but unfortunately this is not the default for System V.4. gcc has also retro-
fitted it to System V.3, where the assertion is - Asyst en{ svr 3), which makes more sense,
and to BSD systems, where the assertion is - Asyst en{ bsd) .

C++

C++ is an object-oriented evolution of C that started in the early 80’s, long before the ANSI C
standard evolved. It is almost completely upwardly compatible with ANSI C, to a large extent
because ANSI C borrowed heavily from C++, so we don’t run much danger by considering it
the next evolutionary step beyond ANSI C.

The last thing | want to do here is explain the differences between ANSI C and C++: The
Annotated C++ Reference Manual, by Margaret A. Ellis and Bjarne Stroustrup, spends
nearly 450 very carefully written pages defining the language and drawing attention to its
peculiarities. From our point of view, there is not too much to say about C++.

One of the more popular C++ translators is AT&T’s cfront, which, as the name suggests, is a
front-end preprocessor that generates C program code as its output. Although this does not
make the generated code any worse, it does make debugging much more difficult.

Since C++ is almost completely upwards compatible from ANSI C, a C++ compiler can usu-
ally compile ANSI C. This assumes well-formed ANSI C programs: most ANSI C compilers
accept a number of anachronisms either with or without warnings—for example, K&R-style

function definitions. The same anachronisms are no longer part of the C++ language, and
cause the compilation to fail.

C++ is so much bigger than C that it is not practicable to even think about converting a C++
program to C. Unless there are some really pressing reasons, it’s a whole lot easier to get hold

5 February 2005 02:09

346

of the current version of the GNU C compiler, which can compile both C and C++ (and
Objective C, if you're interested).

C and C++ have different function linking conventions. Since every C++ program calls C
library functions, there is potentia for errors if you use the wrong calling convention. We
looked at this aspect in Chapter 17, Header files, on page 286.

Other C dialects

Before the advent of ANSI C, the language was ported to a number of non-UNIX architec-
tures. Some of these added incompatible extensions. Many added incompatible library calls.
One areais of particular interest: the Microsoft C compiler, which was originally written for
MS-DOS. It was subsequently adapted to run under XENIX and SCO UNIX System V.
Since our emphasis is on UNIX and UNIX-like systems, we'll talk about the XENIX com-
piler, though the considerations also apply to SCO UNIX and MS-DOS.

The most obvious difference between the XENIX C compiler and most UNIX compilersisin
the flags, which are described in Appendix B, Compiler flags, but a couple of architectural
limitations have caused incompatibilities in the language. We'll look at them in the following
section.

Intel 8086 memory models

The origina MS-DOS compiler ran on the Intel 8086 architecture. This architecture has 1
MB of real memory, but the addresses are only 16 bitslong. In order to address memory, each
machine instruction implicitly adds the contents one of four segment registers to the address,
so at any one time the machine can address a total of 256 kB of memory. In order to address
more memory, the C implementation defi nes a 32 bit pointer type, the so-called far address, in
software. Accessing memory viaafar pointer requires reloading a segment register before the
access, and is thus signifi cantly slower than access via a 16-bit near address. This has a num-
ber of consequences:

Near addresses are simply offsets within a segment: if the program expects it to point to a dif-
ferent segment, it will access the wrong data.

Far pointers are 32 hits wide, containing the contents of the segment register in one half and
the offset within the segment in the other half. The segment register contains bits 4 through
19 of a 20-bit address, and the offset contains bits O through 15. To create an absolute address
from afar pointer, the hardware performs effectively

struct fp
{
short segnent _reg; /* 16 bits, bits 4 through 19 of address */
short of fset; /* 16 bits, bits O through 15 of address */

long abs_address = (fp.segnent_reg << 4) + fp.offset;
As aresult, many possible far pointer contents that could resolve to the same address. This
complicates pointer comparison signifi cantly. Some implementations solved this problem by
declaring huge pointers, which are normalized 20-bit addresses in 32-bit words.

5 February 2005 02:09

Chapter 20: Compilers 347

Along with three pointer types, MS-DOS C uses a number of different executable formats.
Each of them has default pointer sizes associated with them. You choose your model by sup-
plying the appropriate fbg to the compiler, and you can override the default pointer sizes with
the explicit use of the keywordsnear , f ar or (where available) huge:

* Thetiny model occupies a single segment and thus can always use near addresses. Apart
from the obvious compactness of the code, this model has the advantage that it can be
converted to a.COM fi le.

« The small model occupies a single data segment and a single code segment. Here, too,
you can always use near pointers, but you need to be sure you're pointing into the correct
segment.

e The medium model (sometimes called middle model) has multiple code segments and a
single data segment. Asaresult, code pointers are far and data pointers are near.

e The compact model is the inverse of the medium model. Here, code is restricted to one
segment, and data can have multiple segemnts. Static data is restricted to a single seg-
ment. Asaresult, code pointers are near and data pointers are far.

e The large model can have multiple code and multiple data segments. Static data is
restricted to a single segment. All pointers are far.

« The huge model is like the large model except that it can have multiple static data seg-
ments. The name is unfortunate, since it suggests some connection with huge pointers.
In fact, the huge model uses far pointers.

What does this mean to you? If you're porting from MS-DOS to UNIX, you may run into

these keywords near , f ar and huge. Thisisn't abig deal: you just need to remove them, or

better still, defi ne them as an empty string. You may also fi nd alot of pointer checking code,
which will probably get quite confused in a UNIX environment. If you do fi nd this kind of
code, the best thing to doisto ifdef it out (#i f ndef uni x).

If you're converting from UNIX to MS-DOS, things can be alot more complicated. You'll be

better off using a 32-bit compiler, which doesn’'t need this kind of kludge. Otherwise you

may have to spend a considerable amount of time fi guring out the memory architecture most
suitable for your package.

Other differencesin MS-DOS

MS-DOS compilers grew up in avery different environment from UNIX. Asaresult, a num-
ber of detail differences exist. None of them are very serious, but it's good to be forewarned:

e« They do not adhere to the traditional UNIX organization of preprocessor, compiler,
assembler and loader.

e They don't use the assembler directly, though they can usually output assembler code for
use outside the compilation environment.

5 February 2005 02:09

348

The assembler code output by MS-DOS compilers is in the standard Intel mnemonics,
which are not compatible with UNIX assemblers.

Many MS-DOS compilers combine the preprocessor and the main compiler pass, which
makes for faster compilation and less disk 1/0.

Many rely on the Microsoft linker, which was not originally written for C, and which has
signifi cant limitations.

Many MS-DOS compilers still run in real mode, which limits them to 640K code and
data. Thisis a severe limitation, and it is not uncommon to have to modify programsin
order to prevent the compiler from dying of amnesia. This leads to a different approach
with header fi les, in particular: in UNIX, it's common to declare everything just in case,
whereas in MS-DOS it may be a better idea to not declare anything unless absolutely
necessary.

Compiler organization

The traditional UNIX compiler is derived from the Portable C Compiler and divides the com-
pilation into four steps, traditionally called phases or passes, controlled by the compiler con-
trol program cc. Most more modern compilers also adhere to this structure:

1

The preprocessor, called cpp, reads in the the source fi les and handles the preprocessor
directives (those starting with #) and performs macro substitution.

The compiler itself, usually called ccl, reads in the preprocessor output and compiles to
assembler source code. In SUnOS, thispassis called ccom.

The assembler as readsin this output and assemblesiit, producing an object fi le.

The loader takes the object fi le or fi les and links them together to form an executable. To
do so, it aso loads a low-level initialization fi le, normally called crt0.0, and searches a
number or libraries.

cc usualy performs these passes invisibly. The intermediate outputs are stored in temporary
fi les or pipes from one pass to the next. It ispossible, however, to call the passes directly or to
tell cc which pass to execute—we'll look at how to do that in the next section. By conven-

tion,

a number of suffi xes are used to describe the intermediate fi les. For example, the GNU

5 February 2005 02:09

Chapter 20: Compilers

349

C compiler recognizes the following suffi xes for a program foo:

Table 20—2: C compiler intermediate files

file contents created by
compiler?

foo.c unpreprocessed C source code

foo.cc unpreprocessed C++ source code

foo.cxx | unpreprocessed C++ source code

foo.C unpreprocessed C++ source code

foo.i preprocessed C source code yes

foo.ii preprocessed C++ source code yes

foo.m Objective C source code

foo.h C header file

foo.s assembl er source code yes

foo.S assembler code requiring preprocessing

foo.o object fi le yes

Here's what you need to do to go through the compilation of foo.c to the executable foo, one
pass at atime:

$ gcc
$ gcc
$ gcc

-Efoo.c -0 foo.i

-Sfoo.i
-c foo.s
$ gcc foo.o -0 foo

pr epr ocess
conpi l e
assenbl e
l'ink

There are dight variations in the form of the commands: if you don't tell the preprocessor
where to put the output fi le, gcc writes it to stdout. Other preprocessors may put a special suf-
fi x on the base fi le name, or if you specify the - o flag, the compiler might put it in the fi le you
specify. If you don’t tell the linker where to put the output fi le, it writesto a.out.

Compiling an object fi le from an assembler fi le is the same as compiling from a source fi le or
apreprocessed fi le—gcc decides what to do based on the suffi x of theinput fi le.

You can also run any combination of contiguous passes like this:

$ gcc
$ gcc

$ gcc -
$ gce -

$ gcc

$ gcc -

-S foo.
f 0o.

-C

(o]
Cc
-0
(o]

foo

f 0o.

foo
foo

c
c
foo.c
i
foo.i
foo.s

preprocess and conpile

preprocess, conpile and assenbl e
preprocess, conpile, assenble, |ink
conpi | e and assenbl e

conpi l e, assenbl e, |ink

assenbl e and |ink

The location of the C compiler is, unfortunately, anything but standardized. The control pro-
gram cc is normally in /usr/bin, or occasionaly in /bin, but the other components might be
stored in any of the following: /usr/lib, /usr/ccs/lib (System V.4), /usr/lib/cmplrs/cc (MIPS) or
{usr/local/lib/gce-lib (gcc on most systems).

5 February 2005 02:09

350

Other compiler organizations

Some modern compilers have additional passes. Some optimizers fi t between the compiler
and the assembler: they take the output of the compiler and output optimized code to the
assembler. An extreme example is the MIPS compiler, which has atotal of 8 passes: The pre-
processor cpp, the front end cc1, the ucode” linker uld, the procedure merge pass umerge, the
global optimizer uopt, the code generator ugen, the assembler asl, and the linker Id. Despite
this apparent complexity, you can consider this compiler as if it had only the traditional four
passes: the fi ve passes from the front end up to the code generator perform the same function
asthetraditional ccl.

The C preprocessor

You can use the preprocessor cpp for other purposes than preprocessing C source code: it isa
reasonably good macro processor, and it has the advantage that its functionality is available on
every system with a C compiler, though in some casesiit is available only via the C compiler.
It is one of the mainstays of imake, and occasionally packages use it for other purposes as
well.

There are two ways to invoke cpp: you can invoke it with cc and the - E flag, or you can start it
directly. If at al possible, you should start it via cc rather than running it directly. On some
systems you can't rely on cc to pass the correct flags to cpp. You also can't rely on al ver-
sions of cpp to use the same flags—you can’t even rely on them to be documented. You can

find a list comparing the more common preprocessor fiegs in Appendix B, Compiler flags,

page .

Which compiler to use

Most systems still supply a C compiler, and normally this is the one you would use. In some
cases, bugs in the native system compiler, compatibility problems, or just the fact that you
don’'t have the normal compiler may lead to your using a different compiler. This situation is
becoming more common as software manufacturers unbundle their compilers.

Using a different compiler is not necessarily a Bad Thing, and can frequently be an
improvement. In particular, gcc, the GNU C compiler from the Free Software Foundation, is
very popular—it's the standard C compiler for a number of systems, including OSF/1,

4.4BSD, and Linux. It can do just about everything except run in minimal memory, and it has
the advantage of being a well-used compiler: chances are that somebody has compiled your
package with gcc before, so you are less likely to run into trouble with gcc than with the
native compiler of aless-known system. In addition, gcc is capable of highly optimized code,
in many cases signifi cantly better than the code created by the native compiler.

Compilers are becoming more standardized, and so are the bugs you are liable to run into. If
you have the choice between compiling for K&R or ANSI, choose ANSI: the K&R flags may

* ucode is a kind of intermediate code used by the compiler. It is visible to the user, and you have the
option of building and using ucode libraries.

5 February 2005 02:09

Chapter 20: Compilers 351

use “features” that were not universally implemented, whereas the ANSI versions tend to pay
more attention to the standard. If you do run into a bug, chances are someone has seen it
before and has taken steps to work around it. In addition, compiling for ANSI usually means
that the prototypes are declared in ANSI fashion, which increases the chance of subtle type
conflicts being caught.

Some things that neither you nor the Makefile may expect are:

« gcc compiles both K&R (-t radi ti onal) and ANSI dialects. However, even some soft-
ware supplied by the Free Software Foundation breaks when compiled with gcc unless
the-traditional flag is used.

« Many compilers do not compile correctly when both optimization and debugging infor-
mation are specified (- Oand - g flags), though most of them recognize the fact and turn
off one of the flags. Even if the compiler ostensibly supports both flags together, bugs
may prevent it from working well. For example, gcc version 2.3.3 generated invalid
assembler output for System V.4 C++ programs if both flags were specified. Even when
compilers do create debugging information from an optimizing compilation, the results
can be confusing due to the action of the optimizer:

- The optimizer may remove variables. As a result, you may not be able to set or dis-
play their values.

- The optimizer may rearrange program flow. This means that single-stepping might
not do what you expect, and you may not be able to set breakpoints on certain lines
because the code there has been eliminated.

- Some optimizers remove stack frames,” which makes for faster code, particularly
for small functions. gcc will do this with the - GB option.

Stack frame removal in particular makes debugging almost impossible. These aren’t
bugs, they’re features. If they cause problems for you, you will need to recompile with-
out optimization.

« Some compilers limit the length of identifiers. This can cause the compiler to treat two
different identifiers as the same thing. The best thing to do if you run into this problem is
to change the compiler: modern compilers don’t have such limits, and a compiler that
does is liable to have more tricks in store for you.

« With a System V compiler, you might find:

$ cc -c frotzel.c -o frotzel.o
cc: Eror: -o would overwite frotzel.o

System V compilers use the flag - 0 only to specify the name of the final executable,
which must not coincide with the name of the object file. In many Makefiles from the
BSD world, on the other hand, this is the standard default rule for compiling from .c to
.0.

* See Chapter 21, Object files and friends, page 377, for further information on stack frames.

5 February 2005 02:09

352

e All C compilers expect at least some of their flbags in a particular sequence. The docu-
mentation is frequently hazy about which operands are sequence-sensitive, or what inter-
actions there are between specifi ¢ operands.

The last problem bears some more discussion. A well-documented example is that the linker

searchs library specifi cations (the -1 option) in the sequence in which they are specifi ed on
the compiler invocation line—we'll investigate that in more detail in Chapter 21, Object fi les

and friends, page 373. Here's an example of another operand sequence problem:

$ cc foo.c -1../nyheaders

If foo.c refers to a file bar.h in the directory ../myheaders, some compilers won't fi nd the
header because they don’t interpret the -1 directive until after they try to compile foo.c. The
man page for System V.4 cc does state that the compiler searches directories specifi ed with - |
in the order in which they occur, but it does not relate this to the sequence of operands and fi le
names.

6 February 2005 00:57

Object files and friends

Object files are a special kind of file which store compiled programs. Normally, you manipu-
late them only as part of the build process, where you can treat them as a black box: you don’t
need to know what they look like inside.

Sometimes, however, some aspects of the true nature of object files become apparent—{for
example:

e Your program bombs out with a segmentation violation, and when you check up you dis-
cover that it was trying to write to a valid storage location—so why did it bomb out? It
might be that the location was in the text segment, a part of the address space that is
read-only.

* You want to debug a program, and find that the debugger refuses to look at it, because it
doesn’t have any symbols—whatever that may mean.

e You recompile programs and run out of disk space—for some reason, the object files are
suddenly ten times the size that they used to be.

The information in this chapter is some of the most technical in the whole book, which is why
I’ve left it to the end. We look at a number of topics that are related only by their dependence
on object files. So far, the inter-platform differences we’ve seen have been the result of a
choice made by the software people who implemented the system. In this chapter, we come a
whole lot closer to the hardware—you can almost feel the clocks tick and the pipelines fill.
You definitely see instructions execute. You’ll find it an interesting look below covers that are
usually locked shut.

A number of programs manipulate the object files either because that’s their purpose—for
example, assemblers or linkers—or because they want to play tricks to install more comfort-
ably. For example, emacs and TEX both write themselves out as object files during the build
process. If anything goes wrong with these programs, you need to open the black box and
look inside. In this chapter, we’ll examine the tools that manipulate object files and some of
the background information that you need to know to solve problems.

There aren’t many programs that manipulate object files. The kernel uses absolute object files
when creating a process—this is the most frequent use of an object file. In addition, the
assembler creates them from assembly sources. In most UNIX systems, this is the only

353

6 February 2005 00:57

354

program that creates object fi les from scratch. The linker or link editor joins object fi les
together to form a larger object fi le, and debuggers access specifi c debugging information in
the object file. These are the only programs that have intimate understanding of the object fi le
format.

A number of smaller programs do relatively trivial things with object fi les:

e The archiver ar is normally used for archiving binary fi les, but it does not know very
much about their contents.

e The name list display program nm displays the symbol table or name list of an object file
or an archive of object files. We’ll look at the symbol table in more detail on page 363.

* size displays size information from an object fi le.

* strings displays printable strings in an object fi le.

e strip removes unnecessary information from an object fi le.

In the rest of this chapter, we’ll look at the following topics:

* The kernel process model that the object fi le supports.

* The assembler, including some of the syntax, the symbol table, relocation, and debug-
ging symbols.

* The linker, including the way it searches libraries, and some of the problems that can

occur during linking.

e The internal structure of function libraries, and how this affects what they can and cannot
do.

* How emacs and TEX dump themselves as object fi les.

* How exec starts programs.

Object formats

The purpose of object files is to make it as easy as possible to start a process, so it makes
sense to look at the process image in memory first. Modern UNIX systems run on stack-
based systems with virtual memory. We touched on the concept of virtual memory in Chapter

11, Hardware dependencies, on page 155. Since UNIX is a multiprogramming system, it is

possible for more than one process to run from a single object fi le. These facts have a signifi -
cant influence on the way the system manages processes. For each process, the system allo-

cates at least three segments in which program code and data is stored:

* A text segment, which contains the executable code of the program and read-only data.
Modern systems create code where the program may not write to its text segment—it is
so-called pure text. This has two signifi cant advantages for the memory manager: first,
all processes in the system that are run from this program can share the same text seg-
ment, which signifi cantly reduces the memory requirements when, say, 20 copies of a
shell are running. In addition, since the text is not modifi ed, the memory management

6 February 2005 00:57

Chapter 21: Object fi les 355

routines never need to swap it out to disk. The copy on disk is always the same as the
copy in memory. This also means that the copy on disk can be the copy in the object fi le:
it does not take up any space in the swap partition.
Older systems also provided for impure text segments that could be modifi ed by the program.
This usage is obsolete, but it is still supported by modern systems.

