
I don’t care if it works on your machine! We are not shipping your machine!

— Vidiu Platon

In my perusals on Stack Over�ow and in the Embarcadero newsgroups, and recently also the new English language

en.Delphi-Praxis and the original German language Delphi-Praxis, as well as the Idera forums, I have seen lots of

examples of people trying to interface with DLLs that were written without any consideration on their use in other

languages than the one it was written in. They export functions with language-speci�c arguments or result types,

like C++ objects or Delphi strings, or use calling conventions that can only be found in certain compilers, like Visual

C++’s __fastcall or Delphi’s register.

In this article, I try to lay down my experience with DLLs and how I think they should be written, so they can be

used from (almost) every language on Windows.

Most of my experience with, well, badly — often stupidly — written DLLs comes from conversions as described in

my article Pitfalls of converting and from many questions on Stack Over�ow and the Embarcadero Discussion

Forums.

Although this is a Delphi-centric site, most of what I write applies to writing DLLs in .

Note that this is not a tutorial on how you can produce a DLL in Delphi — or in any other language. That is well

described in the documentation and I bet there are online tutorials for it as well. This article is merely a discussion

of the and when writing a DLL.

DLLs are, basically, libraries providing a set of functions (or procedures) to be called from a program or another

DLL. There are certain limits to what most languages can use. Therefore, if I write a DLL, I follow these rules:

• Limit your types to the types the C language has, or to structs/records of these types. In other words,

, like C++ templates, objects (eg. std::string)

or Delphi objects, AnsiStrings, UnicodeStrings, etc.

.

• Do not export data or shared memory. Not all languages can handle those. Just export functions. If you

want to expose data, use functions for that.

• These are handled di�erently by di�erent compilers.

• . Some language-speci�c calling conventions like Delphi’s

default register calling convention, or C++ ’s fastcall and thiscall calling conventions

.

• Be sure to use and document . If necessary, compare with other

compilers and use �ller bytes.

• In a DLL, do not allocate data that is passed to the user. The user may not have a proper way to deallocate/

free such data. If possible, (e.g. a string bu�er)

.

• Exceptions are language-speci�c and other languages can very likely

Rudy's Delphi Corner

Rudy's Delphi Corner - DLL dos and don'ts http://rvelthuis.de/articles/articles-dlls.html

1 von 12 09.03.24, 08:08

http://rvelthuis.de/articles/articles-convert.html
http://rvelthuis.de/articles/articles-convert.html
http://stackoverflow.com/questions/tagged/delphi
http://stackoverflow.com/questions/tagged/delphi

not handle them.

• If possible, for the functions and the data types used in the DLL, even if the DLL is not

written in C. This will make the DLL usable across a large variety of languages.

I will explain these rules in the following sections.

In Delphi, it makes no sense to export Delphi-speci�c types from a DLL, even if you are pretty sure that your DLL will

only be used by a program written in Delphi. There will still be issues like memory management or RTTI

di�erences.

Rather use packages (.BPL �les). These contain a lot of metadata that makes them much more suitable to interface

with Delphi, and you can pass around any datatype Delphi knows, without any memory management or RTTI issues.

Packages can also export types and variables without the need to declare them and without an extra import unit.

In other words: Do not use DLLs if you can use packages.

When interfacing with a DLL, parameters are one of the main problems to deal with.

Bad programmers worry about the code. Good programmers worry about data structures and their

relationships.- — Linus Torvalds

The main mistake people make when writing DLLs is to use language-speci�c types, like templates or classes in C++ or

Delphi, or AnsiStrings, strings, dynamic arrays, sets, etc. in Delphi.

I found that, . Almost all languages on

Windows are able to interface with a DLL that only exposes C POD types. POD stands for “plain old data” and more

or less de�nes the scalar types like integers, �oating point types, character types and pointers, or compound

structures (structs, unions, arrays) which contain only such data types.

