
Pointers are like jumps, leading wildly from one part of the data structure to another. Their introduction into

high-level languages has been a step backwards from which we may never recover. — Anthony Hoare

Pointers are probably among the most misunderstood and most feared data types. That is why many programmers love

to avoid them.

But pointers are important. Even in languages that do not support pointers explicitly, or which make it hard to use

pointers, pointers are important factors behind the scenes. I think it is very important to understand them. There are

di�erent approaches to understanding pointers.

This article was written for everyone with problems understanding or using pointers. It discusses my working view on

pointers in Delphi for Win32, which may not be entirely accurate in all aspects (for instance, memory for one program is

not one big block, but for most practical purposes, it helps to pretend it is). This way, pointers are easiest to understand,

in my opinion.

You probably already know what I write in this paragraph, but it is probably good to read it anyway, since it shows my view on

things, which may di�er a bit from your own.

Pointers are variables which are used to point to other variables. To explain them, it is necessary to understand the

concept of a memory address and the concept of a variable. To do this, I’ll �rst have to roughly explain computer

memory.

In short, computer memory can be seen as one very long row of bytes. A byte is a small storage unit that can contain 256

separate values (0 up to 255). In current 32 bit Delphi, memory can (with a few exceptions) be seen as an array of

maximum 2 gigabytes in size (231 bytes). What these bytes contain, depends on how the contents are interpreted, i.e.

how they are used. The value of 97 can mean a byte of value 97, as well as the character 'a' . If you combine more than

one byte, you can store much larger values. In 2 bytes you can store 256*256 di�erent values, etc.

The bytes in memory can be addressed by numbering them, starting at 0, and up to 2147483647 (assuming you have 2

gigabyte — and even if you don’t have them, Windows will try to make it look as if you have them). The index of a byte in

this huge array is called its address.

One could also say: a byte is the smallest addressable piece of memory.

In reality, memory is a lot more complex. There are for instance computers with bytes that are not 8 bit, which means they can contain fewer or

more than 256 values, but not the computers on which Delphi for Win32 runs. Memory is managed in hardware and software, and not all

memory is really existent (memory managers take care that your program doesn’t notice, though, by swapping parts of memory out to or in

from harddisk), but for this article, it helps to see memory as one huge block of single bytes, divided up to be used for several programs.

A variable is a location made up of one or more bytes in this huge “array”, from which you can read or to which you can

write. It is identi�ed by its name, but also by its type, its value and its address.

If you declare a variable, the compiler reserves a piece of memory of the appropriate size. Where this variable is stored is

decided by the compiler and the runtime code. You should never make assumptions about where exactly a variable will be

located.

The type of the variable de�nes how the memory location is used. It de�nes its , i.e. how many bytes it occupies, but

also its . For instance, the following shows a diagram of a piece of memory. It shows 4 bytes starting at

Rudy's Delphi Corner

Rudy's Delphi Corner - Addressing Pointers http://rvelthuis.de/articles/articles-pointers.html

1 von 24 09.03.24, 08:13

address $00012344 . The bytes contain the values $4D , $65 , $6D and $00 , respectively.

Note that although I use addresses like $00012344 in most of the diagrams, these are completely made up, and only used

to distinguish di�erent memory locations. They do not re�ect the real memory addresses, since these depend on many

things, and can not be predicted.

The type decides how these bytes are used. It can for instance be an Integer with value 7169357 ($006D654D) , or an

array[0..3] of AnsiChar , forming the C-style string 'Mem' , or something else, like a set variable, a number of single bytes,

a small record, a Single , part of a Double , etc.. In other words, the meaning of a piece of memory is not known before

you know the type or types of the variable or variables stored there.

The address of a variable is the address of its �rst byte. In the diagram above, assuming this shows a variable of type

Integer , its address is $00012344 .

The memory for variables can be reused. The memory set aside for variables is usually only reserved as long as the

program can access them. E.g., local variables of a function or procedure (I like to call both routines) are only valid as

long as the routine is running. Fields of an object (which are also variables) are also only valid as long as the object

"exists".

If you declare a variable, the compiler reserves the required number of bytes for that variable. But the contents may well

be what was already put in these bytes before, when they were used in another function or procedure. In other words,

the value of an variable is unde�ned (but not necessarily undetermined). An example is given in the form of

this simple console program:

program uninitializedVar;

{$APPTYPE CONSOLE}

procedure Test;

var

A: Integer;

begin

Writeln(A); // uninitialized yet

A := 12345;

Writeln(A); // initialized: 12345

end;

begin

Test;

Readln;

end.

The �rst value displayed (the value of the uninitialized variable A) depends on the already existing content of the

memory location reserved for A. In my case, it displays the value 2147319808 ($7FFD8000) each time, but this can be totally

di�erent on your computer. The value is unde�ned, because it was not initialized. In a more complex program,

especially — but not only — when pointers are concerned, this is is a frequent cause of program crashes or unexpected

results. The assignment initializes A with the value 12345 ($00003039) , so that is the second value displayed.

Rudy's Delphi Corner - Addressing Pointers http://rvelthuis.de/articles/articles-pointers.html

2 von 24 09.03.24, 08:13

Pointers are also variables. But they do not contain numbers or characters, they contain the address of a memory

location instead. If you see memory as an array, a pointer can be seen as an entry in the array which contains the index of

another entry in the array.

Say I have the following declaration and initialisation:

var

I: Integer;

J: Integer;

C: AnsiChar;

begin

I := 4222;

J := 1357;

C := 'A';

Let’s assume it results in the following memory layout:

Now, after this code, assuming P is a pointer,

P := @I;

I have the following situation:

In the previous diagrams, I always showed each byte. This is generally not necessary, so the above could just as well be

Rudy's Delphi Corner - Addressing Pointers http://rvelthuis.de/articles/articles-pointers.html

3 von 24 09.03.24, 08:13

shown as:

This does not re�ect the actual size anymore (C looks just as big as I or J), but it is good enough to understand what is

going on with pointers.

Thou shalt not follow the NULL pointer, for chaos and madness await thee at its end. — Henry Spencer

Nil is a special pointer value. It can be assigned to any kind of pointer. It stands for the empty pointer (nil is Latin short

for nihil, which means nothing or zero; others say NIL means Not In List). It means that the pointer has a de�ned state,

but not that you should attempt to access the value (in C, nil is called NULL — see the quote above).

Nil never points to valid memory, but since it is one well de�ned value, many routines can test for it (e.g. using the the

Assigned() function). One can not test if any other value is valid.

 (see below). There is no way to distinguish them. Program logic must always ensure that a pointer is

either valid, or nil .

In Delphi, nil has the value 0 , i.e. it points to the very �rst byte in memory. This is apparently a byte that will never be

accessed by Delphi code. But you should generally not rely on nil being 0 , unless you are fully aware of what is going on

behind the scenes. The value of nil could change in a later version, for one reason or other.