* A data segment. This consists of two parts:

— Global data that has been initialized in the program. This data can be modifi ed, of
course, so it takes up space in the swap partition, but the fi rst time the page is refer-
enced, the memory manager must load it from the object fi le.

— bss" data, non-initialized global data. Since the data is not initialized, it does not
need to be loaded from a file. The first time the page is referenced, the memory
manager just creates an empty data page. After that, it gets paged to the swap parti-
tion in the same way as initialized data.

* A stack segment. Like bss data, the stack segment is not initialized, and so is not stored
in the object file. Unlike any of the other segments, it does not contain any fi xed
addresses: at the beginning of program execution, it is almost empty, and all data stored
in it is relative to the top of the stack or another stack marker. We’ll look at stack organi-
zation in more detail on page 377.

e In addition, many systems have library segments. From the point of view of memory
management, these segments are just additional text and data segments, but they are
loaded at run time from another object fi le, the library file.

Older systems without virtual memory stored the data segment below the stack segment with
a gap in between, the so-called break. The stack grew down into the break as the result of
push or call instructions, and the data segment grew up into the break as the result of system
calls brk and sbrk (set break). This additional space in the data segment is typically used for
memory allocated by the library call malloc. With a virtual memory system, the call to sbrk
is no longer necessary, but some versions of UNIX still require it, and all support it. Table
21-1 summarizes this information:

* The name comes from the assembler directive bss (Block Starting with Symbol), which was used in
older assemblers to allocate uninitialized memory and allocate the address of the fi rst word to the label
of the directive. There was also a directive bes (Block Ending with Symbol) which allocated the address
of the last word to the label.

6 February 2005 00:57

356

Table 21-1: Kinds of segments

Property Text Initialized | bss Stack
Segment | Data Data Segment
In object file | yes yes no no
Access r—x rW— rw— rw—
Paged out no yes yes yes
Fixed size yes yes maybe | no

Object fi les contain the information needed to set up these segments. Before we continue, we

should be aware of a terminology change:

e The object file for a process is called a program.

* The images of process segments in an object fi le are called sections.

There are three main object fi le formats in current use:

e The a.out format is the oldest, and has remained essentially unchanged since the Seventh
Edition. It supplies support for a text section and a data section, as well as relocation
information for both sections. It is used by XENIX and BSD systems.

* The COFF (Common Object File Format) was introduced in System V, and offers an
essentially unlimited number of segments, including library segments. It is now obsoles-

cent, except for use in Microsoft Windows NT.

e The ELF (Executable and Linking Format) format was introduced for System V.4. From
our point of view, it offers essentially the same features as COFF. ELF shows promise as
the executable format of the future, since it greatly simplifi es the use of shared libraries.
Currently the Linux project is moving from a.out to ELF.

With the exception of library segments, there’s not much to choose between the individual
object formats, but the internal structures and the routines that handle them are very different.
Let’s take an a.out header from a BSD system as an example. The header file sys/exec.h

defi nes:

struct exec
{
long a_m
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
i

/* a_magic

agic;
long
long
long
long
long
long
long

*/

#define OMAGIC

/* magic number */
a_text; /* text segment size */
a_data; /* initialized data size */
a_bss; /* uninitialized data size */
a_syms; /* symbol table size */
a_entry; /* entry point */
a_trsize; /* text relocation size */
a_drsize; /* data relocation size */

0407 /* old impure format */

6 February 2005 00:57

Chapter 21: Object fi les 357

#define NMAGIC 0410 /* read-only text */
#define ZMAGIC 0413 /* demand load format */
#define QMAGIC 0314 /* compact demand load format */

This header includes:

* A magic number. This specifi es the exact kind of fi le (for example, whether it is relocat-
able or absolute). The program file can interpret this magic number and report the kind
of object fi le.

e The length of the text section, an image of the text segment. The text section immedi-
ately follows the header.

e The length of the data section, an image of the initialized global data part of the data seg-
ment—as we have seen, bss data does not need to be stored in the object file. The data
section immedately follows the text section.

e The length of the bss data. Since the bss data is not initialized, no space is needed for it
in the object fi le.

* The length of the symbol table. The symbol table itself is stored after the data section.
* The entry point, the address in the text segment at which execution is to start.

* The lengths of the text and data relocation tables, which are stored after the symbol table.

If you look at the above list of contents carefully, you’ll notice that there are no start addresses
for the segments, and there isn’t even any mention of the stack segment. The start address of
the text and data segments is implicit in the format, and it’s frequently diffi cult information to
fi gure out. On 32 bit machines, the text segment typically starts at a low address, for example
0 or 0x1000." The data segment may start immediately after the text segment (on the follow-
ing page), or it might start at a predetermined location such as 0x40000000. The stack seg-
ment is usually placed high in the address space. Some systems place it at Ox7ff££fff, oth-
ers at Oxefffffff. The best way to fi nd out these addresses is to look through the address
space of a typical process with a symbolic debugger.

The magic number is worth closer examination: I said that it occupies the first two bytes of
the header, but in our example it is a long, four bytes. In fact, the magic number is used in
two different contexts:

e The first two bytes in the file are reserved for the magic number in all systems. The
information in these bytes should be suffi cient to distinguish the architecture.

e The following two bytes may contain additional information for specifi ¢ systems, but it is
often set to 0.

* Why 0x10007? It’s a wonderful debugging aid for catching NULL pointers. If the first page of memory
is not mapped, you’ll get a segmentation violation or a bus error if you try to access data at that address

6 February 2005 00:57

358

The assembler

Assembly is the second oldest form of programming”. It is characterized by being specifi ¢
about the exact instructions that the machine executes, which makes an assembler program
much more voluminous than a higher level language. Nevertheless, there is nothing diffi cult
about it, it’s just tedious.

Assembler programming involves two aspects that don’t have much in common:

e The instruction set of the machine in question. The best source of information for this
aspect is the hardware description of the machine. Even if you get an assembler manual
for the machine, it will not be as authoratative as the hardware description.

e The syntax of the assembler. This is where the problems start: fi rst, little documentation
is available, and secondly, assembler syntax diverges greatly, and the documentation you
get may not match your assembler.

The 1386 is a particularly sorry example of incompatible assembler syntax. The UNIX assem-
blers available for the 1386 (at least three of them, not even compatible with each other) use
modifi ed forms of the old UNIX as syntax, whereas all books about the assembler and the
hardware of the 1386 use a syntax related to the Microsoft assembler MASM. They don’t even
agree on such basic things as the names of the instructions and the sequence of the operands.

Although nowadays it is used almost only for assembling compiler output, as frequently
offers features specifi cally intended for human programmers. In particular, most assemblers
support some kind of preprocessing: they may use the macro preprocessor m4 or the C pre-
processor when processing assembler source. See the description of the flags in Appendix C,
Assembler directives and flags, page 415, for more information.

Assembler syntax

Assembler syntax is a relatively involved topic, but there are some general rules that apply to
just about every assembler. In this section, we’ll see how to fi ght our way through an assem-
bler listing.

* Assemblers are line-oriented: each instruction to the assembler is placed on a separate
line.

* An instruction line consists of four parts:

— If the optional label is present, the assembler assigns a value to it. For most instruc-
tions, the value is the current value of the location counter, the relative address of
the instruction in the current section. In UNIX, if the label is present it is followed
by a colon (:). Other assemblers frequently require that only labels start at the
beginning of the line, and recognize them by this fact.

* The oldest form of programming, of course, used no computational aids whatsoever: in some form or
another, the programmer wrote down direct machine code and then entered into memory with a loader or
via front-panel switches. Assembly added the symbolic character to this operation.

6 February 2005 00:57

Chapter 21: Object fi les 359

The assembler usually translates the source file in a single pass. This means that
when it encounters the name of a label that is further down in the source fi le, it can-
not know its value or even if it exists. Some assemblers require that the name of the
label be followed with the letter b (backwards) for labels that should have already
been seen in the text, and £ (forwards) for labels that are further down. In order to
avoid ambiguity, these assemblers also require that the labels be all digits. Many
other assemblers also support this syntax, so 1b is not a good name for a label.

— The next field is the instruction. In this context, assembler instructions are com-
mands to the assembler, and may be either directives, which tell the assembler to do
something not directly related to emitting code, or machine instructions, which emit
code. In UNIX, directives frequently start with a period (.).

— The third field contains the operands for the instruction. Depending on the
instruction, they may not be required.

— The fourth fi eld is a comment fi eld. It is usually delimited by a hash mark (#).

* The operands of instructions that take a source operand and a destination operand are
usually specifi ed in the sequence src, dest.

* Register names are usually preceded with a % sign.
e Literal values are usually preceded with a $ sign.
For example, consider the instruction:

fred: movl $4,%eax # example

This instruction emits a mov1 instruction, which moves the literal” value 4 to the register eax.
The symbol fred is set to the address of the instruction.

We can’t go into all the details of the assembly language for all machines, but the descriptions
in Appendix C, Assembler directives and flags, page 415, will hopefully give you enough
insight to be able to read existing assembler source, though you’ll need more information
before you can write it. One of the few reasonably detailed as manuals is Using as, by Dean
Elsner and Jay Fenlason, which is included as part of the GNU binutils distribution.

Assembler symbols

Local symbols defi ne instruction addresses. High-level constructs in C such as if, while and
switch require a number of jump (go to) instructions in assembler, and the compiler must
generate labels for the instructions.

Local symbols are also used to label literal data constants such as strings.

Global symbols defined in the source. The word global has different meanings in C and
assembler: in C, it is any symbol defi ned in the data or text segments, whether or not it is

*movl means “move long”, not “move literal”. In this particular assembler, we know that it is a literal
value because of the $ symbol, just as we know that eax is a register name because it is preceded by a %
sign.

6 February 2005 00:57

360

visible outside the module. In assembler, a global symbol is one that is visible outside the
module.

There are a couple of points to note here:

e Clocal variables are generated automatically on the stack and do not retain their names
after compilation. They do not have a fi xed location, since their position on the stack
depends on what was already on the stack when the function was called. If the function
is recursive, they could even be in many different places on the stack at the same time.
As a result, there is nothing that the assembler or the linker can do with the symbols, and
the compiler discards them.

e There is a possibility of conflict between the local symbols generated by the compiler
and global symbols declared in the program. Most compilers avoid this conflict by
prepending an underscore (_) to all symbols defi ned in the program, and not using the
underscore for local symbols. Others solve the problem by prepending local symbols
with a period (.), which is not legal in a C identifi er.

To see how this all works, let’s take the following small program and look at different aspects
of what the compiler and assembler do with it in the next few sections:

Example 21-1:

char global text [] = "This is global text in the data area";
void inc (int *x, int *y)
{
if (*x)
(*x) ++;
else
(*y) ++;
puts (global_text); /* this is an external function */
puts ("That’s all, folks");
}

We compile this program on a BSD/OS machine using gcc version 2.5.8, with maximum opti-
mization and debugging symbols:

$ gee =02 —-g -S winc.c

The -S flag tells the compiler control program to stop after running the compiler. It stores the
assembly output in winc.s, which looks like this:

Example 21-2:

.file "winc.c"

gcc2_compiled. :
___gnu_compiled c:
.stabs "/usr/lemis/book/porting/grot/",100,0,0,Ltext0 name of the source directory
.stabs "winc.c",100,0,0,Ltext0 name of the source file
.text select text section
LtextO: internal label: start of text
.stabs "int:tl=rl;-2147483648;2147483647;",128,0,0,0
.stabs "char:t2=r2;0;127;",128,0,0,0

a whole lot of standard debugging output omitted

6 February 2005 00:57

Chapter 21: Object fi les 361

Example 21-2: (continued)
.stabs "void:t19=19",128,0,0,0

.globl _global_text specify an externally defined symbol
.data select data section
.stabs "global_text:G20=arl;0;36;2",32,0,1,0 debug info for global symbol
_global text: variable label

.ascii "This is global text in the data area " and text
.text select text section
LCO:

.ascii "That’s all, folks "

.align 2 start on a 16 bit boundary
.globl _inc define the function inc to be external
_inc: start of function inc

.stabd 68,0,3 debug information: start of line 3

pushl %ebp

movl %esp, $ebp
movl 8 (%ebp), seax
movl 12 (%ebp) , $edx

.stabd 68,0,4 debug information: start of line 4
1BB2:
cmpl $0, ($eax)
je L2
.stabd 68,0,5 debug information: start of line 5
incl (%eax)
jmp L3
.align 2,0x90
L2:
.stabd 68,0,7 debug information: start of line 7
incl (%edx)
L3:
.stabd 68,0,8 debug information: start of line 8
pushl $_global_text
call _puts
.stabd 68,0,9 debug information: start of line 9
pushl S$SLCO
call _puts
.stabd 68,0,10 debug information: start of line 10
IBE2:
leave
ret
.stabs "inc:F19",36,0,3,_inc debug information for inc
.stabs "x:p21=*1",160,0,2,8 debug information for x
.stabs "y:p21",160,0,2,1 debug information for y

.stabs "x:r21",64,0,2,0
.stabs "y:r21",64,0,2,2
.stabn 192,0,0,LBB2
.stabn 224,0,0,LBE2

We’ll look at various aspects of this output in the next few sections. For now, we should
notice:

e As advertised, the names of the global symbols global text, inc and puts have been
changed to _global_ text,_inc and _puts.

362

e The compiler has created the local symbols LtextO, LCO, LBB2, LBE2, L2 and L3.
Clearly it likes to start the names of local symbols with the letter L, and distinguish them
with numbers at the end. But what has happened to L1, for example? The compiler gen-
erated it, but the optimizer optimized it away. If you compile this same program without
the optimizer, the labels will all still be there.

* The compiler has assigned the local symbol LCO to the string "That’s all, folks" so
that the assembler can refer to it.

* The variables x and y have disappeared, since they exist only on the stack.

Relocation information

Example 21-2 shows another dilemma that afficts the linker: the program is not complete. It

refers to the external symbol _puts, and in addition it does not have a main function: the only
way to use it is for a function in another object file to call _inc. In order to do this, we need
to give the linker additional information:

e Information about the names of the external symbols that the object file references
(_puts in our example).

e Information about symbols defined in the object file that can be referenced by other
object files (_global_ text and _inc in our example).

e Information about where external symbols are referenced in the object code.

e Information about where locations in the text and data segments are referenced in the
object code.

Why do we need to know where internal locations are referenced? The linker takes the text
and data sections from a large number of object fi les and makes a single text section and a sin-
gle data section out of them. The locations of the original sections from the individual object
fi les differ from one occasion to the next, but the addresses in the fi nal executable must refect
the correct references. If an instruction refers to an address in the data or text section or an
external symbol, the assembler can’t just put the address of the item in the instruction, since
the address is allocated by the linker. Instead, it places the offset from the beginning of the
text or data section or from the external symbol into the instruction or data word, and gener-
ates a relocation record in the output file. These relocation records contain the following
information:

e The address of the data that needs to be relocated. From the linker’s point of view, the
data may be an instruction, in which case it will need to modify only the address portion
of the instruction, or it may be a pointer, in other words an indirect address.

e The length of the data. For a data pointer, this is the length of the pointer. For an
instruction, it is the length of the address field of the instruction. Some systems have
strange instruction formats, and this can become quite complicated.

¢ Information about the section in which the data will be located. This could be the current
text or data section, or it could be a reference to an external symbol.

6 February 2005 00:57

Chapter 21: Object fi les 363

* For an external symbol, a pointer to information about the symbol.

Object files contain separate relocation tables for each section that can contain address
data—at least the text and data sections. Referring again to Example 21-2, we see that the

compiler has output .text and .data directives. These are used to tell the assembler in
which section it should put the output that follows. It also supplies relocation information for
the output fi le.

String table and name list

Amongst other things, the relocation information includes a signifi cant number of strings.
These are stored in the string table, which is simply a list of strings terminated with a NUL
(\0) character. Other parts of the object fi le refer to strings by their offset in the string table.
As we saw in Example 21-2, the assembler has a directive (.globl in this example) that out-
puts information about externally visible symbols, such as global_text. Some assemblers
need to be told about external references (such as _puts in this example), and others don’t,
like the GNU assembler gas used here. For both external defi nitions and external references,
gas outputs an entry for the symbol table to the output fi le with information about the symbol.
This symbol table is one of the better-known parts of an object file, and is usually called the
name list. The structure differs strongly from one fhvour of UNIX to the next, but all
namelists contain the following information:

e The index of the symbol’s name in the string table.
* The type of the symbol (undefi ned, absolute, text, data, bss, common).
e The value of the symbol, if it has one (undefi ned symbols don’t, of course).

The library function nlist accesses the symbol table and returns a symbol table entry. The call
is

#include <nlist.h>

int nlist (const char *filename, struct nlist *nl);

This function has confusing semantics: the symbol table structure struct nlist does not
contain the name of the symbol. Instead, it contains a pointer to the name of the symbol. On
disk, the symbol is located in the string list, but in your program you supply the strings in
advance. For the System V.4 ELF format, the structure is

struct nlist

{

char *n_name; /* name of symbol */

long n_value; /* value of symbol */

short n_scnum; /* section number */

unsigned short n_type; /* type and derived type */

char n_sclass; /* storage class */

char n_numaux; /* number of auxiliary entries */

i

6 February 2005 00:57

6 February 2005 00:57

364

To use the nlist function, you create an array of struct nlist entries with n_name set to
the symbols you are looking for. The last entry contains a null string to indicate the end of the
list. n1ist searches the symbol table and fi lls in information for the symbols it fi nds, and sets
all fi elds except n_name to 0 if it can’t fi nd the string.

The return value differs from one system to another:
* If filename doesn’t exist, or if it isn’t an object fi le, n1ist returns -1.
e If all symbols were found, nlist returns 0.

e If some symbols were not found, BSD nlist returns the number of symbols not found.
System V nlist still returns 0.

Examining symbol tables: the nm program

You can display the complete symbol table of an object fi le or an archive with the program nm.
Invoke it simply with

$ nm filename

nm output is frequently used by tools such as shell scripts used during building. This can be a
problem, since the format of the printout depends strongly on the object file format. In the
following sections we’ll look at the differences between nm output for a.out, COFF and ELF
files.

nm display of a.out format
With an a.out fi le, nm output looks like:
$ nm /usr/lib/libc.a

syscall.o: this is the object file name
00000028 T _syscall
U cerror

sigsuspend.o:
00000030 T _sigsuspend
U cerror

The lines with the file name and colon tell you the name of the archive member (in other
words, the object file) from which the following symbols come. The other lines contain a
value (which may be missing if it is not defi ned), a type letter, and a symbol name.