A (non-exhaustive) list of the Windows types that can be safely passed across DLL borders are:

int Integer Cardinal 4

long (int) 1 Longint Longword 4

short (int) 1 Smallint Word 2

char Shortint Byte 1

char 2 AnsiChar 1

wchar_t WideChar 2

�oat Single 4

double Double 8

__int64 3 Int64 UInt64 8

void none 0

Rudy's Delphi Corner - DLL dos and don'ts http://rvelthuis.de/articles/articles-dlls.html

2 von 12 09.03.24, 08:08

https://en.wikipedia.org/wiki/Passive_data_structure
https://en.wikipedia.org/wiki/Passive_data_structure

void * Pointer 4 8

char * PAnsiChar 4 8

wchar_t * PWideChar 4 8

int * PInteger 4 8

1 the use of the keyword int together with signed, unsigned, long and short is optional. If no type is speci�ed with

these keywords, int is implied. 2 if used without signed or unsigned. 3 non-standard extension, but widely used in

Win32.

Alternatively, if a �xed size is important, you can use the �xed size integral types, like UInt8 (Byte) or Int32 (32 bit

signed integer), UInt64, etc. Generally, the name IntXX denotes a signed integer, and the name UIntXX an unsigned

integer. The XX part denotes the number of bits, i.e. 8, 16, 32 or 64. Most other languages will have equivalents for

these, often even with the same naming convention.

If you pass around compound types (structs, arrays), pass them around as pointers or references.

If you are a C or C++ programmer: although they are a valid C construct, do not use C bit�elds. These are very

awkward to use in any other language but C or C++.

Extended is an IEEE-754 type, and some compilers are able to handle it, but certainly not all. There could also be

alignment issues around them, i.e. one compiler may expect them aligned on 16 bytes, while the other aligns them on 10

bytes (in a struct, or in an array). It is probably best to avoid Extended parameters (or return values) in DLLs.

Another class of types that can usually be passed across DLL borders are the COM-compatible types, like

(IUnknown-based) interfaces. Note that in C and C++, interfaces are declared as pointer types to structs, while in

Delphi, they are reference types already, so the following Delphi declaration:

procedure SetInstanceExplorer(const punk: IUnknown); stdcall;

is equivalent to C++’s:

void __stdcall SetInstanceExplorer(IUnknown *punk);

Many languages handle references di�erently. C strictly uses pointers, and that is, in my opinion, the best way to

handle them too, because almost all languages on Windows can deal with pointers (even so called “managed”

languages like the .NET languages can deal with them, through marshalling). So instead of doing something like:

type

MyRecord =

...

end;

procedure SomeAPI(... var Rec: MyRecord; ...);

You should probably do something like:

type

Rudy's Delphi Corner - DLL dos and don'ts http://rvelthuis.de/articles/articles-dlls.html

3 von 12 09.03.24, 08:08

PMyRecord = ^MyRecord;

MyRecord =

...

end;

procedure SomeAPI(... Rec: PMyRecord; ...);

Now, Embarcadero (and before, Borland) advise the use of var. I am a bit ambivalent about this. The simple code

example above, with GetCurMoniker, is easier to read with var, but using var can make translating to and from C a

little harder, since in C, you need one extra explicit level of indirection. In other words, if you use var, you are not

translating as verbatim as possible anymore. Reading documentation, which often shows the C syntax, is also a

little harder that way.

I think it is best to use what you prefer.

Arrays are best passed around as pointers to the �rst element.

Because in C and in many other languages, arrays do not have an inherent length that can somehow be retrieved from

such a pointer, you should have an extra parameter that passes the length (in elements) of that array.

An example:

// DLL function:

procedure DrawGraph(PlotPoints: PInteger; Count: Integer); stdcall;

// Usage:

var

Measurements: array[0..2999] of Integer;

begin

// Fill measurements array here, and then draw the graph:

DrawGraph(@Measurements[0], Length(Measurements));

Do not declare such array parameters as var parameters. This makes it a lot harder to use pointer arithmetic or to

use casts to access the single elements of the array. How this can be done can be found in my conversion article

Sometimes you need callback functions, e.g. to let the user handle each item of an enumeration or get feedback

from the user in case of a certain event, etc.