In the simple example above, P is of type Pointer . This means that P contains an address, but you don’t know what the

variable at that address is supposed to contain. That is why pointers are usually typed, i.e. the pointer is interpreted to

be pointing to a memory location that is supposed to contain a certain type.

Let’s assume we have another pointer, Q:

var

Q: ^Integer;

Q is of type ^Integer , which should be read as "pointer to Integer" (I was told that ^Integer stands for ↑ Integer). This

means that it is not an Integer , but points to a memory location, which is to be used as one, instead. If you assign the

address of J to Q , using the @ address operator or the functionally equivalent Addr pseudo-function,

Q := @J; // Q := Addr(J);

Rudy's Delphi Corner - Addressing Pointers http://rvelthuis.de/articles/articles-pointers.html

4 von 24 09.03.24, 08:13

then Q points to the location at address $00012348 (it the memory location identi�ed by J). But since Q is a

, the compiler will treat the memory location to which Q points as an Integer . Integer is the of

Q .

Although you will hardly ever see the Addr pseudo-function being used, it is equivalent to @ . @ has the disadvantage that,

when applied to complicated expressions, it is not always obvious to which part the operator applies. Addr , using the

syntax of a function, is much less ambiguous, since the target is enclosed in parentheses () :

P := @PMyRec^.Integers^[6];

Q := Addr(PMyRec^.Integers^[6]);

Assignment using a pointer is a bit di�erent than direct assignment to a variable. Generally, you only have the pointer to

go by. If you assign to a normal variable, you write something like:

J := 98765;

That stores the integer 98765 (hex $000181CD) in the memory location. But to access the memory location using Q , you

must work indirectly, using the ^ operator:

Q^ := 98765;

This is called . You must follow the imaginary "arrow" to the location to which Q points (in other words,

the Integer at address $00012348) and store it there.

For records, the syntax allows you to omit the ^ operator, if the code is unambiguous without it. For clarity reasons, I

personally always write it, though.

Rudy's Delphi Corner - Addressing Pointers http://rvelthuis.de/articles/articles-pointers.html

5 von 24 09.03.24, 08:13

It is generally useful to de�ne types for the pointers one is using. For instance, ^Integer is not a valid parameter type

declaration, so you’ll have to prede�ne a type:

type

PInteger = ^Integer;

procedure Abracadabra(I: PInteger);

In fact, the PInteger type and some other common pointer types are already de�ned in the Delphi runtime library (e.g.

units System and SysUtils). It is custom to start the names of pointer types with the capital letter P followed by the type to

which they point. If the base type is pre�xed with a capital T , the T is usually omitted. Examples:

type

PByte = ^Byte;

PDouble = ^Double;

PRect = ^TRect;

PPoint = ^TPoint;

In the previous examples, variables were declared where they were needed. Sometimes you don’t know whether you

need a variable or not, or how many. Using pointers, you can have so called . You can ask the

runtime to reserve a piece of memory for you, and return a pointer to it, using the New() pseudo-function:

var

PI: PInteger;

begin

New(PI);

New() is a compiler pseudo-function. It reserves memory for the base type of PI , and then points PI to that piece of

memory (i.e. stores the address in PI). The variable doesn’t have a name, so it is anonymous. It is only accessible

indirectly, using the pointer. Now you can assign to it, pass it around to routines, and get rid of it when you don’t need it,

using Dispose(PI) :

PI^ := 12345;

ListBox1.Add(IntToStr(PI^));

// lots of code

Dispose(PI);

end;

Instead of New and Dispose , you could also go lower level, and use GetMem and FreeMem . But New and Dispose have a few

advantages. They already know the type of the pointer, and also initialize and �nalize the memory location, if that is

necessary. So it is advisable to use New and Dispose , instead of GetMem and FreeMem , whenever you can.

Always make sure that every New() is eventually followed by a Dispose() on the , otherwise

some variables may not be �nalized properly.

It may not be obvious how this is better than declaring a variable directly, but there are situations where this is useful,

usually if you don’t know how many variables you need. Think of nodes in a linked list (see below), or of a TList . TList

stores pointers, and if you want to have a list of Double values, you simply New() each value and store it in the TList :

var

P: PDouble;

begin

while HasValues(SomeThing) do

begin

New(P);

P^ := ReadValue(SomeThing);

Rudy's Delphi Corner - Addressing Pointers http://rvelthuis.de/articles/articles-pointers.html

6 von 24 09.03.24, 08:13

http://rvelthuis.de/articles/articles-pointers.html#structures
http://rvelthuis.de/articles/articles-pointers.html#structures

MyList.Add(P);

// etc...

Of course you will have to Dispose() each value at a later stage, when the list is not used anymore.

Using anonymous variables, it is easy to demonstrate that typed pointers can determine how memory is used. Two

pointers with di�erent types, pointing to the same memory, will show di�erent values:

program InterpretMem;

{$APPTYPE CONSOLE}

var

PI: PInteger;

PC: PAnsiChar;

begin

New(PI);

PI^ := $006D654D; // Bytes $4D $65 $6D $00

PC := PAnsiChar(PI); // Both point to same address now.

Writeln(PI^); // Write integer.

Writeln(PC^); // Write one character ($4D).

Writeln(PC); // Interpret $4D $65 $6D $00 as C-style string.

Dispose(PI);

Readln;

end.

PI �lls the memory location with the value $006D654D (7169357) . In a diagram (note that the addresses are purely

�ctitious):

PC is then pointed to the same memory location (since the base types of the pointers are not the same, you can not just

assign one to the other — you will have to cast). But PC is a pointer to an AnsiChar , so if you take PC^ , you get an

AnsiChar , which is the character with ASCII value $4D , or 'M' .

PC is a special case, though, since the type PAnsiChar , although it is actually just a pointer to AnsiChar , is treated a little

di�erently than most other pointer types. I explain this in another article. PC , if not derefenced, is generally seen as a

pointer to a piece of text ending in a zero character #0 , and Writeln(PC) will display the text formed by the bytes $4D $65

$6D $00 , which is 'Mem' .

When thinking about pointers, and especially about complex pointer situations, I usually have a piece of paper and a pen

or pencil handy, to draw the kind of diagrams you see in this article. I give variables made up addresses too (they don’t

have to be 32 bit, addresses like 30000 , 40000 , 40004 , 40008 and 50000 are good enough to follow what is going where).

If used properly, pointers are very useful and �exible tools. But when you make a mistake, they can be a big problem.

That is another reason why many people avoid pointers as much as they can. Some of the most common errors are

described here.

