
Translation is the art of failure. — Umberto Eco

This article is meant for everyone who needs to translate C/C++ headers to Delphi. I want to share some of the pitfalls you

can encounter when converting from C or C++. This article is not a tutorial, just a discussion of frequently encountered

problem cases. It is meant for the beginner as well as for the more experienced translator of C and C++.

I never use notes, they interfere with me. — Ken Blanchard

This is not a tutorial on header conversion. You can �nd a tutorial on the JEDI site. You can also start on the JEDI API how-to

page. This article assumes you have su�cient knowledge of the Delphi language, and some (reading) knowledge of C and/or

C++. You should also have read the documents on conversion, formerly on the JEDI pages, and the Borland conversion

documentation, if you want your conversion to be compliant with Borland or JEDI standards (this is not required though).

I have found another tutorial for the translation of C and C++ (not only headers) to Delphi. I didn’t read it in full, so I don’t

know how accurate it is. But it seems to discuss every construct.

In this article I often use the word “function”, since that is how they are called in C and C++. In Delphi, you have both

functions and procedures, but you might say that procedures are just a special case of functions, without a return value. So

if I write “function”, I mean both “function” and “procedure”. Sometimes I use the word “routine” as well, with the same

meaning.

When the conversion must also be usable in C++Builder, you must take care not to forget to use the {$EXTERNALSYM

SomeSymbol} and perhaps the {$NODEFINE SomeSymbol} directives where appropriate. More on this later on. In the sources

displayed in the article, I purposely omitted most of them, because they greatly decrease the signal-to-noise ratio.

C and C++ use a lot of pointers, in structures, in parameters, etc. If you have problems understanding or using pointers, you

should perhaps read my article "Addressing pointers".

To help me with some of the most annoying tasks of header conversion, I wrote a simple IDE expert for myself. This is also

available for download.

This article is (currently) entirely meant for the Win32 (and Win64) versions of Delphi. The principles explained here don’t

fully apply to the Microsoft .NET versions, using PInvoke, although some parts do. People using .NET might be interested in

using the .NET translations of Win32 functions on PINVOKE.NET. Since this site produces C# translations, this can be

combined (if you want, since you can also use the C# functions directly) with Embarcadero’s Babelcode webservice.

True art selects and paraphrases, but seldom gives a verbatim translation. — Thomas Bailey Aldrich

Probably the easiest, and most often made mistake is using the wrong calling convention. Now you may say: “My code is

unconventional, so I don’t need them anyway”, but it’s not that simple. So what is a calling convention?

To call a function, you must often pass parameters to it. There are plenty ways how this can be done. In old BASIC

programs, you would just load some global variables with values and use these in your subroutine. Fortunately, things have

become a bit more sophisticated, and we know two major ways of doing it (on Windows). You either pass the parameters on

the calling stack (the place the processor also places the temporary pointer to the code following the call, so it knows where

to continue after the call was done), or you pass some of them in registers. Floating point values can also be passed on the

stack of the coprocessor.

Calling conventions rule how parameters will be passed (stack only or registers), in which order they will be passed (from

Rudy's Delphi Corner

Rudy's Delphi Corner - Pitfalls of converting http://rvelthuis.de/articles/articles-convert.html

1 von 30 09.03.24, 08:12

http://jedi.grizzlydev.com/www/files/manuals/Tutorial4.zip
http://jedi.grizzlydev.com/www/files/manuals/Tutorial4.zip
http://rvelthuis.de/jedi.html
http://rvelthuis.de/jedi.html
http://delphi-jedi.org/api-howto.html
http://delphi-jedi.org/api-howto.html
http://rvelthuis.de/articles/apipackspec.html
http://rvelthuis.de/articles/apipackspec.html
http://edn.embarcadero.com/article/10281
http://edn.embarcadero.com/article/10281
http://edn.embarcadero.com/article/10281
http://edn.embarcadero.com/article/10281
http://www.awitness.org/delphi_pascal_tutorial/c++_delphi/
http://www.awitness.org/delphi_pascal_tutorial/c++_delphi/
http://rvelthuis.de/articles/articles-pointers.html
http://rvelthuis.de/articles/articles-pointers.html
http://rvelthuis.de/programs/convertpack.html
http://rvelthuis.de/programs/convertpack.html
http://rvelthuis.de/zips/convertpack.zip
http://rvelthuis.de/zips/convertpack.zip
http://www.pinvoke.net/
http://www.pinvoke.net/
http://lingua.embarcadero.com/babelcode/client/BabelClient.aspx
http://lingua.embarcadero.com/babelcode/client/BabelClient.aspx

left to right, i.e. in the same order as they appear in source code, or the other way around), and which code will clean the

stack after use, if necessary. There are a lot of possible combinations, but Delphi currently knows 5 (or well, 6, if you count

winapi) of them:

• pascal, the original but mostly obsolete calling convention for old Pascal programs;

• register, the current default calling convention in Delphi (__fastcall in C++Builder);

• cdecl, the standard calling convention for C and C++ code;

• stdcall, the default cross-language calling convention on 32-bit Windows;

• winapi, an undocumented but supported alias for stdcall; and

• safecall, a special case of stdcall, which can be ignored for now.

The problem that often arises is, that either no calling convention is mentioned at all, or the wrong one is used. If you don’t

mention any convention in your code, this means the Delphi compiler will use register. But if the original C/C++ code didn’t

mention one either, it will use cdecl as a standard. So your converted code will not work, or worse, it will cause a crash.

There are a few ways to try to determine the calling convention. First, C/C++ either uses __cdecl (by default), but can be

instructed to use __stdcall or __pascal, or even __fastcall (register). The latter is however not completely compatible with

Delphi’s register (di�erent registers are being used). To make things even more confusing, C++ Builder also has a __fastcall,

which is compatible with Delphi, but also knows the __msfastcall convention, which is compatible with Microsoft’s __fastcall.

We may see this in a newer version of Delphi too. But if you see these keywords, you know which convention is being used.

Note: the usual calling convention for Windows DLLs is stdcall. Most of the Windows APIs use this convention. In Linux, there is

no stdcall, and the default is cdecl there.

But the convention can be hidden in a macro (often an all capital word, like PASCAL). These are often #de�ned in another

header �le, to which you many not even have access. If you do, follow all includes until you have found one of the keywords

mentioned above (i.e. _pascal or __stdcall, don’t mind the number of underscores, that’s a C compiler thing). Be aware that

the values of the macros can be di�erent for di�erent platforms, so make sure the type you found is the de�nition for

Win32, and not for the Mac or the Alpha.

One case that is really annoying is FAR PASCAL . You might expect this to be translated to far; pascal; but this is far from the

truth. In 32-bit Windows, PASCAL seems to be #de�ned as __stdcall, and FAR as an empty macro (far is something that was

necessary for segmented 16-bit DOS/Windows 3.x code, not for Windows 32-bit code). So to �nd out the correct calling

convention may require some detective work. A good searching tool, like grep, can help you with this.

The most common macros are these:

CALLBACK __stdcall stdcall

WINAPI __stdcall stdcall

WINAPIV __cdecl cdecl

APIENTRY WINAPI stdcall

APIPRIVATE __stdcall stdcall

PASCAL __stdcall stdcall

FAR (nothing) (nothing)

Other macros are either de�ned in terms of these macros, or directly as __stdcall, __cdecl, etc.

If you can’t �nd the place where the macro was de�ned, there is one trick left. Normally, under 32-bit Windows, you can

expect stdcall. However, some headers still use cdecl. To �nd out which one it is, you should do a test. Declare only one of

the functions (but one with parameters) in the header as stdcall. Now call this function in code, and put a breakpoint on it.

Debug the code, and as soon as the breakpoint is reached, open the CPU window of the IDE. Note the value of the ESP

Rudy's Delphi Corner - Pitfalls of converting http://rvelthuis.de/articles/articles-convert.html

2 von 30 09.03.24, 08:12

register. Now step over the function with , and note the ESP value again. If it was changed, you were right, and it was a

stdcall function (the function cleaned the stack, changing the stack pointer as an e�ect). If it didn’t change, it was a cdecl

function. If you are familiar with assembler, you might even directly see the cleaning of the stack (something like ADD

ESP,xxx).

In 64 bit Windows (for AMD or Intel), there is only one public calling convention. It is described on the MSDN site. DLLs will

and should not use anything else. Delphi can use and produce it.

If you want to share your translations between Win32 and Win64, there is no need to remove declared calling conventions

like stdcall or cdecl. The Win64 compiler will simply ignore them.

If you have a procedure with 10 parameters, you probably missed some. — Alan Perlis

Parameter passing in C or C++, and Delphi is often di�erent. In C, all parameter passing is “by value”, which means that a

copy of the value is passed to the routine. In C++, there is also passing by reference, when a reference type is used (like int&

myInt). In headers, you’ll hardly ever see the latter. Delphi is a little richer however, and even more is Microsoft’s MIDL

(Microsoft Interface De�nition Language). I assume that you are familiar with the data types, and the parameter

declarations in C and C++, since I don’t want to discuss them. I only want to point out, where something that seems obvious

could go wrong, because of the di�erences in language.

You’ll often see the const keyword being used. For parameters, const in Delphi has quite a di�erent meaning than in C or C+

+. In Delphi, it means that the parameter will not be changed in the routine. This is important for reference counted types,

like strings, dynamic arrays, variants and interfaces, and for “large” types. For large types, it only has importance for the

Delphi code that is being generated, not for the interface of the function. For reference counted types, it can be important.

Since Delphi strings and dynamic arrays should not be passed as reference counted types to API functions anyway (more

about this later on), this only leaves interface types.

First a bit about const parameters in Delphi. They will either be passed by value, or by reference, depending on which of

these is more e�cient. Since the rules are not too easy to remember, and di�erent from what const means in C, the safest

thing you can normally do, is to ignore the C const keyword alltogether. It will make no di�erence to your code, and not to

the code being called either.

Interfaces are di�erent. However, it is best not to declare them as const either. Omitting const will cause a call to _AddRef

before the call, and one to _Release afterwards, but that doesn’t a�ect either the calling code, nor the code being called. It is

usually safer for the lifetime of the interface.

Pointer parameters are often hard to translate properly. Embarcadero’s documents tell you to use var wherever possible, to

make the code more Delphi-like. “Wherever possible” means, that pointers should be converted as var parameters (i.e.

passed by reference), if you can be sure that never a nil value can be expected, and that the pointer is not pointing to an

array (more on this later). This requires a thorough study of the API documentation, since this information is not always very

obvious. If you are in doubt, don’t use var, but translate to a pointer type, even if this means that you’ll have to de�ne it. If

you do so, you should preferrably de�ne the pointer type with a {$NODEFINE} directive, so it will not appear in a .hpp �le for

C++Builder.