That’s all there is to a.out symbols. As we will see, a.out handles debugging information sep-
arately. On the other hand, this means that the type letters are reasonably easy to remember.
Upper case represents global symbols, lower case represents local symbols. Table 21-2 gives
an overview:

Chapter 21: Object fi les 365

Table 21-2: a.out symbol types

Type | Meaning

letter

- symbol table entries (see the -a fhg).
A absolute symbol (not relocatable)

B bss segment symbol

C common symbol

D data segment symbol

f fi le name (always local)

T text segment symbol

U undefi ned

nm display of COFF format
By contrast,, COFF gives something like this:

$ nm /usr/lib/libc.a

Symbols from /lib/libc.a[printf.o]: this is the object file name

Name Value Class Type Size Line Section
printf.c | | file | | | |

DGROUP | Ofstatic] | | | .data
printf | 0|extern| | | | .text
_doprnt | 0|extern| | | |

_iob | O|extern| | | |

These columns have the following meaning:
* Name is the name of the symbol.
e Value is the value of the symbol.

e Class is the storage class of the symbol. There are a large number of storage classes,
and the System V.3 man pages don’t describe them. See Understanding and using
COFF, by Gintaras R. Gircys, for a complete list. The one that interests us is extern
(externally defi ned symbols).

* In conjunction with Class, Type describes the type of symbol more accurately, when it is
needed. The symbols we’re looking at don’t need a more accurate description.

» Size specifi es the size of the entry. This is used in symbolic debug information.
e Line is line number information, which is also used for symbolic debug information.

* Section is the section to which the symbol belongs. In our example, the familiar .text
and .data occur, but this could be any of the myriad COFF section names.

6 February 2005 00:57

366

nm display of ELF format

The differences between COFF and ELF are less obvious:

$ mm /lib/libc.so.l

Symbols from /lib/libc.so.l:

[Index] Value Size Type
[1] \ 0l 0|FILE
[2] \ 148 0|SECT
... sSkipping

[32] | 208976 | 12 |0OBJT
[33] | 208972 4|10BJT
[34] \ 0l 0|FILE
[35] | 57456 | 384 |FUNC
[36] | 56240]| 72 |FUNC
[37] | 56112 128 |FUNC
[38] | 56320] 464 |FUNC
[39] | 214960 4|0BJT

Bind

| LOCL
| LOCL

| LOCL
| LOCL
| LOCL
| LOCL
| LOCL
| LOCL
| LOCL
| LOCL

These columns have the following meanings:

Other Shndx

10
|0

10
[0
|0
10
|0
|0
10
[0

|ABS
|1

|12
|12
|ABS
18
|8
|8
18
|15

Name

|../../libc.so.1
|

|1libdirs
|rt_dir_list
|dlfcns.c
|dl_delete

| ImExists

| appendLm
|dl_makelist
|dl_tail

e Index is simply the index of the symbol in the symbol list.

e Value is the value of the symbol.

e Size is the size of the associated object in bytes.

e Type is the type of the object. This can be NOTY (no type specfi ed), OBJT (a data object),
FUNC (executable code), SECT (a section name), or FILE (a fi le name).

e Bind specifi es the scope of the symbol. GLOB specifi es that the symbol is global in scope,
WEAK specifi es a global symbol with lower precendene, and LOCL specifi es a local sym-

bol.

e Other is currently unused and contains 0.

e Shndx may be ABS, specifying an absolute symbol (in other words, not relocatable), COM-
MON specifies a bss block, and UNDEF specifies a reference to an external symbol. A
number in this fi eld is an index into the section table of the section to which the symbol
relates. nm doesn’t tell you which section this is, so the information is not very useful.

Problems with nm output

As we have seen, the output of nm depends a lot on the object fi le format. You frequently see
shell scripts that use nm to look inside a file and extract information—they will go seriously
wrong if the object file format is not what they expect. If there isn’t an alternative script to
look at your kind of object fi le, you will have to modify it yourself.

6 February 2005 00:57

6 February 2005 00:57

Chapter 21: Object files 367

Debugging information

Symbolic debuggers have a problem: they relate to the object file, but they want to give the
impression that they are working with the source file. For example, the program addresses
that interest you are source fi le line numbers, not absolute addresses, and you want to refer to
variables by their names, not their addresses. In addition, you expect the debugger to know
the types of variables, so that when you ask the debugger to display a variable of type char
*, it displays a string, and when you ask it to display a float, you get the correct numeric
value.

The object file structures we have seen so far don’t help too much. Information is available
for global symbols, both in the text and data sections, but the type information is not detailed
enough to tell the debugger whether a data variable is a char * or a float. The symbol ta-
ble information contains no information at all about local variables or line numbers. In addi-
tion, the symbol table information goes away at link time, so it wouldn’t be of much help any-
way.

For these reasons, separate data structures for debugging information were introduced. In the
a.out format, they have nothing to do with the rest of the file. In COFF and ELF, they are
more integrated, but debugging information has one thing in common in all object formats: it
is at the end of the file so that it can be easily removed when it is no longer wanted—debug-
ging information can become very large. It’s not uncommon to see debugging information
increase the size of an executable by a factor of 5 or 10. In extreme cases, such as in libraries,
it can become 50 times as big.

Frequently you’ll see a make all that creates an executable with debugging symbols, and a
make install that installs the same executable but removes the debugging symbols. This
process is called stripping, and can be done by the program strip or by install with the —s fhg.
In order to do this, it makes sense for the debugging information to be in its own section at the
end of the file, and this is how all object fi le formats solve the problem.

Debugging information is supplied in the assembler source in the form of directives. In
Example 21-2, which is from an assembler designed to create a.out relocatables, this job is
done by the .stabs, .stabn and .stabd directives. These directives are discussed in more
detail in Appendix C, Assembler directives and flags, on page 421. Let’s look at the directives
in our example:

* At the beginning of the file there are a lot of .stabs directives defi ning standard data
types, so many that we have omitted most of them. The compiler outputs these directives
even if the data type isn’t used in the program, and they’re handy to have in case you
want to cast to this data type when debugging.

e Throughout the file you find individual .stabd 68 directives. These specify that the
line number specifi ed in the last parameter starts at this point in the text.

e At the end of the function _inc, information about the function itself and the variables
associated with it appear in further . stabs directives.

* Finally, information about the block structure of the function appears in the .stabn
directive.

6 February 2005 00:57

368

This information is very dependent on the object fi le format. If you need more information,
the best source is the accompanying system documentation.

The linker

You usually encounter the linker as the last pass of the C compiler. As the name Id implies,

the linker was called the loader in the Seventh Edition, though all modern systems call it a

link editor.” Traditionally, the compiler compiles object fi les, and then runs the linker to create
an executable program. This is logical, since a single executable is always composed of mul-

tiple object files,” whereas there is a one-to-one relationship between source files and object
modules.

The most important function performed by the linker is symbol resolution. To understand

this, we need to defi ne a few terms:

e The symbol list, sometimes called a symbol table, is an internal data structure where the
linker stores information about all symbols whose name it has encountered. It contains

the same kind of information about the symbol as we saw in struct nlist on page
363.

* An undefined symbol is only partially undefi ned: we know at least its name, but some
part of its value is unknown.

Initially, the symbol list is empty, but every file that is included adds to the list. A number of
cases can occur:

e The file refers to an undefi ned symbol. In this case, if the linker has not yet seen this
symbol, it enters it into the symbol list and starts a list of references to it. If the symbol
is already in the symbol list, the linker adds a reference to the symbol’s reference list.

e The file refers to a symbol that has already been defi ned. In this case, the linker simply
performs the required relocation.

e The file defi nes a symbol. There are three possibilities here:
— If the symbol has not been encountered before, it is just added to the symbol list.

— If the symbol is already marked as undefi ned, the linker updates the symbol infor-
mation and performs the required relocation for each element in the reference list.

— If the symbol is known and defi ned, it is now doubly defi ned. The linker prints an
error message, and will not create an output fi le.

At the same time as it creates the symbol list, the linker copies data and text sections into the
areas it has allocated for them. It copies each individual section to the current end of the area.
The symbol list entries refect these addresses.

* Properly, the loader was the part of the operating system that loaded a program into memory prior to
execution. Once, long before the advent of UNIX, the two functions were almost synonymous.

1 Even if you supply only a single object fi le yourself, you need the C startup code in crt0.0 and library
modules from system libraries such as libc.a.

6 February 2005 00:57

Chapter 21: Object fi les 369

Function libraries

Many of the functions you use in linking an executable program are located in function
libraries, a kind of object fi le archive built by ar. The linker knows about the format of ar ar-
chives and is able to extract the object files from the archive. The resultant executable con-
tains code from the object fi les specifi ed on the command line and from the object fi les found
in the libraries. The functions in the libraries are just like any others you may include. They
run in user context, not kernel context, and are stored in libraries simply for convenience. We
can consider three groups:

+ The standard” C library, normally /usr/lib/libc.a. This library contains at least the func-
tions needed to link simple C programs. It may also contain functions not directly con-
nected with the C language, such as network interface functions—BSD does it this way.

e Additional libraries supporting system functions not directly concerned with the C pro-
gramming language. Networking functions may also fall into this category—System V
does it this way.

e Libraries supporting third party packages, such as the X11 windowing system.

Library search

You can specify object files to the linker in two different ways: you specify that an object fi le
is to be included in the output or that a library fi le is to be searched by specifying its name on
the command line. The library search is one of the most powerful functions performed by the
linker. Instead of including the complete library in the output file, the linker checks each
object file in the library for defi nitions of currently undefi ned symbols. If this is the case, it
includes the object fi le, and not the library. This has a number of implications:

e The linker includes only object files that defi ne symbols referenced by the program, so
the program is a lot smaller than it would be if you included the complete library.

e We don’t want to include anything that isn’t required, so each object fi le usually defi nes a
single function. In some rare cases, it may defi ne a small number of related functions
that always get included together.

e Each object fi le may refer to other external symbols, so including one file in an archive
may require including another one.

e If you compile a library with symbols, each single-function object file will contain
debugging information for all the external information defi ned in the header files. This
information is usually many times the size of the function text and data.

* Once the library has been searched, the linker forgets it. This has important conse-
quences which we’ll examine on page 373.

For reasons shrouded in history, you don’t specify the path name of the library fi le—instead

* Note the lower-case use of the word standard. Whether or not the library conforms to the ANSI/ISO
C Standard, it is a standard part of a software development system.

6 February 2005 00:57

370

you tell the linker the names of directories that may contain the libraries you are looking for,
and a coded representation of the library name. For example, if you want to include
/opt/lib/libregex.a in your search path, you would include -L/opt/lib -lregex in your
compiler or linker call:

e -L/opt/1lib tells the linker to include /op#/lib in the list of directories to search.

e —lregex tells the linker to search for the file libregex.a in each of the directories to
search.

This can be a problem if you have four files /us#/lib/libfoo.a, /usr/lib/libbar.a, /opt/lib/libfoo.a
and /opt/lib/libbar.a, and you want to search only /opt/lib/libfoo.a and /usr/lib/libbar.a. In this
case, you can name the libraries explicitly.

To keep the pain of linking executables down to tolerable levels, the compiler control program
(usually cc) supplies a few library paths and specifi cations for free—normally the equivalent
of -L/usr/1ib —1lc, which at least fi nds the library /usr/lib/libc.a, and also supplies the path
to all other libraries in /us#/lib. You need only specify additional paths and libraries. Occa-
sionally this behaviour is undesirable: what if you deliberately want to exclude the standard
libraries, like if you’re building an executable for a different version of the operating system?
Some compilers give you an option to forget these libraries. For example, in gcc it is —nost—
dlib.

Like most aspects of UNIX, there is no complete agreement on where to store library fi les, but
most systems come close to the following arrangement:

* /usr/lib contains the basic system libraries as well as startup code like crt0.0 and friends,
which are bound in to supply low-level support for the C language. We’ll look at this in
the next section.

* Some of these files used to be stored in /lib. Nowadays /lib tends either not to be present
or, for compatibility’s sake, it is a symlink to /us#/lib.

+ System V.4 systems place BSD compatibility libraries in /usr/ucblib’. Many of these
functions duplicate functions in /usr/lib.

o Just/X11/1ib, /usr/X/lib, /usr/lib/X11, /usr/lib/X11R6 and others are some of the places
that the X11 libraries might be hidden. This directory probably contains all the parts of
X11 and related code that are on your system.

Shared libraries

Some libraries can be very big. The X11R6 version libX11.a, the standard X11 functions,
runs to 630 kB on BSD/OS. The Motif library libXm.a is nearly 1.4 MB in size. This can
lead to enormous executables, even if the program itself is relatively small—the ‘500 kB

Hello world” syndrome. Since these functions are used in many programs, many copies of a
function may be active at any one time in the system. For example, just about every program

* UCB stands for the University of California at Berkeley, the home of the Berkeley Software Distribu-
tions. You’ll frequently fi nd BSD-derived software stored in directories whose names start with the let-
ters uch.

6 February 2005 00:57

Chapter 21: Object fi les 371

uses the function print £, which with its auxiliary functions can be quite big. To combat this,
modern UNIX fhvours support shared libraries: the library itself is no smaller, but it is in
memory only once.

Two different library schemes are in current use: static shared libraries’ and dynamic shared
libraries. Static shared libraries contain code which has been linked to run at a specific
address, which means that you could have diffi culties if your program refers to two libraries
with overlapping address ranges, or if you use a different version of the library with functions
at slightly different addresses. Dynamic libraries get round this problem by linking at run
time, which requires a dynamic linker. Unless you’re building shared libraries, a topic beyond
the scope of this book, you don’t need to worry about the difference between the two. If you
do fi nd yourself in the situation where you need to build shared libraries, your best source of
information is your operating system documentation.

A shared library performs two different functions:

* When you link your program, it supplies information about the locations of the functions
and data in the library. Some systems, such as SunOS 4, supply a ‘Stub”fi le with a name
like libc.sa.1.9. Since it does not contain the code of the functions, it is relatively
small—on SunOS 4.1.3, it is 7996 bytes long. Other systems, such as System V.4, only
supply a single library file with a name like libc.so. The linker only includes enough
information for the dynamic loader to locate the functions in the library fi le at run time.

e At run time, it supplies the functions and data. On all systems, the file name is of the
form libc.so.1.9

It’s important to ensure that you use the same library to perform these two actions. If a func-
tion or a data structure changes between versions of the library, a program written for a differ-
ent version may work badly or crash. This is a common problem: most programs are distrib-
uted in executable form, and thus contain preconceived notions about what the library looks
like. Since we’re linking the program ourselves, we should not run in to this problem. If you
do run into problems, you can always fall back to static (unshared) libraries.

Other linker input

In addition to the user-specified object files and libraries, the C programming language
requires a few auxiliary routines to set up its run-time environment. These are stored in one

or more auxiliary object files in a place known to the compiler, usually /us#/lib. For example,
in the System V.4 example above, we can see how the compiler control program starts the

linker if we use the —v fhg to the compiler:

$ gcc —=v —u baz —o foo foo.o -L. -lbaz —lbar

/usr/ccs/bin/ld -V -Y P, /usr/ccs/lib:/usr/lib -Qy -o foo -u baz
/usr/ccs/lib/crtl.o /usr/ccs/lib/crti.o /usr/ccs/lib/values-Xa.o
/opt/lib/gcc-1ib/i386—unknown-sysv4.2/2.5.8/crtbegin.o

-L. -L/opt/lib/gcc-1lib/i386-unknown-sysv4.2/2.5.8 -L/usr/ccs/bin
-L/usr/ccs/lib -L/opt/lib foo.o -lbaz —-lbar —-lgcc -lc

* Don’t confuse static shared libraries with the term static libraries, which are traditional, non-shared
libraries.

6 February 2005 00:57

372

/opt/1lib/gcc-1ib/i386—unknown-sysv4.2/2.5.8/crtend.o
/usr/ccs/lib/crtn.o -lgcc

The same example in BSD/OS specifi es the files /ust/lib/crt0.0, foo.o, -lbar, -lbaz, -lgcc, -lc
and -Igcc—eonly fractionally more readable. This example should make it clear why almost
nobody starts the linker directly.

Merging relocatable files

Occasionally you want to merge a number of object files into one large file. We’ve seen one
way of doing that: create an object fi le library with ar. You can also use the linker to create an
object file. Which you choose depends on why you want to make the file. If you are creating
a function library, use ar. As we have seen, the linker includes individual object fi les from the
archive. It also happily includes a relocatable object created by a previous invocation of the
linker, but in this case it includes the complete object, even if you don’t need all the functions.

You don’t often need to create relocatable objects with the linker: the only real advantage over
a library is that the resultant object is smaller and links faster. If you want to do it, you spec-
ify a thg, normally —r. For example,

$ 1d -r foo.o bar.o baz.o —o foobarbaz.o

This links the three object fi les foo.o, bar.o and baz.o and creates a new object fi le foobarbaz.o
that contains all the functions and data in the three input fi les.

Problems with the link editor

Once you have compiled all your objects, you're still not home. There are plenty of things
that can go wrong with the linkage step. In this section we’ll look at some of the more com-
mon problems.

Invalid linker flags

You normally invoke the linker via the compiler rather than calling it directly. This is a good
idea, as we saw in the previous section. If you have a Makefile with an explicit linker call, and
you run into trouble with linker fhgs, and the system documentation doesn’t help, consider
replacing the linker invocation with a compiler invocation.

Invalid object files

Occasionally, the package you are building may already contain object files. It’s unlikely that
you can to use them, but make is far too simplistic to notice the difference, and the result is

usually some kind of message from the linker saying that it can’t fi gure out what kind of file
this is. If you’re in doubt, use the file command:

$ file *.o

gram.o: 386 executable not stripped

main.o: ELF 32-bit LSB relocatable 80386 Version 1
scan.o: sparc executable not stripped

Chapter 21: Object fi les 373

util.o: 80386 COFF executable not stripped - version 30821

Here are four different kinds of object fi les in the same directory. Occasionally, you will see
fi les like this that are there for a good reason: due to license reasons, there are no correspond-
ing sources, and there will be one object for each architecture that the package supports. In

this example, however, the file names are different enough that you can be reasonably sure
that these fi les are junk left behind from previous builds. If the object fi les are still there after
a make clean, you should remove them manually (and fi x the Makefi le).

Suboptimal link order

We have seen that the linker takes all objects it fi nds and puts their code and data into the code
and data segments in the order in which they appear. From the point of view of logic fbw,
this works fine, but it can have signifi cant performance implications on modern machines.
You might fi nd that 95% of the execution time of a program is taken up by 5% of the code. If
this code is located contiguously, it will probably fit into the cache of any modern machine.
If, on the other hand, it is scattered throughout memory, it will require much more cache, pos-
sibly more than the machine can supply. This can result in a dramatic drop in performance.