Rudy's Delphi Corner - Addressing Pointers http://rvelthuis.de/articles/articles-pointers.html

7 von 24 09.03.24, 08:13

http://rvelthuis.de/articles/articles-pchars.html
http://rvelthuis.de/articles/articles-pchars.html

Pointers are variables, and like any variable, they should be initialized, either by assigning another pointer value to

them, or by using New or GetMem or some such:

var

P1: PInteger;

P2: PInteger;

P3: PInteger;

I: Integer;

begin

I := 0;

P1 := @I; // OK: using @ operator

P2 := P1; // OK: assign other pointer

New(P3); // OK: New

Dispose(P3);

end;

If you simply declare, say, a PInteger , but don’t initialize it, the pointer probably contains some random bytes, i.e. it

points to a random place somewhere in memory.

If you start accessing that random place in memory, ugly things can happen. If the memory is outside the memory

reserved for your application, you most likely get an Access Violation, a program crash. But if the memory is part of your

program, and you write to it, you could be overwriting data that may perhaps not be changed. If the data is used in

another part of the program, at a later point in time, the results your program produces may be wrong. Such errors can

be extremely hard to �nd.

So actually, if you get an AV or some other kind of obvious crash, you can actually be glad (except if it ruined your hard

disk, perhaps). Your program crashed, and that is bad, but such errors are easy to debug and correct. But if you produce

bad data and bad results, the problem may be much worse, and you may not even notice it, or only much later. That is

why you must use pointers with extreme caution. Always meticulously check for uninitialized pointers.

Accessing an uninitialized pointer is unde�ned behaviour. I am particularly fond of the term “nasal demons”, from an

entry in the comp.std.c Usenet newsgroup, where someone wrote: "When the compiler encounters [a given unde�ned

construct] it is legal for it to make demons �y out of your nose”.

Stale pointers are pointers that were once valid, but have gone bad. This can happen when the memory to which a

pointer points is freed and reused.

One common cause of stale pointers is when memory is freed (disposed), but the pointer to it is still used after that

moment. To prevent that, some programmers always set pointers to nil , after the memory is freed. They will add tests

for nil, before they access memory. In other words, nil is used as some kind of �ag to mark the pointer as invalid. This is

one approach, but not always the best.

Another often seen error is having more than one pointer to some piece of memory, and then freeing it using one of

these pointers. Even if you nil that pointer, the other pointers will still contain the address of that piece of freed

memory. If you are lucky, you get an "Invalid pointer" error, but what should happen is unde�ned.

A third, similar problem is pointing a pointer to volatile data, i.e. data that may disappear anytime. One big mistake is for

instance a function returning a pointer to local data of a routine. Once the routine has ended, that data is gone, it does

not exist anymore. A classic (but rather stupid, I know) example:

function VersionData: PAnsiChar;

var

V: array[0..11] of AnsiChar;

begin

CalculateVersion(V);

Result := V;

end;

Rudy's Delphi Corner - Addressing Pointers http://rvelthuis.de/articles/articles-pointers.html

8 von 24 09.03.24, 08:13

V will be placed on the . This is a piece of memory that is reused for local variables and parameters for

every running function, and which also contains sensitive data like return addresses for function calls. The result now

points to V (PAnsiChar can point to an array directly, see the article I mentioned). As soon as VersionData ends, the stack

is modi�ed by the next routine that runs, so whatever was calculated by CalculateVersion is gone again, and the pointer

now points to the new contents of that particular part of the stack.

A similar problem is pointing a PChar to a string, but that is also discussed in the article about PChars. Pointing to an

element of a dynamic array is of the same class, since the dynamic array may be moved entirely, if the array got too

small and SetLength was used.

The fact that pointers can point at any memory location, and that two pointers of a di�erent type can point to the same

location, means that you can access the same memory location in di�erent ways. Using a pointer to Byte (^Byte), you

could change the individual bytes of an integer or some other type.

But you can also overwrite or overread. For instance, if you access a location which is only supposed to contain a Byte

with a pointer to Integer, you could overwrite 4 bytes, not only the byte that is reserved, but also the 3 consecutive

locations, since the compiler would treat those 4 as an integer. Also, if you read from a byte location, you might read too

much:

var

PI: PInteger;

I, J: Integer;

B: Byte;

begin

PI := PInteger(@B);

I := PI^;

J := B;

end;

J will have the proper value, because the compiler will add code to expand the single byte to a (4-byte) Integer by

padding the integer with zero bytes. But I will not. It will contain the byte, and the 3 bytes following it, together forming

some unde�ned value.

Pointers also allow you to set a variable’s value without assigning to the variable itself. This can be the cause of a lot of

frustration during debugging. You know that a variable contains a wrong value, but can’t �nd the spot in code where you

assign that value to the variable, because it was set through a pointer.

Pointers can not only have a di�erent base type, they can also have di�erent ownership semantics. If you allocate

memory, using New or GetMem or one of the other routines for more specialised tasks, you are the of that

memory. It is best, if you want to hold on to that memory, to tuck the pointer into a safe place. The pointer is your only

access to the memory, and if the address gets lost, you have no way to access or free the memory anymore. One rule is

that who allocates memory should also free it, so it is your responsibility to take care it is always possible. Well designed

programs always consider this.

It is very important to understand ownership. Who owns memory must always free it. You can delegate this task, but you

must ensure that it is done properly.

One common error is to use a pointer to allocate memory, and then to re-use the pointer, to allocate some more

memory, or to point it to some other memory. The pointer, which �rst contained the address of the �rst chunk, will now

contain the address of the newest chunk, and the old address is forever lost. There is no useful way to ever �nd back

where that memory was allocated. The memory is . No one can access it, no one can take care of it anymore.

It will present a so called .

Here is a simple example taken (with permission of the author) from Borland’s newsgroups:

var

Rudy's Delphi Corner - Addressing Pointers http://rvelthuis.de/articles/articles-pointers.html

9 von 24 09.03.24, 08:13

http://rvelthuis.de/articles/articles-pchars.html
http://rvelthuis.de/articles/articles-pchars.html
http://rvelthuis.de/articles/articles-pchars.html
http://rvelthuis.de/articles/articles-pchars.html

bitdata: array of Byte;

pbBitmap: Pointer;

begin

SetLength(bitdata, nBufSize);

GetMem(pbBitmap, nBufSize);

pbBitmap := Addr(bitdata);

VbMediaGetCurrentFrame(VBDev, @bmpinfo.bmiHeader, @pbBitmap, nBufSize);

Actually, this code does quite a few confusing things. SetLength allocates bytes for bitdata . For some reason, the

programmer then uses GetMem to allocate the same amount of bytes for pbBitmap . But then he immediately sets pbBitmap

to another address, which makes the memory he just allocated with GetMem unreachable for any code (pbBitmap was the

only way to reach it, and now doesn’t point to it anymore). In other words, we have a memory leak.

In fact, there are a few more errors. bitdata is a dynamic array, and taking the address of bitdata only takes the address of a pointer, instead

of the address of the �rst byte of the bu�er (see further below, dynamic arrays). Also, since pbBitmap is already a pointer, it is wrong to use the

@ operator on it, in the function call.