Avoid passing around methods of objects or function pointers or some such. I am aware of the fact that

sometimes you need callbacks, but then only declare them as pointers to global functions. So in Delphi, do not

have any parameters with types declared as procedure … of object, or reference to ….

Callbacks should follow the rules above, regarding parameter/argument types, return values, calling conventions

(e.g. stdcall), etc.

Delphi and C++Builder DLL exported functions should not have the following types of parameters:

None of them. They require an infrastructure that other languages (except C++Builder) do not have. But even

Delphi and C++Builder programs will have problems using them, because the classes have a di�erent memory

manager and also di�erent RTTI. Across di�erent versions, the layout of the classes can be di�erent as well.

Just don’t do it.

Rudy's Delphi Corner - DLL dos and don'ts http://rvelthuis.de/articles/articles-dlls.html

4 von 12 09.03.24, 08:08

http://www.rvelthuis.de/articles/articles-convert.html#arrayparams
http://www.rvelthuis.de/articles/articles-convert.html#arrayparams

To be exact: strings, AnsiStrings, UnicodeStrings, ShortStrings. The �rst three are automatically reference counted

(ARC) types and other languages cannot use these, nor can they update the reference counts as required. Use

PChar, PAnsiChar and PWideChar parameters, respectively.

function SetWorkDirectoryWrong(const Dir: string): Boolean; stdcall; // BAD

function SetWorkDirectoryCorrect(Dir: PChar): LongBool; stdcall; // GOOD

This is for the same reasons as for strings. Just give your exported functions normal array parameters, i.e. two

parameters, one for the �rst element and one for the length.

These are the array of Bla kind of . Internally, these are passed as parameters, a pointer to the

�rst element and a High() value. These are highly speci�c to Delphi and C++Builder. Rather do what I suggested

above: provide two parameters, a pointer to the �rst element and a length.

procedure PrintSalesWrong(const Sales: array of Integer); stdcall; // BAD

procedure PrintSalesCorrect(Sales: PInteger; Count: Integer); stdcall; // GOOD

These are special cases of open array parameters, in fact array of TVarRec. Completely unusable in other

languages.

More on open array parameters and arrays of const in my article on that subject.

While these may be nice as callbacks, they are completely unusable by most other languages. So if your DLL

function has one or more of these as parameters, the user will not be able to provide them, which often renders

your function unusable. If you need callbacks, declare them as plain procedural/functional types, i.e. without of

object or reference to. They should of course follow all the rules explained in this article. If the callback must

reference a certain object, provide for some kind of UserInfo parameter, probably at best an untyped pointer. The

user can then pass that to the function that takes the callback, and the callback can then pass it back to the user,

so the function implementing the callback knows what called it. This is a bit like the Sender parameter in event

handlers.

The various Microsoft APIs have enough examples of callbacks. Do it the same way.

Pascal sets are not nearly the same as what most other languages consider a set. Hardly any language will be able

to use them. Rather have a parameter of an integral type, of which the bits can be set individually.

const

OptionHighlight = $0001;

OptionUseColor = $0002;

OptionLineNumbers = $0004;

procedure SetOptions(NewOptions: Integer); stdcall;

// Usage:

Rudy's Delphi Corner - DLL dos and don'ts http://rvelthuis.de/articles/articles-dlls.html

5 von 12 09.03.24, 08:08

http://rvelthuis.de/articles/articles-openarr.html
http://rvelthuis.de/articles/articles-openarr.html

SetOptions(OptionHighlight or OptionLineNumbers);

Note that you can freely use these kinds of parameters inside your DLL and also in your programs. Just don’t give

your exported DLL functions such parameters.

Generally spoken, the types you should not use as parameters should not be used as return values either.