An example:

1

2

3

4

5

virtual HRESULT STDMETHODCALLTYPE GetBindString(

/* [in] */ ULONG ulStringType,

/* [out][in] */ LPOLESTR __RPC_FAR *ppwzStr,

/* [in] */ ULONG cEl,

/* [out][in] */ ULONG __RPC_FAR *pcElFetched) = 0;

Rudy's Delphi Corner - Pitfalls of converting http://rvelthuis.de/articles/articles-convert.html

3 von 30 09.03.24, 08:12

https://docs.microsoft.com/en-us/cpp/build/overview-of-x64-calling-conventions
https://docs.microsoft.com/en-us/cpp/build/overview-of-x64-calling-conventions

If we remove the – for us – unnecessary macros and comments:

1

2

3

4

5

virtual HRESULT STDMETHODCALLTYPE GetBindString(

ULONG ulStringType,

LPOLESTR *ppwzStr,

ULONG cEl,

ULONG *pcElFetched) = 0;

this will become (documentation said the pointer points to an array):

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

type

{$NODEFINE POLEStrArray}

POLEStrArray = ^TOLEStrArray;

{$NODEFINE TOLEStrArray}

TOLEStrArray = array[0..High(Integer) div SizeOf(POLEStr) - 1 of POLEStr;

function GetBindString(ulStringType: ULONG;

wzStr: POLEStrArray; cEl: ULONG;

var pcElFetched: ULONG): HResult; stdcall;

Incidentally, I do not fully agree with Borland’s and now Embarcadero’s argumentation. If you use an API, the

documentation for it will probably use C syntax. Using var most of the time, but not always, will require the user of the

translation to look up the actual translation in the source (although the IDE will give you hints, if you use that feature).

Therefore I’d advocate the use of a stricter translation, which is as close to the original as possible, even if this means that

you don’t use var at all, but only pointer types instead. You could also use di�erent, overloaded versions, and provide both

translations, but that has also a few pitfalls of its own (more about that later on).

I guess the decision to use var where possible was made a long time ago, and changing it now would probably break too

much existing code around.

Array parameters are hard to convert. The semantics for pointers and arrays are quite a bit di�erent in C/C++ and Delphi. In

C/C++, an array variable is no more than a pointer to its �rst element, so pointer and array types can often be mixed as

wished. C and C++ don’t have built-in range checks, so this can be quite dangerous.

Note that I am not saying that arrays and pointers are the same thing in C and C++. They are not. For instance, in these

languages, you can assign an array to a pointer variable, but you can’t do the opposite. Otherwise, the variables can often be

used as if they were the same. The real di�erence is their initialization and storage, but for this article, that is unimportant.

So how do you convert the following?

1

2

3

4

5

6

WINCRYPT32API BOOL WINAPI CertVerifyCRLRevocation(

IN DWORD dwCertEncodingType,

IN PCERT_INFO pCertId,

IN DWORD cCrlInfo,

IN PCRL_INFO rgpCrlInfo[]

);

That could become:

1

2

3

4

5

6

type

PPCRL_INFO = ^PCRL_INFO;

function CertVerifyCRLRevocation(

dwCertEncodingType: DWORD; pCertId: PCERT_INFO;

cCrlInfo: DWORD; rgpCrlInfo: PPCRL_INFO): BOOL; stdcall;

In other words, you can turn an array like that into a pointer. This way you can iterate over the array with simple pointer

arithmetic like Inc(MyPtr); and you don’t have to declare a complicated type. A better approach would however be:

 1

 2

 3

 4

type

{$NODEFINE PPCRL_INFOArray}

PPCRL_INFOArray = ^TPCRL_INFOArray;

Rudy's Delphi Corner - Pitfalls of converting http://rvelthuis.de/articles/articles-convert.html

4 von 30 09.03.24, 08:12

http://rvelthuis.de/articles/articles-pointers.html#arithmetic
http://rvelthuis.de/articles/articles-pointers.html#arithmetic
http://rvelthuis.de/articles/articles-pointers.html#arithmetic
http://rvelthuis.de/articles/articles-pointers.html#arithmetic

 5

 6

 7

 8

 9

10

{$NODEFINE TPCRL_INFOArray}

TPCRL_INFOArray = array[0..65535] of PCRL_INFO;

function CertVerifyCRLRevocation(

dwCertEncodingType: DWORD; pCertId: PCERT_INFO;

cCrlInfo: DWORD; rgpCrlInfo: PPCRL_INFOArray): BOOL; stdcall;

This way the array can really be used as an array of PCRL_INFO. I used 65535 here, since often that is a suitably high value. If

not, you can de�ne the array as:

1

2

TPCRL_INFOArray = array[0..High(Integer) div

SizeOf(PCRL_INFO) - 1] of PCRL_INFO;

But usually, this is not necessary. And if you do things like these, be sure not to come too close to High(Integer) , since the

compiler might complain that the data structure would be too large.

On another note, a C user might say that the PPCRL_INFOArray is one indirection too many. For a C programmer it would be,

but not for Delphi. In C, the array is a pointer to the �rst element. In Delphi, the array is not a pointer type, so you’ll have to

use an extra pointer type, not the straight array declaration.

Now you would perhaps be tempted to use this declaration of the rgpCrlInfo parameter:

1 var rgpCrlInfo: array of PCRL_INFO;

This would indeed be a very nice syntax, but it is not the same as the above array de�nition. Array-of parameters are open

array parameters. They may look like any array, and they do accept any array, but they get an extra (hidden) parameter,

which holds the highest index in the array (the High value). Since this is only so in Delphi, and not in C or C++, you’d have a

real problem (See also my article on open arrays), since the real number of parameters wouldn’t match.

Also, the de�nition of the array as

1

2

type

TPCRL_INFOArray = array of PCRL_INFO;

is not the same as the declaration above. It is a dynamic array, which is not the same as a normal array. In fact the dynamic

array is closer to the de�nition of PPCRL_INFOArray, since it is also a pointer. But since dynamic arrays are reference

counted, and the API doesn’t know about reference counts, the reference count might become invalid, and either result in a

dynamic array that isn’t freed when necessary, or freed to early.

In C and C++, you’ll sometimes �nd functions that can take a variable number of parameters. One example is the wsprintf

function:

1

2

3

4

5

int wsprintf(

LPTSTR lpOut, /* pointer to buffer for output */

LPCTSTR lpFmt, /* pointer to format-control string */

... /* optional arguments */

);

The … (called ellipses) mean, that any number of additional parameters may follow. These are not type checked, and can

have any size. The C compiler just pushes them on the stack, and leaves it to the function to interpret the values it pushed.

Since the function can’t know how many parameters will be passed – at least not when the code of the function is compiled

– the caller is responsible for cleaning the stack again, so these function are always cdecl.

In Delphi, we have a similar construct, the array of const parameter (o�cially called variant open array parameter). The

di�erence is, that the array of const is translated to an open array of TVarRec, and the values passed are stored according to

the type, but not reference counted. Also, like with normal open array parameters, the High value is passed (see the

aforementioned article). You could create an assembler wrapper function, that uses an array of const, and then translate

these and push them on the stack, cleaning the stack after the function call. This is not a trivial matter though. An example

can be seen in the JNI translation on the JEDI site.

Fortunately, since Delphi 6, you can declare external functions like wsprintf using the varargs directive.

Rudy's Delphi Corner - Pitfalls of converting http://rvelthuis.de/articles/articles-convert.html

5 von 30 09.03.24, 08:12

http://rvelthuis.de/articles/articles-openarr.html
http://rvelthuis.de/articles/articles-openarr.html
http://rvelthuis.de/articles/articles-openarr.html
http://rvelthuis.de/articles/articles-openarr.html
http://jedi.grizzlydev.com/www/files/api/Cross_Platform/JNI_xp.zip
http://jedi.grizzlydev.com/www/files/api/Cross_Platform/JNI_xp.zip
http://delphi-jedi.org/
http://delphi-jedi.org/

1 function wsprintf(lpOut, lpFmt: PChar): Integer; cdecl; varargs;

You simply omit the … part, declare the function as cdecl and specify varargs, as was done above.

If the header was translated with a MIDL compiler, you’ll get hints like [in] or [out] etc. These are in fact quite helpful, since

they tell you how the parameter will be used. An [in, out] parameter will probably be modi�ed, so you should use var for

these (please note my proviso above). An [out] parameter will be modi�ed too, but can be uninitialized before it is passed.

Normally, you could also use var here, but not if the parameter is a pointer to an interface type (please note, that these are

translated as the type itself, since in Delphi these are implicit pointers types, just like objects). If you see an [out] or OUT

comment or macro with an interface type, please declare these as out too. This is important for the reference counting

mechanism.

So this code (a method of an interface)

1

2

virtual HRESULT STDMETHODCALLTYPE GetCurMoniker(

/* [out] */ IMoniker __RPC_FAR *__RPC_FAR *ppimkName) = 0;

should be translated as

1

2

function GetCurMoniker(out ppimkName: IMoniker): HResult;

stdcall; // for interfaces, virtual is implied

If you ignore the for Delphi unimportant __RPC_FAR macros above, you see

1 /* [out] */ IMoniker **ppimkName

This can be seen as a pointer to an IMoniker pointer. IMoniker* is the same as IMoniker in Delphi, the other * will be

translated to out, not to var here, because of the [out] comment, a leftover from the MIDL de�nition.

One of the main causes of the fall of the Roman Empire was that, lacking zero, they had no way to indicate

successful termination of their C programs. — Robert Firth

A problem I recently encountered was a really hard to �nd bug. This was caused by something you fortunately hardly ever

see in C or C++: returning a structured type (instead of a pointer or reference to one). The code used a struct which looked

like:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

// the list of ABCVar types

enum { VAR_NONE, VAR_FLOAT, VAR_ARRAY, VAR_STRING, VAR_DISP };

// ABCVar is a variant-like structure/union

// that holds any XYZ value

// type member holds variable type (see VAR_ enum above)

typedef struct ABCVar

{

int type;

union

{

float val;

float *array;

char *string;

void *disp;

};

} ABCVar;

Note that the size of this structure is 8 bytes: 4 for the int, and 4 for the union, since all of the types in the union map to 4

bytes, and they overlap.

There were functions returning such a type, like:

1 // GetExtraData is optional function for retrieving non-ABC data

Rudy's Delphi Corner - Pitfalls of converting http://rvelthuis.de/articles/articles-convert.html

6 von 30 09.03.24, 08:12

2

3

4

PLUGINAPI ABCVar GetExtraData(LPCTSTR pszTicker,

LPCTSTR pszName, int nArraySize,

int nPeriodicity, void* (*pfAlloc)(unsigned int nSize));

I translated this faithfully to the source, and got:

1

2

3

4

5

6

7

8

type

{$NODEFINE TpfAlloc}

TpfAlloc = function(nSize: Cardinal): Pointer cdecl;

// GetExtraData is optional function for retrieving non-ABC data

{$EXTERNALSYM GetExtraData}

function GetExtraData(pszTicker, pszName: PChar;

nArraySize, nPeriodicity: Integer; pfAlloc: TpfAlloc): ABCVar; cdecl;

But soon I received reports of problems with this, and for me, they were hard to track, since I did not have the hardware to

test the functions here. It took me a while to see that returning a struct like that was uncommon, and that C and Delphi

might handle this di�erently. So I wrote a tiny test program in Visual C++ 2005 Express beta and looked at the resulting

assembler code. This showed me that the ABCVar struct was returned in the registers EDX:EAX (EDX with the top 32 bits, and

EAX with the lower ones). This is not what Delphi does with records at all, not even with records of this size. Delphi treats

such return types as extra var parameters, and does not return anything (so the function is actually a procedure).