Better code would have been:

var
bitdata: array of Byte;
pbBitmap: Pointer;

begin
if nBufSize > 0 then
begin

SetLength(bitdata, nBufSize);
pbBitmap := Addr(bitdata[0]);
VbMediaGetCurrentFrame(VBDev, @bmpinfo.bmiHeader, pbBitmap, nBufSize);

end;

or even:

var
bitdata: array of Byte;

begin
if nBufSize > 0 then
begin

SetLength(bitdata, nBufSize);
VbMediaGetCurrentFrame(VBDev, @bmpinfo.bmiHeader, @bitdata[0], nBufSize);

end;

This may seem a trivial problem, but in more complex code, this can easily happen.

Note that a pointer does not have to own memory. Pointers are often used to iterate over arrays (see below), or to

access parts of a structure. If you did not allocate memory with them, there is no need to hold on to them. They are only

used as temporary throw-away variables.

You can either have software quality or you can have pointer arithmetic, but you cannot have both at the same

time. — Bertrand Meyer

Delphi allows some simple manipulations of a pointer. Of course you can assign to them, and compare them for equality

(if P1 = P2 then) or inequality, but you can also increment and decrement them, using Inc and Dec . The neat thing is

that these increments and decrements are scaled by the size of the base type of the pointer. An example (note that I set

the pointer to a fake address. As long as I don’t access anything with it, nothing bad will happen):

program PointerArithmetic;

{$APPTYPE CONSOLE}

uses

SysUtils;

procedure WritePointer(P: PDouble);

begin

Writeln(Format('%8p', [P]));

end;

var

P: PDouble;

begin

Rudy's Delphi Corner - Addressing Pointers http://rvelthuis.de/articles/articles-pointers.html

10 von 24 09.03.24, 08:13

P := Pointer($50000);

WritePointer(P);

Inc(P); // 00050008 = 00050000 + 1 * SizeOf(Double)

WritePointer(P);

Inc(P, 6); // 00050038 = 00050000 + 7 * SizeOf(Double)

WritePointer(P);

Dec(P, 4); // 00050018 = 00050000 + 3 * SizeOf(Double)

WritePointer(P);

Readln;

end.

The output is:

00050000

00050008

00050038

00050018

The utility of this is to provide sequential access to arrays of such types. Since (one-dimensional) arrays contain

consecutive items of the same type — i.e. if one element is at address N , then the next element is at address N +

SizeOf(element) —, it makes sense to use this to access items of an array in a loop. You start with the base address of the

array, at which you can access the �rst element. In the next iteration of the loop, you increment the pointer to access

the next element of the array, and so on, and so forth:

program IterateArray;

{$APPTYPE CONSOLE}

var

Fractions: array[1..8] of Double;

I: Integer;

PD: ^Double;

begin

// Fill the array with random values.

Randomize;

for I := Low(Fractions) to High(Fractions) do

Fractions[I] := 100.0 * Random;

// Access using pointer.

PD := @Fractions[Low(Fractions)];

for I := Low(Fractions) to High(Fractions) do

begin

Write(PD^:9:5);

Inc(PD); // Point to next item

end;

Writeln;

// Conventional access, using index.

for I := Low(Fractions) to High(Fractions) do

Write(Fractions[I]:9:5);

Writeln;

Readln;

end.

Incrementing a pointer is, at least on older processors, probably slightly faster than multiplying the index with the size of

the base type and adding that to the base address of the array for each iteration.

In reality, the e�ect of doing it this way is not nearly as big as you might expect. First, modern processors have special

ways of addressing the most common cases using an index, so there is no need to update the pointer too. Second, the

compiler will generally optimize indexed access into the pointer using version anyway, if this is more bene�cial. And in

the above, the gain found by using a slightly more optimized access is largely overshadowed by the time it takes to

perform the Write().

As you can see in the program above, you can easily forget to increment the pointer inside the loop. And you must

either use for-to-do anyway, or use another way or counter to terminate the loop (which you must then also decrement

and compare manually). IOW, the code using the pointer is generally much harder to maintain. Since it is not faster

anyway, except perhaps in a very tight loop, I would be very wary of using that kind of access in Delphi. Only do this if

you have pro�led your code and found pointer access to be bene�cial and necessary.

Rudy's Delphi Corner - Addressing Pointers http://rvelthuis.de/articles/articles-pointers.html

11 von 24 09.03.24, 08:13

But sometimes you only have a pointer to access memory. Windows API functions often return data in bu�ers, which

then contain arrays of a certain size. Even then, it is probably easier to cast the bu�er to a pointer to an array than to

use Inc or Dec. An example:

type

PIntegerArray = ^TIntegerArray;

TIntegerArray = array[0..65535] of Integer;

var

Buffer: array of Integer;

PInt: PInteger;

PArr: PIntegerArray;

...

// Using pointer arithmetic:

PInt := @Buffer[0];

for I := 0 to Count - 1 do

begin

Writeln(PInt^);

Inc(PInt);

end;

// Using array pointer and indexing:

PArr := PIntegerArray(@Buffer[0]);

for I := 0 to Count - 1 do

Writeln(PArr^[I]);

...

end;

In Delphi 2009 and later, pointer arithmetic, as usable for the PChar type (and PAnsiChar and PWideChar), is now also

possible for other pointer types. When and where this is possible is governed by the new $POINTERMATH compiler

directive.

Pointer arithmetic is generally switched o�, but it can be switched on for a piece of code using {$POINTERMATH ON} , and o�

again using {$POINTERMATH OFF} . For pointer types compiled with pointer arithmetic (pointer math) turned on, pointer

arithmetic is generally possible.

Currently, besides PChar , PAnsiChar and PWideChar , the only other type for which pointer arithmetic is enabled by default

is the PByte type. But switching it on for, say, PInteger would simplify the code above considerably:

{$POINTERMATH ON}

var

Buffer: array of Integer;

PInt: PInteger;

...

// Using new pointer arithmetic:

PInt := @Buffer[0];

for I := 0 to Count - 1 do

Writeln(PInt[I]);

...

end;

{$POINTERMATH OFF}

So there is no need for the declaration of special TIntegerArray and PIntegerArray types to be able to access the type as

an array anymore. Alternatively, instead of PInt[I] , the (PInt + I)^ syntax could have been used, with the same result.

Apparently, in Delphi 2009, the new pointer arithmetic doesn’t work as intended for pointers to generic types yet.

Whatever type the parametric type is instantiated as, indices are not scaled by SizeOf(T) , as expected.

Rudy's Delphi Corner - Addressing Pointers http://rvelthuis.de/articles/articles-pointers.html

12 von 24 09.03.24, 08:13

Many types in Delphi are in fact pointers, but pretend not to be. I like to call these types . Examples are

dynamic arrays, strings, objects and interfaces. These types are all pointers behind the scenes, but with some extra

semantics and often also some hidden content.

