
This is a preliminary version, a work in progress. I will probably (have to) add, enhance or rewrite some parts.

Download

Recently, in the Embarcadero public forums, there was a vivid discussion about the announcement that the �rst

incarnation of a Win64 Delphi compiler would very likely not have a built-in assembler (BASM). The advise was to

use an external assembler instead, and it was said that Embarcadero would probably choose NASM, the open

source Netwide Assembler.

: It is clear now, that there is a Win64 built-in assembler in Delphi XE2 and above. You will not have to use

NASM, at least not at the moment.

There were complaints that the lack of a built-in assembler would mean that the compiler would be rather useless,

and that converting code to an external assembler like NASM would be too much work. To check this, I decided to

rewrite my Decimals.pas unit, which uses BASM throughout, entirely or at least partly in NASM, to see how feasible

this is and how much work it would be.

In this process, I learned a lot about the similarities and di�erences between BASM and NASM, and managed to

write a small package of macros that could make the conversion a little easier. This article decribes what I

experienced during this process.

NASM is a versatile, but rather simple assembler. It does accept the usual Intel assembler syntax like MOV EAX,EDX

or LEA EAX,[EBP+SomeOffset] , but it does not accept large parts of the syntax of Microsoft’s MASM (ml.exe or

ml64.exe), nor does it accept most of the syntax of Borland’s TASM’s Ideal Mode. Of course it also doesn’t know

Delphi’s syntax for comments and other Delphi features you can use in Delphi BASM, like VMTO�set, etc.

For what it’s worth: for this article I used version 2.09.03 from 27 Oct. 2010.

NASM can produce a range of output formats. It can produce the most usual 16 bit, 32 bit and 64 bit object �les,

as well as simple .bin or .com �les. It took me a while to �nd out how to create Delphi-compatible 32 bit OMF

object �les (see my article about using object �les with Delphi). There are two things that must be done: the

chosen format must be obj, and each and every segment declared in the source �le must be declared as USE32.

The �rst segment declaration should be close to the top, otherwise you’ll get an empty 16 bit segment, which

makes your object �le unusable.

NASM is a command line compiler. It comes with a console setup. I enhanced it to have a window of 160

characters wide, 75 characters high and Lucide Console 14pt as font. I wrote a little batch �le (asm.bat) to compile

the decimals.asm �le:

@echo off

Rudy's Delphi Corner

Rudy's Delphi Corner - A Tale Of Two Assemblers http://rvelthuis.de/articles/articles-nasm.html

1 von 14 09.03.24, 08:12

http://rvelthuis.de/zips/decimalsnasm.zip
http://rvelthuis.de/zips/decimalsnasm.zip
https://forums.embarcadero.com/
https://forums.embarcadero.com/
http://www.nasm.us/
http://www.nasm.us/
http://rvelthuis.de/programs/decimals.html
http://rvelthuis.de/programs/decimals.html
http://rvelthuis.de/articles/articles-cobjs.hmtl
http://rvelthuis.de/articles/articles-cobjs.hmtl

nasm -fobj -Ox -l%1.out %1.asm

It is used as:

asm decimals

The options I use are:

• -fobj — Sets output format to OMF. This can contain 16 and 32 segments!

• -Ox — Full optimization. Where possible, chooses the smallest opcode/literal combination.

• -l%1.out — %1 is the �rst argument of the batch �le, e.g. decimal. -l gives the name of the listing �le

• %1.asm — The �le to be assembled, e.g. decimal.pas

If there are no errors, this generates the �les decimals.obj, in OMF format, and the text �le decimals.out, which is

the listing �le, showing what code has been generated. I usually have both �les (decimals.asm and decimals.out)

open in the Delphi editor. The decimals.out �le will be automatically updated by the IDE.

As I already said, every segment must explicitly be declared as USE32 , otherwise it will be generated as 16 bit. The

NASM documentation says you can also use [BITS 32] (probably near the top of the �le), but I did not have any

success with that.

The decimals.asm �le I have has three segments (or sections) declared. I don’t know if all three are necessary, but

it works:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

section data public use32

; data declarations, e.g. records or external data

; (external to this file, e.g. in a Delphi unit)

section const public use32

; constant declarations

section code public use32

; code

As you can see, both are declared as use32 . Note that NASM is not case sensitive, except for its declared labels and

“variables”, which can be case sensitive or case insensitive, depending on how you declared them. You can also see

that comments start with a semicolon, instead of // .

I declared all data in the data section of the .asm �le.