The only type which Delphi returns as EDX:EAX combination is Int64. So I had to declare an extra type, which I called

_ABCVar, as Int64, and tell the users in a large comment why, where and how to cast from _ABCVar to ABCVar and back:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

type

// NOTE: Due to the way functions return structs like ABCVar

// in VC++, the type _ABCVar has to be introduced. In

// VC++, an ABCVar is returned in register pair EDX:EAX,

// while in Delphi, it would be passed by reference. The

// only type returned in EDX:EAX in Delphi is Int64. So

// the return type in the Delphi translation must be of

// the same type, and an _ABCVar must be cast to ABCVar

// where necessary.

// Fortunately, the problem does not exist with pointers

// to ABCVars, or arrays of them.

//

// Function types returning an _ABCVar can't easily be

// cast, though:

//

// myABCVar := ABCVar(gSite.AllocArrayResult);

//

// The above will try to cast the function to ABCVar

// (which is not valid), and not the function result. To

// get the function result, you must explicitly call the

// function using parentheses:

//

// myABCVar := ABCVar(gSite.AllocArrayResult());

//

// The above will cast the result of the call to ABCVar,

// which is what we want.

{$NODEFINE _ABCVar}

_ABCVar = Int64;

{$NODEFINE PABCVar}

PABCVar = ^ABCVar;

{$EXTERNALSYM ABCVar}

ABCVar = record

case _type: Integer of

VAR_FLOAT: (val: Single);

VAR_ARRAY: (_array: PSingleArray);

VAR_STRING: (_string: PChar);

VAR_DISP: (disp: Pointer);

end;

Come to think of it, a better solution would probably have been to de�ne “private” functions that map to the original function

in the DLL and are declared to return an Int64, and a function that wraps this call and returns a proper ABCVar.

So, if structs are directly returned from a function, it is wise to have a look at the resulting assembler. Especially since Visual

C++ and C++Builder don’t (always) use the same way to return a struct. C++Builder uses a way that is similar to Delphi’s, i.e.

it passes the struct as a reference. Additionally, it returns the address of the struct in EAX. And, if the struct is larger than 8

bytes, Visual C++ will do exactly the same.

Rudy's Delphi Corner - Pitfalls of converting http://rvelthuis.de/articles/articles-convert.html

7 von 30 09.03.24, 08:12

http://lab.msdn.microsoft.com/express/visualc/default.aspx
http://lab.msdn.microsoft.com/express/visualc/default.aspx

Note that the latest Microsoft page about Win64 calling conventions �nally describes return values too, for Visual C++.

I am glad to see that Delphi seems to follow that convention too, i.e. records that �t in 64 bits are returned in RAX , larger

records are passed as a hidden �rst var parameter (in RCX), and all formal parameters are shifted to the right by one (so the

�rst formal parameter is passed in RDX or XMM1), just as the page describes.

I checked this in Delphi XE2 as well as in Delphi 10.2 Tokyo.

Macro functions are not real functions in C or C++. They are in fact a substitution mechanism, where the arguments to the

macro are substituted in the text of the macro. Since these replacements are done by the preprocessor, they are not type

safe, they are mere text substitutions. One problem with these macros is, that they may be needed in code, so you’ll have to

create real functions that do what the macro does. This requires some knowledge of C or C++, since the text can’t normally

be translated word for word. Also you’ll often have to guess the meaning of the parameters, either by looking them up in

the documentation, or by looking at the context in which they are used.

You don’t have to make these functions stdcall or cdecl, since they are only functions in your Delphi code. So you can just

declare them in the interface section of the unit, and implement them in the implementation section.

One example:

1

2

#define GetUrlPolicyPermissions(dw) \

 (dw & URLPOLICY_MASK_PERMISSIONS)

(\ is the continuation character for macros) and the conversion in the implementation section

1

2

3

4

5

function GetUrlPolicyPermissions(dw: DWORD): DWORD; inline;

// See note

begin

Result := dw and URLPOLICY_MASK_PERMISSIONS;

end;

Note: since the introduction of the inline directive in Delphi 2005, Delphi uses it for all its macro function translations. It makes

sense to do so in your own sources as well. If you have a version before Delphi 2005, you can simply omit the directive. It will

not a�ect the functionality of your code, but perhaps the speed.

But sometimes one can’t turn a macro function into a function. In that case the only option is to expand the macro

manually, even if that means that you will have to enter a lot of code.

Here are a few nice examples. The �rst de�nes a way to construct a constant.

1

2

#define CTL_CODE(DeviceType,Function,Method,Access) \

 (((DeviceType) << 16) | ((Access) << 14) | ((Function) << 2) | (Method))

It is used like this:

1 #define IOCTL CTL_CODE(0x33, 0x0400, METHOD_BUFFERED, FILE_READ_ACCESS)

There is no way you can use a function to translate that, so only manual expansion is left:

1

2

const

IOCTL = ($33 shl 16) or (FILE_READ_ACCESS shl 14) or ($0400 shl 2) or METHOD_BUFFERED;

Another, more convoluted, example de�nes a range of enumeration items, all with the same pre�x:

 1

 2

 3

#define CommonAVFunctionEnum(prefix) \

 prefix ## _Handle, \

 prefix ## _VideoSource, \

Rudy's Delphi Corner - Pitfalls of converting http://rvelthuis.de/articles/articles-convert.html

8 von 30 09.03.24, 08:12

https://docs.microsoft.com/en-us/cpp/build/return-values-cpp
https://docs.microsoft.com/en-us/cpp/build/return-values-cpp

 4

 5

 6

 7

 8

 9

10

11

12

 prefix ## _Tune, \

 \

/* code snipped */ \

 \

 prefix ## _ContextMenu, \

 prefix ## _DTVResFrameRate, \

 prefix ## _InputPowerdownTiming, \

 prefix ## _ProgramInfo, \

 prefix ## _DiagnosticWindow

It is used like this:

1

2

3

4

5

6

7

8

9

typedef enum {

CommonAVFunctionEnum(TVF),

TVF_GetWindowHandle = 1000,

TVF_SendTVWndMessage,

// code snipped

TVF_SaveEx,

} TVFunction;

The code above de�nes a large enum type, TVFunction, and the �rst items of that enum are TVF_Handle, TVF_VideoSource,

etc., up to TVF_DiagnosticWindow, followed by TVF_GetWindowHandle, etc. The only way to translate that is by manually

expanding each of the items:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

type

TVFunction = (

TVF_Handle,

TVF_VideoSource,

TVF_Tune,

// Code snipped

TVF_ContextMenu,

TVF_DTVResFrameRate,

TVF_InputPowerdownTiming,

TVF_ProgramInfo,

TVF_DiagnosticWindow,

TVF_GetWindowHandle = 1000,

TVF_SendTVWndMessage,

// More code snipped

TVF_SaveEx);

Records are are an important part of an API, since they de�ne the OS structures the API functions operate on. Because of

this, the record conversion must result in an exact binary copy of the original structure. Most problems with structure

conversions happen because of bad alignment.

Alignment is done to make access to some variables, or members of a struct (The Delphi term is: �elds of a record) faster for

the processor. A 32 bit (4 byte) type can be acccessed faster by the processor if it is aligned on a 4 byte boundary, i.e. if the

address is divisible by 4 without a rest. An 8 byte type should ideally be aligned on an 8 byte boundary, etc. Note that I am

talking about simple types here, not about compound types like arrays or records.

An aligned struct will contain some extra �ller bytes to make sure that the members are aligned on “their” boundaries. This

way a struct can be larger than the sum of the sizes of the composing types. If alignment is set to a smaller value, only up to

that many �ller bytes will be inserted, so if alignment is set to 4, an 8 byte type will be aligned on the nearest 4 byte

boundary, which is not necessarily an 8 byte boundary. If alignment is set to 1, no �lling will occur at all, and the sum of the

member sizes is the same as the size of the struct. This is equivalent to a packed record in Delphi.

Note: �ller bytes are also inserted after the last �eld of a record, to align the next record, for instance in an array, as well.

The default packing for Win32 headers is, as far as I can tell, 8 byte. So types that should be aligned on 8 byte boundaries

are aligned on 8 bytes, but types that only need a 4 byte alignment are aligned on such a boundary, etc. Unfortunately not

all structs in headers are aligned like that. Most C and C++ compilers have the capability to set the alignment to 1, 2, 4, 8 or

16 bytes. But how they do this is not always uniform.

Rudy's Delphi Corner - Pitfalls of converting http://rvelthuis.de/articles/articles-convert.html

9 von 30 09.03.24, 08:12

The most popular way to set the alignment is to use a line like:

1 #pragma pack(push, 4)

That sets the alignment to 4 byte boundaries, so all types of 4 byte or larger will be aligned on 4 bytes, smaller types will be

aligned on 2 or 1 byte, according to their types. The push means that the current alignment setting is saved somewhere

before setting the 4 byte alignment. Later on, the previous alignment can be restored with

1 #pragma pack(pop)

So to �nd out what the alignment for a struct is, you should try to �nd the last occurrences of #pragma pack . Note that this

can be in an included header �le as well.

Other ways of setting or resetting the packing is

• by external compiler options like -a8 e.g. in a make �le;

• in other pragmas, like #pragma option push -a8 (8 byte) or #pragma option push -a- (1 byte);

• by including special headers, like pshpack8.h — pack(push, 8) and poppack.h — pack(pop) .

I will not discuss all the options and headers. Some of these may vary with the compiler, although most are probably

compatible with Microsoft’s Visual C++. More info can be found in the Win32 (and Win64) SDK help �les and online in the

MSDN library.

If you have access to a C++ compiler, it is often useful to let that compiler tell you the size of a struct. This is usually a good

indication of the alignment setting. If you don’t have one, you can use one of the various free C++ compilers, for instance a

GNU compiler, the free C++Builder command line compiler 5.5 from Embarcadero, or the free Visual C++ Express compiler

from Microsoft (note that this requires an installation of .NET).

These days, you can also use the free C++Builder 10.2 Tokyo Community Edition. It is equal to C++Builder 10.2 Tokyo

Professional, it just has a di�erent license.

This simple code demonstrates how you can test the alignment of a struct. The comments give the o�sets and sizes of the

members for that alignment size.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

/* structsize.c */

#include <stdio.h>

#include <conio.h>

#pragma pack(1)

struct X1

{ /* ofs + size */

unsigned char B; /* 0 + 1 */

unsigned short S1; /* 1 + 2 */

unsigned short S2; /* 3 + 2 */

unsigned long L; /* 5 + 4 */

double D; /* 9 + 8 */

long L2; /* 17 + 4 */

long double E; /* 21 + 10 */

}; /* 31 */

#pragma pack(2)

struct X2

{ /* ofs + size */

unsigned char B; /* 0 + 1 */

unsigned short S1; /* 2 + 2 */

unsigned short S2; /* 4 + 2 */

unsigned long L; /* 6 + 4 */

double D; /* 10 + 8 */

long L2; /* 18 + 4 */

long double E; /* 22 + 10 */

}; /* 32 */

Rudy's Delphi Corner - Pitfalls of converting http://rvelthuis.de/articles/articles-convert.html

10 von 30 09.03.24, 08:12

http://msdn.microsoft.com/library/
http://msdn.microsoft.com/library/
http://gcc.gnu.org/install/specific.html#windows
http://gcc.gnu.org/install/specific.html#windows
https://downloads.embarcadero.com/free/c_builder
https://downloads.embarcadero.com/free/c_builder
http://msdn.microsoft.com/vstudio/express/visualc/
http://msdn.microsoft.com/vstudio/express/visualc/
https://www.embarcadero.com/products/cbuilder/starter
https://www.embarcadero.com/products/cbuilder/starter

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

#pragma pack(4)

struct X4

{ /* ofs + size */

unsigned char B; /* 0 + 1 */

unsigned short S1; /* 2 + 2 */

unsigned short S2; /* 4 + 2 */

unsigned long L; /* 8 + 4 */

double D; /* 12 + 8 */

long L2; /* 20 + 4 */

long double E; /* 24 + 10 */

}; /* 36 */

#pragma pack(8)

struct X8

{ /* ofs + size */

unsigned char B; /* 0 + 1 */

unsigned short S1; /* 2 + 2 */

unsigned short S2; /* 4 + 2 */

unsigned long L; /* 8 + 4 */

double D; /* 16 + 8 */

long L2; /* 24 + 4 */

long double E; /* 32 + 10 */

}; /* 48 */

int main()

{

printf("%d\n", sizeof(struct X1));

printf("%d\n", sizeof(struct X2));

printf("%d\n", sizeof(struct X4));

printf("%d\n", sizeof(struct X8));

getch();

return 0;

}

This will produce the expected output (see the comments in the code above):

31

32

36

48

The problem is creating records with exactly the same alignment in Delphi. In Delphi version 6 or higher, it is quite simple.