Most linkers do not help you much in arranging functions. The simplest way is to put one
function in a file, like you do in an archive, and specify them in sequence in the linker invoca-
tion. For example, if you have fi ve functions foo, bar, baz, zot, and glarp, and you have
determined that you need three functions next to each other in the sequence foo, glarp and
zot, you can invoke the linker with:

$ cc —o foobar foo.o glarp.o zot.o bar.o baz.o

Missing functions

The UNIX library mechanism works well and is reasonably standardized from one platform to
the next. The main problem you are likely to encounter is that the linker can’t fi nd a function
that the program references. There can be a number of reasons for this:

* The symbol may not be a function name at all, but a reference to an undefi ned preproces-
sor variable. For example, in xfi version 1.1, the source file FmiInfo.c contains:

if (S_ISDIR (mode))

type = "Directory";
else if (S_ISCHR (mode))

type = "Character special file";
else if (S_ISBLK (mode))

type = "Block special file";
else if (S_ISREG (mode))

type = "Ordinary file";
else if (S_ISSOCK (mode))

type = "Socket";
else if (S_ISFIFO (mode))

type = "Pipe or FIFO special file";

sys/stat.h defi nes the macros of the form S_ISfoo. They test the fi le mode bits for spe-
cific file types. System V does not defi ne S_TISSOCK (the kernel doesn’t have sockets), so

6 February 2005 00:57

6 February 2005 00:57

374

a pre-ANSI compiler assumes that S_TSSOCK is a reference to an external function. The
module compiles correctly, but the linker fails with an undefi ned reference to S_TSSOCK.
The obvious solution here is conditional compilation, since S_TSSOCK is a preprocessor
macro, and you can test for it directly with #ifdef:

type = "Ordinary file";
#ifdef S_ISSOCK
else if (S_ISSOCK (mode))
type = "Socket";
#endif
else if (S_ISFIFO (mode))

The function is in a different library, and you need to specify it to the linker. A good

example is the networking code we mentioned on page 369: a reference to socket will

link just fi ne with no additional libraries on a BSD platform, but on some versions of
System V.3 you will need to specify —1inet, and on System V.4 and other versions of
System V.3 you will need to specify —1socket. The fi ndf script can help here. It uses
nm to output symbol information from the files specifi ed in LIBS, and searches the out-
put for a function defi nition whose name matches the parameter supplied. The search
parameter is a regular expression, so you can search for a number of functions at once.

For example, to search for st rcasecmp and strncasecmp, you might enter:

$ findf str.*casecmp

/usr/lib/libc.a (strcasecmp.o) : _strcasecmp

/usr/lib/libc.a (strcasecmp.o)) : _strncasecmp

/usr/lib/libc_p.a (strcasecmp.po) : _strcasecmp

/usr/lib/libc_p.a (strcasecmp.po)) : _strncasecmp
Because of the differences in nm output format, fi ndf looks very different on BSD sys-
tems and on System V. You may fi nd that you need to modify the script to work on your
system. Example 21-3 shows a version for 4.4BSD:

Example 21-3:

LIBS="/usr/lib/lib* /usr/X11R6/1lib/lib*"
nm SLIBS 2>/dev/null \

| awk —v fun=$1 \

"/°\// {file = $1};

/71°N/1 %/ {member = $1};

$3 7 fun && $2 T /T/ |

sub (":$", "", file); ; sub (":$", "):", member); print file " (" member "\t" $3}’

On a system like System V.4, which uses ELF format, the corresponding script is in
Example 21-4:

Example 21-4:

LIBS="/usr/lib/lib* /usr/X11R6/1lib/lib*"
nm SLIBS 2>/dev/null \

| sed "s:|: :g" \

| gawk -v fun=$1 \

" /"Symbols from/ {file = $3};

$8 7 fun && $4 © /FUNC/ { print file member "\t" $8 }’

6 February 2005 00:57

Chapter 21: Object fi les 375

Example 21-4: (continued)

Some versions of System V awk have diffi culty with this script, which is why this ver-
sion uses GNU awk.

The function is written in a different language, and the internal name differs from what
the compiler expected. This commonly occurs when you try to call a C function from
C++ and forget to tell the C++ compiler that the called function is written in C. We dis-
cussed this in Chapter 17, Header fi les, page 285.

The function is part of the package, but has not been compiled because a confi guration
parameter is set incorrectly. For example, xpm, a pixmap conversion program, uses str—
casecmp. Knowing that it is not available on all platforms, the author included the func-
tion in the package, but it gets compiled only if the Makefi le contains the compiler thg
—DNEED_ STRCASECMP.

The function is supplied in a library within the package, but the Makefi le is in error and
tries to reference the library before it has built it. You wouldn’t expect this ever to hap-
pen, since it is the purpose of Makefi les to avoid this kind of problem, but it happens
often enough to be annoying. It’s also not always immediately obvious that this is the
cause—if you suspect that this is the reason, but are not sure, the best thing is to try to
build all libraries fi rst and see if that helps.

The function is really not supplied in your system libraries. In this case, you will need to
fi nd an alternative. We looked at this problem in detail in Chapter 18, Function libraries.

The fi rst reference to a symbol comes after the linker has searched the library in which it
is located.

Let’s look at the last problem in more detail: when the linker fi nishes searching a library, it
continues with the following fi le specifi cations. It is possible that another fi le later in the list
will refer to an object file contained in the library which was not included in the executable.
In this case, the symbol will not be found. Consider the following three fi les:

foo.c
main ()

{
bar ("Hello");

}

bar.c
void bar (char *c)

{
baz (c);

}

baz.c
void baz (char *c)

{
puts (c);
}

6 February 2005 00:57

376

We compile them to the corresponding object files, and then make libraries libbar.a and lib-

baz.a, which contain just the single object file bar.o and baz.o respectively. Then we try to
link:

$ gee —c foo.c

$ gce —c bar.c

$ gee -c baz.c

$ ar r libbaz.a baz.o

$ ar r libbar.a bar.o

$ geec —o foo foo.o -L. -lbaz —lbar

Undefined first referenced
symbol in file
baz ./libbar.a (bar.o)

1d: foo: fatal error: Symbol referencing errors. No output written to foo
$ gcc —o foo foo.o -L. -lbar —lbaz
$

In the first link attempt, the linker included foo.o, then searched /ibbaz.a and didn’t fi nd any-
thing of interest. Then it went on to libbar.a and found it needed the symbol baz, but by that

time it was too late. You can solve the problem by putting the reference —1bar before —1baz.

This problem is not even as simple as it seems: although it’s bad practice, you sometimes fi nd
that libraries contain mutual references. If libbar.a also contained an object fi le zot.0, and baz

referred to it, you would have to link with:

$ gcec —o foo foo.o -L. -lbar —lbaz —lbar

An alternative seems even more of a kludge: with the —u fhg, the linker will enter an unde-
fi ned symbol in its symbol table. In this example, we could also have written

$ gcec —u baz —o foo foo.o -L. -lbaz —lbar
$

Dumping to object files

Some programs need to perform signifi cant processing during initialization. For example,
emacs macros are written in emacs LISP, and they take some time to load. Startup would be
faster if they were already in memory when the program is started. The only normal way to
have them in memory is to compile them in, and it’s very diffi cult to initialize data at compile
time as intricately as a program like emacs does it at run time.

The solution chosen is simple in concept: emacs does it once at run time. Then it dumps itself
to disk in object file format: it copies the text section directly from its own text area, since
there is no way it can be changed, and it writes the data section from its current data area,

including all of what used to be bss. It doesn’t need to copy the stack section, since it will be
recreated on initialization.

This rather daring approach works surprisingly well as long as emacs knows its own object
file format. UNIX doesn’t provide any way to fi nd out, since there is normally no reason why
a program should know its own object fi le format. The result can be problems when porting a
package like this to a system with a different object format: the port runs fi ne until the first

6 February 2005 00:57

Chapter 21: Object fi les 377

executable dumps, but the dumped executable does not have a format that the kernel can rec-
ognize.
Other programs that use this technique are gc/ (GNU common LISP) and TEX.

Process initialization and stack frames

In Chapter 12, Kernel dependencies, page 168, we examined the myriad fhvours of exec.
They all pass arguments and environment information to the newly loaded program. From a
C program viewpoint, the arguments are passed as a parameter to main, and the environment
is just there for the picking. In this section we’ll look more closely at what goes on between
exec and main. In order to understand this, we need to look more closely at parameter pass-

ing.
Stack frames

Most modern machines have a stack-oriented architecture, even if the support is rather rudi-
mentary in some cases. Everybody knows what a stack is, but here we’ll use a more restric-
tive defi nition: a stack is a linear list of storage elements, each relating to a particular function
invocation. These are called stack frames. Each stack frame contains

e The parameters with which the function was invoked.

e The address to which to return when the function is complete.
* Saved register contents.

e Variables local to the function.

e The address of the previous stack frame.

With the exception of the return address, any of these fi elds may be omitted.” Typical stack
implementations supply two hardware registers to address the stack:

* The stack pointer points to the last used word of the stack.
* The frame pointer points to somewhere in the middle of the stack frame.

The resultant memory image looks like:

* Debuggers recognize stack frames by the frame pointer. If you don’t save the frame pointer, it will
still be pointing to the previous frame, so the debugger will report that you are in the previous function.
This frequently happens in system call linkage functions, which typically do not save a stack linkage, or
on the very fi rst instruction of a function, before the linkage has been built. In addition, some optimizers
remove the stack frame.

378

Function arguments

Return address

Old value of frame pointer

-
Automatic variables
Stack frame 0
Temporary storage
Function arguments Stack frame 1
Return address

Old value of frame pointer —

Frame pointer >
Automatic variables

Temporary storage

Stack pointer

Figure 21—1. Function stack frame

The individual parts of the stack frames are built at various times. In the following sections,
we’ll see how the stack gets set up and freed.

Setting up the initial parameters

exec builds the initial stack. The exact details are implementation-dependent, but most come
close to the way BSD/OS does it, so we’ll look at that.

The stack is always allocated at a fi xed point in memory, Oxefbfe000 in the case of BSD/OS,
and grows downwards, like the stacks on almost every modern architecture. At the very top
of stack, is structure with information for the ps program:

struct ps_strings

{

char **ps_argv; /* first of 0 or more argument pointers */
int ps_argc; /* the number of argument pointers */

char **ps_envp; /* first of 0 or more environment pointers */
int ps_nenv; /* the number of environment pointers */

bi
This structure is supplied for convenience and is not strictly necessary. Many systems, for
example FreeBSD, do not defi ne it.
Next, exec places on the stack all environment variable strings, followed by all the program
arguments. Some systems severely limit the maximum size of these strings—we looked at
the problems that that can cause in Chapter 5, Building the package, page 74.
After the variable strings come two sets of NULL-terminated pointers, the first to the environ-
ment variables, the second to the program arguments.

6 February 2005 00:57

6 February 2005 00:57

Chapter 21: Object fi les 379

Finally comes the number of arguments to main, the well-known parameter argc. At this
point, the stack looks like:

ps information

Environment variables

Program arguments

NULL

Environment pointers

NULL

more argument pointers

argv [1]
argv [0] —
argc

Stack pointer

Figure 21-2. Stack frame at start of program

At this point, all the data for main is on the stack, but it’s not quite in the form that main
needs. In addition, there’s no return address. But where could main return to? All this work
has been done in the kernel by exec: we need to return to a place in the program. These prob-
lems are solved by the function start, the real beginning of the program: it calls main, and
then calls exit with the return value from main. Before doing so, it may perform some run-
time initializations. A minimal start function looks like this stripped down version of GNU
libc start.c, which is the unlikely name of the source fi le for crz0.0:

static void start (int argc, char *argp)

{
char **argv = &argp; /* set up a pointer to the first argument pointer */
__environ = &argv [argc + 1]; /* The environment starts Jjust after argv */
asm ("call L_init"); /* call the .init section */
__libc_init (argc, argv, __environ); /* Do C and C++ library initializations */
exit (main (argc, argv, __environ)); /* Call the user program */

}

The asm directive is used for C++ initialization—we’ll look at that on page 380. But what’s
this? start calls main with three parameters! The third is the address of the environment
variable pointers. This is one of the best kept secrets in UNIX: main really has three parame-
ters:

6 February 2005 00:57

380

int main (int argc, char *argv [], char *envp []);

It isn’t documented anywhere, but it’s been there at least since the Seventh Edition and it’s
unlikely to go away, since there isn’t really any other good place to store the environment
variables.

By the time we have saved the stack linkage in main, the top of the stack looks like:

*argv [0]

argc

dummy return
start stack frame

dummy frame pointer

**environ .
main stack frame

**argv

argc

return to start

Frame pointer

saved frame pointer

Stack pointer

Figure 21-3. Stack frame after entering main

Initializing C++ programs

What we’ve seen here is not enough for C++: before entering main, the program may need to
initialize global class instances. Since this is system library code, it can’t know what global
classes exist. The solution depends on the system:

e System V systems place this information in a special section, .init. The initialization
file crtn.o contains a default .init section containing a single return instruction. If a
C++ program has global initializers, it will create an . init section to initialize them. If
any object module before ctrn.o has an .init section, it will be included before the
.init section in ctrn.o. During program initialization, the function start calls the
.init section to execute the global constructors—this is the purpose of the asm direc-
tive on page 379.

e Systems based on a.out formats do not have this luxury. Instead, they compile special
code into main to call the appropriate constructors.

The difference between these two approaches can be important if you are debugging a C++
program which dies in the global constructors.

6 February 2005 00:57

Chapter 21: Object files 381

Stack growth during function calls

Now that we have an initial stack, let’s see how it grows and shrinks during a function call.
We’ll consider the following simple C program compiled on the 1386 architecture:

foo (int a, int b)
{
int ¢ = a * b;
int d = a / b;

printf ("%d %d0, c, d);

}
main (int
{

int x = 4;

int y = 5;

foo (y,

}

argc, char *argv [])

X) ;

The assembler code for the calling sequence for foo inmain is:

pushl -4 (%ebp)
pushl -8 (%ebp)
call _foo
addl $8, %esp

value of x

value of y

call the function
and remove parameters

Register ebp is the base pointer, which we call the frame pointer. esp is the stack pointer.
The push instructions decrement the stack pointer and then place the word values of x and y
at the location to which the stack pointer now points.

The call instruction pushes the contents of the current instruction pointer (the address of the
instruction following the call instruction) onto the stack, thus saving the return address, and
loads the instruction pointer with the address of the function. We now have:

argc

return to start

saved frame pointer

Frame pointer -
local var x

main stack frame
local var y

parameter a

5 foo stack frame
parameter

return to main

Stack pointer
Figure 21-4. Stack frame after call instruction

The called function foo saves the frame pointer (in this architecture, the register is called ebp,
for extended base pointer), and loads it with the current value of the stack pointer register esp.

382

foo: pushl %ebp save ebp on stack
movl %esp, $ebp and load with current value of esp

At this point, the stack linkage is complete, and this is where most debuggers normally set a
breakpoint when you request on to be placed at the entry to a function.

Next, foo creates local storage for ¢ and d. They are each 4 bytes long, so it subtracts 8 from
the esp register to make space for them. Finally, it saves the register ebx—the compiler has
decided that it will need this register in this function.

subl $8, %esp create two words on stack
pushl %ebx and save ebx register

At this point, our stack is now complete and looks like the diagram on page 377:

saved frame pointer -

local var x .
main stack frame

local var y

parameter a
foo stack frame

parameter b

return to main

saved frame pointer —

Frame pointer >
local var ¢
local var d
. saved ebx contents
Stack pointer

Figure 21-5. Complete stack frame after entering called function

The frame pointer isn’t absolutely necessary: you can get by without it and refer to the stack
pointer instead. The problem is that during the execution of the function, the compiler may
save further temporary information on the stack, so it’s diffi cult to keep track of the value of
the stack pointer—that’s why most architectures use a frame pointer, which does stay con-
stant during the execution of the function. Some optimizers, including newer versions of gcc,
give you the option of compiling without a stack frame. This makes debugging almost impos-
sible.

On return from the function, the sequence is reversed:

movl -12 (%ebp), $ebx and restore register ebx
leave reload ebp and esp
ret and return

The first instruction reloads the saved register ebx, which could be stored anywhere in the
stack. This instruction does not modify the stack.

The leave instruction loads the stack pointer esp from the frame pointer ebp, which effectively
discards the part stack below the saved ebp value. Then it loads ebp with the contents of the

6 February 2005 00:57

6 February 2005 00:57

Chapter 21: Object fi les 383

word to which it points, the saved ebp, effectively reversing the stack linkage. The stack now
looks like it did on entry.

Next, the ret instruction pops the return address into the instruction pointer, causing the next
instruction to be fetched from the address following the call instruction in the calling function.

The function parameters x and y are still on the stack, so the next instruction in the calling
function removes them by adding to the stack pointer:

addl $8, %esp and remove parameters

Object Archive formats

As we have seen, object files are frequently collected into libraries, which from our current
point of view are archives maintained by ar. One of the biggest problems with ar archives is
that there are so many different forms. You’re likely to come across the following ones:

e The so-called common archive format. This format starts with the magic string
!<arch>\n. Itis used both in System V.4 and in BSD versions since 4BSD.

e The PORT5AR format, which starts with the magic string <ar>. System V.3 defi nes it,
but doesn’t use it.

e The Seventh Edition archive, which starts with the magic number 0177545. It is also
used by XENIX and System V.2 systems. In System V.3 systems, fi le reports this format
as x.out randomized archive. 4.4BSD fi le refers to it as old PDP-11 archive, while
many System V.4 fi les don’t recognize it at all. UnixWare is one that does, and it calls it
a pdpll1/pre System V ar archive.

As long as you stick to modern systems, the only archive type you’re likely to come across is
the common archive format. If you do find one of the others, you should remember that it’s
not the archive that interests you, it’s the contents. If you have another way to get the con-
tents, like the original object or source fi les, you don’t need to worry about the archive.

Comparative reference to UNIX data types

Table A-1 lists a number of t ypedef s that are defined in System V.4 and 4.4BSD. The list is
not intended to be exhaustive, but it might be of assistance if you run into trouble with a new
t ypedef . You’ll note a couple of things about the table:

e There is a significant deviation even between 4.4BSD and System V.4, although both are
systems that have gone to some trouble to be portable.

e 4.4BSD uses a construct | ong | ong to describe 64 bit integers. This is not officially
part of the C language, but is supported by the GNU C compiler, which is the standard
compiler for 4.4BSD. The System V.4 compilers do not support | ong | ong, so they
have to define quad as a structure containing two | ongs.

Table A—1: system type definitions

Type Definition Description
addr_t (SVR4) char * core address type
ang_nount _tree (4.4BSD) struct amg_nount _tree

ang_nount _tree_p (4.4BSD) | ang_nount _tree *

ansistat_t (SVR4) struct ansi_state

audio_info_t (4.4BSD) struct audi o info

auto_tree (4.4BSD) struct auto_tree

bitstr_t (4.4BSD) unsi gned char

bool _t (4.4BSD) int truth value
bool ean_t (4.4BSD) int

bool ean_t (SVR4) enum bool ean

caddr _t (4.4BSD) char * core address
cat_t (4.4BSD) unsi gned char

cc_t unsi gned char

cc tt char

charstat _t (SVR4) struct char_stat

chr_nerge_t (SVR4) struct chr_nerge

385

5 February 2005 02:09

5 February 2005 02:09

386

Table A—1: system type definitions (continued)

Type Defi nition Description
cl ock_t (4.4BSD) unsi gned | ong_

clock_t (SVR4) | ong

cnt_t (SVR4) short count type
conp_t (4.4BSD) u_short

conp_t (SVR4) ushort

create_t (SVR4) enum cr eat e

daddr _t | ong disk address

dbl k_t (SVR4)
dev_t

dirent_t (SVR4)
dnask_t (SVR4)
dpt _dna_t (SVR4)
dpt _sbl k_t (SVR4)
enask_t (SVR4)
entp_t (SVR4)
emp_t (SVR4)
enop_t (SVR4)
enp_t (SVR4)
entryno_t (SVR4)
ether_addr_t (SVR4)
euci oc_t (SVR4)
faddr _t (SVR4)

fhandl e_t (4.4BSD)
fhandl e_t (SVR4)
fixpt_t (4.4BSD)
fpos_t (4.4BSD)
fpos_t (SVR4)
frtn_t (SVR4)
fsid_t (4.4BSD)
gdp_t (SVR4)
gdpmi sc_t (SVR4)
gidt (4.4BSD)
gidt (SVR4)

gi d_t2

greg_t (SVR4)
gregset _t (SVR4)
hostid_t (SVR4)
idt (SVR4)

idata_t (SVR4)

struct datab
unsi gned | ong
struct dirent
unsi gned short
struct ScatterGat her
struct dpt_srb
unsi gned short
unsi gned char *
struct emnd *
struct enout *
struct entab *
int

u_char []
struct euci oc
char *

struct fhandl e
struct svcfh
unsi gned | ong
of f _t

| ong

struct free_rtn

struct { long val[2];

struct gdp
struct gdpm sc
unsi gned | ong
uid_t

unsi gned short
int

greg_t []

| ong

| ong

struct idata

device number

far address (XENIX
Compatibility)

fi xed point number

fi le system id type

group id
GID type
group ID

process id, group id,
etc.