In decimals.pas, I declare a few types. To be able to use them, similar structs must be declared in NASM. In NASM,

there is a standard macro, called struct , which allows you to do that. But I had a few problems with the built-in

__SECT__ macro used there, so I wrote my own record macro which doesn’t use __SECT__ . It can be found, together

with a few other macros and de�nitions I prepared, in the delphi.mac �le that accompanies this article.

One example is the Decimal type itself. If you omit the many methods and operator overloads, this is what

remains, in Delphi:

Rudy's Delphi Corner - A Tale Of Two Assemblers http://rvelthuis.de/articles/articles-nasm.html

2 von 14 09.03.24, 08:12

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

type

Decimal = packed record

private

Lo: Longword; // Hi:Mid:Lo form 96 bit unsigned mantissa

Mid: Longword;

Hi: Longword;

case Byte of

0: (Reserved: Word; // always 0

Scale: Shortint; // 0..28

Sign: Byte); // $80 = negative, $00 = positive

1: (Flags: Longword);

end;

Here follows the translation to NASM. Note that NASM does not “memorize” any declared sizes (it only uses the

size to reserve space, but does not automatically generate opcodes for a certain operand size), so I cheated a bit

and declared Flags as Word, which allowed me to declare Scale and Sign too:

1

2

3

4

5

6

7

8

record Decimal

.Lo resd 1

.Mid resd 1

.Hi resd 1

.Flags resw 1

.Scale resb 1

.Sign resb 1

end;

The “�elds” of such a record can then be accessed like:

1

2

MOV EAX,[ESI+Decimal.Hi]

MOV [.MyVar+Decimal.Hi],EAX

The record macro actually declares an absolute segment (like the CGA screen segment 0B800H in the old DOS days)

at 0, and the “�elds” are in fact local labels (that is why they start with a dot). Fortunately, this is similar to how you

can address �elds of a Decimal in BASM too (BASM knows a few more ways, but if you want to stay compatible

with both syntaxes, you can use this syntax, which both assemblers can understand).

The end at the end of the record declaration is a macro too. I found it nicer than a speci�c endrecord. It can end a

record declaration as well as a function or procedure declaration, and will generate code appropriate for where it is

placed. The semicolon is unnecessary (it just starts a comment), but makes it look a little nicer, IMO.

Similarly, I declared the TAccumulator type. In Delphi, this is a variant record. I have not found a way to declare

such records in NASM yet, so I declared an alternative TAccumulator2 which maps to the original record the same

way, but uses the alternative layout.

You should be aware that such record declarations are always packed. There is no alignment whatsoever. If you

need aligned records, you can take care of the alignment by yourself, by using the appropriate resb (byte), resw

(word), resd (dword), etc. directives. They are explained in the NASM documentation.

If you have a record like:

1

2

3

4

5

6

{$A8}

type

TTest = record

B: Boolean;

L: Longint;

end;

then it is not necessary to reserve B (or actually .B) as a byte, since the assembler will not use the declared size for

its opcode generation anyway. You can just as well reserve it with resd , since that will take care that the Longint is

properly aligned on a 4 byte o�set:

Rudy's Delphi Corner - A Tale Of Two Assemblers http://rvelthuis.de/articles/articles-nasm.html

3 von 14 09.03.24, 08:12

1

2

3

4

record TTest

.B resd 1

.L resd 1

end

This means that you must know the details about record alignment and know how to pad with bytes to achieve a

certain alignment. This is a lot easier in Delphi and BASM, of course.

Another possibility is to use the built-in align and alignb macros. One example of the use of alignb can be seen in

the TFormatSettings record:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

record TFormatSettings

.CurrencyString resd 1

alignb 1

.CurrencyFormat resb 1

alignb 1

.CurrencyDecimals resb 1

alignb 2

.DateSeparator resw 1

alignb 2

.TimeSeparator resw 1

alignb 2

.ListSeparator resw 1

alignb 4

.ShortDateFormat resd 1

alignb 4

.LongDateFormat resd 1

alignb 4

.TimeAMString resd 1

alignb 4

.TimePMString resd 1

alignb 4

.ShortTimeFormat resd 1

alignb 4

.LongTimeFormat resd 1

alignb 4

.ShortMonthNames resd 12

alignb 4

.LongMonthNames resd 12

alignb 4

.ShortDayNames resd 7

alignb 4

.LongDayNames resd 7

alignb 2

.ThousandSeparator resw 1

alignb 2

.DecimalSeparator resw 1

alignb 2

.TwoDigitYearCenturyWindow resw 1

alignb 1

.NegCurrFormat resd 1

end;

The documentation for NASM says that align should be used for code and data segments, while alignb should be

used for bss segments (bss segments contain uninitialized data — using resb etc., while data segments contain

initialized data — using db etc.). The record declarations only contain resb , resw , etc. declarations, so the proper

alignment is done using alignb , since that uses resb by default to reserve space, while align uses sequences of NOP

or other assembler code to �ll the gaps, which is not allowed in a data (or bss) segment.