But there is more: return values are handled quite di�erently by di�erent compilers, even by compilers of a

di�erent vendor but for the same language. Generally, 32 bit simple values like integers or pointers are �ne. But

how a compound type, like a struct or an array, is returned di�ers greatly.

The biggest problem is with structs/records. How these are returned di�ers greatly from compiler to compiler.

For instance, some compilers allow you to directly return a struct that is not larger than 64 bits in the register

combination EDX:EAX . Some may return �oating point types in a register, or in the FPU stack. Other compilers don’t

do this the same way, and if they try to access a member of the struct, they access who-knows-what. This can

cause nasal demons. Other compilers insert the return value as a last or �rst pointer parameter. It seems that,

despite detailed calling conventions, such details are not handled uniformly. This means that one compiler may

 receive what it expects to get from the other one.

The solution is not to anything but simple types, like integers, booleans or bytes. To pass values back to the caller,

de�ne a struct type and a pointer type to it. Then let the user pass such a struct as parameter, through a pointer, and

you simply �ll the values of the struct.

Returning pointers can be a big problem.

• Returning pointers to local variables is unde�ned behaviour in most languages.

• If, from your DLL, you return a pointer to data that you allocated from the heap, then you are passing a

pointer to data in the DLL heap. But the heap memory of the DLL is very likely not the same as the heap of

the receiving code, so if the caller attempts to free/deallocate such data, this will probably fail, because the

memory manager of that code may be completely di�erent and it has no access to the internal structures

of the DLL (nor does it know about it).

• Returning a pointer to constant data in the DLL (e.g. a version string or a name) makes the pointer unusable

when the DLL gets unloaded.

• Returning a pointer to data passed in by the user is safe. Assume the user passes in a C-style string and you

want to return a pointer to the �rst occurrence of a certain substring. That is not problematic, because the

pointer is to valid data managed by the user. Returning NULL/nil instead of a valid pointer can be a problem

(some people prefer to code as null-free as possible), but if it is clearly documented, it is the responsibility

of the user to check for it. And it is not entirely clear what else you could return if you did not �nd the

substring.

Generally, instead of returning a pointer to data, you let the user allocate a bu�er or struct/record. If this is a bu�er or

an array, also let them pass in its (maximum) length. Then you �ll the struct or array with the data the user is requesting.

This way, the user who allocated the data structure can also free it again and memory management is not your (the DLL

writer’s) concern.

There are ways to allocate memory that the user can free again, if it is taken from a common memory pool, like

the memory you can allocate with CoTaskMemAlloc, because the user can free it with CoTaskMemFree again. This is,

Rudy's Delphi Corner - DLL dos and don'ts http://rvelthuis.de/articles/articles-dlls.html

6 von 12 09.03.24, 08:08

https://en.wiktionary.org/wiki/nasal_demon
https://en.wiktionary.org/wiki/nasal_demon
https://clipperhouse.com/principles-of-null-free-programming-4212f02167a3
https://clipperhouse.com/principles-of-null-free-programming-4212f02167a3

outside COM, not very often done, though. I don’t know if there are restrictions or drawbacks to this.

Booleans are a bit tricky. In some languages, anything that is not 0 is considered true, while in others, booleans

are restricted to the ordinal values 0 and 1 only (and in some to 0 and -1).

To handle this, you should either return a de�ned value (like the HRESULT type de�ned by Microsoft) of a

boolean, or use a LongBool. The latter is the Delphi equivalent of a boolean integer, i.e. 0 (zero) is treated as False and

every other value as True.

The same provisos apply as for structs/records. Rather pass them back to the user as reference parameters.

Calling conventions govern how parameters are passed and how the stack is cleared after the call. In Win32, there

are several calling conventions, and not all are supported by all compilers. In Win64, there is only one.

In Win32, there is one main calling convention you should use: stdcall (or stdcall, _stdcall, etc. in C or C++). There is

seldom a good reason not to use it. The Windows APIs use it too.