These versions have an alignment system that is compatible with Microsoft Visual C++. You can specify the alignment in a

similar way as in C and C++ compilers, using directives like {$ALIGN 4} or {$A8} . The online help for Delphi describes them in

detail.

If you want to know exactly how the members are aligned, you can use C++, the o�setof() macro in stddef.h and the typeid()

RTTI function.

To make things a little easier, I wrote a function and a few macros. I put them in a header �le, which I include in my test

program. Here is the header �le, members.h:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

#ifndef MEMBERS_H

#define MEMBERS_H

void print_member(const char *type, const char *name, int offset)

{

char buffer[256];

sprintf(buffer, " %s %s;", type, name);

printf("%-48s // offset %d\n", buffer, offset);

}

#define print(member) \

 print_member(typeid(((type *)0)->member).name(), #member, offsetof(type, member))

#define start \

 printf("struct %-42s/\/ size %d\n{\n", typeid(type).name(), sizeof(type))

Rudy's Delphi Corner - Pitfalls of converting http://rvelthuis.de/articles/articles-convert.html

11 von 30 09.03.24, 08:12

17

18

19

20

#define end \

 printf("};\n\n");

#endif

Now I am aware of the fact that this will make C++ purists cringe, and have been looking for a more elegant solution, but no

one I asked was able to come up with one, yet. They talked about using templates and type traits, etc. but could not provide

a solution. So now I use this to display the o�sets. To do this, I must �rst #define type as the struct type I want to investigate.

See below.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

#include <stdio.h> /* includes stddef.h */

#include "windows.h" /* for the struct type I want to inspect */

#include "members.h"

int main()

{

#define type SECURITY_DESCRIPTOR

start;

print(Revision);

print(Sbz1);

print(Control);

print(Owner);

print(Group);

print(Sacl);

print(Dacl);

end;

#undef type

}

Note that you must #undef type so you can re-de�ne it for any new structs. You do this for each struct you want to examine.

Of course, in your code, you would include the header, and specify the members of the struct you want to translate. The

output of this little example is:

struct _SECURITY_DESCRIPTOR // size 20

{

 unsigned char Revision; // offset 0

 unsigned char Sbz1; // offset 1

 unsigned short Control; // offset 2

 void * Owner; // offset 4

 void * Group; // offset 8

 _ACL * Sacl; // offset 12

 _ACL * Dacl; // offset 16

};

You have to invoke print() for each member you want to inspect. I don’t know of a way to make C++ display the entire struct

with a single command. Perhaps I can use the Boost Re�ect library.

You can only do this with C++. C does not have the RTTI function typeid() , which is needed to get the type names of the

members, e.g. with typeid(((structname*)0)->membername).name() .

To check if you have the o�sets in your translation right, you can use RTTI, if your version has the unit System.Rtti. You can

write a little function to display the o�sets of your translated records and check if they are the same as in the output of the

C++ program:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

procedure WriteOffsets(Info: Pointer);

var

LContext: TRttiContext;

LType: TRttiType;

LField: TRttiField;

begin

LType := LContext.GetType(Info);

if Assigned(LType) then

if LType.TypeKind = tkRecord then

begin

Writeln('type');

Writeln((' ' + LType.QualifiedName + ' = record ').PadRight(48),

' // Size = ', LType.TypeSize);

for LField in LType.GetFields do

Rudy's Delphi Corner - Pitfalls of converting http://rvelthuis.de/articles/articles-convert.html

12 von 30 09.03.24, 08:12

15

16

17

18

19

20

21

22

23

24

25

26

Writeln((' ' + LField.Name + ': ' + LField.FieldType.Name + ';').PadRight(48),

' // ', LField.Offset);

Writeln(' end;');

Writeln;

end

else

begin

Writeln(LType.QualifiedName, ' is not a record');

end

else

Writeln('Invalid type');

end;

You use it like this:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

program DemoOffsets;

{$APPTYPE CONSOLE}

uses

Velthuis.Offsets, // For WriteOffsets

Winapi.Windows; // Contains the type I want to inspect:

// TSecurityDescriptor

begin

WriteOffsets(TypeInfo(TSecurityDescriptor));

// WriteOffsets(TypeInfo(WhateverStruct));

end.

and the output is (in Win32):

type

 Winapi.Windows._SECURITY_DESCRIPTOR = record // size 20

 Revision: Byte; // offset 0

 Sbz1: Byte; // offset 1

 Control: Word; // offset 2

 Owner: Pointer; // offset 4

 Group: Pointer; // offset 8

 Sacl: PACL; // offset 12

 Dacl: PACL; // offset 16

 end;

Now you can use such outputs to compare the o�sets of your conversion to the output of the C++ program.

In a version that does not allow specifying the exact alignment, or in versions that don’t always align properly, you can add

�ller bytes of your own, if necessary. To make sure that Delphi doesn’t add its own alignment �ll bytes, you can use packed

record. Packed records are always unaligned, so you can do your own manual aligning. The X8 struct above, which I

designed such that it has a number of gaps, would translate to:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

type

PX8 = ^X8;

tagX8 = packed record // offset of next element

B: Byte; // 1

Fill1: Byte; // 2

S1: Word; // 4

S2: Word; // 6

Fill2: array[7..8] of Byte; // 8

L: Longword; // 12

Fill3: array[13..16] of Byte; // 16

D: Double; // 24

L2: Longint; // 28

Fill4: array[29..32] of Byte; // 32

E: Extended; // 42

Fill5: array[43..48] of Byte; // 48

end;

X8 = tagX8;

. E.g. in ShellAPI.h, the declared alignment is 1 for Win32, but 8 for Win64. So to translate ShellAPI.h, you

should put somewhere near the top of your conversion unit:

Rudy's Delphi Corner - Pitfalls of converting http://rvelthuis.de/articles/articles-convert.html

13 von 30 09.03.24, 08:12

12

13

14

15

16

{$IFDEF WIN32}

{$ALIGN 1}

{$ELSE} // Win64

{$ALIGN 8}

{$ENDIF}

The packed record with manual �ller bytes would of course also work in Delphi 6 or higher, but has a disadvantage: if you use

a packed record in another, aligned record, the packed record will always be byte-aligned.

One nice example of this is the TRect structure in Delphi 6 and Delphi 7. In these and some later versions, it is declared as

packed record, although it shouldn’t be. For normal use, this is not really a problem, since it contains 4 Integers, so it is 16

bytes in size anyway. It contains no �ller bytes. But if you use a TRect like that in another record, you can get unexpected

problems. For instance this record (still assuming that TRect is packed, which is not true in later versions of Delphi anymore):

1

2

3

4

5

6

{$ALIGN 8}

type

TMyRec = record

B: Byte;

R: TRect;

end;

will be 17 bytes in size, and not, as it ought to be, 20 bytes. The TRect is not aligned on a 4 byte boundary, although it contains

four Integers. If it hadn’t been declared as packed record, it would have been aligned properly. A test with a simple C program

con�rms that the size should have been 20, and not 17.

. If your alignments or sizes di�er from the

aligment found in your C program, check if you didn’t forget a �eld, if the �elds are all of the right type and if you used the

correct alignment (I found out that I hadn’t done that for ShellAPI.h because the alignments and size didn’t match). Only if

you checked all these things and there is still a size or alignment mismatch, you should think of manually adding �ller bytes.

In C, unions are similar to structs, but each of the “�elds” occupies the same place in memory. Delphi has a similar

construct, variant records (do not confuse these with the Variant type), the records with the case .. of parts. But there are a

few di�erences. In a union, each of the �elds overlaps with each of the other. So there can’t be two �elds together, or they

must be declared as a struct. In Delphi, several �elds can be grouped together under one of the case selectors with

parentheses

Note: as far as I know, the C standard does not guarantee that all �elds of a union are aligned on the same address, but usually,

especially on Windows, you can depend on it.

But there is one bigger problem: C unions can be anonymous. This is a problem since in Delphi, you can’t have anonymous

�elds. Here is an example from wincrypt.h (I removed the comments):

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

typedef struct _CMC_STATUS_INFO {

DWORD dwStatus;

DWORD cBodyList;

DWORD *rgdwBodyList;

LPWSTR pwszStatusString; // OPTIONAL

DWORD dwOtherInfoChoice;

union {

// CMC_OTHER_INFO_NO_CHOICE

// none

// CMC_OTHER_INFO_FAIL_CHOICE

DWORD dwFailInfo;

// CMC_OTHER_INFO_PEND_CHOICE

PCMC_PEND_INFO pPendInfo;

};

} CMC_STATUS_INFO, *PCMC_STATUS_INFO;

The union is at the end of the struct, and apparently the dwOtherInfoChoice �eld is a selector, so you can translate it like:

 1

 2

 3

 4

type

_CMC_STATUS_INFO = record

dwStatus: DWORD;

cBodyList: DWORD;

Rudy's Delphi Corner - Pitfalls of converting http://rvelthuis.de/articles/articles-convert.html

14 von 30 09.03.24, 08:12

 5

 6

 7

 8

 9

10

11

rgdwBodyList: ^DWORD;

pwszStatusString: LPWSTR; // OPTIONAL

case dwOtherInfoChoice: DWORD of

CMC_OTHER_INFO_NO_CHOICE: ({none});

CMC_OTHER_INFO_FAIL_CHOICE: (dwFailInfo: DWORD);

CMC_OTHER_INFO_PEND_CHOICE: (pPendInfo: PCMCPendInfo);

end;

But it gets tricky if the union is somewhere in the middle of the struct, as in this example, also from wincrypt.h:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

typedef struct _OCSP_BASIC_RESPONSE_INFO {

DWORD dwVersion;

DWORD dwResponderIdChoice;

union {

// OCSP_BASIC_BY_NAME_RESPONDER_ID

CERT_NAME_BLOB ByNameResponderId;

// OCSP_BASIC_BY_KEY_RESPONDER_ID

CRYPT_HASH_BLOB ByKeyResponderId;

};

FILETIME ProducedAt;

DWORD cResponseEntry;

POCSP_BASIC_RESPONSE_ENTRY rgResponseEntry;

DWORD cExtension;

PCERT_EXTENSION rgExtension;

} OCSP_BASIC_RESPONSE_INFO, *POCSP_BASIC_RESPONSE_INFO;

The problem is that Delphi variant records must always have the case part at the end, since the end will end the case part as

well as the record declaration. But there are a few �elds, like ProducedAt and cResponseEntry, that come after the union. So

how do I translate this?