That still means you’ll have to know how alignment works (Delphi uses so called natural alignment — automatically

padding variables so they begin on addresses that are a multiple of their size), but it allows you to align records

properly

In this context, “external” means that the data are not de�ned in the .asm �le. They must be de�ned in the Delphi

Rudy's Delphi Corner - A Tale Of Two Assemblers http://rvelthuis.de/articles/articles-nasm.html

4 von 14 09.03.24, 08:12

program. In the decimal.pas unit, I de�ne a few typed constants that are accessed by the assembler routines. This

kind of data must be declared extern in the .asm �le:

1

2

3

extern PowersOfTen

extern MaxMultiplicands

extern MaxMultiplicandsMid

In the .pas �le, they are declared thus:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

const

// ...

HLW = High(Longword);

HUI64 = High(UInt64);

PowersOfTen: array[0..9] of Longword =

(

1,

10,

// values snipped

1000000000

);

MaxMultiplicands: array[0..9] of Longword =

(

HLW,

HLW div 10,

// values snipped

HLW div 1000000000

);

MaxMultiplicandsMid: array[0..9] of Longword =

(

Longword(HUI64),

Longword(HUI64 div 10),

// values snipped

Longword(HUI64 div 1000000000)

);

Declaring them as extern made them readily accessible from the NASM �le.

In decimals.pas, I declare a few constants and one enumeration, in a const section. True constants do not take up

memory, they are mere symbols, so they must be re−declared in the assembler �le. A few examples:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

const

SingleMShift = 8;

SingleMMask = $007FFFFF;

SingleEShift = 23;

SingleEMask = $FF;

SingleBias = $7F;

DoubleMShift = 11;

DoubleMMask = $000FFFFF;

DoubleEShift = 52;

DoubleEMask = $7FF;

DoubleBias = $3FF;

ExtendedEShift = 64;

ExtendedEMask = $7FFF;

ExtendedBias = $3FFF;

The translation is:

Rudy's Delphi Corner - A Tale Of Two Assemblers http://rvelthuis.de/articles/articles-nasm.html

5 von 14 09.03.24, 08:12

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

section const public use32

SingleMShift equ 8

SingleMMask equ $007FFFFF

SingleEShift equ 23

SingleEMask equ $0FF

SingleBias equ $7F

DoubleMShift equ 11

DoubleMMask equ $000FFFFF

DoubleEShift equ 52

DoubleEMask equ $07FF

DoubleBias equ $03FF

ExtendedEShift equ 64

ExtendedEMask equ $7FFF

ExtendedBias equ $3FFF

In NASM, you can also use the $ sign to declare a hex literal, but as $ can also be the �rst character of a macro-

local label, it must be followed by at least one numeric character. If you forget the 0 in $0FFF, you will probably get

an error about an unknown label $FFF .

Enumeration values are true constants too. I wrote a simple macro that allows you to de�ne simple enums, i.e. the

ones that start at ordinal 0 and do not give any numerical values to their members (I am not familiar enough with

NASM macros to be able to make it also accept the more complicated ones). Here is the Delphi type:

1

2

3

type

TDecimalErrorType = (detOverflow, detUnderflow, detZeroDivide, detInvalidOp,

detParse, detConversion, detInvalidArg, detNaN);

and here is the NASM translation using the enum macro:

1

2

enum detOverflow, detUnderflow, detZeroDivide, detInvalidOp, \

detParse, detConversion, detInvalidArg, detNaN

(the \ character is the line continuation character in NASM)

The enum macro does not declare the TDecimalErrorType, as that is not needed in assembler anyway (it can be

declared as DWORD, if necessary), but it declares the numerical constants it de�nes.

One big problem appeared when I had �nally converted the second overload of TryParse, the overload that is

passed a TFormatSettings parameter. Errors started happening.

The �rst problem was that implementing TryParse as Decimal.TryParse in NASM caused an internal error in the

linker. This was caused by the fact that there are two overloaded versions of TryParse. So I had to rename the

routine as Decimal.TryParseWithSettings and call that from the second overload of Decimal.TryParse. The internal

error was gone, but it still produced bad results.