• Dynamic arrays

• Multi-dimensional dynamic arrays

• Strings

• Objects

• Turbo Pascal objects

• Interfaces

• Reference parameters

• Untyped parameters

What distinguishes references from pointers is:

• You can not increment or decrement a reference. References point to certain

structures, but never into them, like for instance the pointers that point into an array, in the examples above.

• This hides that they are in fact pointers, and makes them hard to

understand for many, who do not know this, and therefore do things with them they would better not do.

Do not confuse such references with C++’s reference types. These are di�erent in many ways.

Before Delphi 4, dynamic arrays were not a feature of the language, but they existed as a concept. A dynamic array is a

block of memory that is allocated and managed via a pointer. The dynamic array can grow or shrink. This means in fact,

that memory of the new required size is allocated, the contents of the old block that are to be preserved are copied over

to the new block, the old block is freed, and the pointer is then set to point to the new block.

The dynamic array types (e.g. array of Integer) in Delphi do the same. But the runtime library adds special code that

manages each access and assignment. At the memory location the address to which the pointer points, there are

two more �elds, the number of elements allocated, and the reference count.

If, as in the diagram above, N is the address in the dynamic array variable, then the reference count is at address N-8 ,

and the number of allocated elements (the length indicator) at N-4 . The �rst element is at address N .

For each added reference (e.g. assignment, parameter passing, etc.), the reference count is incremented, and for each

removed reference (e.g. when a variable goes out of scope, or when an object containing a dynamic array reference is

freed, or when a variable containing a dynamic array reference is re-assigned to nil or another array) it is decremented.

Accessing dynamic arrays in low level routines like Move or FillChar , or other routines accessing entire arrays, like

TStream.Write is often done wrongly. For a normal array (often this is called a static array, to distinguish it from a

dynamic array), the variable is identical with the block of memory. For a dynamic array, this is not the case (see diagram).

So a routine that wants to access the elements of the array as a block, should not reference the dynamic array variable,

Rudy's Delphi Corner - Addressing Pointers http://rvelthuis.de/articles/articles-pointers.html

13 von 24 09.03.24, 08:13

http://rvelthuis.de/articles/articles-pointers.html#dynarrays
http://rvelthuis.de/articles/articles-pointers.html#dynarrays
http://rvelthuis.de/articles/articles-pointers.html#multidynarrays
http://rvelthuis.de/articles/articles-pointers.html#multidynarrays
http://rvelthuis.de/articles/articles-pointers.html#strings
http://rvelthuis.de/articles/articles-pointers.html#strings
http://rvelthuis.de/articles/articles-pointers.html#objects
http://rvelthuis.de/articles/articles-pointers.html#objects
http://rvelthuis.de/articles/articles-pointers.html#oldobjects
http://rvelthuis.de/articles/articles-pointers.html#oldobjects
http://rvelthuis.de/articles/articles-pointers.html#interfaces
http://rvelthuis.de/articles/articles-pointers.html#interfaces
http://rvelthuis.de/articles/articles-pointers.html#refparams
http://rvelthuis.de/articles/articles-pointers.html#refparams
http://rvelthuis.de/articles/articles-pointers.html#untypedparams
http://rvelthuis.de/articles/articles-pointers.html#untypedparams

but the �rst element of the array instead.

var

Items: array of Integer;

...

// Wrong: address of Items variable is passed

MyStream.Write(Items, Length(Items) * SizeOf(Integer));

...

// Correct: address of first element is passed

MyStream.Write(Items[0], Length(Items) * SizeOf(Integer));

For static arrays, the address of the �rst element is identical with the address of the array, so in other words, passing

Items[0] also works if Items is a static array. If you , then you

can’t go wrong, no matter whether the array is dynamic or static.

Note that in the above, Stream.Write uses untyped var parameters, which are also references. They will be discussed

below.

The above discusses one-dimensional dynamic arrays. But dynamic arrays can also be multi-dimensional. Well, at least

syntactically, since in reality, they are not. A multidimensional dynamic array is in fact a one-dimensional array of

pointers to other one-dimensional arrays.

Say, we have these declarations:

type

TMultiIntegerArray = array of array of Integer;

var

MyIntegers: TMultiIntegerArray;

Now that looks like a multi-dimensional array, and it can indeed be accessed like MyIntegers[0, 3] . But in fact, the

declaration of the type should be read like this (I’m taking some liberties with syntax here):

type

TMultiIntegerArray = array of (array of Integer);

Or, to make it a little more explicit, that is in fact the same as the following:

type

TSingleIntegerArray = array of Integer;

TMultiIntegerArray = array of TSingleIntegerArray;

As you can see, a TMultiIntegerArray is in fact a one-dimensional array of TSingleIntegerArray pointers. This means that a

TMultiIntegerArray is not stored as one block of memory arranged in rows and columns, but that it is in fact a ragged

array, i.e. each entry is simply a pointer to another array, and each of these sub-arrays can have a di�erent size. So

instead of

SetLength(MyIntegers, 10, 20);

(which would allocate 10 TSingleIntegerArray s of 20 integers each, so this is, on the surface, a rectangular array), you can

access and change each of the subarrays:

SetLength(MyIntegers, 10);

SetLength(MyIntegers[0], 40);

SetLength(MyIntegers[1], 31);

// etc...

Rudy's Delphi Corner - Addressing Pointers http://rvelthuis.de/articles/articles-pointers.html

14 von 24 09.03.24, 08:13

Should array indices start at 0 or 1? My compromise of 0.5 was rejected without, I thought, proper consideration.

— Stan Kelly-Bootle

Strings are in many ways the same as dynamic arrays. They are also reference counted, they have a similar internal

structure, with a reference count and a length indicator stored below the string data (at the same o�sets).

The di�erences are in syntax and semantics. You can not set a string to nil , you set it to '' (empty string) to clear it.

Strings can also be constants (the reference count is -1, which is a special value for the runtime routines: they will not try

to increment or decrement it, or free the string). The �rst element is at index 1, unlike dynamic arrays, where the �rst

element is always at index 0.

More about strings can be found in my article about PChars and strings.

In the desktop compilers, objects — or, more accurate, class instances — have no compiler generated lifetime

management. Their internal structure is simple. Each class instance contains, at o�set 0 (i.e. at the address to which the

reference points) a pointer to the so-called VMT table. This is a table with a pointer for each virtual method of the class.

At negative o�sets from the table, a lot of other information about the class is present. I will not go into that in this

article. There is one VMT table for each class (not for each object!).

In the mobile compilers (e.g. for Android or iOS), objects do have a compiler generated lifetime management, called ARC. I

will not dicsuss that here, except to say that the lifetime management is quite similar to that of interfaces.