Appendix A: UNIX datatypes 387

Table A—1: system type definitions (continued)

Type Defi nition Description

i ndex_t (SVR4) short index into bitmaps

i ndx_t (4.4BSD) u_inti16_t

ino_t unsi gned | ong inode number

i node_t (SVR4) struct inode

instr_t (SVR4) char

int8 t (4.4BSD) char 8 hit signed integer

int16 t (4.4BSD) short 16 hit integer

int32_t (4.4BSD) i nt 32 bit integer

int64_t (4.4BSD) long | ong 64 bit integer

ioctl _t (4.4BSD) void * Third arg of ioctl

jdata_t (SVR4) struct jdata

k_fltset_t (SVR4) unsi gned | ong kernel fault set type

k_sigset_t (SVR4) unsi gned | ong kernel signal set type

key t (4.4BSD) | ong IPC key type

key t (SVR4) int IPC key type

kI mtestargs (SVR4) struct klmtestargs

kKimtestrply (SVR4) struct kimtestrply

kmabuf _t (SVR4) struct kmabuf

kmasymt (SVR4) struct kmasym

kvmt (4.4BSD) struct _ _kvm

| abel _t (SVR4) struct {int val [6];} setjimp/longimp save
area

level t (SVR4) lidt user’'s view of securi-
ty level

lid_t (SVR4) unsi gned | ong internal representation
of security level

| ock_data_t (4.4BSD) struct | ock

lock_t (SVR4) short lock work for busy
wait

maj or _t (SVR4) unsi gned | ong major part of device
number

nbl k_t (SVR4) struct nsgb

mnor_t (SVR4) unsi gned | ong minor part of device
number

node_t (4.4BSD) unsi gned short permissions

node_t (SVR4) unsi gned | ong fi le attribute type

n_tine u_l ong ms since 00:00 GMT

nfsv2fh_t (4.4BSD) uni on nfsv2fh

nl _catd (SVR4) nl _catd_ t *

nlink_t (4.4BSD) unsi gned short link count

nlink_t (SVR4) unsi gned | ong fi lelink type

5 February 2005 02:09

5 February 2005 02:09

388

Table A—1: system type definitions (continued)

Type Defi nition Description
nnecp_t (SVR4) unsi gned char *
nnp_t (SVR4) struct nnmab *

nnsp_t (SVR4)
0_dev_t (SVR4)
o_gid_t (SVR4)
o_ino_t (SVR4)
o_node_t (SVR4)
o_nlink_t (SVR4)
o_pid_t (SVR4)
ouidt (SVR4)
of f _t (4.4BSD)
of f_t (SVR4)
paddr_t (4.4BSD)
paddr_t (SVR4)
pgno_t (4.4BSD)
pid t (4.4BSD)
pid t (SVR4)
priv_t (SVR4)
ptr_t (4.4BSD)
ptrdiff_t

pvec_t (SVR4)
gaddr _t (4.4BSD)
gband_t (SVR4)
gshift_t (4.4BSD)
quad_t (4.4BSD)
queue_t (SVR4)
recno_t (4.4BSD)
regof f _t (4.4BSD)
rf_token_t (SVR4)
rlimt (SVR4)
rmt (SVR4)
rune_t (4.4BSD)

rval _t (SVR4)
s_token (SVR4)
scrnmap_t (SVR4)
scrnmapp_t (SVR4)

segsz_t (4.4BSD)
sel _t (SVR4)

struct nmseq *
short

o uidt

unsi gned short
unsi gned short
short

short

unsi gned short
quad_t

| ong

| ong

unsi gned | ong
u_int32_t

| ong

| ong

unsi gned | ong
void *

i nt

unsi gned | ong
quad_t *
struct gband
u_quad t

I ong | ong
struct queue
u_int32_t

of f _t

struct rf_token
unsi gned | ong
enumrm

i nt

uni on rval

u_l ong

unsi gned char []
unsi gned char *

| ong
unsi gned short

old device type

old GID type

old inode type

old fi le attribute type
oldfi lelink type

old processid type
old UID type

fi le offset type

fi le offset type
physical address type
physical address type

processid
processid type

pointer type
Difference between
two pointers
kernel privilege vector

"rune" type: extended
character

Screen map type
Pointer to screen map
type

segment size

selector type

5 February 2005 02:09

Appendix A: UNIX datatypes

389

Table A—1: system type definitions (continued)

Type Defi nition Description
sema_t (SVR4) int
sig_atomc_t int

sig_t (4.4BSD)

sigset _t (4.4BSD)
size_t (4.4BSD)
size_t (SVR4)
speed_t (4.4BSD)
speed_t (SVR4)
spl _t (SVR4)
srqtab_t (SVR4)
ssize_t (4.4BSD)

stack_t (SVR4)
stridx_t (SVR4)
strmap_t (SVR4)
sv_t (SVR4)

swbl k_t (4.4BSD)
synfol lowt (SVR4)
sysid_ t (SVR4)
tcflag_t

tcl _addr_t (SVR4)
tcl _data_t (SVR4)
tcl _endpt _t (SVR4)
tco_addr_t (SVR4)
tco_endpt _t (SVR4)
tcoo_addr _t (SVR4)
tcoo_endpt _t (SVR4)
time_t

tpproto_t (SVR4)
tpr_t (4.4BSD)
ttychar_t (4.4BSD)
u_char

u_int

u_int16_t (4.4BSD)
u_int32_t (4.4BSD)
u_inte4 t (4.4BSD)
u_int8 t (4.4BSD)
u_l ong

u_quad_t (4.4BSD)
u_short

void (*) (int)

unsi gned i nt

int

unsi gned

| ong

unsi gned | ong
int

unsi gned char []
int

struct sigaltstack
ushort []

unchar []

char

| ong
enum synf ol | ow
short

unsi gned | ong
struct tcl_addr
union tcl _data
struct tcl_endpt
struct tco_addr
struct tco_endpt
struct tcoo_addr
struct tcoo_endpt

| ong

struct tpproto
struct session *
unsi gned char [] []
unsi gned char

unsi gned i nt

unsi gned short

unsi gned i nt

unsi gned | ong | ong
unsi gned char

unsi gned | ong

unsi gned | ong | ong
unsi gned short

return type of signa
function

to return byte count or
indicate error

String map index type
String map table type

swap offset

systemid

time of day in seconds

16 bit unsigned int
32 hit unsigned int
64 bit unsigned int
64 bit unsigned int
Abbreviation
quads
Abbreviation

5 February 2005 02:09

390

Table A—1: system type definitions (continued)

Type Defi nition Description
uchar _t (SVR4) unsi gned char

uidt (4.4BSD) unsi gned | ong User ID
uidt (SVR4) | ong User ID

uid t? unsi gned short User ID
uinfo_t (SVR4) struct naster *

ui nt unsi gned i nt Abbreviation
uint_t (SVR4) unsi gned i nt

uio_rwt (SVR4) enum ui o_rw

uio_seg_t (SVR4) enum ui 0_seg

ul ong (SVR4) unsi gned | ong Abbreviation
ul ong_t (SVR4) unsi gned | ong

unchar (SVR4) unsi gned char Abbreviation
use_t (SVR4) unsi gned char use count for swap
ushort unsi gned short Abbreviation

ushort _t (SVR4)
vcexcl _t (SVR4)
vfs_nanemap_t (4.4BSD)
vifbitnap_t (4.4BSD)
vifi_t (4.4BSD)

vpi x_page_t (SVR4)
wchar _t (4.4BSD)
wchar _t (SVR4)
whynount root _t (SVR4)
xdr proc_t

10nly 4.4BSD telnet
20nly 4.4BSD Kerberos

unsi gned short
enum vcexcl

struct vfs_nanenap
u_l ong

u_short

struct vpi x_page
int

| ong

enum whynount r oot
bool _t (*)()

type of avif index

Wide character type
Wide character type

5 February 2005 04:34

There is little standardization in the choice of compiler options from one compiler to another,
though a couple (- 0 and - ¢, for example) are the same across all platforms. Even the - o
option differs slightly in meaning from one system to another, however. If there is any reli-
able documentation, it’s what was supplied with your compiler. This doesn’t help you, of
course, if you have a Makefile from some unfamiliar machine and you’re trying to figure out
what the options there mean. This table should fill that gap: if you find an option, chances are
this table will help you guess what it means. If you’re looking for a way to tell your compiler
what to do, read its documentation.

This appendix provides the following comparative references between the GNU, SGI IRIX,
SCO UNIX, Solaris, SunOS, System V.3, System V.4 and XENIX versions of the C compiler
control program and the C preprocessor.

e Flags used by the C compiler control program (cc or gcc), starting after this section.
e gcc-specific options specifying dialect, starting on page 405.
e gcc-specific debugging options, starting on page 406.

e gcc-specific warning options, starting on page 407. We discuss the more important warn-
ings in, starting on page .

e Flags used by the C preprocessor cpp, starting on page 410.

C compiler options

-a (gcc, Sun0s)
Generate extra code to write profile information for tcov.

-a align (some MS-DOS compilers)
Align in structs to align boundary.

-A (SVR3)
Linker output should be an absolute file (i.e. the opposite of the - I option).

-A (gce, SVR4)

- Aquestion(answer) asserts that the answer to question is answer. This can used with the pre-
processor conditional #if #question(answer).

391

392

-A (gce, SVRY)
Disable standard assertions. In addition, SVR4 cc undefi nes all standard macros except those
beginning with_.

-acpp (SGl)
Use dlternative cpp based on GNU cpp.

-align block (Sun09)
Force the global bss symbol block to be aligned to the beginning of a page.

- ansi (gce, SGI)
Enforce strict ANSI compatibility.

- ansi posi x (SGl)
Enforce strict ANSI compatibility and defi ne_ PCBl X SOURCE.

-B (gce)

Specify the path of the directory from which the compiler control program gcc should start the
individual passes of the compiler.

-B dynamc (SunOS, SVR4)

Dynamic linking: tell the linker to search for library fi les named libfoo.so and then libfoo.a
when passed the option - | f 00.

-B static (SunOSs, SVR4)
Static linking: tell the linker to just search for libfoo.a when passed the option - | f 00.

-b target (gce)
Cross-compile for machine target.

-C (gee, SGI ANS C, SCO UNIX, SUnOS, SVR4)
Tell the preprocessor not to discard comments. Used with the - E option.

-c (al)
Stop compiler after producing the object fi le, do not link.

-call _shared (older MIPS)

Produce an executable that uses sharable objects (default). On more modern SGI machines,
thisiscaled- KPI C

- cckr (SGI)
Defi ne K& R-style preprocessor variables.
- common (Sal)

Cause multiple defi nitions of global data to be considered to be one defi nition, and do not pro-
duce error messages.

- conpat (SCO UNIX)

Create an exectauble which is binary compatible across a number of Intel-based systems. Use
XENIX librariesto link.

-cord (SGI)

5 February 2005 04:34

5 February 2005 04:34

Chapter 0: Compiler options 393

Rearrange functions in the object file to reduce cache conflicts.

- CSON (SCO UNIX)

Enable common subexpression optimization. Used in conjunction with the - Qoption.

- CCFF (SCO UNIX)

-D

-d

Disable common subexpression optimization. Used in conjunction with the - Coption.
(all)

Define a preprocessor macro. The form - Dfoo defines foo, but does not give it a value. This
can be tested with #ifdef and friends. The form - Of 00=3 defines foo to have the value 3.
This can be tested with #if.

(XENIX, SCO UNIX)

Report the compiler passes and arguments as they are executed.

-d when (gce)

Make dumps during compilation for debugging the compiler. when specifies when the dump
should be made. Most of these should not be needed by normal users, however the forms - dD
(leave all macro definitions in the preprocessor output), - dM(dump only the macro definitions
in effect at the end of preprocessing) and - dN (like - dD except that only the macro names are

output) can be used with the - E option in order to debug preprocessor macros.

-dalign (SunOS on Sun-4 systems)

-dD

-dl

-dM

Generate double load/store instructions for better performance
(gee)

Special case of the - d option: leave all macro definitions in the preprocessor output. The
resulting output will probably not compile, but it’s useful for debugging preprocessor macros.

(SVR3)
Don’t generate line number information for the symbolic debugger.
(gee)

Special case of the - d option: dump only the macro definitions in effect at the end of prepro-
cessing.

-dn (SVR4)
Don’t use dynamic linking. This cannot be used with the - Goption.

-dol | ar (SGI)
Allow the symbol $ in C identifiers.

- dos (SCO UNIX, XENIX)
Create an executable for MS-DOS systems.

-dryrun (Sun0Y)
Display the commands that the compiler would execute, but do not execute them

-ds (SVR3)

Don’t generate symbol attribute information for the symbolic debugger. This option and - dl
can be combined as - dsl . Together they are the opposite of the - g option.

394

-dy (SVR4)
Use dynamic linking where possible. This is the default.
“E (all)

Write preprocessor output to standard output, then stop. Some compilers interpret the - 0
option and write the output there instead if specified.

-EP (SCO UNIX, XENIX)

Use this instead of the - E option to generate preprocessor output without #line directives. The
output is written to standard output. In addition, SCO UNIX copies the output to a file with the

suffix .i.

-F num (SCO UNIX, XENIX)
Set the size of the program stack to num (hexadecimal) bytes.

-f (gce)
A family of options specifying details of C dialect to be compiled. See page 405 for more
details.

-f type (Sun0S)
Specify the kind of floating-point code to generate on Sun-2, Sun-3 and Sun-4 systems.

- Fa name (SCO UNIX, XENIX)
Write an assembler source listing to name (default file.s).

- Fc name (SCO UNIX, XENIX)
Write a merged assembler and C source listing to name (default file.L).

- f eedback name (SGI)
Specify the name of the feedback file used in conjunction with the - cor d option.

- Fe name (SCO UNIX, XENIX)
Specify the name of the executable file.

-Fl name (SCO UNIX, XENIX)
Write an assembler listing with assembler source and object code to name (default file.L).

-fl oat (SGI)
Cause the compiler not to promote f | oat to doubl e.

- Fm nane (SCO UNIX, XENIX)
Write a load map to nane (default a.map).

- Fo name (SCO UNIX, XENIX)
Specify the name of the object file.

-Fp (SCO UNIX, XENIX)
Specify floating point arithmetic options for MS-DOS cross-compilation.

-franepoi nt er (SGI)

Use a register other than the stack pointer (sp) for the frame pointers (see Chapter 21, Object
files and friends, page 377).

5 February 2005 04:34

Chapter 0: Compiler options 395

-ful I war n(SGI)
Produce all possible warnings.

-Fs name (SCO UNIX, XENIX)
Write a C source listing to name (default file.S).

-G (SVR4)

Instruct the linker to create a shared object rather than a dynamically linked executable. This is
incompatible with the - dn option.

- G size (SGI)
Limit items to be placed in the global pointer area to size bytes.
-0 (all)

Create additional symbolic information in order to support symbolic debuggers. gcc has a
number of suboptions to specify the amount and the nature of the debugging information—see
page 406 for more details. SGI C specifies a numeric level for the amount of debug informa-
tion to produce.

W) (SCO UNIX)

Generate code with the alternate calling sequence and naming conventions used in System V
386 Pascal and System V 386 FORTRAN.

-go (SunQs)
Produce additional symbol table information for adb.

-G (SCO UNIX)
Removes stack probe routines. Effective only in non-protected environments.

-H (gcc, System V)
Print the names of header files to the standard output as they are #included.

-H num (SCO UNIX, XENIX)
Set the maximum length of external symbols to num.

-hel p (SCO UNIX, Sun0S)
Display help for cc.

-1 dir (all)
Add dir to a list of pathnames to search for header files included by the #include directive.

-1 (SGI)
Remove /usr/include from the list of paths to search for header files.

-1- (gce)

Search the list of include pathnames only when the #include directive is of the form #include
“header". Do not search these directories if the directive is #include <header>. In addition, do
not search the current directory for header files. If -1 dir options are specified after - I -,
they apply for all forms of the #include directive.

oy (SCO UNIX, XENIX)

5 February 2005 04:34

396

Create separate instruction and data spaces for small model programs.

-J (SCO UNIX)
Change the default mode for the char type to unsigned.

-J (SunOS, Aun-2 and Un-3)
Generate 32-bit offsets in SW t ch statements.

-J sfm (SVR4)

Specify the pathname of the assembly language source math library libsfm.sa. The positioning
of this option is important, since the library is searched when the name is encountered.

-] (SGI)

Create a file fi le.u containing intermediate code. Does not create an object file unless used in
conjunction with - C.

-KPI C (SGl)
Generate position-independent code.
-imacros file (gce)

Process fi le before reading the regular input. Do not produce any output for fi le—only the
macro definitions will be of use.

-include file (gce)

Process fi le as input before processing the regular input file. The text of the file will be handled
exactly like the regular files.

-K (SVR4)
Specify various code generation options.

-K (SCO UNIX, XENIX)
Remove stack probes from a program. Useful only in non-protected environments.

-k options (GI)
Pass options to the ucode loader.

-ko name (SGl)
Cause the output of the intermediate code loader to be called name.

-L (SCO UNIX, XENIX)
Create an assembler listing with assembled code and assembler source instructions with the
name fi le.L.

-L dir (All but SCO UNIX, XENIX)

Add dir to the list of directories to search to resolve library references. See Chapter 18, Func-
tion libraries, page 369 for further details.

- (all but XENIX)

Specify a library. The option - | baz will search the library paths specified via - L options (see
above) for a file typically called libbaz.a. See Chapter 18, Function libraries, page 369 for
more details.

5 February 2005 04:34

Chapter 0: Compiler options 397

- LARGE (SCO UNIX, XENIX)
Invoke the large model compiler to run. Used if heap space problems occur during compila-
tion.

-link specs (SCO UNIX, XENIX)

Pass specs to the linker. All text following up to the end of the command line is passed to the
linker, so this has to be the last command on the line.