The strings I used to create Decimals in my test routines were generated by other code, and since this was on a

German Windows, the “decimal point” was represented by a comma. e.g. I had code like:

1

2

3

A := '31415926,535897932384626433833';

B := '10,0000000000000000001';

C := '8,5467';

The comma is the proper decimal point character on this version of Windows, but I had taken the TFormatSettings

declaration from SysUtils.pas of Delphi 2010. The code was, however, compiled in Delphi XE. It took me a while to

�nd out that TFormatSettings was completely rede�ned in Delphi XE! So I had to take the di�erent TFormatSettings

Rudy's Delphi Corner - A Tale Of Two Assemblers http://rvelthuis.de/articles/articles-nasm.html

6 von 14 09.03.24, 08:12

declaration and convert that. You can see the result in Decimals.asm.

I have not found a really good solution for such problems. It would be good if there were complete NASM

conversions of the data structures, enums, etc. used in Delphi, supplied with Delphi (or, say, by JEDI. That would

mean you’d only have to set the proper directories and automatically load the correct declarations for your

version of Delphi.

The most important part of decimals.pas is of course its code. Most of it is in assembler. I used the built-in

assembler, but to test NASM, I made a copy, called it Decimals_nasm.pas and moved the BASM routines to

decimals.asm, using the Delphi editor.

I �rst tried a simple routine, without local variables and without any stack variables. The routines are in Delphi’s

register calling convention. The �rst parameter is passed in EAX, the second in EDX and the third in ECX. This

means the routine does not need any special stack handling, i.e. no prolog code to set EBP to the stack frame, or

code to change ESP to allocate local variables. It also doesn’t need epilog code to clear the stack:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

class function Decimal.Div192by32(Quotient: PLongword; const Dividend: Decimal;

Divisor: Longword): Longword;

asm

PUSH ESI

PUSH EDI

MOV EDI,EAX // EDI is Quotient

MOV ESI,EDX // ESI is Dividend

CMP ECX,0

JNE @NoZeroDivide32

MOV EAX,detZeroDivide

JMP Error

@NoZeroDivide32:

// Some code snipped

MOV EAX,EDX

POP EDI

POP ESI

end;

This is the orginal translation:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

; class function Decimal.Div192by32(Quotient: PLongword; const Dividend: Decimal;

; Divisor: Longword): Longword;

global Decimal.Div192by32

Decimal.Div192by32:

PUSH ESI

PUSH EDI

MOV EDI,EAX ;// EDI is Quotient

MOV ESI,EDX ;// ESI is Dividend

CMP ECX,0

JNE .NoZeroDivide32

MOV EAX,detZeroDivide

JMP Error

.NoZeroDivide32:

; same code snipped

MOV EAX,EDX

POP EDI

POP ESI

Rudy's Delphi Corner - A Tale Of Two Assemblers http://rvelthuis.de/articles/articles-nasm.html

7 von 14 09.03.24, 08:12

http://rvelthuis.de/jedi.html
http://rvelthuis.de/jedi.html

27 RET

I de�ned a few macros, procedure , begin and end , later also asm and function , which made the code look like this:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

; class function Decimal.Div192by32(Quotient: PLongword; const Dividend: Decimal;

; Divisor: Longword): Longword;

function Decimal.Div192by32

asm

PUSH ESI

PUSH EDI

MOV EDI,EAX ;// EDI is Quotient

MOV ESI,EDX ;// ESI is Dividend

CMP ECX,0

JNE .NoZeroDivide32

MOV EAX,detZeroDivide

JMP Error

.NoZeroDivide32:

; same code snipped

MOV EAX,EDX

POP EDI

POP ESI

end;

As you can see, the Delphi local label @NoZeroDivide32 is translated as the NASM local label .NoZeroDivide32 .

Comments starting with // are converted to start with a semicolon. And the macros have a similar meaning as the

corresponding keywords in Delphi. Error is a procedure in the Delphi code, and was declared as extern in the

code section of the NASM source.

The end macro only generates a RET opcode. In the next section, you can see that it can do more than that.

Note that the name of the function, Decimal.Div192by32 , can be declared exactly as it would be declared in a Delphi

�le. This is a fortunate circumstance.