In Delphi, the default calling convention is register, or as it is called in C++ Builder, fastcall. One might think that this

is compatible with Microsoft’s equally named calling convention (i.e. fastcall), but there are di�erences. They do not

use the same set of registers. So be sure not to forget to declare all your exported functions as stdcall. Hardly

anyone will be able to use Delphi’s register.

If you program in C or C++, be sure to use __stdcall or one of the macros that mean the same thing, like STDCALL,

STDAPI, WINAPI and even PASCAL.

For C and C++ programmers: I am aware of the fact that some C functions with variable arguments require the

cdecl (add some underscores where needed) convention. If you can, avoid exporting such functions, or, if you think

you must, provide an alternative too, i.e. one that can pass a pointer to an array and a number of elements.

In Win64, there is only one (user) calling convention. Most compilers still let you declare calling conventions like

cdecl or stdcall, but these are generally ignored. Win64 does not allow any other calling convention than the

standard one, which is more or less like __fastcall, i.e. parameters are passed as registers, and only if there are more

parameters than available registers, the stack is used.

If you are a C++ programmer, avoid name mangling. It makes importing your functions from any other language/

compiler combination than yours terribly hard. The user has to �nd out the mangled names using a program like

Dependency Walker or some DLL dump program and then use these to import. There is no simple relation

between the function in the header and the name in the DLL, especially since di�erent C++ compilers could be

using di�erent ways to mangle.

Instead, declare your exported functions as extern “C”. An example:

#ifdef __cplusplus

extern "C" {

#endif

Rudy's Delphi Corner - DLL dos and don'ts http://rvelthuis.de/articles/articles-dlls.html

7 von 12 09.03.24, 08:08

int __stdcall CloseThing(int thing);

int __stdcall ReadThing(int thing, void* buf, unsigned count);

int __stdcall WriteThing(int thing, void* buf, unsigned count);

long __stdcall SeekThing(int thing, long offset, int whence);

#ifdef __cplusplus

}

#endif

Alternatively, you can do:

extern "C" int __stdcall CloseThing(int thing);

extern "C" int __stdcall ReadThing(int thing, void* buf, unsigned count);

extern "C" int __stdcall WriteThing(int thing, void* buf, unsigned count);

extern "C" long __stdcall SeekThing(int thing, long offset, int whence);

If you really, really want to make things easy for your users, use a .DEF �le, as described by Microsoft.

EXPORTS

 CloseThing

 ReadThing

 WriteThing

 SeekThing

If you can, use so called “natural” alignment, i.e. each type is aligned on a multiple of its size. If you have a type that

is not 1, 2, 4, 8 or 16 bytes in size, use the next largest of these. So 16 bit words are aligned on a 2 byte boundary,

32 bit DWords are aligned on a 4 byte boundary, etc.

Records should be aligned thus, that the types in it are aligned properly, and the record size is also extended, if

necessary with �ller bytes, to ensure that they are also properly aligned in an array.

Not all compilers handle this always completely correctly, so be sure to compare the alignment of your types with

the de facto standard, the MS Visual C++ compiler. Most compilers are compatible with it. If the alignment of your

types is not the same as the alignment MSVC++ generates, you should rather add �ller bytes to make them align

the same way.

In C and C++, you can use the new alignof() keyword. In Delphi, you will have to do this manually, for instance using

a simple function (using extended RTTI):

// http://stackoverflow.com/a/14492362/95954

function GetFieldOffset(ARecordTypeInfo: PTypeInfo;

const ARecordFieldName: string): Integer;

var

Context: TRttiContext;

Field: TRttiField;

begin

if (ARecordTypeInfo.Kind <> tkRecord) then

raise Exception.Create('Not a record type');

for Field in Context.GetType(ARecordTypeInfo).GetFields do

if Field.Name = ARecordFieldName then

Exit(Field.Offset);

raise Exception.CreateFmt('No such field name: %s', [ARecordFieldName]);

end;

// Used like:

OffsetBottom := GetFieldOffset(TypeInfo(TRect), 'Bottom');

Rudy's Delphi Corner - DLL dos and don'ts http://rvelthuis.de/articles/articles-dlls.html

8 von 12 09.03.24, 08:08

https://msdn.microsoft.com/en-us/library/28d6s79h.aspx
https://msdn.microsoft.com/en-us/library/28d6s79h.aspx

If your version of Delphi does not have extended RTTI yet, you can do it like:

OffsetBottom := NativeInt(@PRect(nil)^.Bottom);

The latter is, in my opinion, not as elegant, but quite a lot faster, and it produces the same result.