-M (SVR3)
Instruct the linker to output a message for each multiply defined external symbol.

-M (gec, SGI, SunOS, Solaris)
Instruct the preprocessor to write a list of Makefile dependencies to stdout. Suppress normal
preprocessor output.

-W (gce)
Like the - Moption, but only process #include “file" directives—ignore #include <file>.

-MD (gce)
Like the - Mdirective, but output to a file whose name is made by replacing the final .c with .d.
This option does not suppress preprocessor output.

- Mbupdat e file (SGI)
While compiling, update file to contain header, library and runtime dependency information
for the output file.

- MD (gce)
Combination of - MDand - MM Does not suppress preprocessor output.

- Ma (SCO UNIX, XENIX)
Compile strict ANSI.

- M model (SCO UNIX, XENIX)

Select model (only 16-bit modes). model may be ¢ (compact), S (small), m (medium), |
(large) or h (huge).
-M num (SCO UNIX, XENIX)

Specify processor model for which code should be generated. O specifies 8086, 1 specifies
80186, 2 specifies 80286 and 3 specifies 80386 or later. 16-bit models (O to 2) may be fol-
lowed by models s, mor | .

- M (SCO UNIX, XENIX)
Reverse the word order for long types.

- M (SCO UNIX, XENIX)
Generate code for separate stack and data segments.

-Me (SCO UNIX, XENIX)
Enable the keywords f ar , near , huge, pascal andfortran.

-M (SCO UNIX, XENIX)

5 February 2005 04:34

398

Enable software fbating point.

-M num (SCO UNIX, XENIX)
Set the maximum size of dataitems to num. Only valid for large model.

-m (SVR3)
Write aload map to standard outpui.

-mfile (SCO UNIX, XENIX)
Write aload map tofi le.

- m pshum (saGl)

Specify the target machine. num 1 (default) generates code for R2000/R3000, and 2 generates
code for R4000.

-msalign (SunOSon Sun-4)
Generate code to alow loading and storing misaligned data.

- np(SGl)
Enable multiprocessing directives.

-n (SCO UNIX, XENIX)
Select pure text model (separated text and data).

-ND name (SCO UNIX, XENIX)
Set the names of each data segment to name.

-nl num (SCO UNIX, XENIX)
Set the maximum length of external symbolsto num.

- NM name (SCO UNIX, XENIX)
Set the names of each module to name.

- nocpp (SGI)
Do not run the preprocessor when compiling.

- noi nt | (SCO UNIX)
Create a binary without international functionality.

-non_shar ed (SGI)
Produce an executable that does not use shared objects.

- nopr ot ot ypes (SGI)

Remove prototype error and warning messages when run in- cckr mode.
- host di nc (gce, SGI)

Do not search the standard include fi le locations (like /usr/include) for header files. Only
search the directories specifi ed with the- | option. gcc also has aversion - nost di nc++ for
C++ programs.

-nostdlib (gce)

Don't include the standard startup fi les and library paths when linking. Only fi les explicitly
mentioned on the command line will be included.

5 February 2005 04:34

Chapter 0: Compiler options 399

-NT name (SCO UNIX, XENIX)

Set the names of each text segment to name.
-0 (all)

Perform optimizations. In some, it may be followed by a level number (- L normal optimiza-
tions, - Q2 additional optimizations, etc.). - Omeans the same thing as - QL. Others, such as
the SCO compiler, use letters to specify specific optimizations.

-0 file @l

Name the output file fi le. System V compilers only use this option to specify the name of the
final executable, whereas other compilers use it to specify the name of the output of the final
compiler pass. This can give rise to compatibility problems—see Chapter 20, Compilers, page
351 for further details.

-ol depp (SGI)
Run with old-style cpp.
-Qimt size (SGhH)
Set the maximum size of a routine to be optimized by the global optimizer to size basic blocks.
-0s2 (SCO UNIX)
Create an executable program for OS/2.

-P (gco)
Instruct the preprocessor not to generate #line commands. Used with the - E option.

-P (SunOS, SGI, SVR4, SCO UNIX, XENIX)

Use instead of the - E option to generate preprocessor output without #ine directives. The out-
put will be stored in fi le.i.

-p (all)
Generate extra code to aid profiling using the profiling program prof.

- pack (SCO UNIX, XENIX)
Ignore alignment considerations in structs and pack as tightly as possible.

- pca (saGlh)
Run the pca processor to discover parallelism in the source code.

- pedanti c (gce,)

Be pedantic about syntax checking, issue all required warnings. The variety - pedant i c-
€rror s treats them as errors instead of warnings.

- pg (gce, SUn0Y)
Like - p, except that the output is suitable for processing by the gprof profiler.

-pic,-PIC (Sun0Y)
Generate position-independent code. The form - Pl Callows a larger global offset table.

- pi pe (gce, SUNOY)

Specify that output from one pass should be piped to the next pass, rather than the more tradi-
tional technique of storing it in a temporary file.

5 February 2005 04:34

400

- pr ot ot ypes (SGI)
Output ANSI function prototypes for all functions in the source fi le when run in - cckr mode.
-gp (System V)

A synonym for - p.
-0 (gce (System V versions), SVR4)

Do not output . i dent directives to the assembler output to identify the versions of each tool
used in the output fi le.

-Q (gcc (System V versions), SVR4)
Output .ident directives to the assembler output to identify the versions of each tool used in the
output fi le.

- Qorog opt (Sun0S)

Pass option opt to program prog. prog may be as (the assembler), cpp (the preprocessor),
i nl i ne (the assembly code reorganizer) or | d (the loader).

- Qpath (Sun09)
Specify search paths for compiler passes and other internal fi les, such as *crt*.o.
- Qor oduce type (Sun09)

Produce source code output of type type. type specifi es the fi lename extension and may be one
of .c (C source), .i (preprocessor output), .0 (object output from the assembler) or .s (assembler
output from the compiler).

-R (Sun0s)
Merge the data segment into text. This creates read-only data.

-r (SCO UNIX, XENIX)
Invoke the incremental linker /lib/Idr for the link step.

-r (SVR3)
Instruct the linker to retain relocation information in the fi nal executable.

-S (gce, G, SUnOS, System V)
Stop after compiling the output assembler code, and do not assemble it. Save the resultsin a
filefiles.

-S (SCO UNIX, XENIX)
Create a human-readable assembler source listing in files. This listing is not suitable for
assembly.

-S (SCO UNIX, XENIX, SVR3)
Strip the fi nal executable.

- save-t enps (gco)

Keep intermediate fi |es even when they are no longer needed.
-sb (Sun0Y)
Generate additional symbol table information for the Sun Source Code Browser.

5 February 2005 04:34

Chapter 0: Compiler options 401

- SEG num (SCO UNIX, XENIX)
Set the maximum number of segments that the linker can handle to num.

- shared (gce)
Produce a shared object which can be linked with other objects to form an executable.

- show (SGl)
Print the names of the passes and their arguments during compilation.

- si gned (SGI)
Use signed charactersinstead of the default unsigned characters.

- sopt (GI)
Invoke the C source-to-source optimizer. There is nothing corresponding to this on other plat-
forms.

-Ss subtitle (SCO UNIX)
Sets subtitle of the source listing. This also causes the linker pass to be omitted.

- title (SCO UNIX)
Setstitle of the source listing. This also causes the linker pass to be omitted.

-static (gce)
Produce a statically linked object. This is only of interest on systems which have shared
libraries.

- systype (MIPS
Specify the name of the compilation environment. Valid names are bsd4, svr 3 and svr 4.

-t (SVR3)
Instruct the linker to suppress warnings about multiply defi ned symbols that are not the same
size.

-target arch (Sun09)
Specify the target machine. arch can be one of sun2, sun3 or sun4.

-Tc (SCO UNIX)

Specify that the input fi le is a C source fi le. This can be used if the fi le does not have a stan-
dard .c fi le name extension.

-t enp=dir (Sun0s)
Store compiler temporary fi lesin dir.

-tine (Sun0g
Print time information for each compiler pass.

-traditional (gce)
Treat the input sources as pre-ANSI-C. Thereis also an option-tradi t i onal - cpp which
only affects the preprocessor.

-trigraphs (gce)

5 February 2005 04:34

402

Enable trigraph processing. By default, trigraphs are disabled unless the - ansi option is spec-

ified.

- U macro (al)
Undefine macro.

-u symbol (gce, SVR3)
Force the linker to resolve the symbol symbol by searching additional libraries where speci-
fied.

-u (SCO UNIX)
Undefine all predefined macros.

- undef (gce)

Do not predefine standard macros. This includes the macros which define the architecture.
- use- r eadonl y- const (SGI)

Do not allow writing to strings and aggregate constants.
- use-readw i t e- const (SGI)

Allow writing to strings and aggregate constants.

-V (SystemV)
Print version numbers of the compiler passes as they are invoked.

-V version (geec 2.X)
Tell gcc to run version version of gcc.

- V'string” (SCO UNIX)
Place string in the object file, typically for use as a copyright notice or version information.

-V version (XENIX)

Compile a program compatible with specific versions of UNIX. version may be 2 (Seventh
Edition compatible), 3 (System I1l compatible) or 5 (System V compatible).

-V (gce, SGI)
Produce verbose output. gcc output includes the complete invocation parameters of each pass
and the version numbers of the passes.

Y (SVR4)
Perform more and stricter semantic checks.

-var ar gs (SGI)
Print warnings for lines that may requires the varargs.h macros.

-W (gee)
Without print a number of additional warning messages. With an argument, add a specific kind
of warning message check—see page 407 for more details.

-Wnum (SCO UNIX, XENIX)

Specify the level of warning messages. If num is 0, no warnings are produced. A maximum
number of warnings is produced by - Vi3.

5 February 2005 04:34

Chapter 0: Compiler options 403

-\, option (SystemV)
Pass option to the compiler.

-2, option (SystemV)
Pass option to the optimizer.

-\, option (gce, SystemV)
Pass option to the assembler.

- W, option (SystemV)
Pass option to the basic block analyzer.

- W, option (gce, SystemV)
Pass option to the linker.

-}, option (SystemV)
Pass option to the preprocessor.

-W (gce, SCO UNIEX, SunOS, XENIX)
Inhibit warning messages.

-W num (SGl)
If numisO or 1, suppress warning messages. If numis2, treat warnings as errors.

-wine (SGI)
Produce lint-like warning messages.

-wof f numbers (SGl)
Suppress warning messages corresponding to numbers.

-X (SCO UNIX, XENIX)
Remove the standard directories from the list of directories to searched for #includefi les.

-Xa (SVR4)
Compile full ANSI C. Extensions are enabled.

-Xc (SVR4)
Compile strictly conforming ANSI C. Extensions are disabled.

- Xcpl uscomm (SGI)
Allow the C++ comment delimiter / / when processing C code.

- xansi (SGl)
Process ANSI C, but accept the extensions allowed by - cckr .

- xeni x (SCO UNIX)
Produce XENIX programs using XENIX libraries and include fi les.

- xgot (sGh)
Compile using a 32 bit offset in the Global Symbol Table. This can be ignored for other sys-
tems.

5 February 2005 04:34

404

-x2.3 (SCO UNIX)

Produce XENIX programs using XENIX libraries and include fi les. The programs are compat-
ible with release 2.3 of XENIX (the last release, with 80386 capabilities).

- X i nker, option (gce)
Pass option to the linker.

-Xp (SVR3)
Compile for aPOSIX.1 environment.

-Xs (SVR3)
Compile for a System V.3 environment (i.e. not POSIX.1).

- Xt (SVR4)
Compile pre-ANSI C, but with compatibility warnings.

- X (SVR3)
Instruct the linker to save space by not preserving local symbolsin the fi nal executable.

-X lang (gce)

Specify the language to be compiled. lang may be one of c, obj ecti ve-c, c- header, c++,
cpp-out put , assenbl er or assenbl er - wi t h- cpp. This overrides the fi lename extensions.

- YO, dir (SVR3)
Search for compiler in directory dir.

- Y2, dir (SVR3)
Search for optimizer in directory dir.

- Ya, dir (SVR3)
Search for assembler in directory dir.

- Yb, dir (SVR3)
Search for basic block analyzer in directory dir.

-1, dir (SVR3)
Search for Default include directory in directory dir.

-V, dir (SVR3)
Search for link editor in directory dir.

- YL, dir (SVR3)
Search for fi rst default library directory in directory dir.

-Ym dir (gce (System V versions))
Search for m4 in directory dir.

-YP, dirs (SVR3, gce (System V versions))

Tell the compiler to search the directories dirs (a colon-separated list, like the PATH environ-
ment variable) for libraries specifi ed viathe - | option. This is an aternative to - L. It is not
additive: only the directories specifi ed in the last - YP option are searched.

5 February 2005 04:34

5 February 2005 04:34

Chapter 0: Compiler options 405

- Yp, dir (SVR3)
Search for compiler in directory dir.

-YS, dir (SVR3)
Search for startup files crtl.0 and crtend.o in directory dir.

- YU, dir (SVR3)
Search for second default library directory in directory dir.

-z (SCO UNIX, XENIX)
Display the passes and arguments, but do not execute them.

-z (SVR3)
Instruct the linker not to bind anything at address 0 to aid run-time detection of null pointers.

-Za (SCO UNIX, XENIX)
Restrict the language to ANSI specifications.

-zZd (SCO UNIX, XENIX)
Include line number information in the object file.

-Ze (SCO UNIX)

Enables the keywords f ar , near , huge, pascal and f ortran keywords. The same as
the - Me option.

-Zi (SCO UNIX, XENIX)
Include symbolic information in the object file.

-Z (SCO UNIX)
Do not include default library information in the object file.

- Zpalign (SCO UNIX, XENIX, SVR3)
Force structs to align to the an align boundaries. align may be O, 2 or 4, and defaults to 1.

-Zs (SCO UNIX, XENIX)

Perform syntax check only, do not compile.

gcc dialect options

gcce supplies a large number of options to specify what dialect of C should be compiled. In
addition, it supplies a further large number of options for C++ dialect. We’ll only look at the
C dialect options here—check the gcc release for the complete documentation.

- ansi

Compile ANSI C. Flag any non-standard extension as warnings, but do not treat them as
errors. This option implies the options - f n- asmand - t r i gr aphs.

-fno-asm

Do not recognize the keywords asm i nl i ne or typeof, so that they can be used as

406

identifi ers. Thekeywords__asm_, _inline__and__typeof _ can beused instead.
-fno-builtin
Don’t recognize builtin function names that do not begin with two leading underscores.
-trigraphs
Support ANSI C trigraphs.
-traditiona
Support pre-ans dialects. This also implies- f unsi gned- bi tfi el ds and-fw it abl e-
strings.
-traditional -cpp
Provide pre-ANSI style preprocessing. Thisisimplied by -t radi ti onal .
- f cond- m smat ch
Allow conditional expressions (suchasa: b? ¢) where the second and third arguments have
different types.
- f unsi gned- char
By default, characterss are unsigned. This effectively makes the declaration char the same
thing asunsi gned char .
- f si gned- char
By default, characterss are signed. This effectively makes the declaration char the same thing
assi gned char.
-fsigned-bitfields

Make bit fi elds signed by default. Thisis the default action.
-funsi gned-bi tfiel ds

Make bit fi elds unsigned by default.
-fno-signed-bi tfields

Make hit fi elds unsigned by defaullt.
-fno-unsi gned-bi tfi el ds

Make bit fi elds signed by default. Thisis the default action.
-fwitabl e-strings

Allocate strings in the data segment, so that the program can write to them. See Chapter 20,
Compilers, page 338 for adiscussion of this misfeature.

-fal | ow si ngl e- preci si on

Do not perform operations on single precision fbating point values with double precision
arithmetic. Thisisonly needed if you specify -t r adi ti onal .

5 February 2005 04:34

5 February 2005 04:34

Chapter 0: Compiler options 407

gcc debugging options

-g mods
Produce standard debugging information. This can be used in conjunction with gdb. It some-
times includes information that can confuse other debuggers.

-ggdb mods

Produce debugging information in the native format (if that is supported), including GDB
extensions if at all possible.

-gstabs mods

Produce debugging information in stabs format without GDB extensions.
-gcof f mods

Produce debugging information in the COFF format used by sdb on older System V systems.
-gxcof f mods

Produce debugging information in the XCOFF format used dbs on IBM RS/6000 systems.
-gdwar f mods

Produce debugging information in the DWARF format used by sdb on most SVR4 systems.
mods are optional and may take the values + or the digits 1 to 3:

« + specifies that additional information for gdb should be included in the output. This may
cause other debuggers to reject the object.

« 1 specifies that only minimal debugging information: include information about function
names and external variables, but not about local variables or line numbers.

¢« 2 (the default): include function names, all variables and line numbers.

« Inaddition, 3 includes macro definitions. Not all systems support this feature.

gcc warning options
-W

Print an number of “standard” extra warning messages. See , starting on page , for a discussion
of the individual situations.

-Wnplicit
Warn if functions or parameters are declared implicitly (in other words, if the explicit declara-
tion is missing).

-Weturn-type
Warn if a function is defined without a return type (in other words, one that defaults to i nt).
Also warn if r et ur n is used without an argument in a non-voi d function.

- Winused

Warn when local or static variables are not used, and if a statement computes a value which is

408

not used.
-V¢wi tch
Warn if aswi t ch statement has an index of an enumeral type and does not cater for all the
possible values of theenum or if acase value is specifi ed which does not occur in the enum
- Womment
Warn if the sequence/ * is found within a comment. This might mean that a comment end is
missing.
-WTri graphs
Warn if trigraphs are encountered. Only effectiveif - ft ri gr aphs is aso specifi ed.
- W or nat
Check the parameters supplied to pri nt f , scanf and friends to ensure that they agree with
the format string.
-V¢har - subscri pt s

Warn if an array subscript has typechar .
-Wini nitialized
Warn if an automatic variable is used before it is initialized. This requires the optimizer to be
enabled.
- Whar ent heses
Warn if parentheses are omitted in assignments in contexts where truth values are expected

(for example, i f (a = foo ()), or when unusual and possibly confusing sequences of
nested operators occur without parentheses.

- Vénum cl ash
Warn if enumtypes are mixed. Thisis only issued for C++ programs. See Chapter 20, Com-
pilers, page 339 for further details.

- W enpl at e- debuggi ng
Warn if debugging is not fully available for the platform when using templates in a C++ pro-
gram.

- Vvl |
Specify all of the warning options above. The FSF considers this a good compromise between
accuracy and completeness.

-fsyntax-only
Check for syntax errors, but don’t compile.

- pedantic
Issue al warnings specifi ed by ANSI C. Reject programs which use extensions not defi ned in
the Standard. The Free Software Foundation does not consider this to be a useful option, since

ANSI C does not specify warnings for al possible situations. It is included because it is
required by the ANSI Standard.

5 February 2005 04:34

Chapter 0: Compiler options 409

-pedantic-errors

The same thing as - pedant i ¢, but the warnings are treated as errors.
-wW

Inhibit all warning messages.
- Who- i npor t
Inhibit warning messages about the use of #import.
-Wraditional
Warn about: Macro parameters in strings, functions declared external within a block and then

referenced outside the block and swi t ch statements with | ong indexes. These are treated
differently in ANSI and traditional C.