The code in decimals.pas also contains functions that have parameters that are passed on the stack, for instance

parameters of type Single, Double or Extended, and local variables. I wrote a set of macros, param and var , that

work together with the procedure or function , begin or asm and end macros. An example of their use follows. This

is the original (the code is rather long, so I snipped most of it):

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

class procedure Decimal.InternalFromExtended(out Result: Decimal;

const Source: Extended);

var

A: TAccumulator;

LResult: ^Decimal;

asm

PUSH ESI

PUSH EDI

PUSH EBX

MOV LResult,EAX

XOR EAX,EAX

MOV A.L0,EAX

MOV A.L1,EAX

MOV A.L2,EAX

MOV A.L3,EAX

MOV A.L4,EAX

MOV A.L5,EAX

Rudy's Delphi Corner - A Tale Of Two Assemblers http://rvelthuis.de/articles/articles-nasm.html

8 von 14 09.03.24, 08:12

19

20

21

22

23

24

25

26

27

28

29

30

31

32

MOV A.Flags,EAX

MOV EDI,DWORD PTR [Source]

MOV ESI,DWORD PTR [Source+4]

MOVZX EDX,WORD PTR [Source+8]

// code snipped

MOV EAX,A.Flags

MOV [EDI].Decimal.Flags,EAX

POP EBX

POP EDI

POP ESI

end;

This is how the macros are used:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

; class procedure Decimal.InternalFromExtended(out Result: Decimal;

; const Source: Extended);

procedure Decimal.InternalFromExtended

param Source,Extended

var A,TAccumulator

var LResult,Pointer

asm

PUSH ESI

PUSH EDI

PUSH EBX

MOV [.LResult],EAX

XOR EAX,EAX

MOV [.A+TAccumulator.L0],EAX

MOV [.A+TAccumulator.L1],EAX

MOV [.A+TAccumulator.L2],EAX

MOV [.A+TAccumulator.L3],EAX

MOV [.A+TAccumulator.L4],EAX

MOV [.A+TAccumulator.L5],EAX

MOV [.A+TAccumulator.Flags],EAX

MOV EDI,DWORD PTR [.Source]

MOV ESI,DWORD PTR [.Source+4]

MOVZX EDX,WORD PTR [.Source+8]

; code snipped

MOV EAX,[.A+TAccumulator.Flags]

MOV [EDI+Decimal.Flags],EAX

POP EBX

POP EDI

POP ESI

end;

procedure Decimal.InternalFromExtended

This sets up a new NASM context called _procedure_ and initializes all procedure/function related
local variables

param Source,Extended

This declares a stack variable. It generates a local define (local "variable") called .Source and
reserves 12 bytes on the stack for it. The second parameter of the param macro must be a known
type with a known size. This can either be a type declared in the delphi.mac file, or one generated
by a record definition.

var A,TAccumulator

var LResult,Pointer

This works similar to param , but it makes sure that ESP is changed to make room for local
variables. These can be accessed via a negative offset to EBP. Both macros, var and param will
cause the generation of prolog and epilog code, which is similar to the code generated by Delphi.

asm

If local variables or stack parameters were declared, it generates a prolog setting up EBP. If local
variables were declared, it also generates code that changes ESP to make room for them:

1

2

PUSH EBP

MOV EBP,ESP

Rudy's Delphi Corner - A Tale Of Two Assemblers http://rvelthuis.de/articles/articles-nasm.html

9 von 14 09.03.24, 08:12

3 SUB ESP,%$DELPHI_varsize_

end

If local variables or stack parameters were declared, it will generate code to reset EBP to its
original state. If stack parameters were declared, it also generates the necessary RET n opcode,
otherwise it only generates a simple RET . Of course, it only does that in the _procedure_ context. In
a _record_ context, it generates different code. Finally, it returns to the previous context:

1

2

3

MOV ESP,EBP

POP EBP

RET %$DELPHI_paramsize_-8

As you can see, the macros make de�ning a function or procedure in a little easier than when you’d have to use

pure NASM syntax.

Note that the macros had to be written thus, that local labels are generated. So a variable called A will become .A

and a parameter called Source becomes .Source . I �rst had them generate global de�nes, but that caused huge

problems (like in�nite recursion) when an identi�er was redeclared using var or param , since the preprocessor

would expand the macro parameter A into its previous de�nition (e.g. EBP−36) before it was passed to the macro,

as well as inside the text of the macro. The macro would make things worse or cause an error, or both. A manual

%undefine of the identi�er would prevent that, but that can easily be forgotten. I wanted the macros to take care of

most of the work Delphi BASM does too.

If someone with better knowledge of NASM’s macro language has a good solution for this, one that allows the use of

global names (i.e. names without a leading '.') while avoiding the recursion problems, I’d love to hear about it.