Also take a look at the RTTI function I explain in my article about conversions. It nicely displays the entire layout of a

record and shows you how to check sizes.

In short: do not allocate in the DLL what you want to pass to the user of the DLL.

In this section, I use the example of returning a string, but the same principles apply to all kinds of data, e.g. byte

bu�ers, records, arrays, etc.

So — generally — don’t return, for instance, a string by allocating the memory and returning the pointer to the

string like this:

// Don't do this!

function GetSomeFileName(var FileName: PWideChar): Integer; stdcall;

That will put the burden of freeing the memory allocated for the string on the user. But your DLL (even if it is a

Delphi DLL to be used by a Delphi program) probably has a di�erent memory manager/allocator than your user, so the

user safely free that memory. This is almost certainly the case if the receiving program is written in a

di�erent language.

There are a few scenarios you can use instead.

The best scenario is the one used by most API functions. The user must allocate the bu�er for the string and pass

a pointer to it. Additionally, the user must pass the length of the bu�er. So your function should look like this

instead:

function GetSomeFileName(FileName: PWideChar; Length: Integer): Integer; stdcall;

The user allocates the bu�er for the �lename, and its length. Your DLL function �lls this bu�er with the �le name.

If the bu�er is too short, you indicate this with an error return value (if possible, return the required length in the

returned integer, so the user can try again, or 0 if the function succeeded).

Often, if the string is limited in size, like most path and �le names, the user can simply allocate a bu�er on the

stack and call the DLL function:

var

FileName: array[0..MAX_PATH] of WideChar;

begin

GetSomeFileName(FileName, MAX_PATH);

The user can then keep on using the bu�er, or assign it to a string.

In my opinion, this is superior to all the other methods, discussed below.

Rudy's Delphi Corner - DLL dos and don'ts http://rvelthuis.de/articles/articles-dlls.html

9 von 12 09.03.24, 08:08

http://rvelthuis.de/articles/articles-convert.html#checkingsizes
http://rvelthuis.de/articles/articles-convert.html#checkingsizes

Another scenario is providing an extra function that can free the string. The function will be a DLL function, so it

has the right memory manager/allocator to do this, for instance:

procedure FreeString(FileName: PWideChar); stdcall;

The user should know that such a string is to be considered read-only and that he or she should free the string, and

how.

You could use an allocator that is provided by the OS, like the one provided by IMalloc or the corresponding

CoTaskmemAlloc function. The user can then free the bu�er or string using CoTaskMemFree. Your function then

looks like the original function (the one commented with “Do not do this!”).

But be sure to document this. The user won’t know it, and may have to initialize the system with CoInitialize or a similar

function. Such strings should also be treated as read-only

There are other memory allocation functions provided by the system. They are discussed on this MSDN page.

Sometimes the data to be returned does not have to be allocated. It can be a constant in the DLL. Then your

function can simply return a pointer to it:

function GetVersionString: PWideChar; stdcall;

But:

• The user should know that the data is constant, i.e. read-only.

• The data will not be accessible anymore when the DLL is unloaded.

These things must be documented.

In all but the �rst scenario (user allocates), the user is best advised to make a copy of the data to his or her private

memory, to avoid data loss and to allow manipulation.

Exceptions are highly language-speci�c. Even C++ exceptions thrown by a DLL written with a di�erent compiler can

probably not be handled by the caller. It gets worse if the caller is written in a di�erent language. A C++ compiler

probably won’t be able to handle Delphi exceptions, and vice versa. C won’t be able to handle either, etc.etc.