Classes that implement interfaces also have similar pointers to tables that contain pointers to the methods that

implement the interface, one for each implemented interface. These tables also contain some extra info at negative

o�sets. At which o�set into the object these pointers are stored depends on the �elds already present in the ancestor

class. The compiler knows this.

After the VMT pointer and any interface table pointers, the �elds of the object are stored, just like in a record.

RTTI data and other info about a class is obtained by following the reference to the object, which also points to the VMT

pointer, and then following that pointer to the VMT. The compiler then knows where to �nd the rest of the data, usually

also through complicated structures containg pointers to other structures, sometimes even recursively.

An example follows. Assume the following declaration:

type

TWhatsit = class(TAncestor, IPrintable, IEditable, IComparable)

public

// other field and method declarations

procedure Notify(Aspect: TAspect); override;

procedure Clear; override;

procedure Edit;

procedure ClearLine(Line: Integer);

function Update(Region: Integer): Boolean; virtual;

// etc...

end;

var

Whatsit: TWhatsit;

begin

Whatsit := TWhatsit.Create;

Then the object layout will be something like:

Rudy's Delphi Corner - Addressing Pointers http://rvelthuis.de/articles/articles-pointers.html

15 von 24 09.03.24, 08:13

http://rvelthuis.de/articles/articles-pchars.html
http://rvelthuis.de/articles/articles-pchars.html
http://rvelthuis.de/articles/articles-pointers.html#interfaces
http://rvelthuis.de/articles/articles-pointers.html#interfaces

Although they were deprecated at the time Delphi 1.0 was released, I want to mention old Turbo-Pascal-style object

types (declared with the object keyword, instead of the class keyword). There are still some libraries that use them.

These TP object types are more or less like records with methods, but with inheritance and properties (properties were

added in Delphi, Turbo Pascal did not have them). The layout is like that for a record. There is no inherent VMT pointer

at the beginning of the object. Only if an object has virtual or dynamic methods, a new (hidden) �eld for the VMT pointer

is added (this VMT pointer can be added in a descendant object, so it is not necessarily at o�set 0).

Another di�erence with class types is that TP-style object types are reference types and that they are not

necessarily allocated on the heap. Like records, they can be used as value types, or they can be used with pointers. For

these types, the New pseudo-procedure accepts a second parameter, a constructor call, and Dispose a destructor call.

This type does not have something like TObject as a base and is much like the class and struct types in the C++ language.

This also means that they are subject to object slicing when used as value types, like in C++.

A simple example:

type

POldStyle = ^TOldStyle;

TOldStyle = object

...

constructor Init(Value: Integer); // typical name for a constructor in Turbo Pascal

destructor Done; virtual; // typical name for a destructor in Turbo Pascal

procedure Add(Extra: Integer);

end;

...

var

TurboObj: POldStyle;

begin

New(TurboObj, Init(17));

TurboObj^.Add(33);

...

Dispose(TurboObj, Done);

end.

Although they have been deprecated for a long time already, old TP-style objects still work (but they may be a little buggy,

and bugs in these deprecated types don’t seem to be a priority for the Delphi dev-team), even in the 64 bit compilers. But I

would not recommend their use unless you already have code that uses them. Either use records with methods, or proper

class types. The documentation also says: Object types are supported for backward compatibility only. Their use is not

Rudy's Delphi Corner - Addressing Pointers http://rvelthuis.de/articles/articles-pointers.html

16 von 24 09.03.24, 08:13

https://en.wikipedia.org/wiki/Object_slicing
https://en.wikipedia.org/wiki/Object_slicing

recommended.

To �nd out more about these types, read the documentation, either in the built-in help, or online, in the Delphi docwiki.

Interfaces are in fact a collection of methods. Internally, they are pointers to pointers to an array of pointers to code.

Assume we have the following declarations:

type

IEditable = interface

procedure Edit;

procedure ClearLine(Line: Integer);

function Update(Region: Integer): Boolean;

end;

TWhatsit = class(TAncestor, IPrintable, IEditable, IComparable)

public

procedure Notify(Aspect: TAspect); override;

procedure Clear; override;

procedure Edit;

procedure ClearLine(Line: Integer);

function Update(Region: Integer): Boolean; virtual;

// etc...

end;

var

MyEditable: IEditable;

begin

MyEditable := TWhatsit.Create;

Then the relationship between interface, implementing object, implementing class and methods looks like this:

The variable MyEditable points to the IEditable pointer in the object created by TWhatsit.Create . Note that MyEditable

does not point to the start of the object, but to an o�set into it. The IEditable pointer in the object then points to a table

of pointers, one for each method in the interface. Each of the entries points to a piece of stub code. This piece of code

adjusts the Self pointer (which is in fact the value of MyEditable) to point to the start of the object, by subtracting the

o�set of the IEditable pointer in the object from the passed pointer, and then calls the real method. There is a stub for

each implementation of a method of each interface implemented by the class.

Rudy's Delphi Corner - Addressing Pointers http://rvelthuis.de/articles/articles-pointers.html

17 von 24 09.03.24, 08:13

http://docwiki.embarcadero.com/RADStudio/Tokyo/en/Classes_and_Objects_(Delphi)#Object_Types
http://docwiki.embarcadero.com/RADStudio/Tokyo/en/Classes_and_Objects_(Delphi)#Object_Types

An example: Say the instance is at address 50000, and the pointer for the implementation of IEditable by TWhatsit is at

o�set 16 of each instance. Then MyEditable will contain 50016. The IEditable pointer at 50016 then points to the table for

that interface as implemented in that class (say, at address 30000), and then that points to the stub (say, at address

60000). The stub will see the value (which is passed as Self parameter) 50016, subtract the o�set 16 and get 50000. This is

the address of the implementing object. The stub then calls that real method, passing 50000 as the Self parameter.

In the diagram, for clarity, I omitted the stubs for QueryInterface , _AddRef and _Release .

Can you see why I like to use pencil and paper sometimes? ;-)

Reference parameters are often called var parameters, but also out parameters are reference parameters.

Reference parameters are parameters where not the value of the actual parameter is taken and passed to the routine,

but its address instead. An example:

procedure SetBit(var Int: Integer; Bit: Integer);

begin

Int := Int or (1 shl Bit);

end;

This is functionally equivalent to the following:

procedure SetBit(Int: PInteger; Bit: Integer);

begin

Int^ := Int^ or (1 shl Bit);

end;

There are a few di�erences, though:

• You do not use pointer syntax. Using the name of the parameter automatically dereferences the parameter, IOW

using the name of the parameter means accessing the target, not the pointer.

• Reference parameters can not be modi�ed. Using the name of the parameter uses its target, you can’t assign to

the pointer, or increment or decrement it.

• You must pass something that has an address, i.e. has an actual memory location, unless you use a casting trick.

So to a reference parameter of type Integer, you can’t for instance pass 17 , 98765 , or Abs(MyInteger) . It must be a

variable (this includes elements of arrays, �elds of records or objects, etc.).