It is clear that NASM is not BASM. The built-in assembler is certainly more convenient to use than an external

assembler like NASM. But someone who wants to use the external assembler (for whatever reason, like a lack of

BASM in a future version) must know about some important di�erences. Here are some of the most important

di�erences someone used to Delphi’s BASM must know about. Some of them were touched in the previous text

already.

There are quite a few syntax di�erences. The NASM assembler is rather simple (the creators call that a feature, but

I am not so sure about that). So called e�ective addresses only know one syntax: they must be fully enclosed in

square brackets. So this:

1

2

3

4

5

6

7

asm

...

MOV EAX,[ESI].Decimal.Hi ;// ESI points to a Decimal

MOV D.Hi,EAX ;// D is local var of type Decimal

MOV D.Sign,0

...

end;

Can only be coded as this:

1

2

3

4

5

...

MOV EAX,[ESI+Decimal.Hi] ; [ESI+8]

MOV [.D+Decimal.Hi],EAX ; [EBP-16+8] = [EBP-8]

MOV BYTE [.D+Decimal.Sign],0 ; [EBP-16+15] = [EBP-1]

...

In the example above, you can see a few other di�erences:

Rudy's Delphi Corner - A Tale Of Two Assemblers http://rvelthuis.de/articles/articles-nasm.html

10 von 14 09.03.24, 08:12

mailto:Rudy%20Velthuis%20%3Carticles%40rvelthuis.de%3E?subject=A%20Tale%20of%20Two%20Assemblers
mailto:Rudy%20Velthuis%20%3Carticles%40rvelthuis.de%3E?subject=A%20Tale%20of%20Two%20Assemblers

• There is no di�erence between variables and labels, and certain types of labels/variables (local, macro local,

context local, etc.) must start with certain character combinations. I would have preferred another way to

distinguish such types (e.g. by keyword or placement) as by a name pre�x (or su�x). It is also the reason

why a var or param macro produces a local label/variable, i.e. one that starts with a dot, like .D in the

example above.

• Syntax like [ESI].Decimal.Lo or MyVar[EBX] is not allowed. As I said above, the alternative syntaxes to de�ne

an e�ective address Delphi knows are not allowed in NASM. This is a restriction and less �exible, but it has

the advantage that it is far less ambiguous (for the reader) what is actually assembled.

• Simple dot syntax for members of a type, like .D.Lo or [.D.Lo] is not possible: the “type” (actually, the

segment name, since that is what the record macro uses) must be mentioned: [.D+Decimal.Lo] .

• The size or type of a variable or member is not regarded by the assembler. Even if Decimal.Sign is declared

with resb , and D is declared as Decimal , you must still specify the byte access with BYTE or @BYTE PTR . But if

the compiler can deduce from the other operand what you are storing, you can omit the size speci�cation,

e.g. MOV [.D+Decimal.Sign],AL does not require a BYTE speci�cation.

The syntax BYTE PTR , WORD PTR , etc. is not allowed in NASM. You must use BYTE , WORD , etc. That is why I put the

empty de�ne PTR in delphi.mac. Now you can use BYTE PTR , etc. just like in your BASM code. Note that PTR is not

required in BASM either, so if you want to make (new) code compatible, don’t use it.

Comments are di�erent. In NASM, there are only single line comments that start with a semicolon (;) and end at

the end of the line. The Delphi syntax // is regarded a numerical operator in NASM. To make new code more

easily convertible to NASM, you can use the combination ;// to start a comment in both syntaxes. In Delphi, this is

seen as a statement separator ; followed by a comment // , while in NASM it is simply seen as a comment ; .

Case sensitivity for labels/variables is the default. You can use the preprocessor commands %idefine and %ixdefine

to de�ne case insensitive labels/variables, but the NASM pseudo-instruction EQU seems to be case sensitive. EQU

has the advantage that you really de�ne a constant (which can not be inadvertently rede�ned) and not just some

preprocessor text.

Note that instructions, like MOV EAX,EDX are not case sensitive. So if you are used to writing those in lower case, or

mixed case, there is no need to convert that to upper case. Only variables/labels are generally case sensitive.

Instructions are single line by default too. If you want them to spill into the next source line, you must use the \

continuation character. This applies to the preprocessor too.

If things are hard to do in assembler — this applies to BASM too —, like raising an exception or setting the length

of a dynamic array, or accessing properties of another object, it makes sense to do it in a simple routine in Delphi

and call that from assembler. In decimals.pas, you can see that I do that in the routine Error().