- Whadow

Warn if a local variable shadows another local variable.
-Wd-cl ash- len
Warn whenever two different identifiers match in the first len characters. To quote the FSF

documentation: This may help you prepare a program that will compile with certain obsolete,
brain-damaged compilers.

-Woi nter-arith
Warn about anything that depends on the “size of” a function type or of void. GNU C

assigns these types a size of 1, for convenience in calculations with voi d * pointers and
pointers to functions.

-\Wast - qual
Warn when a cast removes a type qualifier from a pointer, for example if aconst char * is
casttoachar *.

-Wast-align
Warn if a pointer is cast to a type which has an increased alignment requirement. For example,

warn if a char * is cast to an i nt * on machines where integers require specific align-
ments.

-Write-strings
Give string constants the type const char [] . This will cause a warning to be generated if
a string address is copied into a non-const char * pointer.
-\Wonver si on
Warn if the existence of a prototype causes a different type conversion from the default, or if a
negative integer constant expression is implicitly converted to an unsigned type.
-VMggregate-return

Warn when functions that return structures, unions or arrays are defined or called.
-Vgtrict-prototypes

5 February 2005 04:34

410

Warn if afunction is declared or defi ned without specifying the argument types.
- Wh ssi ng- pr ot ot ypes
Warn if agloba function is defi ned without a previous prototype declaration, even if the defi -

nition itself provides the prototype. This warning is intended to help detect missing declara-
tions of global functions in header fi les.

- Wedundant - decl s
Warn if anything is declared more than once in the same scope, even in cases where multiple
declaration is valid and changes nothing.

- West ed- ext er ns

Warn if an ext er n declaration is encountered within an function.
-Wnline

Warn if a function was declared as inline, or the C++ option -fi nl i ne-functi ons was
specifi ed, and the function cannot be inlined.

-Vover | oaded- vi rt ual

C++ only: warn when a derived class function declaration may be an error in defi ning a virtual
function.

-\érror

Treat al warnings as errors.

Cpp options

-$ (gce)
Disable the use of the character $ in identifers. This is passed by gcc when the - ansi option
is specifi ed.

-A (gce)

- Aquestion(answer) asserts that the answer to question is answer. This can used with the pre-
processor conditional #if #gquestion (answer).

-A (gco)
Disable standard assertions. In addition, SVR4 cc undefi nes all standard macros except those
beginning with_.

-B (SunOS, Solaris)
Recognize the C++ comment string/ / .

-C (gce, SVR3, SuUnOS, Solaris, XENIX)
Do not strip comments from the preprocessor output.

- Dname (gce, SVR3, SunOS, Solaris, XENIX)
Defi ne name as 1. This is the equivalent to specifying - Dname=1 to cc and not the same as
- Dname.

5 February 2005 04:34

Chapter 0: Compiler options 411

- Dname=def (gce, SVR3, SunOs, Solaris, XENIX)
Define name. This is the same as the corresponding cc option. This will be overridden by
- Uhame even if the - Uoption appears earlier on the command line.

-dm (gce)
Suppress normal preprocessor output and output #define commands for all macros instead.
This can also be used with an empty file to show the values of predefined macros.

-dD (gco)
Do not strip #define commands from the preprocessor output. This can be useful for debug-
ging preprocessor macros.

-H (gce, SVR3, SunOs, Solaris)

Print the pathnames of included files on stderr.
-1 dir (gce, SVR3, SunOs, Solaris)

Add dir to the path to search for #include directives.

-1- (gce)
Search the list of include pathnames only when the #include directive is of the form #include
“header". Do not search these directories if the directive is #include<header>. In addition, do
not automatically search the current directory for header files. If -1 dir options are speci-
fied after - | -, they apply for all forms of the #include directive.

-imacros file (gcc)
Process file before reading the regular input. Do not produce any output for file—only the
macro definitions will be of use.

-include file (gcc)
Process file as input before processing the regular input file. The text of the file will be handled
exactly like the regular files.

-idirafter dir (gce)
Add dir to the second include path. The second include path is an include path which is
searched when a file isn’t found in the standard include path (the one built by the - | option).

-iprefix prefix (gce)
Specify a prefix for the - i wi t hpr ef i X option (see next entry).

-iw thprefix dir (gce)
Add a the directory prefix/dir to the second include path. prefix must previously have been set
with the iprefix command.

- | ang- language (gce)
Specify the source language. - | ang- c++ enables the comment sequence / / , - | ang- obj ¢
enables the #import command, - | ang- obj c++ enables both, - | ang- ¢ disables both.

-lint (gce)

Replace lint commands such as /* NOTREACHED */ with the corresponding pragma, e.g.
#pragnma | i nt NOTREACHED.

5 February 2005 04:34

412

-M (gcce, SunOs, Solaris)
Write a list of Makefile dependencies to stdout. Suppress normal preprocessor output.

-W (gce)
Like the - Moption, but only process #include “file"directives—ignore #include <file>.

-MD (gce)

Like the - Mdirective, but output to a file whose name is made by replacing the final .c with .d.
This option does not suppress preprocessor output.

-MD (gce)
Combination of - MDand - MM Does not suppress preprocessor output.
- nost di nc (gce)

Do not search the standard include file locations (like /usr/include) for header files. Only
search the directories specified with the - | option. A version - nost di nc++ exists for C++

programs.

-P (gee, SVR3, SunOs, Solaris, XENIX)
Do not output #line directives.

-p (SunQs, Solaris)
Limit the length of preprocessor directives to 8 characters.

- pedanti c (gce)
Issue the warnings that ANSI C specifies for specific situations. See Page 399 for more details.

-pedantic-errors (gce)
If the situations specified in the ANSI Standard occur, option them as errors rather than warn-
ings.

-R (SunOS, Solaris)
Allow recursive macros.

-T (SVR3, Sun0OSs, Solaris)
Limit the length of preprocessor directives to 8 characters. For backward compatibility only.

-traditional (gee)
Preprocess in the “traditional” (pre-ANSI) manner.

-trigraphs (gee)
Recognize and convert trigraphs.

- undef (SunQs, Solaris)
Undefine all predefined symbols.

- Uname (SVR3, Sun0Os, Solaris, XENIX)
Remove definition of name. This will also override - D options placed later on the command
line.

- undef (gce)

5 February 2005 04:34

5 February 2005 04:34

Chapter 0: Compiler options 413

Do not predefi ne standard macros.

- Ydir (SunOS, Solaris)
Search only directory dir for #include fi les.

-Vl | (gce)
Set both - Véorment and - Wr i gr aphs.

- V¢onment (gce)
Warn if the sequence/ * is found within a comment. This could imply that a comment end is
missing.

-Wraditional (gco)

Warn about macro parameters in strings. These are treated differently in ANSI and traditional
C.

-Wri graphs (gce)
Warn if trigraphs are encountered. Only effectiveif -ft ri gr aphs is also specifi ed.

Assembler directives and options

as options

It’s particularly evident that as seldom sees the light of day when you look at the options,
which differ greatly from one system to the next. GNU as doesn’t even maintain compatibil-
ity between versions 1 and 2, as you can see in the following table:

-a (GNU 2.x)

List high-level language, assembly output, and symbols. This is the generic form of the - a
option; the following variants modify this in some manner. Combinations are possible: for
example, - al h lists the high-level input and assembly output, but not the symbol table. In
order to get the high-level language input, you also need to specify the - g opt i on.

-ad (GNU 2.x)
List high-level language, assembly output, and symbols, but omit debugging pseudo-ops from
listing.

-ah (GNU 2.x)
List high-level language source.

-al (GNU 2.x)
List assembly output.

-an (GNU 2.x)
Disable forms processing of the listing. This only works in combination with other - a
options.

-as (GNU 2.x)
List symbols.

-D (GNU 1.x)
Turn on assembler debugging (if available).

-D (GNU 2.x)
No effect—just for compatibility.

-dl (SVR3)

415

5 February 2005 02:09

416

Don’t put line number information in object file.

-f (GNU 2.x)
skip preprocessing (for compiler output)

-g (GNU 1.x)
Generate debugging symbols for source language debugging of assembly programs.

-1 path (GNU 2.x)
Add path to the search list for . i ncl ude directives

-K (GNU 2.x)
Issue warnings when difference tables altered for long displacements.

-k (GNU 1.x)
Warn about problems with calculating symbol differences.

-L (GNU)
Keep local symbols starting with L in the symbol table output to object file.

-m (SystemV)
preprocess with m4

-N (SystemV)
Turn off long/short address optimization.

-0 (GNU 2.x, System V)
Specify output file name.

- (SystemV)
Put assembler version number in object file.

-R (GNU 1.x)
Merge the data segment into the text segment, making it read-only.

-R (SystemV)
Remove the input file after assembly.

-W (GNU 1.x)
Suppress warnings.

-f (GNU 1.x)

Suppress the preprocessor pass which removes comments and redundant white space from the
input. This can also be done with the #NO_APP directive.

-T (SystemV)
Accept (and ignore) obsolete directives without complaining.

-V (SystemV)
Print the current version number.

-V (GNU)

Print the current version number.

5 February 2005 02:09

Appendix C: Assembler directives and options 417

-W (GNU 2.x)
Suppress warning messages

-Y (SystemV)
Specify directory for m4 processor and predefined macros (Y, dir).

-vd (System V)
Specify directory for predefined macros (Yd, dir).

-Ym (System V)

Specify directory for m4 processor (Ym dir).

as directives

Assembler directives are mainly provided for the convenience of the compiler, and are seldom
documented. Here is a list of the directives provided by GNU as, one of the few which is doc-
umented. Many of these directives are provided only on certain platforms—read Using as, by
Dean Elsner and Jay Fenlason, for specific information.

. abort

Abort the assembly. This is obsolescent. It was intended to be used by a compiler piping its
output into the assembler when it discovered a fatal error.

. ABCRT
A synonym for . abort .
.align boundary [, content]

Increment the assembler location counter, (the pointer to the location where the next byte will
be emitted), to a boundary which has zeros in the last boundary binary positions. If content is
specified, any bytes skipped will be filled with this value.

.app-file string
Specify the start of a new logical file string. This is obsolescent.
.ascii gring ...
Emit each string into consecutive addresses. Do not append a trailing \ O character.
.asciz string
Emit each string into consecutive addresses. Append a trailing \ O character.
. byt e expressions
Emit zero or more expressions into the next output byte.
. comm symbol , length

Declare symbol a named common area in the bss section. length is the minimum length—the
actual length will be determined by the linker as the maximum of the length fields of all object

5 February 2005 02:09

5 February 2005 02:09

418

files which define the symbol.
. dat a subsection

Switch to data section subsection (default zero). All assembled data will go to this section.
. def name

Begin defining COFF debugging information for a symbol name. The definition is completed
by a. endef directive.

. desc symbol, abs-expression

Set the symbol descriptor to the low 16 bits of abs-expression. This is ignored if the assembler
is outputting in COFF format.

. doubl e flonums

Emit doubl e floating point number flonums.
. €j ect

Force a page break in the assembly listing at this point.
.el se

else in conditional assembly—see the . i T directive.
. endef

End a symbol definition begun with . def .
.endi f

End a conditional assembly block. See the . i f directive.
. equ symbol, expression

Set the value of symbol to expression. This is the same thing as . set .
.extern

In some assemblers, define a symbol external to the program. This is ignored by GNU as,
which treats all undefined symbols as external.

.file string

Specify the start of a new file. This directive is obsolescent, and may not be available.
fill repeat, size, value

Create repeat repeated data blocks consisting of the low-order size bytes of value.
.float flonums

Emit floating point numbers flonums.

. gl obal symbol

Appendix C: Assembler directives and options 419

Defi ne symbol as an external symbol.
-globlsymbol
A synonym for .global.
-hword expressions
Emit the values of each expression, truncated to 16 bits if necessary.
-ident
Thisdirectiveis used by some assemblers to place tagsin object fi les. GNU as ignoresit.
-1T expression

If expression evaluates to non zero, assemble the following code down to the corresponding
.else or .endif directive. If the next directive is .else, do not assemble the code
between the .else and the .endiT. If expression evaluates to 0, do not assemble the code
down to the corresponding .else or .endiF directive.

-ifdef symbol

Like . I, but the condition is fulfi lled if symbol is defi ned.
-ifndef symbol

Like . IF, but the condition is fulfi lled if symbol is not defi ned.
-ifhotdef symbol

Like . IF, but the condition is fulfi lled if symbol is not defi ned.
-include “file"

Process the source fi le file before continuing thisfi le.
-int expressions

Emit 32 bit values of each expression.
-Icomm symbol , length

Reserve length bytes of local common in bss, and give it the name symbol.
-In line-number

Change the logical line number of the next line to line-number. This corresponds to the C pre-
processor 1ine directive.

-In line-number
A synonym for . line.
-list

Increment the listing counter (initially 0). If the listing counter is > 0, the following lines will
be listed in the assembly listing, otherwise they will not. .nolist decrements the counter.

5 February 2005 02:09

5 February 2005 02:09

420

.1 ong expressions
A synonymfor.int.
.nol i st
Decrement the listing counter—see. | i st .
. octa bignums
Evaluate each bignum as a 16 byte integer and emit its value.
.org new-Ic, fill

Set the location counter of the current section to new-Ic. new-lc must be either absolute or an
expression in the current subsection: you can’'t use . org to cross sections. . org may not
decrement the location counter. The intervening bytes are fi lled with the value fi Il (default 0).

. psi ze lines, columns

Set the page size for assembly listings to lines lines (default 60) and columns columns (default
200). If linesis set to 0, no automatic pagination will occur.

. quad bignums

Evaluate each bignum as an 8 byte integer and emit its value.
.sbttl subheading

Set the subtitle of assembly listings to subheading.
. section name, subsection

Switch to section called nane (default . t ext), subsection (default zero). All emitted data
goes to this section.

. set symbol, expression

Defi ne the value of symbol to be expression. This may be used more than once to change the
value of symbol after it is defi ned. The value of an external symbol will be the value of the last
. set directive.

.short expressions
Emit the values of each expression, truncated to 16 bitsif necessary.
.singl e fonums
Emit fbating point numbers fonums. Thisisthe sameas. f | oat .
. Space size fill
Emit size bytes of valuefi Il. fi || defaultsto O.
. Space

Usually a synonym for .block, but on some hardware platforms GNU as usesit differently.

5 February 2005 02:09

Appendix C: Assembler directives and options 421

. stabd

Emit debug information. See page for more information.
. stabn

Emit debug information. See page for more information.
. stabs

Emit debug information. See page for more information.
.text subsection

Switch to text section subsection (default zero). All assembled data will go to this section.
.title heading

Set the title of the assembly listing to heading.
.word expressions

Emit 32 bit values of each expression.

Debug information

Debug information is very dependent on the kind of object file format in use: In a.out format,
it is defined by the directives . st abd, . st abn and . st abs. They can take up to five parame-
ters:

e descis the symbol descriptor, and is 16 bits wide.

e other is the symbol’s “other” attribute. This is normally not used.
e gtring is the name of the symbol.

e typeisthe symbol type, and is 8 bits wide.

« valueis the value of the symbol, and must be absolute.

These symbols are used as follows:
.stabd type, other, desc

Define a debugging entry without a name. The value of the symbol is set to the current value
of the location counter. This is commonly used for line number information, which is type 68
for line number references in the text segment. For example . st abd 68, 0, 27 specifies
that the current location is the beginning of line 27.

.stabn type, other, desc, value
Define a debugging entry without a name. The value of the symbol is set to value.
.Stabs string, type, other, desc, value

Define a debugging entry with the name string. The value of the symbol is set to value.

422

For further information about stabs formats and types, see the header fi le stab.h and the man
page stab(5).

In COFF format, it is defi ned by the directives. di m . scl , . si ze, .tag, . type and . val .
They are enclosed in a. def /. endef pair. For example, to defi ne a symbol f oo, you would
write

. def foo
.val ue bar
.size 4

. endef

.dim

Set dimension information.
.scl class

Set the storage class value of the symbol to class.
.size gsize

Set the size of the symbol to size.
.tag structname

Specify the struct defi nition of the current symbol.
.type int

Set the type of the symbol to type.
.val addr

Set the value of the symbol to addr.

In ELF format, debug information is output to a specia section called . debug, so no specifi ¢
directives are needed.

5 February 2005 02:09

5 February 2005 04:34

Linker options

Like the assembler, the linker seldom sees the light of day: you normally start both programs
via the C compiler control program cc. As with the assembler, this gives rise to a surprising
diversity of options. The following list compares the linker options for the GNU linkers (two
of them, with conflicting options), SCO UNIX, Solaris 2, SunOS 4, System V.3, System V.4,
and SCO XENIX. Currently available BSD systems use one of the GNU linkers: for example,
BSD/386 up to version 1.1 uses the old linker, and BSD/OS 2.0 uses the new linker. The
Solaris 2 linker is basically the System V.4 linker, but it has a few extra flags. Unless other-
wise noted, all SVR4 options also apply to Solaris 2.

- Aarchitecture (GNU)
For the Intel 960 family only: architecture is a two-letter abbreviation specifying a member of
the processor family.

- A file (old GNU)
Don’t incorporate the text and data from file into the output file, just use the symbols. This
can be used to implement crude dynamic loading.

- A file (SunOSs 4)

Perform an incremental load: the resultant output file is to be read in to a process executing
from the program file, which will be used to resolve symbolic references.

- A address (XENIX)
Produce a standalone program to be loaded at address.

-a (SCO, SVR3, SVR4)
Produce an executable file. This is the default behaviour, and is the opposite of the - r option.

-align datum (SunOSs 4)
Force datum to be page-aligned. This is typically used for FORTRAN common blocks.

-assert assertion (SunOS 4)

Check an assertion. If the assertion fails, print a diagnostic and abort the link.
- Bbinding (SunOS 4, Solaris 2)

Specify the kind of binding to perform. binding may be dynam c (perform dynamic binding
at run time), nosynbol i ¢ (do not perform symbolic relocation), st at i ¢ (perform static

423

424

binding at link time), or synbol i ¢ (force symbolic relocation). Solaris 2 does not support the
keyword nosynbol i c.

-Bstatic (SunOS 4, GNU)
Specify static libraries only. GNU Ild accepts this option, but ignores it.

- B number (XENIX)
Set the text selector bias to number

-b (SVR4)

When performing dynamic linking, do not perform special processing for relocations to sym-
bols in shared objects.

-b format (new GNU)

Specify the binary format of the files whose names follow. This is only needed when linking
files with multiple formats.

-C (XENIX)
Ignore the case of the symbols.

-c file (new GNU)
Read commands from fi le. These commands override the standard link format.

-Cc X (XENIX)
Specify the target CPU type 80x86. x defaults to 3.

-D size (old GNU, Sun0OS4)

Pad the data segment to size. The padding may overlap with the bss segment. The SunOS 4
linker interprets size in hexadecimal.

- D number (XENIX)
Set the data selector bias to number.

-dyn (SVR4)
Specify dynamic (ynis y) or static (yn is n) linking.

-d (GNU, SunOS4)
When creating a relocatable output file with the - r option, convert “common” symbols to bss.