Some languages may be able to handle system or “foreign” exceptions, but if you are writing a DLL, don’t bet on it.

So, NEVER LET EXCEPTIONS ESCAPE A DLL!

If, in your DLL, you call code that causes an exception, be sure to catch it.

Rudy's Delphi Corner - DLL dos and don'ts http://rvelthuis.de/articles/articles-dlls.html

10 von 12 09.03.24, 08:08

https://msdn.microsoft.com/en-us/library/windows/desktop/aa366533(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366533(v=vs.85).aspx

If you are a C++ and/or C programmer, you won’t have much di�culty providing such a header �le. You will

probably need it yourself anyway. But be sure to restrict the data to C, as described above. Avoid name mangling,

avoid language speci�c types and calling conventions and mind all the other things I mentioned above.

The header should not only declare the functions to be used, but also all structs, enums and constants that apply.

In Delphi, this looks like it could be some work, but it isn’t. Newer versions of Delphi have project options in the IDE

that allow you to generate object �les and headers:

Project menu → Options → Delphi Compiler → Output – C/C++ → C/C++ output �le generation

The last item is a combobox that allows you to create a number of output �les to be consumed by C and/or C++.

Just choose an option that includes headers.

Note that the header has the extension .hpp and may contain some macros or de�nes that are speci�c to Delphi

and C++ Builder. Be sure to look through the �le and remove such stu�. Also, there will be a .hpp �le for each unit,

not for a DLL. So you may have to combine them into one single header �le.

C and C++ usually use .h as �le extension. You can just rename the �le(s) generated.

But even in older versions of Delphi, you can tell the compiler to create C++ headers, it is just not as convenient as

in the newer versions. Just speci�y the -JHPNI command line option. That will make the Delphi compiler generate,

among other �les, a .hpp �le.

I know that, in this article, I may sound a little like a teacher. I apologize for that, but the I learned the principles

above the hard way, and if you want to write user-friendly DLLs, you should follow them.

Because they are so important, I will recapitulate them once again:

• Only use simple types or structures of these. C is the common denominator.

• Only export functions.

• Do not return structured types (records, structs). Rather “return” them as arguments to the function.

• Be sure to use natural alignment and document it. Compare with the output of Visual C++, if necessary.

• If possible, avoid allocating data passed to the user. Rather have the user allocate bu�ers which your

function �lls.

• .

• Provide a C header, if you can. Most non-C languages will be able to translate those.

I hope this article was useful. If you have comments or suggestions, just e-mail me.

Rudy Velthuis

These links are being provided as a convenience and for informational purposes only; they do not constitute an endorsement or an approval of any of the products, services or

opinions of the corporation or organization or individual. I bear no responsibility for the accuracy, legality or content of the external site or for that of subsequent links. Contact the

external site for answers to questions regarding its content.

The coding examples presented here are for illustration purposes only. The author takes no responsibility for end-user use. All content herein is copyrighted by Rudy Velthuis, and

may not be reproduced in any form without the author's permission. Source code written by Rudy Velthuis presented as download is subject to the license in the �les.

Rudy's Delphi Corner - DLL dos and don'ts http://rvelthuis.de/articles/articles-dlls.html

11 von 12 09.03.24, 08:08

mailto:Rudy%20Velthuis%20%3Carticles@rvelthuis.de%3E?subject=Writing%20DLLs
mailto:Rudy%20Velthuis%20%3Carticles@rvelthuis.de%3E?subject=Writing%20DLLs

Copyright © 2019 by Rudy Velthuis

Last update: Apr. 20, 2019

Back to top

Rudy's Delphi Corner - DLL dos and don'ts http://rvelthuis.de/articles/articles-dlls.html

12 von 12 09.03.24, 08:08

http://rvelthuis.de/articles/articles-dlls.html#top
http://rvelthuis.de/articles/articles-dlls.html#top