One solution would be to turn the union into an embedded record. But that would mean that this embedded record would

get its own �eld name:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

type

_OCSP_BASIC_RESPONSE_INFO = record

dwVersion: DWORD;

dwResponderIdChoice: DWORD;

union1: record

case DWORD of

OCSP_BASIC_BY_NAME_RESPONDER_ID:

(ByNameResponderId: CERT_NAME_BLOB); // size: 8

OCSP_BASIC_BY_KEY_RESPONDER_ID:

(ByKeyResponderId: CRYPT_HASH_BLOB; // size: 8

end;

ProducedAt: FILETIME;

cResponseEntry: DWORD;

rgResponseEntry: POCSP_BASIC_RESPONSE_ENTRY;

cExtension: DWORD;

rgExtension: PCERT_EXTENSION

end;

The disadvantage is that you can’t access the ByResponderNameId and ByKeyResponderId items directly anymore. You must

pre�x them with union1, i.e. now you must use MyRespInfo.union1.ByResponderNameId instead of

MyRespInfo.ByResponderNameId.

I found a rather tricky solution which does not require this. Consider that the union occupies the same size as the largest

item in it. Following �elds in the struct will be aligned after the largest item in the union. So you can just as well add all

following �elds to the largest variant part of your translated record, and they will be at exactly the same o�set in the record

as they would be with the union1 solution above:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

type

_OCSP_BASIC_RESPONSE_INFO = record

dwVersion: DWORD;

case dwResponderIdChoice: DWORD of

// union {

OCSP_BASIC_BY_NAME_RESPONDER_ID:

(ByNameResponderId: CERT_NAME_BLOB); // size: 8

OCSP_BASIC_BY_KEY_RESPONDER_ID:

(ByKeyResponderId: CRYPT_HASH_BLOB; // size: 8

// }

ProducedAt: FILETIME;

cResponseEntry: DWORD;

rgResponseEntry: POCSP_BASIC_RESPONSE_ENTRY;

cExtension: DWORD;

rgExtension: PCERT_EXTENSION

);

Rudy's Delphi Corner - Pitfalls of converting http://rvelthuis.de/articles/articles-convert.html

15 von 30 09.03.24, 08:12

17 end;

In other words, the last variant part is now (reformatted a bit):

1

2

3

4

5

6

7

8

(ByKeyResponderId: CRYPT_HASH_BLOB;

// }

ProducedAt: FILETIME;

cResponseEntry: DWORD;

rgResponseEntry: POCSP_BASIC_RESPONSE_ENTRY;

cExtension: DWORD;

rgExtension: PCERT_EXTENSION

);

Now you can access the union parts directly again, for instance as MyRespInfo.ByResponderNameId.

In the following diagram, I try to show the di�erences. On the left, the union parts ByNameResponderId and

ByKeyResponderId have the same o�set in memory, but one is larger than the other. As you can see, the following �elds of

the struct (ProducedAt etc.) come after the largest of the union items. In the right version, I show how the �elds after the

union have been arranged under the second, the largest union item, ByKeyResponderId. As you can see, they keep the same

o�set, and that is all that counts.

(I cheated. In reality both items in the union are the same size: 8 byte. Making them di�erent sizes much better demonstrates

the principle, though.)

This does require that you �nd the largest item in the union, and use that as the item in the case part to which you add all

following �elds, even if they are originally not part of the union. But to be sure, you should always test the assumptions you

make, with a little C program giving the o�sets of the items after the union and a little Delphi program doing the same.

To �nd the largest item of a union, I write a small C program that gives me the sizes of the types in the union, if I don’t know

them (if all have the same type, or all are pointers, that is strictly not necessary).

Note that this trick will also work if there are multiple unions:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

typedef struct _CERT_SYSTEM_STORE_RELOCATE_PARA {

union {

HKEY hKeyBase;

void *pvBase;

};

union {

void *pvSystemStore;

LPCSTR pszSystemStore;

LPCWSTR pwszSystemStore;

};

Rudy's Delphi Corner - Pitfalls of converting http://rvelthuis.de/articles/articles-convert.html

16 von 30 09.03.24, 08:12

11 };

This will become (omitted pointer type and externalsym):

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

_CERT_SYSTEM_STORE_RELOCATE_PARA = record

case Byte of

0: (hKeyBase: HKEY);

1: (pvBase: Pointer;

case Byte of

0: (pvSystemStore: Pointer);

1: (pszSystemStore: PAnsiChar);

2: (pwszSystemStore: PWideChar);

);

end;

 Apparently this was not an original idea of mine. In CommCtrl.pas you’ll �nd a nice solution which also handles

multiple unions in one record and does not require the use of embedded (named) records.

It turns out that you can have another case selector inside one of the branches of a variant. This sounds a bit confusing, but

just look at the (expanded) declaration of _PROPSHEETPAGEA_V2 in prsht.h (for property sheets, which is included in

commctrl.h), which follows:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

typedef struct _PROPSHEETPAGEA_V2

{

DWORD dwSize;

DWORD dwFlags;

HINSTANCE hInstance;

union

{

LPCSTR pszTemplate;

PROPSHEETPAGE_RESOURCE pResource;

} DUMMYUNIONNAME;

union

{

HICON hIcon;

LPCSTR pszIcon;

} DUMMYUNIONNAME2;

LPCSTR pszTitle;

DLGPROC pfnDlgProc;

LPARAM lParam;

LPFNPSPCALLBACKA pfnCallback;

UINT *pcRefParent;

LPCSTR pszHeaderTitle; // this is displayed in the header

LPCSTR pszHeaderSubTitle; //

} PROPSHEETPAGEA_V1, *LPPROPSHEETPAGEA_V1;

DUMMYUNIONNAME and DUMMYUNIONNAME2 are macros that amount to nothing, so the two unions are anonymous.

CodeGear’s translation uses the same idea as described before, but does it for both unions:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

type

_PROPSHEETPAGEA = record

dwSize: Longint;

dwFlags: Longint;

hInstance: THandle;

case Integer of

0: (

pszTemplate: PAnsiChar);

1: (

pResource: Pointer;

case Integer of

0: (

hIcon: THandle);

1: (

pszIcon: PAnsiChar;

pszTitle: PAnsiChar;

pfnDlgProc: Pointer;

lParam: Longint;

pfnCallback: TFNPSPCallbackA;

pcRefParent: PInteger;

pszHeaderTitle: PAnsiChar; // this is displayed in the header

pszHeaderSubTitle: PAnsiChar)); //

end;

As you see, there is a second case selector in the last variant part of the �rst, i.e. as if that variant part were a record of its

own. This way it is easy to cascade such union declarations, and the problem in the Info box above is solved.

Rudy's Delphi Corner - Pitfalls of converting http://rvelthuis.de/articles/articles-convert.html

17 von 30 09.03.24, 08:12

Sometimes you’ll encounter a declaration like the following:

1

2

3

4

5

6

7

8

typedef struct _RTCP_RECEIVER_REPORT {

DWORD FractionLost:8;

DWORD TotalLostPackets:24;

DWORD HighestSequenceNum;

DWORD InterarrivalJitter;

DWORD LastSRTimestamp;

DWORD DelaySinceLastSR;

} RTCP_RECEIVER_REPORT, *PRTCP_RECEIVER_REPORT;

The problem with the above declaration is, that it contains C bit�elds. FractionLost and TotalLostPackets are not DWORDs at

all. The :8 following the identi�er FractionLost means that FractionLost only occupies 8 bits in a DWORD, and :24 means

that TotalLostPackets contains the remainging 24 bits. So together they occupy one DWORD, not each one of its own. Such

items are very hard to translate. Note: translation is platform dependent as well, but since this article is primarily for Win32, or at

least Intel, you can disregard that.

I would translate this as:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

type

PRTCP_RECEIVER_REPORT = ^RTCP_RECEIVER_REPORT;

_RTCP_RECEIVER_REPORT = record

FractionLost_TotalLostPackets: DWORD;

// DWORD FractionLost:8

// DWORD TotalLostPackets:24

HighestSequenceNum: DWORD;

InterarrivalJitter: DWORD;

LastSRTimestamp: DWORD;

DelaySinceLastSR: DWORD;

end;

RTCP_RECEIVER_REPORT = _RTCP_RECEIVER_REPORT;

FractionLost could have been translated as a Byte, but that would not solve the problem with TotalLostPackets, since there

are no 3 byte types that could be used for it. This way, if you attempt to access either member, you will get a message that

the identi�er is not de�ned, and have to look for yourself. Often, you will have many items of 1 or 2 bits in size, so you have

the chance to be creative with your identi�ers.

There is no way you can declare the items in Delphi thus, that they are readily accessible. You could provide constants for

the shift and the mask to access the single parts of the DWORD, or even an enumerated type and a function to access the

parts, but that is up to you. The user will most of the time have to do something extra to access the bit�elds.

An example for constants to acess the bit�elds:

1

2

3

4

5

6

7

8

9

// Assumes first "shr", then "and"

const

// shifts for FractionLost_TotalLostPackets field

shrFractionLost = 0;

shrTotalLostPackets = 8;

// masks for FractionLost_TotalLostPackets field

andFractionLost = $000000FF;

andTotalLostPackets = $00FFFFFF;

Now the TotalLostPackets bit�eld can be accessed like:

1

2

3

LostPackets := Report.FractionLost_TotalLostPackets

shr shrTotalLostPackets

and andTotalLostPackets;

Of course, you can also write access functions for each of the bit�elds, something like:

 1

 2

 3

 4

 5

 6

 7

 8

function FractionLost(const Report: RTCP_RECEIVER_REPORT): Byte; overload;

begin

Result := Report.FractionLost_TotalLostPackets and $000000FF;

end;

procedure FractionLost(var Report: RTCP_RECEIVER_REPORT; Value: Byte); overload;

begin

Report.FractionLost_TotalLostPackets :=

Rudy's Delphi Corner - Pitfalls of converting http://rvelthuis.de/articles/articles-convert.html

18 von 30 09.03.24, 08:12

 9

10

11

12

(Report.FractionLost_TotalLostPackets and $FFFFFF00) or Value;

end;

// etc...