• Actual parameters must be of the same type as the declared parameters, i.e. you can not pass a TEdit if you

declared the parameter as a TObject . To avoid this, you can only use untyped reference parameters instead (see

below).

Syntactically, it may seem simpler to use reference parameters then to use pointer parameters. But one should be

aware of some peculiarities. To pass pointers, one must increase the level of indirection by one. In other words, if you

have a pointer P to an integer, to pass that, you must syntactically pass P^ :

var

Int: Integer;

Ptr: PInteger;

Arr: array of Integer;

begin

// Initialisation of Int, Ptr and Arr not shown...

SetBit(Ptr^, 3); // Ptr is passed

SetBit(Arr[2], 11); // @Arr[2] is passed

SetBit(Int, 7); // @Int is passed

Untyped parameters are also reference parameters, but they can either be var , const or out . You can pass any type,

which makes it easier to write routines that accept almost anything, of any size or type, but this means you must either

Rudy's Delphi Corner - Addressing Pointers http://rvelthuis.de/articles/articles-pointers.html

18 von 24 09.03.24, 08:13

have a way to pass the type with it, as another parameter, or the routine is thus, that the type doesn’t matter. To access

the parameter, you’ll have to cast it.

Internally, untyped parameters are passed as pointers too. Two examples follow. The �rst is of a generic routine that �lls

any bu�er with a range of bytes, i.e. the type of the variable passed in the bu�er doesn’t matter:

// Example of routine where type doesn't matter

procedure FillBytes(var Buffer; Count: Integer;

Values: array of Byte);

var

P: PByte;

I: Integer;

LenValues: Integer;

begin

LenValues := Length(Values);

if LenValues > 0 then

begin

P := @Buffer; // Treat buffer as array of byte.

I := 0;

while Count > 0 do

begin

P^ := Values[I];

I := (I + 1) mod LenValues;

Inc(P);

Dec(Count);

end;

end;

end;

The second is a method of a TIntegerList , a descendant of a generic TTypedList :

function TIntegerList.Add(const Value): Integer;

begin

Grow(1);

Result := Count - 1;

// FInternalArray: array of Integer;

FInternalArray[Result] := Integer(Value);

end;

As you can see, to use the pointer, you must take the address of the parameter, although in fact the parameter is

already the pointer you want. Again, the level of indirection is o� by one.

To access the referenced target, you simply use it as for normal reference parameters, but you must cast to a type, so

the compiler knows how to dereference the pointer.

I already mentioned the level of indirection. This can be seen if you want to initialize a dynamic array with FillBytes . To

do that, you don’t pass the variable, but the �rst element of the array. In fact, you can also pass the �rst element of a

static array to achieve the same. So, if you are passing arrays to untyped reference parameters, IMO, your best choice is

always to pass the �rst element, instead of the array, unless you really want to mess up the array pointer of a dynamic

array.

Procedural types are in fact variables that hold typed pointers to procedures or functions. There are several such types:

• Plain procedural types

• Method types (events)

• Anonymous methods

These are implemented quite di�erently, and one should not confuse these types. They are all reference types, although

one (and sometimes must) use the @ operator with the �rst kind, plain procedural types.

These reference global (i.e. non-method) procedures and functions. This is useful if you must call di�erent functions in a

Rudy's Delphi Corner - Addressing Pointers http://rvelthuis.de/articles/articles-pointers.html

19 von 24 09.03.24, 08:13

similar context. For instance, the (non-generic) TList.Sort method (in System.Classes) is passed a TListSortCompare

procedural type parameter which compares two items (passed as pointers) of the list. This allows di�erent ways to

compare the items, so the list can be sorted di�erently.

I will try to explain them with another example:

program ProceduralTypes;

{$APPTYPE CONSOLE}

uses

SysUtils, Math;

type

TOperation = function(Left, Right: Integer): Integer;

// Now use the type:

function MapOperation(const A, B: array of Integer; Operation: TOperation): TArray<Integer>;

var

I: Integer;

begin

SetLength(Result, Math.Min(Length(A), Length(B)));

for I := 0 to High(Result) do

Result[I] := Operation(A[I], B[I]); // Call the passed function

end;

// Utility function to print an array.

procedure PrintArray(const A: array of Integer);

var

I: Integer;

begin

for I in A do

Write(I, ' ');

Writeln;

end;

// The following functions will be mapped to the Operation parameter of the previous function.

procedure Addition(Left, Right: Integer): Integer;

begin

Result := Left + Right;

end;

procedure Subtraction(Left, Right: Integer): Integer;

begin

Result := Left - Right;

end;

var

Adds, Subs: TArray<Integer>;

begin

// Pass Addition as the Operation parameter: items will be added pairwise.

Adds := MapOperation([1, 2, 3, 4], [5, 6, 7, 8], Addition);

PrintArray(Adds);

// Pass Subtraction as the Operation parameter: items will be subtracted pairwise.

Subs := MapOperation([1, 2, 3, 4], [5, 6, 7, 8], Subtraction); // Subtracts the items in the arrays

PrintArray(Subs);

end.

The output is, as expected:

6 8 10 12

-4 -4 -4 -4

The �rst line shows the additions of corresponding items in the two arrays (1+5, 2+6, 3+7, 4+8), each the result of

passing them pairwise to the Operation parameter, which references the Addition function. In the second line, the

results are subtractions of the same values (1−5, 2−6, 3−7, 4−8), because in the second call, the Operation parameter

references the Subtraction function.

Rudy's Delphi Corner - Addressing Pointers http://rvelthuis.de/articles/articles-pointers.html

20 von 24 09.03.24, 08:13

You can only assign functions or procedures that have the same signature as the declared procedural type. The signature

is the combination of parameter and return types. In the example, the signature is, in pseudo-code: function(Integer,

Integer): Integer . The names of the function and the parameters do not matter. Only the combination of the types must

be the same.

This is important and not knowing this is the cause of many mistakes I’ve seen:

. You can assign instance methods of objects, because these have a hidden

Self parameter, which must be a valid object. You can, though, assign static methods; these do not have a Self

parameter and are, internally, just global procedures or functions too.

You can use the @ operator on both sides of the assignment. This makes sense if the procedural type is used in an

expression. The Delphi documentation gives a nice example:

var

F, G: function: Integer;

I: Integer;

function SomeFunction: Integer;

...