The same applies for things that are much easier in Delphi’s BASM, e.g. accessing members of an object, or calling

virtual methods. Inheritance and hidden or private members make it almost impossible to re-de�ne objects in full

in NASM, so the best you can do is to write such methods in Delphi as stubs that pass all required data to the

assembler routine and pass back a return value, if there is one.

The same applies to virtual or dynamic methods. NASM has no way to access VMTOFFSET or similar, so if the

external assembler must really call a virtual or dynamic function in an object, write a private routine that calls the

virtual function and the assembler code calls that function instead, passing all data as required. This is more

tedious and adds one extra calling level, but it is probably not something that is required often.

I mentioned most of the things that must be done to convert BASM to NASM already. Simple syntactical text

conversions like changing [ESI].Decimal.Sign to [ESI+Decimal.Sign] , changing @MyLabel to .MyLabel or comments

Rudy's Delphi Corner - A Tale Of Two Assemblers http://rvelthuis.de/articles/articles-nasm.html

11 von 14 09.03.24, 08:12

from // to ;// can easily be done using the GREP capabilities of the Delphi IDE. The rest must be done manually,

but using the macros delphi.mac, this should not be too time consuming.

Conversions of function frames, possibly with local variables and stack parameters, can be done using the

delphi.mac �le I wrote. That �le is far from perfect, as I am not too familiar with the NASM preprocessor yet, but

the macros made it a lot easier to convert my BASM functions to NASM.

Delphi.mac also provides a way to declare records or enums. I am sure these macros can be improved as well, but

they do — more or less — what I wanted.

The Delphi side is quite easily explained. The object �le must be linked in using {$L} or {$LINK} :

1

2

3

{$L decimals.obj}

// Alternatively, you can use:

{$LINK 'decimals.obj'}

Preferrably, the .obj �le is in the same directory as the .pas �le, but it can also be in a di�erent directory. To access

it, you can use relative addressing like '..\asm\decimals.obj' or absolute addressing like 'C:\source code\asm\decimal

type\decimals.obj' .

Routines done in external assembler must be declared external :

1

2

class procedure Decimal.InternalFromExtended(out Result: Decimal;

const Source: Extended); external;

Unlike you would do with routines in a DLL, you do not declare module, name or index (e.g. external 'bla.obj' name

'Decimal.InternalFromExtended'). The linker is responsible for �nding the routines. If it can’t, it will report an error. It

(and probably NASM too) will also report an error if the .obj �le requires a routine to be de�ned in the Delphi

program.

There is, as far as I know, no way to declare overloads in assembler, so overloads should be done in Delphi, and

simply contain calls to assembler routines with di�erent names:

I already mentioned it before: routines have the same name in NASM as they would have in Delphi, so there is no

need to use global (“undotted”) names and call these from a stub in Delphi, you can directly use fully quali�ed

member names.

Due to a lack of a Delphi for 64 bit, I was not able to test the 64 bit assembler or ELF64 generation (the format that

is likely to be chosen, according to Allen Bauer of Embarcadero). I don’t know if there may be speci�c things to be

aware of when doing this. I know that exception and stack handling are di�erent, but I assume that the compiler

will know how to take care of them. I usually leave exception handling to Delphi anyway.

If BASM is really omitted from one or more future versions of Delphi, it would be crucial to have at least better

support for the use of NASM or any other suitable external assembler. Some of the following points would make

this a lot easier:

• A compiler directive that would provide automatic support of an external assembler like NASM, just like this

is done for resource �les.

• NASM conversions of the records, enums, etc. in the Delphi runtime library in the form of include �les,

more or less like the .hpp �les generated for C++Builder.

• Passing of certain information like directories, conditional de�nes, Delphi version, etc. to the NASM

assembler in the proper NASM command line format.

• A new page in the project options for the use of NASM (or any other assembler), which allows the user to

set up directories for the assembler, a search path for include �les and assembler �les, conditional de�nes,

Rudy's Delphi Corner - A Tale Of Two Assemblers http://rvelthuis.de/articles/articles-nasm.html

12 von 14 09.03.24, 08:12

post- and pre�xes for �le names, etc.

• A way to call “primitives”, IOW private runtime routines in System.pas like System. UStrFromPWCharLen@

that you can call from BASM but not from plain Delphi code. No BASM would mean no access to those

primitives at all, not from Delphi and not from external assembler.

It is possible to use Delphi without a built-in assembler. But it is not nearly as convenient, and poses quite a few

problems.

Code written in BASM syntax must be converted to NASM syntax. This is far more elementary, but IMO most of it

can be done using a few grep search and replace actions.