It is used like:

1

2

3

4

5

6

var

Fraction: Integer;

R: RTCP_RECEIVER_REPORT;

begin

Fraction := FractionLost(R);

FractionLost(R, Fraction * 2);

In Delphi 2006 for Win32 (as used in BDS2006 and Turbo Delphi 2006), records with methods, operators and properties

were introduced. This allows you to de�ne the bit�elds as properties and de�ne getter and setter methods:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

type

PRTCP_RECEIVER_REPORT = ^RTCP_RECEIVER_REPORT;

_RTCP_RECEIVER_REPORT = record

private

FractionLost_TotalLostPackets: DWORD;

// DWORD FractionLost:8

// DWORD TotalLostPackets:24

function GetFractionLost: Byte;

procedure SetFractionLost(Value: Byte);

function GetTotalLostPackets: DWORD;

procedure SetTotalLostPackets(Value: DWORD);

public

HighestSequenceNum: DWORD;

InterarrivalJitter: DWORD;

LastSRTimestamp: DWORD;

DelaySinceLastSR: DWORD;

property FractionLost: Byte read GetFractionLost

write SetFractionLost;

property TotalLostPackets: DWORD read GetTotalLostPackets

write SetTotalLostPackets;

end;

RTCP_RECEIVER_REPORT = _RTCP_RECEIVER_REPORT;

In the implementation section, you can de�ne the methods to get and set the properties:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

{ _RTCP_RECEIVER_REPORT }

function _RTCP_RECEIVER_REPORT.GetFractionLost: Byte;

begin

Result := FractionLost_TotalLostPackets and $FF;

end;

function _RTCP_RECEIVER_REPORT.GetTotalLostPackets: DWORD;

begin

Result := (FractionLost_TotalLostPackets shr 8) and $00FFFFFF;

end;

procedure _RTCP_RECEIVER_REPORT.SetFractionLost(Value: Byte);

begin

FractionLost_TotalLostPackets :=

FractionLost_TotalLostPackets and $FFFFFF00 or Value;

end;

procedure _RTCP_RECEIVER_REPORT.SetTotalLostPackets(

Value: DWORD);

begin

FractionLost_TotalLostPackets :=

(FractionLost_TotalLostPackets and $000000FF) or

(Value and $00FFFFFF) shl 8;

end;

A short test shows that this works as expected. If there are many bit�elds, it may be a lot of work, though, and it will not

work in versions of Delphi below 2006.

Rudy's Delphi Corner - Pitfalls of converting http://rvelthuis.de/articles/articles-convert.html

19 von 30 09.03.24, 08:12

On stackover�ow.com, Patrick van Logchem has an excellent and elegant proposal. He does not write a property getter and

setter for each bit�eld, but instead, he uses the indexing of properties. The index of a property is not necessarily a real

index into a structure; if you use getters and setters, it is simply a parameter to those functions. Now, he uses the lower two

bytes of the index to indicate o�set and number of bits respectively (well, actually not in that article, but in a post to the JEDI

API conversion newsgroup at news://forums.talkto.net/jedi.apiconversion). He then only has to de�ne two general routines

that get or set bits using such an index value, and use that in only one getter and setter routine for each record.

Here is a slightly reformatted version of his code for the routines:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

function GetDWordBits(const Bits: DWORD; const aIndex: Integer): Integer;

begin

Result := (Bits shr (aIndex shr 8)) // offset

and ((1 shl Byte(aIndex)) - 1); // mask

end;

procedure SetDWordBits(var Bits: DWORD; const aIndex: Integer; const aValue: Integer);

var

Offset: Byte;

Mask: Integer;

begin

Mask := ((1 shl Byte(aIndex)) - 1);

Assert(aValue <= Mask);

Offset := aIndex shr 8;

Bits := (Bits and (not (Mask shl Offset)))

or DWORD(aValue shl Offset);

end;

So what does ((1 shl Byte(aIndex)) - 1) exactly mean? If you need, say, 8 bits, the mask should be $FF. Well, 1 shl 8 is $100,

and minus 1, that becomes $FF.

So now, instead of a getter and setter for each bit�eld property, he only uses one of each, like this:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

type

RLDT_ENTRY_Bits = packed record

private

Flags: DWord;

function GetBits(const aIndex: Integer): Integer;

procedure SetBits(const aIndex: Integer; const aValue: Integer);

public

property BaseMid: Integer index $0008 read GetBits write SetBits; // 8 bits at offset 0

property _Type: Integer index $0805 read GetBits write SetBits; // 5 bits at offset 8 ($08)

property Dpl: Integer index $0D02 read GetBits write SetBits; // 2 bits at offset 13 ($0D)

property Pres: Integer index $0F01 read GetBits write SetBits; // 1 bit at offset 15 ($0F)

property LimitHi: Integer index $1004 read GetBits write SetBits; // 4 bits at offset 16 ($10)

property Sys: Integer index $1401 read GetBits write SetBits; // 1 bit at offset 20 ($14)

property Reserved_0: Integer index $1501 read GetBits write SetBits; // 1 bit at offset 21 ($15)

property Default_Big: Integer index $1601 read GetBits write SetBits; // 1 bit at offset 22 ($16)

property Granularity: Integer index $1701 read GetBits write SetBits; // 1 bit at offset 23 ($17)

property BaseHi: Integer index $1808 read GetBits write SetBits; // 8 bits at offset 24 ($18)

end;

As you can see, the properties all use the same getter and setter functions, GetBits and SetBits respectively, and only

distinguish themselves by the index used for them. The comments demonstrate how the index is coded.

The getter and setter simply look like:

1

2

3

4

5

6

7

8

9

function RLDT_ENTRY_Bits.GetBits(const aIndex: Integer): Integer;

begin

Result := GetDWordBits(Flags, aIndex);

end;

procedure RLDT_ENTRY_Bits.SetBits(const aIndex: Integer; const aValue: Integer);

begin

SetDWordBits(Flags, aIndex, aValue);

end;

C and C++ enums are similar to Delphi enumerated types. They denote a range of named identi�ers, each with a di�erent

Rudy's Delphi Corner - Pitfalls of converting http://rvelthuis.de/articles/articles-convert.html

20 von 30 09.03.24, 08:12

http://stackoverflow.com/questions/282019/how-to-simulate-bit-fields-in-delphi-records#282385
http://stackoverflow.com/questions/282019/how-to-simulate-bit-fields-in-delphi-records#282385

value. In C and C++, you can set the values of each identi�er, so you can have enums like (in mshtml.h):

1

2

3

4

5

6

7

typedef

enum _htmlDesignMode

{ htmlDesignModeInherit = -2,

htmlDesignModeOn = -1,

htmlDesignModeOff = 0,

htmlDesignMode_Max = 2147483647L

} htmlDesignMode;

The values don’t start at 0, and there is a huge gap. In Delphi 6 or higher, you can declare an enumeration type like that as

well:

1

2

3

4

5

6

7

8

type

_htmlDesignMode = (

htmlDesignModeInherit = -2,

htmlDesignModeOn = -1,

htmlDesignModeOff = 0,

htmlDesignMode_Max = 2147483647

);

htmlDesignMode = _htmlDesignMode;

 While it may be convenient to translate such enums as Delphi enumerated types, I recently stumbled over a

di�erence. In C and C++, enumerated types are often assignment-compatible with normal integral types, like int or unsigned

int. Many function declarations re�ect this, and simply declare parameters expecting such enumerated values as DWORD,

ULONG, or similar, and not of the special enum type expected. In C, this generally causes no problems. In Delphi, enumerated

types are a type of their own, and can not be assigned to normal integral types or to other enumerated types, so you would

have to cast such enumerated values to DWORD. You could of course also declare the parameters as the correct enum type,

but this may cause incompatibilities with existing code, especially if this relies on an older translation.

So in many cases, it is probably best if you don’t use Delphi’s enumerated types at all for such conversions, but declare the

enum as DWORD or Longint, and the values as simple untyped constants, as described below, for Delphi versions lower than

7.

In versions before Delphi 6, you’ll have to use constants instead, and de�ne a type for the enum. You get something like:

1

2

3

4

5

6

7

8

9

type

_htmlDesignMode = Longint;

htmlDesignMode = _htmlDesignMode;

const

htmlDesignModeInherit = -2;

htmlDesignModeOn = -1;

htmlDesignModeOff = 0;

htmlDesignMode_Max = 2147483647;

In C header �les, enums are sometimes abused to de�ne values for �ags or bits in a value used as bitset. An example from

shlobj.h:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

typedef enum _tagAUTOCOMPLETELISTOPTIONS

{

ACLO_NONE = 0, // don't enumerate anything

ACLO_CURRENTDIR = 1, // enumerate current directory

ACLO_MYCOMPUTER = 2, // enumerate MyComputer

ACLO_DESKTOP = 4, // enumerate Desktop Folder

ACLO_FAVORITES = 8, // enumerate Favorites Folder

ACLO_FILESYSONLY = 16, // enumerate only the

// file system

ACLO_FILESYSDIRS = 32, // enumerate only the

// file system dirs, UNC

// shares, and UNC servers.

} AUTOCOMPLETELISTOPTIONS;

// Note: the comma after the last value, 32, is valid C and C++.

// It is present in the original header file.

Rudy's Delphi Corner - Pitfalls of converting http://rvelthuis.de/articles/articles-convert.html

21 von 30 09.03.24, 08:12

These should be translated as enumerated type, not even in Delphi 6 or higher, because most of the time they are used

to select bits using the C equivalent of the bitwise or or and operators. This is possible with enums in C, but not in Delphi.

That is why you should always convert such values, which typically — but not always — represent powers of 2, as constants.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

type

_tagAUTOCOMPLETELISTOPTIONS = Byte;

AUTOCOMPLETELISTOPTIONS = _tagAUTOCOMPLETELISTOPTIONS;

const

ACLO_NONE = 0; // don't enumerate anything

ACLO_CURRENTDIR = 1; // enumerate current directory

ACLO_MYCOMPUTER = 2; // enumerate MyComputer

ACLO_DESKTOP = 4; // enumerate Desktop Folder

ACLO_FAVORITES = 8; // enumerate Favorites Folder

ACLO_FILESYSONLY = 16; // enumerate only the file system

ACLO_FILESYSDIRS = 32; // enumerate only the file system

// dirs, UNC shares, and UNC servers

Don’t be tempted to make such values typed constants, like

1

2

3

const

// don't enumerate anything

ACLO_NONE: AUTOCOMPLETELISTOPTIONS = 0;

In Delphi, typed constants do have a type and a size (they are stored like global variables), but they have one disadvantage:

you can’t use them in constant expressions. This means you can’t de�ne other constants as combinations of them, or use

them as label for a case statement. Always use them as simple constant.

If you really want to give such values a type, you can do it with a trick:

1

2

const

INVALID_HANDLE_VALUE = DWORD(-1);

This will give INVALID_HANDLE_VALUE the associated type DWORD. This means that if you do:

1

2

3

4

5

procedure OpenAFile(Handle: Longint);

begin

if Handle <> INVALID_HANDLE_VALUE then

// etc...

You will get a warning that the expression always evaluates to False, since INVALID_HANDLE_VALUE is a DWORD with value

$FFFFFFFF, which is always more than any Longint value could be.

According to the C++ standard, the size of an enum is dependent on the compiler. This means that one compiler can choose

to use the smallest type necessary to be able to hold all values in the enum, while another compiler can make all integer-

sized (or even larger, if the contained values require it).

It turns out that Microsoft’s compilers use integer sized enums, while Borland/CodeGear/Embarcadero’s use the smallest

possible type required. Because most DLL providers will try to be compatible with Microsoft, you can probably safely

assume that enums are 4 bytes in size. Most headers Embarcadero provides with its C++ compilers are modi�ed to set that

option for the Borland compiler as well.

By default, Delphi, like the C++ compilers mentioned, uses the smallest necessary type to accomodate all values, so to be

compatible with Microsoft, you will have to set a compiler directive, which makes all Delphi enums 4 bytes in size as well:

1 {$MINENUMSIZE 4}

If you have an older version of Delphi, you can use the following instead:

1 {$Z+}

Rudy's Delphi Corner - Pitfalls of converting http://rvelthuis.de/articles/articles-convert.html

22 von 30 09.03.24, 08:12

If your version of Delphi doesn’t have either option, your best choice is to declare the enum values as constants, and to

declare the type as DWORD.