F := SomeFunction; // assign SomeFunction to F

I := F;

...

if F = SomeFunction then

Because calling parameterless functions in Pascal and Delphi does not require parentheses (in other words, you don’t

have to use F() to call F), using procedural types can be ambiguous. The if clause above compares the Integer

of calling F and SomeFunction . if you want to know if SomeFunction was assigned to F , you must use the @ operator:

if @F = @SomeFunction then

If you want to know the address of the variable F , you should use a double @ :

Writeln(Format('%p', [@@F]));

To avoid an ambiguous situation, if you really want to be sure you are calling the procedural type and comparing the

Integer results of calling the functions, you can make the calls explicit using parentheses:

if F() = SomeFunction() then

Method pointers are often used for events. Events in the VCL or FireMonkey are in fact method pointer properties. One

well known event type is for instance:

type

TNotifyEvent = procedure(Sender: TObject) of object;

This is used for many of the VCL events, e.g. the OnClick event of a control. The syntax di�ers from plain procedural

types by the of object part. One could say that of object is part of the signature: procedure(TObject) of object .

These types are not just pointers. They contain information about the address of the code and about the speci�c object

on which they are called. Internally, a method pointer is realized as a TMethod record:

type

Rudy's Delphi Corner - Addressing Pointers http://rvelthuis.de/articles/articles-pointers.html

21 von 24 09.03.24, 08:13

PMethod = ^TMethod;

TMethod = record

Code, Data: Pointer;

public

class operator Equal(const Left, Right: TMethod): Boolean; inline;

class operator NotEqual(const Left, Right: TMethod): Boolean; inline;

class operator GreaterThan(const Left, Right: TMethod): Boolean; inline;

class operator GreaterThanOrEqual(const Left, Right: TMethod): Boolean; inline;

class operator LessThan(const Left, Right: TMethod): Boolean; inline;

class operator LessThanOrEqual(const Left, Right: TMethod): Boolean; inline;

end;

In older versions of Delphi, there are no class operators , so there they are just:

type

PMethod = ^TMethod;

TMethod = record

Code, Data: Pointer;

end;

The Data pointer points to the class instance (object) on which the method is called, and the Code pointer points to the

code of the method. Using the type is like calling a plain procedural type:

procedure TButton.Click;

begin

if Assigned(OnClick) then

OnClick(Self); // Self (the current button) is passed as the Sender parameter here.

end;

There is another, hidden parameter (like for all methods), which is taken from the Data part of the TMethod (for instance

the current form). This is passed as the Self of the event handler.

procedure TForm1.Button1Click(Sender: TObject);

begin

Self.Caption := TButton(Sender).Caption;

end;

Button1Click has two parameters: the hidden Self parameter (the instance of TForm1) and the explicit Sender parameter

(the button that was clicked). So the above sets the Caption of the form to the Caption of the button that was clicked.

Like for plain procedural types, you can use the @ operator to compare two method types. This does not just compare

the Code parts, but also the Data parts, so in this case @ does not just return a pointer, it returns a TMethod .

Static methods of a class do not have an implicit Self parameter. They are, except for the scope, the same as plain

global functions or procedures. They can only be assigned to plain procedural types, not to method types.

These are, by far, the most complicated but also the most powerful of the procedural types.

They are declared as follows:

type

TAnonymousOperation = reference to function(Left, Right: Integer): Integer;

On the surface, they are like plain procedural types. But they are more powerful than that. They can capture every part

of the context in which they are de�ned that they use.

This is an article about pointers, so I will not explain more and just refer to the built-in help or the Delphi docwiki once

again. It contains some nice examples, similar to the code about plain procedural types above.

Rudy's Delphi Corner - Addressing Pointers http://rvelthuis.de/articles/articles-pointers.html

22 von 24 09.03.24, 08:13

http://docwiki.embarcadero.com/RADStudio/Tokyo/en/Anonymous_Methods_in_Delphi
http://docwiki.embarcadero.com/RADStudio/Tokyo/en/Anonymous_Methods_in_Delphi

That these are not just simple pointers should be clear: something must keep (capture) all the variables the anonymous

method refers to (for instance the y parameter of the outer function in the �rst example in the docwiki article). Under

the surface, an anonymous method is implemented as a class that has member �elds for all the variables it captures. To

manage the lifetime, the class implements an interface, and the interface reference is what is stored in the anonymous

method variable. The interface has an Invoke method with the same signature as the declared anonymous method. This

is the method that is actually called when the anonymous method is invoked.

Pointers are used extensively in data structures like linked lists, all kinds of trees and hierarchies, etc. I will not discuss

these here. Su�ce it to say that such advanced structures could not be done without pointers or references, not even in

languages which o�cially don’t even use pointers, like Java (well, as far as I know). If you really want to know more about

such structures, you’ll have to read one of the many textbooks on that subject.

I will give one simple example diagram of a data structure which relies heavily on pointer use, a linked list:

If you have such structures, it usually pays out to encapsulate the inner workings in a class, so that your use of pointers

can be reduced to the implementation of the class, and they don’t have to show up in the public interface of it. Pointers

are powerful, but also hard to use, and if you can avoid using them, then do.

I tried to give you my view on pointers. There are other approaches, but IMO, the one using diagrams (no matter how

simple) with arrows is a good way to understand complex pointer problems, like the one above, or to understand how

interface variables, objects, classes and code are linked. This does not mean that I draw diagrams of every simple

problem. Only of the more complex ones, using pointers.

What this article tries to show is that pointers are everywhere, even if you don’t always see them. That is not a reason to

get paranoid, but the understanding of pointers as the underlying mechanism is, in my opinion, a prerequisite to

avoiding a lot of mistakes.

I hope I was able to give you some useful tips. I’m sure that this article is incomplete, and I’d love suggestions on

improvement. Just e-mail me.

Rudy Velthuis

These links are being provided as a convenience and for informational purposes only; they do not constitute an endorsement or an approval of any of the products, services or opinions of

the corporation or organization or individual. I bear no responsibility for the accuracy, legality or content of the external site or for that of subsequent links. Contact the external site for

answers to questions regarding its content.

Rudy's Delphi Corner - Addressing Pointers http://rvelthuis.de/articles/articles-pointers.html

23 von 24 09.03.24, 08:13

http://docwiki.embarcadero.com/RADStudio/Tokyo/en/Anonymous_Methods_in_Delphi
http://docwiki.embarcadero.com/RADStudio/Tokyo/en/Anonymous_Methods_in_Delphi
mailto:Rudy%20Velthuis%20%3Carticles@rvelthuis.de%3E?subject=Addressing%20pointers
mailto:Rudy%20Velthuis%20%3Carticles@rvelthuis.de%3E?subject=Addressing%20pointers

The coding examples presented here are for illustration purposes only. The author takes no responsibility for end-user use. All content herein is copyrighted by Rudy Velthuis, and may not

be reproduced in any form without the author's permission. Source code written by Rudy Velthuis presented as download is subject to the license in the �les.

Copyright © 2019 by Rudy Velthuis

Last update: Feb. 20, 2019

Back to top

Rudy's Delphi Corner - Addressing Pointers http://rvelthuis.de/articles/articles-pointers.html

24 von 24 09.03.24, 08:13

http://rvelthuis.de/articles/articles-pointers.html#top
http://rvelthuis.de/articles/articles-pointers.html#top