-dc (SUnOS 4)
Perform the - d option, but also copy initialized data referenced by this program from shared
objects.

-dp (SUnOS 4)
Force an alias definition of undefined procedure entry points. Used with dynamic binding.

- def sym symbol = expression (new GNU)

Create the global symbol symbol in the output file and assign the value expression to it.
-e symbol (all)
Set the entry address in the output file to symbol.

5 February 2005 04:34

5 February 2005 04:34

Appendix D: Linker options 425

- Fformat (new GNU)

-F

-F

-f

This is an obsolete option which some older linkers used to specify object file formats. GNU
Id accepts it, but ignores it.

name (Solaris 2)

Used when building shared objects. The symbol table of the shared object being built is used
as a “filter” on the symbol table of the shared object name.

size (XENIX)
Reserve size bytes for the run-time stack.
fill (SCO, SVR3)

Fill unassigned memory (gaps in text and data segments, and also the bss segment) with the
16-bit pattern fi Il.

-format format (new GNU)

-G

-h

-L

Specify the binary format of the files whose names follow. This is the same as the - b option.
size (new GNU)
Only for MIPS ECOFF format: set the minimum size of objects to be optimized using the GP
register.
(Solaris 2)
Produce a shared object in dynamic mode.
(new GNU, XENIX)

Include symbolic information in the output file. The GNU linker accepts this option, but
ignores it, since this is the default behaviour.

name (SVR4)
When building a dynamic object, record name as the name of the file to link at run time.
name (Solaris 2)

Use name as the path name of the interpreter to be written into the program header. In static
mode, name defaults to no interpreter, and in dynamic mode it defaults to /usr/lib/ld.so.1.

(new GNU)
Create a relocatable output file. Same as the -r option.
(Solaris 2)
Ignore the LD_LI BRARY_PATH setting.
(XENIX)

Create separate instruction and data space for small model programs.
dir (alh)
Search the given directory for library archives in addition to the default directories. Id

searches directories supplied with the - L option in order of appearance in the argument list
and before the default directories.

lib @l

426

Search the specifi ed libraries for alibrary called libl i b.a. Thisisthe same asthe C compiler

-1 option. SunO4 alowsyou towrite-1 lib.version to indicate a specific
library version nunber.

-La (XENIX)
Set advisory fi lelocking

-Lm (XENIX)
Set mandatory fi le locking.

- LI [NENUMBERS] (SCO)
Create amap fi le including line number information.

-M (GNU, SunOS 4)
Print aload map on the standard output.

- M mapfi le (Solaris 2)
Read directivesto |d from mapfi le.

-M (SCO, SVR3)
Print warning messages for multiply defi ned external defi nitions.

-m (SCO, SVR3, SVR4)
Print aload map on the standard output.

- Mk (XENIX)
Specify the memory model. x can bes (small), m(middle), | (large), h (huge), or e (mixed).

- m emulation (new GNU)
Emulate the emulation linker.

-mfile (XENIX)
Writeamap listing tofi le.

- M AP] : number (SCO)
Create amap listing with up to number symbols. number defaults to 2048.

-Map file (new GNU)
Print aload map to fi le.

-N (GNU, SunOS 4)

Create an OVAA Cformat binary. Thisisthe default format for relocatable object fi les.
QVAQ Cformat binaries have writable text segments. Where appropriate, this option implies

-Bstatic.

-N (SVR3)
Place the text section at the beginning of the text segment, and the data segment immediately
after the text segment.

-N num (XENIX)
Set the page size to hum bytes.

5 February 2005 04:34

Appendix D: Linker options 427

-n (GNU, SunOS 4)

Create an NMAGIC format shared executable binary. The text segment isread-only. Where
appropriate, thisoption implies-Bst ati c.

-n num (XENIX)
Truncate symbol names to num characters.

- noi nhi bi t - exec (new GNU)
Create an output fi e even if errors are encountered during linking.

-0 file (all)
Write output to fi le instead of the default a.out.

-of or mat format (new GNU)
Write the output fi le in format format.

-P (XENIX)
Disable packing of segments.

-p (Sun0OS 4)
Start the data segment on a page boundary, even if the text segment is not shared.

-Qn (Solaris 2)

If ynisy, add an ident string to the .comment section of the output fi le identifying the version
of the linker used. cc does this by default. - Qn suppresses this header.

-q (old GNU on BSD)
Create aQVAQ Cformat demand loaded executable binary.

-Rfile (new GNU)
Read symbal information from fi le, but do not include it in the output.

-R (XENIX)
Ensure arelocation table of non-zero size.

-Rd offset (XENIX)
Set the data segment relocation offset to offset.

-R offset (XENIX)
Set the text segment relocation offset to offset.

- R paths (Solaris 2)
Specify paths as a colon-separated list of directories to be searched for libraries by the run-
time linker.

-r (al)
Generate arelocatable output fi le.

-S (GNU, Sun0S 4)
Strip only stab symbols from a.out fi les.

-s (al)

5 February 2005 04:34

428

Strip all symbols from the output fi le. This overrides other strip options.

- SH GVENTS] : number (SCO)
Allow the program to have number segments. The default value is 128.

-sort-comon (new GNU)
Disable sorting of common blocks by size.

-ST[AXK] : size (SCO)
Specify that the stack should be size bytes long.

-T file (new GNU)

Read commands from fi le. These commands override the standard link format. Thisisthe
same asthe - ¢ option.

-T address (old GNU, SunOS4)
Start the text segment at address.

- Tbss address (new GNU)
Start the bss segment at address.

- Tdat a address (GNU, Sun0OS 4)
Start the data segment at address.

- Ttext address (GNU, Sun0OS 4)
Start the text segment at address. The sameas- T.

-t (GNU)
Print the names of input fi lesto stderr asthey are processed.

-t (SCO, SVR3, SVR4)
Do not warn about multiply defi ned symbols of different size.

-u symbol (all)
Consider symbol to be undefi ned. This can be used to force the extraction of certain fi lesfrom
alibrary.

-U (new GNU)
Generate relocatable output, like the-r option. For C++ programs only, resolve references to
constructors.

-V (new GNU)
Print full version number information, including supported emulations.

-V (SCO, SVR3, Solaris 2)
Print version number information for Id.

-VS number (SCO, SVR3)
Store version number in the optional header of the output fi le.

-V (new GNU)

Print version number information for Id only.

5 February 2005 04:34

5 February 2005 04:34

Appendix D: Linker options 429

—version (new GNU)

Print version number information for Id only, then exit.

-warn-common (new GNU)
Warn when a common symbol is combined with another common symbol or with a symbol
defi nition.

-X (GNU, SunOS 4)
Strip local symbols which start with the letter L. Thisisthe default behaviour of the assem-
bler. The new GNU linker will only perform this operation if the —s or -S options are also
specifi ed.

-X (GNU, SCO, sun0Ss4, SVR3)
Strip al local symbols. The new GNU linker will only perform this operation if the —s or -S
options are also specifi ed.

-Y [L][V], dir (SCO, SVR3, SVR4 in BSD mode)
Change the default directory used for fi nding libraries. If L is specifi ed, the standard library

directory (LLIBDIR, normally /usr/lib) is replaced with dir. If U is specifi ed and the linker was
built with a second library directory (LLIBDIR), it isreplaced with dir.

-YP, dir (Solaris 2)
Change the default directory used for fi nding libraries to dir.

-y symbol (old GNU, SunOS4)
Trace symbol on stderr during linking.

-z (old GNU, SunOS4)
Create a ZMAGIC format demand loaded executable binary. On SunOS 4, thisimpliesthe
-Bdynamic option.

-z (SCO, SVR3)
Do not bind anything at address O, in order to allow run-time detection of null pointers.

-z defs (Solaris 2)

Force afatal error if any undefi ned symbolsremain at theend of alink. Thisisthe default for
executables, but not for relocatable output.

-z nodefs (Solaris 2)
Allow undefi ned symbolsin an executable.
-z text (Solaris 2)

Force afatal error if any relocations against non-writable, allocatable sections remain when
performing adynamic link.

5 February 2005 04:34

Where to get sources

In this book, I’ve mentioned a large quantity of freely available software. Here’s some infor-
mation on how to get it.

All the software is available on the Internet, but a large quantity is also available on CD-ROM,
sometimes ported to specific platforms. Your choice of where to get it from depends a lot on
how often you need the software, how fast your connection to the Internet is and how much
you pay to transfer data on the Internet. | personally prefer to keep as many packages as pos-
sible on CD-ROM.

CD-ROM producers

A large number of companies produce CD-ROMs, but the following are of particular interest:

The Free Software Foundation
675 Massachusetts Avenue
Cambridge

MA, 02139

Phone: +1 617 876 3296
Mail: gnu@rep.ai . mt. edu

The producers of GNU software. They sell a CD-ROM with all the GNU software. If you buy
your CD-ROM here, you also help support the Free Software Foundation, which is dependent
on such income to survive.

The primary Internet site for the Free Software Foundation is prep@i . mt. edu, and you
can find the software in the directory / pub/ gnu. This site is frequently overloaded, so please
use more local mirrors where possible.

InfoMagic, Inc.

P.O. Box 30370

Flagstaff

AZ 86003-0370

Phone: +1-800-800-6613
+1-602-526-9565

431

5 February 2005 04:34

432

Fax: +1-602-526-9573
Mail: i nf o@nf omagi c. com

A number of UNIX-oriented CDs, including Internet tools, Linux, and standards.

O'Reilly & Associates

103A Morris Street

Sebastopol

CA 95472

Phone: +1-800-998-9938
+1-707-829-0515

Fax: +1-707-829-0104

Mail: or der @r a. com

Our favourite source. High-quality, well-thought out books on UNIX, many with CD-ROMs.

Prime Time Freeware

370 Altair Way, Suite 150
Sunnyvale

CA 94086

Phone: +1-408-433-9662
Fax: +1-408-433-0727

Mail: pt f @f cl . com

A small supplier of software of special interest to programmers: well-organized, six-monthly
distributions of the latest software packages, source only, including separate editions for TEX
and artificial intelligence. In addition, ported software for System V.4 (Intel) and Sun plat-
forms.

Walnut Creek CD-ROM

4041 Pike Lane, Suite D-893

Concord

CA 94520

Phone: +1-800-786-9907
+1-510-674-0783

Fax: +1-510-674-0821

Mail: or der s@dr om com

By far the largest choice of CDs, including nearly everything the other companies have to
offer. Mainly ported software, including definitive FreeBSD distribution and ported software
for System V.4 (Intel), Linux, and Sun.

5 February 2005 04:34

Appendix E: Where to get sources

433

Table E—1: Software sources

Package Internet site CD suppliers
GNU software prep. ai.nit.edu:/pub/ gnu FSF, PTF, WC
4.4BSD Lite IM, ORA, WC
ghostscript in GNU distribution FSF, PTF, WC
jargon file In GNU distribution PTF, FSF
ncurses net com com pub/ znbenhal / ncur ses

patch in GNU distribution PTF, WC, FSF
RCS in GNU distribution PTF, WC, FSF
tcpdump ftp.ee.lbl.gov wct

TeX ft p. shsu. edu: / t ex- ar chi ve PTF, WC
dvips in TEX distribution PTF

dviware in TEX distribution PTF

ghostview in TEX distribution PTF

POSIX.2 regex zoo. t oront 0. edu: / pub

SeeTeX in TEX distribution PTF

tlascii in TEX distribution PTF

X11 ftp. x. org:/ pub/ R6 PTF, ORA, WC

System V shared mem-
ory

ftp.ora.com—fill in this space XXX

! tcpdump isincluded in the FreeBSD distribution.

The initials of the CD-ROM publishers are self-evident. The initialsin bold print are, in my
personal opinion, the best choice for the package in question. Your mileage may vary.

5 February 2005 04:34

Bibliography

4.4 Berkeley Software Distribution System Manager’s Manual. O’Reilly & Associates, Inc.,
1994,

A Fast File System for UNIX. Marshall Kirk McKusick, William N. Joy, Samuel J. Leffler
and Robert S. Fabry. A description of the Berkeley Fast File System, now known as ufs
(Unix File System). Chapter 5 of the Berkeley Software Distribution System Manager’s Man-
ual.

A Stream Input-Output System. Dennis M. Ritchie, in AT&T Bell Laboratories Technical
Journal, Volume 63, No. 8, Part 2, page 1897. A description of the original Eighth Edition
Streams concept.

Advanced Programming in the UNIX environment. W. Richard Stevens, Addison Wesley
1992. An excellent treatise on systems programming under modern UNIX variants.

CVS II: Parallelizing Software Development. Brian Berliner, in RCS distribution.

Checking C Programs with lint. lan F. Darwin, O’Reilly & Associates Inc., 1988. A descrip-
tion of the lint program checker.

Connecting to the Internet. Susan Estrada, O’Reilly & Associates Inc., 1993. A Buyer’s
Guide to the Internet.

Encyclopedia of graphics file formats. James D. Murray and William vanRyper, O’Reilly
and Associates Inc., 1994. Includes CD-ROM. A complete description of graphics file for-
mats.

Learning the UNIX Operating System. Grace Todino, John Strang and Jerry Peek, O’Reilly
and Associates Inc., 1993. A straightforward introduction to UNIX.

Making TEX work. Norman Walsh, O’Reilly and Associates Inc., 1994. A usable book on
TEX.

Managing projects with make, Second Edition. Andrew Oram and Steve Talbott, O’Reilly
and Associates Inc., 1991.

Managing uucp and Usenet, tenth edition. Tim O’Reilly and Grace Todino, O’Reilly and As-
sociates Inc., 1992. The definitive guide to uucp management.

POSIX Programmer’s Guide. Donald A. Lewine, O’Reilly & Associates Inc., 1991.
Portability of C Programs and the UNIX System. S. C. Johnson, D. M. Ritchie, published
in the Bell System Techinical Journal July/August 1978, Volume 57, No. 6, Part 2, pages

435

5 February 2005 04:34

436

2021-2048. An early description of the portable C compiler.

Practical C Programming, second edition. Steve Oualline, O’Reilly and Associates Inc.,
1992. A mid-level book stressing robust programming techniques rather then “clever” pro-
gramming.

Programming with curses. John Strang, O’Reilly and Associates Inc., 1986. A description of
the BSD version of curses.

Programming with GNU Software. Mike Loukides, O’Reilly & Associates, Inc., 1995
RCS—A System for Version Control. Walter F. Tichy, 1991. Part of the RCS distribution.
RS-232 made easy, second edition. Martin D. Seyer, Prentice-Hall 1991. A discussion of the
RS-232 standard.

SCO UNIX in a Nutshell. Ellie Cutler and the staff of O’Reilly & Associates, Inc. O’Reilly
and Associates Inc., 1994.

Software Portability with imake. Paul DuBois, O’Reilly & Associates Inc., 1993. A complete
manual for imake and associated topics.

TCP/IP lllustrated, Volume 1. W. Richard Stevens, Addison Wesley 1994. A description of
the IP protocol suite from the viewpoint of the tcpdump program.

Termcap and Terminfo. John Strang, Tim O’Reilly and Linda Mui. O’Reilly and Associates
Inc., 1989. A description of Termcap and Terminfo.

The TEXbook , Donald E. Knuth, Addison Wesley, 1989. A mystery story about TEX, also the
main reference.

The Annotated C++ Reference Manual, Margaret A. Ellis and Bjarne Stroustrup. Addison
Wesley, 1990. The definitive reference manual for C++,

The C Programming Language, first edition. Brian W. Kernighan, Dennis M. Ritchie, Pren-
tice-Hall, 1978. The first complete description of the C programming language.

The Design and the Implementation of the 4.3BSD UNIX Operating System. Samuel J. Lef-
fler, Marshall Kirk McKusick, Michael J. Karels, John S. Quarterman. Addison-Wesley,
1990. The definitive description of the 4.3BSD kernel and communications.

The Design of the UNIX System. Maurice J. Bach, Prentice-Hall, 1986. An in-depth descrip-
tion of an early version of System V.

The Magic Garden explained: The Internals of UNIX System V Release 4. Berny Goodheart
and James Cox, Prentice-Hall 1994. The definitive guide to the internals of System V Release
4,

The New Hacker’s Dictionary. Eric Raymond (ed.), MIT Press 1991.

The Standard C Library. P. J. Plauger, Prentice-Hall 1992. An in-depth description of the
Standard (i.e. ANSI) C library.

The Whole Internet User’s Guide and Catalog, second edition. Ed Krol, O’Reilly & Asso-
ciates Inc., 1994. The definitive guide to the Internet.

The evolution of C—Past and Future. L. Rosler, in AT&T Bell Laboratories Technical Jour-
nal, Volume 63, No. 8, Part 2, page 1685. A description of the state of the C language in
1984,

5 February 2005 04:34

Appendix F: Bibliography 437

Travelsinto several remote nations of the world, by Lemuel Gulliver. Jonathan Swift,
Begjamin Motte, London, 1726. A satirical treatment of early 18th century English politics.
Typesetting tables with tbl. Henry McGilton, Mary McNabb, Trilithon Press, 1990. A tutorial
introduction to thl.

UNIX Curses Explained. Berny Goodheart, Prentice-Hall 1991. A description of BSD and
System V versions of Curses.

UNIX in a Nutshell, for System V and Solaris 2.0. Daniel Gilly and the staff of O’ Reilly &
Associates, Inc. O'Reilly and Associates Inc., 1992.

UNIXin a Nutshell, for 4.3BSD. c the staff of O’ Reilly & Associates, Inc. O'Reilly and As-
sociates Inc., 1990.

UNIX Network Programming. W. Richard Stevens, Prentice-Hall 1990. Includes a compari-
son of sockets and STREAMS,

UNIX Power Tools. Jerry Peek, Tim O’ Reilly, Mike Loukides, O’ Reilly and Associates Inc.,
1993. Includes CD-ROM. An indispensible collection of tips and tricks.

UNIX System V Application Binary Interface, Revised Edition, UNIX Press, 1992.

UNIX Time-sharing system UNIX Programmer’s Manual, Seventh Edition. Holt, Rinehart
and Winston, 1979. The original Seventh Edition UNIX documentation (two volumes).
Understanding and using COFF. GintarasR. Gircys, O'Reilly & AssociatesInc., 1988. A
description of the Common Object File Format.

Using as. A detailed description of GNU as, Dean Elsner and Jay Fenlason, source only from
the Free Software Foundation. Part of the GNU binutils distribution.

Using uucp and Usenet. Grace Todino and Dale Dougherty, O’ Reilly and Associates Inc.,
1987. The defi nitive guide to using uucp.

X Window System Administrator’s Guide (Volume 8 of the X Window System documenta-
tion). LindaMui, Eric Pearce, O'Reilly & Associates Inc., 1993. Available with companion
CD-ROM.

lex and yacc, Second Edition. John R. Levine, Tony Mason and Doug Brown, O’ Reilly &
Associates Inc., 1992.

sed and awk. Dale Dougherty, O'Reilly & AssociatesInc., 1992. An in-depth treatment of
both utilities.

sendmail. Bryan Costales with Eric Allman and Neil Rickert, O’'Reilly & Associates Inc.,
1993. Everything you never wanted to know about sendmail.