There are di�erent kinds of (integer) types in Delphi. The Delphi help distinguishes between generic types and fundamental

types. The generic types are portable, but their size is platform dependent. They are Integer and Cardinal, which are both 16

bit in Delphi 1 (for 16 bit Windows) and 32 bit in 32 bit versions of Delphi (actually, Cardinal used to be o�cially 31 bit in a

few early versions). The fundamental types have a �xed size. This is described in the Delphi help topic “Integer types”.

You may be tempted to say that fundamental types are the way to go, since they are well-de�ned. Usually I would agree. But

there is a better way: . A type like LPARAM changed from 16 bit to 32 bit

(and on Win64, to 64 bit) over the versions of Windows. But most declarations of the 16 bit API didn’t change considerably.

. So use DWORD

instead of Cardinal, HRESULT instead of Longint, or LPCSTR instead of PChar, if these are the types in the original declaration.

Most of these types will be de�ned in the Windows unit, or one of the other stock WinAPI units like ShellAPI or MMSystem

(or in newer versions, any of the Winapi.*.pas units).

But in case the generic types are used in the original C declaration, here is a short table of corresponding types in C and C++

on one side and Delphi on the other. These values are only valid for current Win32 C and C++ compilers.

int Integer Cardinal 4

long (int) 1 Longint Longword 4

short (int) 1 Smallint Word 2

char Shortint Byte 1

char 2 AnsiChar 1

wchar_t WideChar 2

�oat Single 4

double Double 8

long double Extended 10

__int64 3 Int64 UInt64 8

void none 0

void * Pointer 4

char * PAnsiChar 4

wchar_t * PWideChar 4

int * PInteger 4

1 the use of the keyword int together with signed, unsigned, long and short is optional. If no type is speci�ed with these

keywords, int is implied. 2 if used without signed or unsigned. 3 non-standard extension, but widely used in Win32.

Note: This table applies to Win64 too, except that in Win64, pointers are of course 8 bytes in size.

The fact that Longword and Longint are types does not hold on some of the newer platforms that Delphi supports,

these days. On some platforms, like iOS 64 bit and Linux 64 bit, Longint and Longword are 64 bit types, i.e. they are 8 bytes in

size. If you need �xed size types, use the newer aliases like Int32 or UInt32. These are certain to be of the right size.

There are a few things to note.

• DWORD was de�ned as Longint in early versions of Delphi. This could cause some incompatiblities with code that

Rudy's Delphi Corner - Pitfalls of converting http://rvelthuis.de/articles/articles-convert.html

23 von 30 09.03.24, 08:12

expected an unsigned type. Later versions correctly de�ne it as Longword, but this change can cause incompatiblities

between versions. Better check Windows.pas what your version of Delphi uses.

• LPCTSTR and LPTSTR have a di�erent meaning depending on the de�nition of the UNICODE macro. If it is de�ned, they

mean LPCWSTR and LPWSTR respectively, otherwise they mean LPCSTR and LPSTR. More on this in the Unicode section.

This list does not pretend to be complete. There may be more oddities. I will add them as soon as I learn about them

In early C, there was no own type for booleans. Int was simply used for that, and any value that was not 0 was considered to

be true, and 0 was false. Sometimes symbols like TRUE and FALSE were de�ned with suitable values. Later on, the type bool

was introduced, which is equivalent to Delphi’s Boolean, but this is not often used in headers.

Delphi has the types ByteBool, WordBool and LongBool. If you see types that look like a Boolean being used in a header, with

names like BOOL, you should either use the same type in your translation, or, if you know the size, use one of the three

Delphi types mentioned above. Don’t be seduced to use Boolean unless the keyword bool (case sensitive!) is explicitly used.

That is because if the function returns any other value than a 1, the Delphi code will not work properly with Boolean, but it

will treat the other types in a special way. The three types mentioned above will be converted to a true Boolean where this is

required in the Delphi code.

In many headers, you’ll see conditional code that is compiled di�erently if the UNICODE macro is de�ned. An example from

winbase.h:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

WINBASEAPI UINT WINAPI GetWindowsDirectoryA(

OUT LPSTR lpBuffer,

IN UINT uSize

);

WINBASEAPI UINT WINAPI GetWindowsDirectoryW(

OUT LPWSTR lpBuffer,

IN UINT uSize

);

#ifdef UNICODE

#define GetWindowsDirectory GetWindowsDirectoryW

#else

#define GetWindowsDirectory GetWindowsDirectoryA

#endif // !UNICODE

Many API routines and structures come in two �avours, an ANSI and a Wide or Unicode �avour. The ANSI routines usually

have PAnsiChar parameters for strings, while the Unicode routines have PWideChar parameters. In some headers, an alias

is generated in the way you can see above. Which function is actually de�ned depends on the UNICODE macro. In Delphi,

you often see three declarations, as in Windows.pas:

1

2

3

4

5

6

7

8

9

function GetWindowsDirectory(lpBuffer: PChar;

uSize: UINT): UINT; stdcall;

{$EXTERNALSYM GetWindowsDirectory}

function GetWindowsDirectoryA(lpBuffer: PAnsiChar;

uSize: UINT): UINT; stdcall;

{$EXTERNALSYM GetWindowsDirectoryA}

function GetWindowsDirectoryW(lpBuffer: PWideChar;

uSize: UINT): UINT; stdcall;

{$EXTERNALSYM GetWindowsDirectoryW}

But in the implementation section, this is actually resolved as:

1

2

3

4

5

6

function GetWindowsDirectory; external kernel32 name

'GetWindowsDirectoryA';

function GetWindowsDirectoryA; external kernel32 name

'GetWindowsDirectoryA';

function GetWindowsDirectoryW; external kernel32 name

'GetWindowsDirectoryW';

So GetWindowsDirectory is actually an alias for the ANSI equivalent. If you want to use the wide variety, you’ll have to use the

W name explicitly.

Rudy's Delphi Corner - Pitfalls of converting http://rvelthuis.de/articles/articles-convert.html

24 von 30 09.03.24, 08:12

http://rvelthuis.de/articles/articles-convert.html#unicode
http://rvelthuis.de/articles/articles-convert.html#unicode

Since Delphi 2009, the change to UnicodeString as the default string type has changed the defualt types for Char and PChar

too, to WideChar and PWideChar respectively. Also, the default API functions to be called are now the wide versions (function

names ending in W , instead of in A). Your translations should re�ect this too. The stock Winapi units in Delphi already do.

To make this a little easier and to avoid having to translate both �avours separately, with an increased chance for

misalignments and errors, Borland wrote a little command line utility, wpar.exe (this may be temporarily o�ine, as EDN is

being dissolved?). This allows you to only write the declarations once and generate a .pas �le containing all versions. This

means that you don’t write a .pas �le yourself, but a �le with extension .par, which contains some tags to help the utility

create both (or all three) versions, and to indicate where the di�erences should be.

One example of a struct and a function from wininet.h (slightly reformatted, and some comments removed):

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

typedef struct _INTERNET_BUFFERSA {

DWORD dwStructSize;

struct _INTERNET_BUFFERSA * Next;

LPCSTR lpcszHeader;

DWORD dwHeadersLength;

DWORD dwHeadersTotal;

LPVOID lpvBuffer;

DWORD dwBufferLength;

DWORD dwBufferTotal;

DWORD dwOffsetLow;

DWORD dwOffsetHigh;

} INTERNET_BUFFERSA, * LPINTERNET_BUFFERSA;

typedef struct _INTERNET_BUFFERSW {

DWORD dwStructSize;

struct _INTERNET_BUFFERSW * Next;

LPCWSTR lpcszHeader;

DWORD dwHeadersLength;

DWORD dwHeadersTotal;

LPVOID lpvBuffer;

DWORD dwBufferLength;

DWORD dwBufferTotal;

DWORD dwOffsetLow;

DWORD dwOffsetHigh;

} INTERNET_BUFFERSW, * LPINTERNET_BUFFERSW;

#ifdef UNICODE

typedef INTERNET_BUFFERSW INTERNET_BUFFERS;

typedef LPINTERNET_BUFFERSW LPINTERNET_BUFFERS;

#else

typedef INTERNET_BUFFERSA INTERNET_BUFFERS;

typedef LPINTERNET_BUFFERSA LPINTERNET_BUFFERS;

#endif // UNICODE

//

// prototypes

//

BOOLAPI InternetTimeFromSystemTimeA(

IN CONST SYSTEMTIME *pst, // input GMT time

IN DWORD dwRFC, // RFC format

OUT LPSTR lpszTime, // output string buffer

IN DWORD cbTime // output buffer size

);

BOOLAPI InternetTimeFromSystemTimeW(

IN CONST SYSTEMTIME *pst, // input GMT time

IN DWORD dwRFC, // RFC format

OUT LPWSTR lpszTime, // output string buffer

IN DWORD cbTime // output buffer size

);

#ifdef UNICODE

#define InternetTimeFromSystemTime InternetTimeFromSystemTimeW

#else

#define InternetTimeFromSystemTime InternetTimeFromSystemTimeA

#endif // !UNICODE

This is coded into the .par �le as:

 1

 2

type

{#BEGIN}

Rudy's Delphi Corner - Pitfalls of converting http://rvelthuis.de/articles/articles-convert.html

25 von 30 09.03.24, 08:12

http://edn.embarcadero.com/article/images/10281/JediConv.zip
http://edn.embarcadero.com/article/images/10281/JediConv.zip

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

PInternetBuffers{$} = ^TInternetBuffers{$};

{#END}

{#BEGIN}

{$EXTERNALSYM _INTERNET_BUFFERS{$}}

_INTERNET_BUFFERS{$} = record

dwStructSize: DWORD;

Next: PInternetBuffers;

lpcszHeader: LPTSTR;

dwHeadersLength: DWORD;

dwHeadersTotal: DWORD;

lpvBuffer: Pointer;

dwBufferLength: DWORD;

dwBufferTotal: DWORD;

dwOffsetLow: DWORD;

dwOffsetHigh: DWORD;

end;

{#END}

{#BEGIN}

{$EXTERNALSYM _INTERNET_BUFFERS{$}}

INTERNET_BUFFERS{$} = _INTERNET_BUFFERS{$};

{#END}

{#BEGIN}

TInternetBuffers{$} = _INTERNET_BUFFERS{$};

{#END}

// prototypes

{#BEGIN}

{$EXTERNALSYM InternetTimeFromSystemTime{$}}

function InternetTimeFromSystemTime{$}(const pst: TSystemTime;

dwRFC: DWORD; lpszTime: LPTSTR; cbTime: DWORD): BOOL; stdcall;

{#END}

the {#BEGIN} and {#END} tags denote one “section” to duplicate. It may require a little playing with this to �nd out what is

actually seen as one “section” by the program. The {$} tags are where the A or the W characters should be placed, and the

type LPTSTR should be used where the di�erent string types should come.