Every data type used in Delphi must be converted to NASM syntax. This can be done manually by the users — it

must probably be done manually by the users for their own types like records and enumerations. It can also be

done by, say, Embarcadero or a group like JEDI. Fact is that it hasd to be done and poses quite a lot of work,

especially if these types di�er between versions, like the TFormatSettings example described above.

Overloaded assembler functions are not possible. Functions can be overloaded in Delphi, but they can’t be in an

external assembler. The only way to deal with this when using an external assembler is to make the overloaded

functions call di�erently named functions in the external assembly. IOW, the overloads are mere wrappers for the

real assembler functions, which must have di�erent names.

One fortunate feature of the Delphi/external assembler system is that you can name methods implemented in

NASM the same way as you would in Delphi. A function like Decimal.InternalMultiply can also be called the same

way in NASM (unless it is overloaded, of course).

Existing code must be converted to NASM syntax. Most of this can be done using the grep capabilities of the Delphi

editor. I hope that the few macros and type declarations I put together in delphi.mac make some other parts a little

easier as well. But it is still work that has to be done.

But for a 64 bit Delphi, large parts of the code must be rewritten anyway, and that is probably more work. If this

rewrite is immediately done in the proper NASM syntax (a syntax which BASM supports as well, except for some

small things like local labels starting with ‘.’ instead of ‘@’), the extra time for using an external assembler is

possibly negligible compared to the time required to rewrite the code.

Access to classes is a real problem. It is very easy in BASM, but quite a problem in any external assembler. There is

no proper way to mimic inheritance, so access to private, protected or public �elds of a class instance is almost

impossible to do in a more or less transparent way. The only way to circumvent it is to write extra static class

methods or global routines that contain the assembler parts, to which the instance methods pass the proper

information as parameters in Delphi code.

Another problem with classes is that an external assembler has no access to pseudo-macros like VMTOFFSET or

DMTINDEX, so calling virtual or dynamic methods is also impossibly done transparently. Virtual methods must

probably be called by extra written wrappers that call the real code (IOW, to call a virtual method from assembler,

you write a non-virtual method in Delphi that does nothing but call the virtual method with the proper parameters

and pass any results back, and that non-virtual method is called by the assembler code).

Version problems are no problem in BASM, but another big one in external assembler. Proper support by Delphi,

as described in the proposals for the future above, is the only useful way to deal with this.

In BASM, you can access certain private functions in System.pas using a special syntax, e.g. the routine

_UStrFromPWCharLen in System.pas can be accessed as System.@UStrFromPWCharLen from assembler. This is not

possible in external assembler, and it is, without BASM, impossible to call them from Delphi code too (at the

moment — it would be nice if the compiler could give access to such “primitives” from Delphi code). In the case of

System.@UStrFromPWCharLen I wrote a high level equivalent which probably implicitly calls the actual primitive. This

requires some thought and knowledge about the internals of these routines and can be pretty di�cult to do in

high level code.

Rudy's Delphi Corner - A Tale Of Two Assemblers http://rvelthuis.de/articles/articles-nasm.html

13 von 14 09.03.24, 08:12

Routines using type info require wrappers in Delphi too, but the information is extremely hard to access from

external assembler.

There are probably other problems with access to high level features not used in Decimals.pas and

Decimals_nasm.pas, like generics, anonymous methods, RTTI, etc. If I �nd some, I will discuss them here.

While it is possible to use an external assembler, it takes quite some extra e�ort to do a conversion. For a rewrite or

completely new code the di�erence between BASM and external assembler is far less dramatic. OK, it requires quite

a few wrappers, but with access to primitives, and using the proper syntax, it should be doable. Support from the

compiler and the IDE would, IMO, be a necessity, though. Especially access to NASM conversions of the runtime

types is crucial, but also IDE support in the form I described is required.

These links are being provided as a convenience and for informational purposes only; they do not constitute an endorsement or an approval of any of the products, services or

opinions of the corporation or organization or individual. I bear no responsibility for the accuracy, legality or content of the external site or for that of subsequent links. Contact the

external site for answers to questions regarding its content.

The coding examples presented here are for illustration purposes only. The author takes no responsibility for end-user use. All content herein is copyrighted by Rudy Velthuis, and

may not be reproduced in any form without the author's permission. Source code written by Rudy Velthuis presented as download is subject to the license in the �les.

Copyright © 2019 by Rudy Velthuis

Last update: Feb. 20, 2019

Rudy's Delphi Corner - A Tale Of Two Assemblers http://rvelthuis.de/articles/articles-nasm.html

14 von 14 09.03.24, 08:12