The result of the conversion of the code in the .par �le is this .pas code:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

type

PInternetBuffersA = ^TInternetBuffersA;

PInternetBuffersW = ^TInternetBuffersW;

PInternetBuffers = PInternetBuffersA;

{$EXTERNALSYM _INTERNET_BUFFERSA}

_INTERNET_BUFFERSA = record

dwStructSize: DWORD;

Next: PInternetBuffers;

lpcszHeader: PAnsiChar;

dwHeadersLength: DWORD;

dwHeadersTotal: DWORD;

lpvBuffer: Pointer;

dwBufferLength: DWORD;

dwBufferTotal: DWORD;

dwOffsetLow: DWORD;

dwOffsetHigh: DWORD;

end;

{$EXTERNALSYM _INTERNET_BUFFERSW}

_INTERNET_BUFFERSW = record

dwStructSize: DWORD;

Next: PInternetBuffers;

lpcszHeader: PWideChar;

dwHeadersLength: DWORD;

dwHeadersTotal: DWORD;

lpvBuffer: Pointer;

dwBufferLength: DWORD;

dwBufferTotal: DWORD;

dwOffsetLow: DWORD;

dwOffsetHigh: DWORD;

end;

{$EXTERNALSYM _INTERNET_BUFFERS}

_INTERNET_BUFFERS = _INTERNET_BUFFERSA;

{$EXTERNALSYM _INTERNET_BUFFERSA}

INTERNET_BUFFERSA = _INTERNET_BUFFERSA;

{$EXTERNALSYM _INTERNET_BUFFERSW}

INTERNET_BUFFERSW = _INTERNET_BUFFERSW;

{$EXTERNALSYM INTERNET_BUFFERS}

INTERNET_BUFFERS = INTERNET_BUFFERSA;

TInternetBuffersA = _INTERNET_BUFFERSA;

TInternetBuffersW = _INTERNET_BUFFERSW;

TInternetBuffers = TInternetBuffersA;

Rudy's Delphi Corner - Pitfalls of converting http://rvelthuis.de/articles/articles-convert.html

26 von 30 09.03.24, 08:12

44

45

46

47

48

49

50

51

52

53

54

// prototypes

{$EXTERNALSYM InternetTimeFromSystemTimeA}

function InternetTimeFromSystemTimeA(const pst: TSystemTime;

dwRFC: DWORD; lpszTime: PAnsiChar; cbTime: DWORD): BOOL; stdcall;

{$EXTERNALSYM InternetTimeFromSystemTimeW}

function InternetTimeFromSystemTimeW(const pst: TSystemTime;

dwRFC: DWORD; lpszTime: PWideChar; cbTime: DWORD): BOOL; stdcall;

{$EXTERNALSYM InternetTimeFromSystemTime}

function InternetTimeFromSystemTime(const pst: TSystemTime;

dwRFC: DWORD; lpszTime: PChar; cbTime: DWORD): BOOL; stdcall;

The program seems to contain some logic to determine what is actually being converted. That is why PInternetBu�ers is only

aliased to PInternetBu�ersA, and not declared as ^TInternetBu�ers. The same for _INTERNET_BUFFERS and TInternetBu�ers in

the code above. They are aliased to the corresponding ANSI type, and the structure is not repreated once more. The

function declaration InternetTimeFromSystemTime is completely repeated, however.

Sometimes, a certain API function is not available in all versions of Windows. Or di�erent versions of a non-Microsoft API

contain di�erent functions. If you have translated a header, it is always a good idea to check several OS versions (or

di�erent setups for your DLL) to see if each function is available.

The simplest test is to simply create a console application which uses your unit or units, and writes the address of each

function. An example from a recent project (Shell API headers):

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

program ShellAPIProject;

{$APPTYPE CONSOLE}

uses

SysUtils,

RVSHFolder in 'RVSHFolder.pas',

RVShLWAPI in 'RVShLWAPI.pas',

RVShellAPI in 'RVShellAPI.pas',

RVShlObj in 'RVShlObj.pas',

RVUrlMon in 'RVUrlMon.pas',

RVShAppMgr in 'RVShAppMgr.pas',

RVShlDisp in 'RVShlDisp.pas',

RVUrlHist in 'RVUrlHist.pas';

begin

// ShellAPI import test

Writeln;

Writeln('shellapi');

Writeln;

Writeln(Format('%p -- %s', [@DragQueryFileA, 'DragQueryFileA']));

Writeln(Format('%p -- %s', [@DragQueryFileW, 'DragQueryFileW']));

Writeln(Format('%p -- %s', [@DragQueryFile, 'DragQueryFile']));

Writeln(Format('%p -- %s', [@DragQueryPoint, 'DragQueryPoint']));

Writeln(Format('%p -- %s', [@DragFinish, 'DragFinish']));

Writeln(Format('%p -- %s', [@DragAcceptFiles, 'DragAcceptFiles']));

// Snip hundreds of similar lines

Readln;

end.

I usually use the macro recorder in the Delphi editor to create a �le like the above (record the tasks for one line, and then

use that recorded macro for each matching line).

The program tries to display the address of each function. If one of the functions is not supported, you will get an error.

Where that error occurs is not known yet, since the error will happen before anything is output. If that happens, I usually

comment out all functions, and then uncomment lines in big chunks and rerun the program, until the error occurs again.

Then I re�ne the search. That way you can �nd all functions that are not supported, and if you do it a little strategically, it

won’t take a long time.

But what next? I can of course simply remove these functions from the translation and tell people not to use them. But I can

also link to the DLL dynamically, and load these functions manually, providing an alternative if they don’t exist.

To do that, I replace the direct function declarations with procedural variables of the same signature (there is no need to

Rudy's Delphi Corner - Pitfalls of converting http://rvelthuis.de/articles/articles-convert.html

27 von 30 09.03.24, 08:12

prede�ne a speci�c type for each function; var accepts direct type declarations). So an original:

1

2

function SHEnableServiceObject(const rclsid: TCLSID;

fEnable: BOOL): HResult; stdcall;

then becomes:

1

2

3

var

SHEnableServiceObject: function(const rclsid: TCLSID;

fEnable: BOOL): HResult stdcall;

Later on in the unit, I implement a function SafeGetProcAddress, which uses GetProcAddress to �nd the given API function,

and returns the address of that function, or the address of a replacement function, if the function could not be loaded from

the DLL. The replacement is also implemented in the unit, and usually just a stub returning a result indicating an error, but

sometimes it is a real alternative, using other routines to achieve the same result.

Below is an example of my newest ShlObj conversion, using that technique.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

// Replacement functions

// Replacement for SHEnableServiceObject

function _SHEnableServiceObject(const rclsid: TCLSID;

fEnable: BOOL): HResult stdcall;

begin

Result := E_NOTIMPL;

end;

// Replacement for SHGetSetCustromFolderSettingsA

function _SHGetSetFolderCustomSettingsA(

var pfcs: TSHFolderCustomSettingsA; pszPath: PAnsiChar;

dwReadWrite: DWORD): HResult; stdcall;

begin

Result := E_NOTIMPL;

end;

// Etc...

function _SHGetSetFolderCustomSettingsW(

var pfcs: TSHFolderCustomSettingsW; pszPath: PWideChar;

dwReadWrite: DWORD): HResult; stdcall;

begin

Result := E_NOTIMPL;

end;

// Rest of functions removed for clarity...

// Helper function

function SafeGetProcAddress(H: HMODULE; ProcName: PChar;

DefaultProc: Pointer): TFarProc;

begin

Result := GetProcAddress(H, ProcName);

if not Assigned(Result) then

begin

Result := DefaultProc;

{$IFDEF SFGPA_DEBUG}

Writeln(shell32, ': ', ProcName, ' replaced');

{$ENDIF}

end;

end;

var

Module: HMODULE;

initialization

{$IFDEF SFGPA_DEBUG}

Writeln;

Writeln('ShlObj');

Writeln;

{$ENDIF}

Module := LoadLibrary(shell32);

if Module <> 0 then

begin

SHEnableServiceObject := SafeGetProcAddress(Module,

'SHEnableServiceObject',

@_SHEnableServiceObject);

SHGetSetFolderCustomSettingsA := SafeGetProcAddress(Module,

'SHGetSetFolderCustomSettingsA',

@_SHGetSetFolderCustomSettingsA);

SHGetSetFolderCustomSettingsW := SafeGetProcAddress(Module,

'SHGetSetFolderCustomSettingsW',

@_SHGetSetFolderCustomSettingsW);

Rudy's Delphi Corner - Pitfalls of converting http://rvelthuis.de/articles/articles-convert.html

28 von 30 09.03.24, 08:12

63

64

65

66

67

68

69

70

71

72

SHGetSetFolderCustomSettings := SHGetSetFolderCustomSettingsA;

// Rest of functions removed for clarity...

end;

finalization

FreeLibrary(Module);

end.

As you can see, I simply assign the address I got for SHGetSetCustomFolderSettingsA to the SHGetSetCustomFolderSettings

variable as well. In Unicode-enabled versions of Delphi (Delphi 2009 and newer) you should assign

SHGetSetCustomFolderSettingsW instead.

If I run this, with SFGPA_DEBUG de�ned, I get (among output about other �les):

ShlObj

shell32.dll: SHGetSetFolderCustomSettingsA replaced

shell32.dll: SHStartNetConnectionDialogA replaced

shell32.dll: SHOpenPropSheetA replaced

shell32.dll: SHCreateFileExtractIconA replaced

If SFGPA_DEBUG is not de�ned, you will not see any diagnostics.

Of course you can also load all functions in a DLL dynamically. In that case, I would not use the technique described for all

functions, just for those for which it is not sure they exist everywhere. Otherwise you can simply use GetProcAddress.

Sometimes C is a little hard to read. Just look at the declaration of signal in the signal.h header:

1 void (*signal(int sig, void (*func)(int)))(int);

I �rst thought it was a procedural type, like:

1

2

3

type

signal_f = procedure(param: Integer) cdecl;

signal = procedure(sig: Integer; func: signal_f) cdecl;

But that left me with the question what the (int) at the very end was for. It took me quite a bit of reading to realize that this

was a normal function, returning a void (*)(int) , and the declaration of the normal function signal is nested in that return

type, i.e. it comes where the * is. So the correct translation is:

1

2

3

4

type

signal_f = procedure(param: Integer) cdecl;

function signal(sig: Integer; func: signal_f): signal_f; cdecl;

Such things remind me why I prefer to program in Delphi. ;-)

Rudy Velthuis

These links are being provided as a convenience and for informational purposes only; they do not constitute an endorsement or an approval of any of the products, services or opinions of the

corporation or organization or individual. I bear no responsibility for the accuracy, legality or content of the external site or for that of subsequent links. Contact the external site for answers to

questions regarding its content.

The coding examples presented here are for illustration purposes only. The author takes no responsibility for end-user use. All content herein is copyrighted by Rudy Velthuis, and may not be

reproduced in any form without the author's permission. Source code written by Rudy Velthuis presented as download is subject to the license in the �les.

Copyright © 2019 by Rudy Velthuis

Rudy's Delphi Corner - Pitfalls of converting http://rvelthuis.de/articles/articles-convert.html

29 von 30 09.03.24, 08:12

Last update: Feb. 20, 2019

Back to top

Rudy's Delphi Corner - Pitfalls of converting http://rvelthuis.de/articles/articles-convert.html

30 von 30 09.03.24, 08:12

http://rvelthuis.de/articles/articles-convert.html#top
http://rvelthuis.de/articles/articles-convert.html#top

